BARYCENTRICALLY ASSOCIATIVE AND PREASSOCIATIVE FUNCTIONS

JEAN-LUC MARICHAL AND BRUNO TEHEUX

ABSTRACT. We investigate the barycentric associativity property for functions with in-
definite arities and discuss the more general property of barycentric preassociativity, a
generalization of barycentric associativity which does not involve any composition of func-
tions. We also provide a generalization of Kolmogoroff-Nagumo’s characterization of the
quasi-arithmetic mean functions to barycentrically preassociative functions.

1. INTRODUCTION

Let X and Y be arbitrary nonempty sets. Throughout this paper we regard tuples x in
X™ as n-strings over X. The O-string or empty string is denoted by ¢ so that X° = {¢}.
We denote by X* the set of all strings over X, that is, X* = U,>0 X", and we denote
its elements by bold roman letters x, y, z, ... For 1-strings, we often use non-bold italic
letters x, y, 2, . ..

We endow the set X * with concatenation for which we use the juxtaposition notation.
For instance, if x € X™ and y € X, then xy € X™*!. Moreover, for every string x and
every integer n > 0, the power x" stands for the string obtained by concatenating n copies
of x. In particular we have x° = £. The length of a string x is denoted by |x|. For instance,
le] = 0.

As usual, a function F: X™ — Y (an operation, if Y = X) is said to be n-ary. Similarly,
we say that a function F: X* — Y has an indefinite arity or is *-ary. For every integer
n 2 0, the n-ary part F,, of a function F: X* — Y is the restriction of F' to X", that is,
F,, = F|xn. The default value of F is the value given by its nullary part Fy(¢). Finally, a
*-ary operation on X (or an operation for short) is a function F: X* — X u {e}, and such
an operation is said to be e-standard [18] if it satisfies the condition

F(x)=¢e < x=c¢.

Recall that a *-ary operation F: X* — X u {e} is said to be associative (see, e.g.,
[10, 16, 17]) if it satisfies the equation

F(xyz) = F(xF(y)z), xyz € X".

Thus defined, associativity expresses that the function value of a string does not change
when replacing any of its substring with its corresponding value. For instance, the sum
function over the set of real numbers, regarded as the e-standard operation F:R* - Ru{e}
defined as F,,(x) = Yv, x; for every integer n > 1, is associative.

In this paper we are first interested in the following variant of associativity, called
barycentric associativity.
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Definition 1.1. A x-ary operation F: X* — X u {e} is said to be barycentrically asso-
ciative (or B-associative for short) if it satisfies the identity F(xyz) = F(xF(y)"'z) for
every xyz € X*.

Remark 1. We observe from Definition 1.1 that, if F'(x) € X for every x € X* \ {¢}
(which holds, e.g., if F' is e-standard), then the default value Fy(e) of a B-associative
operation F: X* — X U {e} is unimportant in the sense that if we modify this value, then
the resulting operation is still B-associative. However, if F'(y) = ¢ for some y # ¢, then
the default value Fj(e) must be ¢. Indeed, we then have

e = Fy) = F(F(y)™) = F(P) = F(e).

To give a nonconstant example of such an operation, set a € X and consider the operation
F,: X* > X u{e} defined as F,(x) = a, if x = uav for some uv € X*, and F,(x) = ¢,
otherwise. Then F}, is both associative and B-associative.

By definition, B-associativity expresses that the function value of a string does not
change when replacing every letter of a substring with the value of this substring. For
instance, the arithmetic mean over the set of real numbers, regarded as the e-standard
operation F:R* — R U {e} defined as F},(x) = = >"I" x; for every integer n > 1, is B-
associative. However, this operation is not associative. Actually, contrary to associativity,
B-associativity is satisfied by various mean functions when regarded as e-standard opera-
tions over the reals, including the arithmetic mean, the geometric mean, and the harmonic
mean.

To our knowledge, a simple form of B-associativity was introduced first in 1909 by
Schimmack [20] as a natural and suitable variant of associativity to characterize the arith-
metic mean over the reals. More precisely, Schimmack considered the condition F'(yz) =
F(F(y)¥!z) for symmetric functions F:J,5; R® - R (‘symmetric’ means that every
n-ary part of F' is invariant under any permutation of its arguments).

A similar condition, namely F(yz) = F(F(y)"z) with |z| > 1, was then used for
symmetric functions F:U,s; R" — R in 1930 by Kolmogoroff [9] and independently by
Nagumo [19] to characterize the class of quasi-arithmetic mean functions (see Theorem 3.1
below).

The general nonsymmetric definition given in Definition 1.1 appeared more recently
in [2] and [11] (see also [15]) and both the symmetric and nonsymmetric versions of this
definition have then been used to characterize further classes of functions; see, e.g., [3,
6,12, 14, 15]. For general background on B-associativity and its links with associativity,
see [8, Sect. 2.3].

Since their introduction, this condition and its different versions were used under at
least three different names: associativity of means [4], decomposability [7, Sect. 5.3], and
barycentric associativity [2]. Here we have chosen the third one, which naturally recalls
the associativity property of the barycenter (see Remark 3 below).

In [16, 17] the authors recently introduced a generalization of associativity for *-ary
functions called preassociativity (see also [10, 18]). A function F: X* — Y is said to be
preassociative if

F(y)=F(y') = F(xyz)=F(xy'z), xyy'ze X*.

In this paper we investigate the following simultaneous generalization of preassociativ-
ity and barycentric associativity, which we call barycentric preassociativity.
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Definition 1.2. We say that a function F: X* — Y is barycentrically preassociative (or
B-preassociative for short) if for every xyy’z € X* such that |y| = |y’| we have

F(y)=F(y') = F(xyz)=F(xy'z).

Remark 2. We observe that if we modify the default value of a B-preassociative function,
then the resulting *-ary function is still B-preassociative.

