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Abstract

We summarize recent theoretical and experimental work in the field of magnetic small-angle
neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to
spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using
linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced.
Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline
ferromagnets corroborates the usefulness of the approach, which provides important
quantitative information on the magnetic-interaction parameters such as the exchange-stiffness
constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps
AM of the magnetization at internal interfaces. Besides the value of the applied magnetic
field, it turns out to be the ratio of the magnetic anisotropy field H, to AM, which determines
the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the
angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the
characteristic decay length of spin-misalignment fluctuations. For the two most often
employed scattering geometries where the externally applied magnetic field Hy is either
perpendicular or parallel to the wave vector ky of the incoming neutron beam, we provide a
compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial
fully-polarized (POLARIS) SANS cross-sections of magnetic materials.
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1. Introduction

Small-angle neutron scattering (SANS) is one of the most im-
portant techniques for microstructure determination, which is
utilized in a wide range of scientific disciplines such as ma-
terials science, physics, chemistry, and biology. Conventional
SANS is able to probe microstructural (density and compo-
sition) and magnetic inhomogeneities in the bulk and on a
length scale between a few and a few hundred nanometers. As
such, SANS ideally complements more direct imaging tech-
niques, e.g. scanning and transmission electron microscopy,
Kerr microscopy, atomic force microscopy, or scanning tun-
nelling microscopy. The research literature on SANS (and on
small-angle x-ray scattering (SAXS)) is vast, and any realistic
attempt to provide an encyclopaedic listing is beyond the scope
of this work. For a selection of reviews on various topics and
aspects of small-angle scattering, we refer the reader to [1-31].

From the historical point of view, experimental and the-
oretical progress in the domain of small-angle scattering is
closely connected to the development of laboratory SAXS
methods [32]. Only with the advent of nuclear research reac-
tors and the concomitant construction and development of the
first SANS instruments at Jiilich [1] and Grenoble [33], it be-
came possible to explore magnetism and superconductivity by
means of SANS. Perhaps related to this historical perspective is
the fact that the theoretical concepts and foundations of nuclear
SANS and SAXS are relatively well developed and widely ac-
knowledged and applied in experimental studies [32, 34-36].

The SANS technique has also been used to study a
wide range of magnetic materials, for instance (in the last

10-15 years) magnetic SANS has been employed for investi-
gating the microstructures of amorphous alloys [37—41], hard
and soft magnetic nanocomposites [31, 42-57], elemental
nanocrystalline 4 f [58—60] and 3d magnets [61-68], the pro-
cess of dynamic nuclear polarization [69—71], the flux-line lat-
tice of superconductors [72, 73], precipitates in steels [74-77],
fractal magnetic domain structures in NdFeB permanent mag-
nets [78], the spin structures of ferrofluids, nanoparticles,
and nanowires [79-96], magnetic recording media [97-101],
magnetostriction in FeGa alloys [102], electric-field-induced
magnetization in multiferroic HoMnOj [103] and weak anti-
ferromagnetism in BiFeO; [104], magnetization reversal in
exchange-bias materials [105], or chiral and skyrmion-like
structures in MnSi single crystals [106, 107].

The prototypical sample in a small-angle scattering ex-
periment consists of a dispersion of homogeneous phase-A
nanoparticles in a homogeneous phase-B matrix. For such a
two-phase particulate system, the ‘standard’ expression for the

elastic nuclear SANS cross-section % is of the form [5]

2
dEnuc

dQ

A N
@ =" p) Z V,.; Fi(@) exp(—iqr))| . (1)

where q is the momentum-transfer vector, N is the number of
particles in the scattering volume V, (Ap)2,. denotes the nu-
clear scattering-length density contrast between the particles
and the matrix (assumed to be a constant here for simplicity),
and V, ;, F;, and r; represent, respectively, the volume, form
factor, and position vector of particle ‘j’

Besides analyzing nuclear SANS data, equation (1) is
also often used to analyze magnetic SANS data, and in most
cases the expressions for the magnetic SANS cross-section are
adapted on an almost one-to-one correspondence basis from
nuclear SANS theory. Specifically, (Ap)2,. in equation (1) is
then replaced by its magnetic counterpart (Ap)mag, and an addi-
tional factor sin® « is introduced (see discussion below), which
takes account of the dipolar nature of the neutron-magnetic in-
teraction [108]. We note that different definitions regarding the
angle « can be found in the literature (see, e.g. [21, 94, 109]).
For a dilute system of monodisperse magnetic nanoparticles,
the magnetic part of the total unpolarized SANS cross-section
is commonly expressed as [21, 94, 110]

dx

4o @= —(Ap)mg 2| F(@Psinfa. ()

One may also include a structure factor in equation (2), but (for
rigid nanoparticles in a rigid matrix) this would only affect the
g-dependence of the scattering (similar to a particle-size dis-
tribution), not its field dependence.

While equation (2) can certainly be employed for
analyzing magnetic SANS data on a wide range of materials
(e.g. ferrofluids, saturated or uniformly magnetized magnetic
nanoparticles in a saturated or nonmagnetic matrix, or pores in
asaturated ferromagnetic matrix) [94, 111, 112], there exists an
important class of magnets-bulk ferromagnets-where the mere
decomposition of the magnetic SANS cross-section in terms
of form and structure factors fails to describe experimental
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magnetic-field-dependent data; only at complete magnetic
saturation may the magnetic SANS of bulk ferromagnets be
described in terms of equation (2) (e.g. for a nanocomposite).
A detailed discussion on why equation (2) is inadequate
to describe the magnetic SANS of bulk ferromagnets can be
found in [26]. Here, we briefly recall these (interrelated) facts
in order to achieve a self-contained introductory discussion.

(a) It is rather obvious that equation (2) is not adapted to
the magnetic microstructure of a bulk ferromagnet, sim-
ply because there is no direct relation to the characteristic
parameters of a ferromagnet such as the exchange con-
stant, magnetic anisotropy, or magnetostatic field. The
only information regarding magnetism which is contained
in equation (2) refers to variations in the magnitude of the

magnetization (via (Ap)ﬁmg) and in the orientation of the

magnetization (via sin” &) of homogeneously magnetized
domains (particles).

The applied-field dependence of the azimuthally-averaged

g equation (2), is exclusively embodied in the factor

(b

~

aQ
sin? a.. If  is taken to be the angle between q and the local
direction of the magnetization M of a uniformly magne-
tized nanoparticle, then, for the scattering geometry where
the applied magnetic field Hy is perpendicular to the wave
vector