Thus, a function F: X* — Y is B-preassociative if the equality of the function values
of two strings of the same length still holds when adding identical arguments on the left or
on the right of these strings. For instance, the e-standard sum operation F:R* - R u {e}
defined as F,,(x) = Y-, x; for every integer n > 1 is B-preassociative. However, this
operation is not B-associative.

By definition, B-preassociativity generalizes preassociativity. It was shown in [10, 16,
17] that preassociativity generalizes associativity. Similarly, we show in this paper (Propo-
sition 4.3) that B-preassociativity generalizes B-associativity.

B-preassociativity may be very natural in various areas. In decision making for instance,
in a sense it says that if we express an indifference when comparing two profiles, then this
indifference is preserved when adding identical pieces of information to these profiles. In
descriptive statistics and aggregation function theory, it says that the aggregated value of
a series of numerical values remains unchanged when modifying a bundle of these values
without changing their partial aggregation.

B-preassociativity is not really a new property. A slightly different version was actually
introduced in 1931 by de Finetti [4, p. 380] for symmetric functions F:UJ,>; R” - R.
According to de Finetti, a mean function F:,5; R™ — R is said to be ‘associative’ if for
every ryz € Ups1 R”, with |z| > 1, we have F(yz) = F(x¥1z) whenever F(y) = F(«P).

It is noteworthy that, contrary to B-associativity, B-preassociativity does not involve any
composition of functions and hence allows us to consider a codomain Y that may differ
from the set X U {¢}. For instance, the length function F: X* — R, defined as F'(x) = |x|,
is B-preassociative.

The outline of this paper is as follows. After going through some preliminaries in Sec-
tion 2, we establish a number of important properties of B-associative and B-preassociative
functions in Sections 3 and 4, respectively. In Section 4 we mainly focus on those B-
preassociative functions F: X* — Y for which, for every integer n > 1, the n-ary function
F,: X™ — Y has the same range as its diagonal section z — F,,(z™). (WhenY = X u{e},
these B-preassociative functions include the B-associative ones). In particular, we give
a characterization of these functions as compositions of the form F,, = f, o H,,, where
H:X* - X u{e} is a B-associative e-standard operation and f,,: H,(X™) — Y is one-to-
one (Theorem 4.11). From this result we derive a generalization of Kolmogoroff-Nagumo’s
characterization of the quasi-arithmetic mean functions to barycentrically preassociative
functions (Theorem 4.14).

The terminology used throughout this paper is the following. We denote by N the set
{1,2,3,...} of strictly positive integers. The domain and range of any function [ are
denoted by dom( f) and ran( f), respectively. The identity operation on any nonempty set
is denoted by id. For every integer n > 1, the diagonal section d: X — Y of a function
F: X™ > Y is defined as 0 (x) = F(z™). For every function F: X" - Y, with n > 2, we
also let §%.: X2 — Y and §%: X2 — Y be the binary functions defined as

dp(zy) = F(2"'y) and &p(xy) = F(ay"™),

respectively. By extension, we define p, = 0, = 5%0 = Fp and dp, = 5t =11
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FIGURE 1. Barycentric associativity

Remark 3 (Geometric interpretation of B-associativity). Consider a set of identical homo-
geneous balls in X = R™. Each ball is identified by the coordinates x € X of its center.
Let F: X* — X U {e} be the e-standard operation which carries any set of balls into their
barycenter. Due to the well-known associativity-like property of the barycenter, the op-
eration F' must satisfy the equation F(xyz) = F(xF(y)¥lz) for every xyz ¢ X* and
therefore is B-associative (see Figure 1).

2. PRELIMINARIES

Recall that, for any n € N, an n-ary operation F: X" — X is said to be idempotent
(see, e.g., [8]) if 0 = id. An operation F: X™ — X is said to be range-idempotent [8] if
OF|ran(F) = id|ran(ry. O equivalently, 67 o F' = F'. In this case Jr necessarily satisfies the
equation dg o dp = Op.

We now introduce the following definitions. We say that a *-ary operation F: X* —
Xu{e}is

o idempotent if 6, = id for every n € N;
e arity-wise range-idempotent if F(F(x)X) = F(x) for every x € X* (if F is
e-standard, this condition is equivalent to 0, o F}, = F,, for every n € N).
We say that an n-ary function F: X" — Y (n € N) is quasi-range-idempotent if ran(dp) =
ran(F') and we say that a *-ary function F: X* — Y is arity-wise quasi-range-idempotent
if I}, is quasi-range-idempotent for every n € N.

We immediately observe that range-idempotent operations F: X" — X are necessarily

quasi-range-idempotent. The following proposition states a finer result.

Proposition 2.1. For any n € N, an operation F: X™ — X is range-idempotent if and only
if it is quasi-range-idempotent and satisfies 0y o 6p = 0.

Proof. (Necessity) We have ran(dr) ¢ ran(F’) for any operation F: X" — X. Since
F is range-idempotent, we have 0 o F' = I, from which the converse inclusion follows
immediately. In particular, 6y o dp = dp.

(Sufficiency) Since F' is quasi-range-idempotent, the identity d p o 0 = 0 is equivalent
to 5}7‘ oF =F. [l

We now show that any quasi-range-idempotent function F: X™ — Y (n € N) can always
be factorized as F' = dp o H, where H: X" — X is range-idempotent.

First recall that a function g is a guasi-inverse [21, Sect. 2.1] of a function f if f o
Glran(s) = id|ran(s) and ran(glian(r)) = ran(g). We then have ran(g) < dom(f) and the
function f|,,n(y) is one-to-one. Recall also that the Axiom of Choice (AC) is equivalent
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to the statement “every function has a quasi-inverse.” Moreover, the relation of being
quasi-inverse is symmetric, i.e., if g is a quasi-inverse of f, then f is a quasi-inverse of g.
Throughout this paper we denote the set of all quasi-inverses of f by Q(f).

Fact 2.2. Assume AC and let f and h be two functions such that ran(h) ¢ ran(f). Then
we have f o goh = hforevery g€ Q(f).

Proposition 2.3. Assume AC and let F: X" — Y be a quasi-range-idempotent function,
where n € N. For any g € Q(0F), the operation H: X" — X defined as H = go F is a
range-idempotent solution of the equation I' = 0 o H. Moreover, the function p|van(m)
is one-to-one.

Proof. Let g € Q(6p) and set H = g o F. Since ran(dp) = ran(F'), by Fact 2.2 we have
dpoH =dpogoF = F. Also, H is range-idempotent since dyo H = godpoH = goF' = H.
Since 0 |ran(g) is one-to-one and ran(H') < ran(g), the function 0 p|,an(#) is also one-to-
one. [l

The following proposition, inspired from the investigation of Chisini means [13], yields
necessary and sufficient conditions for a function F: X™ — Y to be quasi-range-idempotent.

Proposition 2.4. Assume AC and let F: X" — Y be a function, where n € N. The following
assertions are equivalent.
(1) F is quasi-range-idempotent.

(ii) There exists an operation H: X™ — X such that F = 6 o H.

(iii) There exists an idempotent operation H: X™ — X and a function f: X - Y such
that F = f o H. In this case, f = dp.

(iv) There exists a range-idempotent operation H: X" — X and a function f: X -Y
such that F' = f o H. In this case, F = 6 o H. Moreover, if h = p|van(m) s
one-to-one, then h™! € Q).

(v) There exists a quasi-range-idempotent operation H: X™ — X and a function
f+X > Y suchthat F = f o H.

In assertions (ii), (iv), and (v) we may choose H = g o F for any g € Q(dr) and H is then
range-idempotent. In assertion (iii) we may choose H such that 6y =id and H = go F on
X" ~{a":xe X} forany g€ Q(op).

Proof. (i) = (ii) Follows from Proposition 2.3.

(ii) = (iii) Modifying d into id and taking f = dp, we obtain F' = f o H, where H is
idempotent. We then have dp = fody = foid = f.

(iii) = (iv) The first part is trivial. Also, we have ép o H = fodyoH = fo H = F.
Now, if & = 6 p|ran(s) is one-to-one, then we have H = h™' o F and hence §p o h™! 0 6p =
dpodg =hodyody=hody =d6p, which shows that h™! € Q(0r).

(iv) = (v) Trivial.

(v) = (i) We have ran(dp) = ran(f o ) =ran(f o H) = ran(F).

The last part follows from Proposition 2.3. (]

Remark 4. The proof of implication (v) = (i) in Proposition 2.4 shows that the property
of quasi-range-idempotence is preserved under left composition with unary maps.

For any n € N, we say that a function F: X" — Y is idempotizable (see [13] for a
variant of this definition) if it is quasi-range-idempotent and &y is one-to-one. In this
case the composition 67! o F, from X" to X, is idempotent. From Proposition 2.4, we
immediately derive the following corollary.



6 JEAN-LUC MARICHAL AND BRUNO TEHEUX

Corollary 2.5. Let F: X™ — Y be a function, where n € N. The following assertions are
equivalent.
(i) F'is idempotizable.
(ii) O is a bijection from X onto ran(F’) and there is a unique idempotent operation
H: X™ - X, namely H = 51}1 oF, suchthat F' = 6 o H.
(iii) There exists an idempotent operation H: X™ — X and a bijection f from X onto
ran(F) such that F = f o H. In this case we have f = 6 and H = 6 o F.

In the special case when the function is range-idempotent, we have the following result.

Proposition 2.6. Foranyn €N, if F: X™ — X is range-idempotent and 0 g is one-to-one,
then F' is idempotent.

Proof. Since 65 o r = §p we simply have §r = 67! o 5 = id. O

3. BARYCENTRIC ASSOCIATIVITY

In this section we discuss the concept of B-associativity (mainly for e-standard opera-
tions) and provide some results on this property which will be useful in the investigation
of B-preassociative functions.

Let us first recall the characterization of the class of quasi-arithmetic mean functions
given by Kolmogoroff [9] and Nagumo [19]. This result, originally stated for real functions
over a closed interval [a,b], was extended in [8, Sect. 4.2] to functions over an arbitrary
real interval I. The following theorem gives the characterization following Kolmogoroff
(we extend the domain of the functions F:U,; [™ — I of this characterization to I*,
see Remark 1(a)). Nagumo’s characterization is the same except that the strict increasing
monotonicity of each function F,, is replaced with the strict internality of F5 (i.e., x < y
implies « < Fy(x,y) < y). Note also that a variant and a relaxation of Kolmogoroff-
Nagumo’s characterization can also be found in [5, 6, 12].

Theorem 3.1 (Kolmogoroff-Nagumo). Let [ be a nontrivial real interval (i.e., nonempty
and not a singleton), possibly unbounded. A function F:1* — 1 is B-associative and,
for every n € N, the n-ary part F, is symmetric, continuous, idempotent, and strictly
increasing in each argument if and only if there exists a continuous and strictly monotonic
function f:1— R such that

F,(x) = f‘l(:zif(mi)), neN.

Interestingly, the following corollary shows that the idempotence property can be re-
moved from Kolmogoroff-Nagumo’s characterization.

Fact 3.2. If an operation F: X* — X u {e} is B-associative, then it is arity-wise range-
idempotent (take xz = € in Definition 1.1).

Corollary 3.3. Let F: X* — X u {e} be a B-associative operation such that F(x) € X
for every x € X* ~ {e} and let n € N. If §F, is one-to-one, then 6, = id. In particular,
the idempotence property is not needed in the Kolmogoroff-Nagumo’s characterization
(Theorem 3.1).

Proof. Since F' is B-associative, it is arity-wise range-idempotent by Fact 3.2. Since F'
is e-standard, this means that 0z, o F,, = F,, for every n € N. We then conclude by
Proposition 2.6. (]
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The existence of nonsymmetric B-associative operations can be illustrated by the fol-
lowing example, introduced in [11, p. 81] (see also [15]). For every z € R, the e-standard
operation M*:R* - R uU {e} defined as
Z?:l anz(]_ _ Z)ifl 4

Sy (=)
is B-associative. Actually, one can show [14] that any B-associative e-standard operation
over R whose n-ary part is a nonconstant linear function for every n € N is necessarily
one of the operations M* (z € R). More generally, the class of B-associative polynomial
e-standard operations (i.e., such that the n-ary part is a polynomial function for every
n € N) over an infinite commutative integral domain D was also characterized in [14].
This characterization shows that, up to singular cases, the typical B-associative polynomial
e-standard operations are linear, that is, of the form M?, where z € D.

The following proposition yields alternative equivalent definitions of B-associativity.
Note that an analog equivalence holds for the associativity property; see [3, 10, 16—18].
The equivalence between definitions (i) and (iv) was observed in [8, Sect. 2.3].

(1) My (x) =

neN,

Proposition 3.4. Let F: X* — X u {e} be an operation. The following assertions are
equivalent:
(i) F' is B-associative.
(ii) For every xyz,x'y'z' € X* such that xyz = x'y'z’ we have F(xF(y)¥lz) =
F(x'F(y")¥'z").
(iii) For every xyz € X* we have F(F(xy)z) = F(xF(yz)»?).
(iv) For every xy € X* we have F(xy) = F(F(x)X F(y)™).

Proof. We have (i) = (ii) = (iii) trivially. Let us prove (iii) = (iv). Taking yz = ¢
shows that F' is arity-wise range-idempotent. Taking x = ¢ and then z = ¢, we obtain
F(F(x)Xly) = F(xF(y)M) = F(F(xy)*!) = F(xy) and therefore F(F(x)* F(y)¥!) =
F(xy). Finally, let us prove that (iv) = (i). Clearly, F'is arity-wise range-idempotent (take

y =¢). For every xyz € X* we then have

X; zly (* x X z

F(xF(y)¥z) = F(F(xF(y)*") F(z)) @ FFE)MF ()M F(z))
= F(F(xy)™'FP(2)) = F(xyz),

where, at (*), we have used (iv) and the fact that F' is arity-wise range-idempotent. t

The following proposition shows that the definition of B-associativity (Definition 1.1)
remains unchanged if we upper bound the length of the string xz by one. Our proof makes
use of the B-preassociativity property and hence will be postponed to Section 4.

Proposition 3.5. An operation F: X* — X u {e} is B-associative if and only if for every
xyz € X* such that |xz| < 1 we have F(xyz) = F(xF (y)"!z).

Proposition 3.5 simply states that an operation F: X* — X U {e} is B-associative if and
only if it satisfies the following two conditions:
(a) F(y)=F(F(y)!) forevery y € X* (arity-wise range-idempotence),
(b) F(zyz) = F(zF(yz)¥*) = F(F(zy)*Y|2) for every zyz ¢ X*.
In particular, an idempotent e-standard operation F': X* — X u {e} is B-associative if and
only if condition (b) above holds.
Interestingly, Proposition 3.5 also shows how a B-associative e-standard operation F: X * —
X u {e} can be constructed by choosing first F, then F5, and so forth. In fact, F} can be
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chosen arbitrarily provided that it satisfies F; o Fy = F}. Then, if F}, is already chosen for
some k € N, then F};,1 can be chosen arbitrarily from among the solutions of the following
equations

0F1 © Frs1 = Frea,
B (zyz) = Fo(@Fu(y2)*) = Frn(Fe(zy)’z),  azyze XF
In general, finding all the possible functions F}. is not an easy task. However, from
the observations above we can immediately derive the following fact.

Fact 3.6. Let F: X* — X u{e} be a B-associative operation.

(a) If F}, is symmetric for some k > 2, then so is Fy,1.

(b) If Fy, is constant for some k € N, then so is Fy.1.

(c) For any sequence ¢ € X" and every n € N, the function G: X* — X defined by
Gy = Fy, if k <n, and G, = ¢, if k > n, is B-associative.

The following proposition gives a refinement of Fact 3.6(a).

Proposition 3.7. Let F: X* — X U {e} be a B-associative operation and let k > 2 be a
integer. If the function'y € X* v Fy,o(xyz) is symmetric for every x,z € X, then so is
the function'y € X**1 s Fy.,3(xy2) for every z,z € X.

Proof. Let'y € X**1. Then there exists u € X* '>! such that y = y;uyy,1. Since F is
B-associative, we have

Fras(zyz) = Frs(zyiuyeeiz) = Fras (B (zyiuyea)"22)
= Frs(2Fao(yiuyee2)*?).
Since this expression is symmetric on y;u and uyy. 1, it must be symmetric on y. O

As Fact 3.6(c) shows, if F: X* — X u {e} is B-associative, then the function Fj;
need not be idempotent, even if F}, is idempotent. To give another example, consider
the idempotent e-standard operation F:R* — R u {e} defined by F,,(x) = x; for every
n € Nand let F":R* - R u {e} be the e-standard operation defined by F (x) = F,,(x) if
n < k for some k € N, and F) (x) = max(x1,0) if n > k. Both operations F' and F" are
B-associative.

On the other hand, we do not know whether or not F}, is idempotent whenever so is
Fy.1. However, for any k,n € N we can prove that Fj, is idempotent whenever so is FJ,,.
Indeed, this observation immediately follows from the identity 0, = 6, © dF,, which
can be obtained by setting x = ¥ in the equation F(x") = F(F(x)*").

It is a well known fact that any associative *-ary operation F: X* — X u {¢} is com-
pletely determined by its nullary, unary, and binary parts (see, e.g., [10, 16—18] and the
references therein). As the examples above show, this property is not satisfied by the B-
associative operations.

The following proposition shows that any B-associative e-standard operation F: X* —
X u {e} is completely determined by either of the functions 0f, or (5% for every integer
k>0.

Proposition 3.8. Let F: X* —» X u{e} and G: X* - X u {e} be two B-associative c-
standard operations such that 6y, = d¢, or 5& = 5ék for every integer k > 0. Then
F=G.



BARYCENTRICALLY ASSOCIATIVE AND PREASSOCIATIVE FUNCTIONS 9

Proof. For any k > 0, if F, = G and for instance 5};“1 = 55)“1, then Fi,1 = Gry1.
Indeed, for every xz € X k+1 \e have

F(xz) = F(F(x)*2) = 05, (Fx(x)2) = 65, (Gr(x)2) = G(G(x)*z) = G(x2).
The result then follows from an immediate induction. O

Proposition 3.8 motivates the following natural and important question: Find necessary
and sufficient conditions on the functions 0, or 6% (k € N) for an e-standard operation
F: X* - X u{e} to be B-associative. The following theorem provides an answer to this
question.

Theorem 3.9. Let ¢1: X — X and, for every integer k > 2, let ¢pp: X2 - X and uy, € {£,r}
be given. Then there exists a B-associative e-standard operation F: X* - X u {e} such
that Fy = ¢1 and 5;’; = ¢y, for every integer k > 2 if and only if the following conditions
hold:

(a) forevery k € N, we have

r41(0g, () y)  fupsr =7,
2 . ,
@ P () {¢k+1($5¢k(y)) i = £

(b) there exists an arity-wise range-idempotent e-standard operation G: X* - X U
{e} such that G = ¢1 and, for every k € N, we have

Oer1(Gr(wy)z), ifupsr =7,
3 Gre ,
) e (7y2) {¢k+1(IGk(y2)), if upe1 =4,
and
66, (2Gr(y2)) ifuksr =T,
4 Gs - Gr+1
4) re1(2y2) {5€;k+1(Gk($Y)Z) Fine = L.

If these conditions hold, then we can take F = G.

Proof. (Necessity) We take G = F. The result then follows immediately.

(Sufficiency) We take F' = G. Then we have F} = ¢ trivially. Let us show by induction
on k € N that 5% = ¢r. The case k = 1 reduces to F} = ¢;. Suppose that the result holds
for any k£ > 1 and let us show that it still holds for k£ + 1. Assume for instance that ug.; =7
(the other case can be dealt with dually). We have

gy (2y) = ok (0r,(2)y) = Pri1 (06, (2)y) = drea(2y),

where the first equality holds by Eq. (3), the second equality by the induction hypothesis,
and the third equality by Eq. (2).

Combining condition (b) with Proposition 3.5, we then observe that F' is B-associative.
This completes the proof of the proposition. O

Example 3.10. Let ¢;: R — R and ¢5:R? — R be defined as ¢ (z) = a;z with a; # 0 and
o (2y) = apx + by with a # 0 and by # 0 for every integer k > 2. Then there exists a
B-associative e-standard operation F:R* — R u {e} such that F; = ¢ and Op, = ¢y for
every integer k > 2 if and only if a; = 1 and there exists z € R \ {0,1} such that

z k
A and bpy1 = l-agy = UAZZ) , keN,
k+1 k+1

) pe1 = 2



10 JEAN-LUC MARICHAL AND BRUNO TEHEUX

where A} = Zle 2#=1(1 - 2)*"L. In this case, F is precisely the operation M* defined in
Eq. (1).

Let us use Theorem 3.9 to establish this result. By Eq. (2) we must have aj, + by, = 1
for every k > 2. Let us now construct the e-standard operation G:R* — R u {e}. Since
¢1 = G satisfies ¢1 o ¢1 = ¢1, we must have a; = 1. Then, by Eq. (3) we must have

k k
Gk(X) = Z ( H aj) bi ZT;
i=1 \ j=i+1
(we have set b; = 1) and we observe that each G, is range-idempotent. We also observe
that Eq. (4) is then equivalent to the system of equations
k+1
ar+1b; = a;b;i_q (1—Haj), 1=2,...,k+1, and k > 2.
j=1
For every fixed value z € R\ {0, 1} of ag, this system provides a unique sequence (as, as, . . .),
which is given by Eq. (5).

4. BARYCENTRIC PREASSOCIATIVITY

In this section we investigate the B-preassociativity property (see Definition 1.2). In
particular, we give a characterization of the B-preassociative and arity-wise quasi-range-
idempotent functions as compositions of the form F, = f,,0 H,,, where H: X* — Xu{e} is
a B-associative e-standard operation and f,,:ran(H,,) - Y is one-to-one (Theorem 4.11).
We also derive a generalization of Kolmogoroff-Nagumo’s characterization of the quasi-
arithmetic mean functions to barycentrically preassociative functions (Theorem 4.14).

Just as for B-associativity, B-preassociativity may have different equivalent forms. The
following proposition gives an equivalent definition based on two equalities of values.

Proposition 4.1. A function F: X* — Y is B-preassociative if and only if for every
xx'yy' € X* such that |x| = [x'| and |y| = |y’| we have
F(x)=F(x') and F(y)=F(y') = F(xy)=F(xy").

Proof. (Necessity) Let xx'yy’ € X* such that |x| = |x/| and |y| = |y’|. If F(x) = F(x')
and F'(y) = F(y"), then we have F(xy) = F(x'y) = F(x'y’).

(Sufficiency) Let xyy'z € X* such that |y| = |y’|. If F(y) = F(y'), then F(xy) =
F(xy’) and finally F'(xyz) = F(xy'z). O

The following result provides a simplified but equivalent definition of B-preassociativity

(exactly as Proposition 3.5 did for B-associativity).

Proposition 4.2. A function F: X* — Y is B-preassociative if and only if for every xyy'z €
X* such that |y| = |y’| and |xz| = 1 we have

F(y) = F(y') = F(xyz) = F(xy's).

Proof. (Necessity) Trivial.
(Sufficiency) Repeated applications of the stated condition obviously show that F' is
B-preassociative. (]

As mentioned in the introduction, B-preassociativity generalizes B-associativity. More-
over, we have the following result.

Proposition 4.3. An operation F: X* — X u {e} is B-associative if and only if it is B-
preassociative and arity-wise range-idempotent.
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Proof. (Necessity) By Fact 3.2 we have that F' is arity-wise range-idempotent. To see that
it is also B-preassociative, let xyy’z € X* such that |y| = |y’| and F(y) = F(y'). Then
we have F(xyz) = F(xF(y)¥z) = F(xF(y")¥'z) = F(xy'z).

(Sufficiency) Let xyz € X*. We then have F'(y) = F(F(y)¥!) and hence F(xyz) =
F(xF(y)"z). O

Remark 5. (a) From Proposition 4.3 it follows that a B-preassociative and idempotent
operation F: X* — X u {e} is necessarily B-associative.

(b) The e-standard sum operation F:R* — R uU {¢} defined as F,(x) = /-, x; for

every n € N is an instance of B-preassociative function which is not B-associative.

We are now ready to provide a very simple proof of Proposition 3.5.

Proof of Proposition 3.5. The necessity is trivial. To prove the sufficiency, let F: X* —
X u {e} satisfy the stated conditions. Then F is clearly arity-wise range-idempotent. To
see that it is B-associative, by Proposition 4.3 it suffices to show that it is B-preassociative.
Let xyy’z € X* such that |y| = |y’| and |[xz| = 1 and assume that F'(y) = F(y’). Then
we have F(xyz) = F(xF(y)?z) = F(xF(y")¥'z) = F(xy'z). The conclusion then
follows from Proposition 4.2. (]

The following corollary provides a way to construct B-associative operations from as-
sociative and arity-wise quasi-range-idempotent e-standard operations.

Corollary 4.4. Assume AC. For every associative and arity-wise quasi-range-idempotent
e-standard operation H: X* — X u{e}, any e-standard operation F: X* - X u{e} such
that F,, = g,, o Hy, for every n € N, where g,, € Q(dp,, ), is B-associative.

Proof. For every n € N, we have dp, o F,, = g, 00, o g, o H, = g, 0 H, = F,,, which
shows that I’ is arity-wise range-idempotent. Let us now show that ' is B-preassociative.
Let xyy'z € X* such that |y| = |y’| = k and F(y) = F(y'). We have H(y) = (dp, ©
F)(y) = (0m, o F)(y') = H(y') and, since H is preassociative, we have F(xyz) =
(gnoH)(xyz) = (gnoH)(xy'z) = F(xy'z). By Proposition 4.3, F'is B-associative. [J

The following two propositions show how new B-preassociative functions can be con-
structed from given B-preassociative functions by compositions with unary maps.

Proposition 4.5 (Right composition). If F: X* — Y is B-preassociative then, for every
function g: X" - X, any function H: X"* =Y such that H,, = F,, o (g,...,g) for every
n € N is B-preassociative. For instance, the e-standard operation F:R* - Ru{e} defined
as F,(x) = L ¥, @ for every n € N is B-preassociative.

Proof. Forn € N, x = x1---z, € X', and ¢: X' — X, we denote by g(x) the n-string
g(z1)-g(xn).
Letxyy'z € X"* such that |y| = |y’| and assume that H(y) = H(y'), thatis, F/(g(y)) =

Flg(y")). By B-preassociativity of F we have F(g(x)g(y)9(2)) = F(9(x)g(y"o(%))
and hence H(xyz) = H(xy'z). O

Proposition 4.6 (Left composition). Let F: X* — Y be a B-preassociative function and
let (gn)nen be a sequence of functions from'Y to Y. If gulvan(r,) is one-to-one for every
n € N, then any function H: X* — Y’ such that H,, = g, o F,, for every n € N is B-
preassociative. For instance, the e-standard operation F:R* — Ru{e} defined as F,,(x) =
exp(Xiv, x;) for every n € N is B-preassociative.
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Proof. Assume that g, |yan(F, ) is one-to-one for every n € N. Then we have F, = f, o H,,,
with fn, = (gnlran(r,)) ™" Let xyy'z € X* such that |y| = [y’| = n > 1 and assume
that H(y) = H(y'). We then have F(y) = (fn o H)(y) = (fno H)(y') = F(y') and
hence F(xyz) = F(xy'z) by B-preassociativity of F. Setting m = |xyz|, it follows that
H(xyz) = (gm © F)(xy2) = (9m ° F')(xy'2) = H(xy'2). O

Remark 6. (a) If F: X* - Y is a B-preassociative function and (g, )nen is a sequence
of functions from X’ to X, then any function H: X"* — Y such that H,, = F}, o
(gn, - - -, gn) need not be B-preassociative. For instance, consider the e-standard
sum operation F}, (x) = 31", x; over the reals and the sequence g, (z) = exp(nz).
Then, for 21 = log(1), 2 =log(2), 2] = 3 log(3), 24 = 1 log(2), and 23 = 0, we
have H(z1x9) = H(x{2}) but H(x12003) + H(z]xhas).

(b) B-preassociativity is not always preserved by left composition of a B-preasso-
ciative function with a unary map. For instance, consider the e-standard sum
operation F,(x) = Y z; over the reals and let g(«) = max{x,0}. Then for
any operation H:R* — R u {e} such that H,, = g o F,, for every n € N, we have
H(-1,-2)=0=H(-1,1) but H(-1,-2,1) =0+ 1 = H(-1,1,1). Thus H is
not B-preassociative.

We also have the following two propositions, which generalize Fact 3.6 and Proposi-
tion 3.7. The proofs are straightforward and thus omitted.

Proposition 4.7. Let F: X* — Y be a B-preassociative function.
(a) If Fy, is symmetric for some k > 2, then so is Fy.1.
(b) If Fy, is constant for some k € N, then so is Fy.1.
(c) For any sequence ¢ € YN and every n € N, the function G: X* — Y defined by
Gy = Fy, if k <n, and G, = ¢, if k > n, is B-preassociative.

Proposition 4.8. Let F: X* — Y be a B-preassociative function and let k > 2 be an
integer. If the function y € X* — Fyio(xyz) is symmetric for every x,z € X, then so is
the function'y € X**1 s Fy 3(xy2) for every z,z € X.

We now focus on those B-preassociative functions which are arity-wise quasi-range-
idempotent, that is, such that ran(dp,) = ran(F,,) for every n € N. As we will now
show, this special class of functions has very interesting and even surprising properties.
First of all, just as for B-associative e-standard operations, B-preassociative and arity-wise
quasi-range-idempotent functions F: X* — Y are completely determined by either of the
functions 67, or 6& for every k € N.

Proposition 4.9. Assume AC and let F: X* - Y and G: X* — Y be two B-preassociative
and arity-wise quasi-range-idempotent functions such that 6, = 0¢, or 5& = 5ék for
every integer k > 0. Then F = G.

Proof. For any k > 0, if F, = G}, and for instance 5?%1 = 5gk+l, then Fiy1 = Gry1.
Indeed, for every xz € X**!, by arity-wise quasi-range-idempotence there exists u € X
such that Fj(x) = 0p, (u). Since Fj = Gy, we also have Gj(x) = d¢g, (u). By B-
preassociativity, we then have F'(x2) = 0, | (uz) =g, ,, (uz) = G(x2). The result then
follows from an immediate induction. (]

We now give a characterization of the B-preassociative and arity-wise quasi-range-
idempotent functions as compositions of B-associative e-standard operations with one-
to-one unary maps. We first consider a lemma, which provides equivalent conditions for
an arity-wise quasi-range-idempotent function to be B-preassociative.
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Lemma 4.10. Assume AC and let F: X* — Y be an arity-wise quasi-range-idempotent
function. The following assertions are equivalent.
(i) F is B-preassociative.
(i) For every sequence (g, € Q(9F, ))nen, the e-standard operation H: X* — Xu{e}
defined as H,, = g, o F), for every n € N is B-associative.
(iii) There is a sequence (g, € Q(OF, ) )nen such that the e-standard operation H: X* —
X u{e} defined as H,, = gy, o F,, for every n € N is B-associative.

Proof. (i) = (ii) By Proposition 2.3, H is arity-wise range-idempotent. Since g,|van(s P =
Gnlran(r, ) is one-to-one for every n € N, by Proposition 4.6 the operation H is B-preassociative.
It follows that H is B-associative by Proposition 4.3.

(ii) = (iii) Trivial.

(iii) = (i) By Proposition 4.3 we have that H is B-preassociative. For every n € N,
since gnlran(r,) is a one-to-one function from ran(F),) onto ran(g,), we have F,, =
(9nlran(r,) )~ o H,, and the function (nlrancr,) )‘1|ran(H") is one-to-one from ran(H,,)
onto ran(F), ). By Proposition 4.6 it follows that F' is B-preassociative. (I

Remark 7. Let F: X* — Y be a B-preassociative function such that F,, = f,, o H,, for
every n € N, where f,,: X — Y is any function and H: X* — X u {¢} is any arity-wise
range-idempotent operation. Then F,, = 6, o H,, for every n € N by Proposition 2.4(iv).
However, H need not be B-associative. For instance, if I is a constant function, then H
could be any arity-wise range-idempotent function. However, Lemma 4.10 shows that,
assuming AC, there is always a B-associative solution H of the equation F,, = dp, o Hp;
for instance, Hy(¢) = € and H, = gy, o F, for g, € Q(Jp,) and n € N.

Theorem 4.11. Assume AC and let F: X* — Y be a function. The following assertions
are equivalent.
(1) F is B-preassociative and arity-wise quasi-range-idempotent.
(ii) There exists a B-associative e-standard operation H: X* — X U {e} and a se-
quence (fn:ran(Hy,) - Y)nen of one-to-one functions such that F,, = f,, o Hy,
for everyn € N.
If condition (ii) holds, then for every n € N we have F,, = ép, o Hy, fy, = 5Fn|ran(Hn))
Y eQ(0r, ), and we may choose H,, = g,, o F,, for any g, € Q(JF, ).

Proof. (i) = (ii) Let g,, € Q(dF, ) for every n € N and consider the e-standard operation
H:X* - X u{e} defined as H,, = g,, o F,, for every n € N. By Proposition 2.3, we have
F, = fn,oH,, where f, =4 Fn|ran( H,) s one-to-one. By Lemma 4.10, H is B-associative.
(i) = (i) F' is arity-wise quasi-range-idempotent by Proposition 2.4. It is also B-
preassociative by Proposition 4.6.
The last part follows from Proposition 2.4(iv) and Lemma 4.10. (]

Remark 8. A function F: X* — Y such that F, = g, o H,, for every n € N, where H is
B-associative, need not be B-preassociative. The example given in Remark 6(b) illustrates
this observation. To give a second example, take X = R, F,,(x) = |2 ¥'iL) ;| and H,, (x) =
L ¥, @ forevery n € N. Then F((1) = F(~1) but F(11) =1 # 0 = F(1(-1)). Thus F
is not B-preassociative.

The following two results concern B-associative functions whose n-ary part is idempo-
tizable (i.e., quasi-range-idempotent with a one-to-one diagonal section) for every n € N.

Proposition 4.12. Assume AC and let F: X* — Y be a function. If condition (ii) of
Theorem 4.11 holds, then the following assertions are equivalent.
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(i) O, is one-to-one for every n € N,
(ii) g, is one-to-one for everyn € N,
(iii) dg, =id for everyn e N.

Proof. (i) = (iii) 0p, =07 o0p, =id.
(é13) = (i) Trivial.
(it) = (i) Op, = fn o dp, is one-to-one as a composition of one-to-one functions. [J

Corollary 4.13. Let F: X* — Y be a function such that df,, is one-to-one for every n € N.
The following assertions are equivalent.
(1) F is B-preassociative and arity-wise quasi-range-idempotent.
(ii) There is a B-associative and idempotent e-standard operation H: X* - X u {e}
such that F,, = §p, o H, for everyn e N.

Proof. Follows from Theorem 4.11 and Proposition 4.12. Here AC is not required since
the quasi-inverse of d, is simply an inverse. O

Applying Corollary 4.13 to the class of quasi-arithmetic mean functions (Theorem 3.1),
we obtain the following generalization of Kolmogoroff-Nagumo’s characterization.

Theorem 4.14. Let 1 be a nontrivial real interval, possibly unbounded. A function F:T* —
R is B-preassociative and, for every n € N, the function F,, is symmetric, continuous,
and strictly increasing in each argument if and only if there are continuous and strictly
increasing functions f:1 - R and f,:R - R (n € N) such that

Fu(x) = fn(iifm)), el

Proof. (Necessity) Let n € N and y € ran(F),,). Since F,, is increasing, for any x =
x1-+-x, € X™ such that F'(x) = y we have

dp, (min{zy,...,2,}) < y < op, (max{xy,...,z,}).

Since df, is continuous, it follows that y € ran(dz, ). Therefore ran(F;,) < ran(dp, ) and
hence F' is arity-wise quasi-range-idempotent.

By Corollary 4.13, the e-standard operation H:I* — Tu {¢} defined as H,, = 5];1 oF,
for every n € N is B-associative and every H,, is idempotent, strictly increasing in each
variable, continuous, and symmetric. By Theorem 3.1, there is a continuous and strictly
increasing function f:1 — R such that

H,(x) = f‘l(iilf(xi)), neN.

To conclude, it suffices to define f,:R — R as f,, = dp, o f7L.
(Sufficiency) For every n € N we clearly have §f, = f,, o f, thatis, f,, = dp, o f1. It
follows that F' is B-preassociative by Corollary 4.13. The other properties are immediate.
(]

The axiomatization given in Theorem 4.14 enables us to introduce the following defini-
tion.

Definition 4.15. Let I be a nontrivial real interval, possibly unbounded. We say that a
function F:1* — R is a quasi-arithmetic pre-mean function if there are continuous and
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strictly increasing functions f:I - R and f,,;:R - R (n € N) such that

R0 = L(E2060) aen

Remark 9. As expected, the class of quasi-arithmetic pre-mean functions includes all
the quasi-arithmetic mean functions (just take f,, = f~%). Actually the quasi-arithmetic
mean functions are exactly those quasi-arithmetic pre-mean functions which are idempo-
tent. However, there are also many non-idempotent quasi-arithmetic pre-mean functions.
Taking for instance f,, () = na and f(z) = z over the reals I = R, we obtain the sum func-
tion. Taking f,,(x) = exp(nz) and f(z) = In(z) over I = ]0, co[, we obtain the product
function.

The following proposition shows that the generators f, and f defined in Theorem 4.14
are defined up to an affine transformation.

Proposition 4.16. Let I be a nontrivial real interval, possibly unbounded. Let f,g:1 - R
and fn,9,:R — R (n € N) be continuous and strictly monotonic functions. Then the
functions fn(% Yoy f(x)) and gn(% Y1 g(x;)) coincide on 1™ if and only if there exist
r,s €R, 7 #0, suchthat g;,* o fr, =go f~t =rid + s for everyn e N.

Proof. Let us prove the necessity. Setting z; = f(x;), we see that the mentioned functions
coincide on I" if and only if

(gnlofn)(iizi) = Tlli(gofl)(zi), neN.

Identifying the variables in this identity yields g;' o f,, = go f~! for every n € N. It
follows that the continuous function h = go ! satisfies the Jensen equality h(% Yz =
L Y1 h(2;). Therefore there exist r, s € R, r # 0, such that h(z) = rz + s (see [1, p. 48]).
The sufficiency is obvious. (]

5. CONCLUDING REMARKS AND OPEN PROBLEMS

We have investigated the B-associativity for *-ary operations as well as a relaxation of
this property, namely B-preassociativity. In particular, we have presented a characterization
of those B-preassociative functions which are arity-wise quasi-range-idempotent.

We end this paper with the following questions:

(a) Prove or disprove: If an operation F: X* — X u {e} is B-associative, then there
exists a B-associative and idempotent operation G: X* — X u {&} such that F}, =
0, o G, for every n e N.

(b) Prove or disprove: Let F: X* — X U {e} be a B-associative operation. If F,; is
idempotent for some k € N, then so is F}.

(c) Find a generalization of Theorem 4.11 by removing the arity-wise quasi-range-
idempotence property.

(d) Find necessary and sufficient conditions on ¢, (n € N) for a function F: X* - Y
satisfying F,, = 0, o H,, where H is B-associative, to be B-preassociative (cf.
Remark 8).

(e) Find a characterization of those quasi-arithmetic pre-mean functions which are
preassociative.
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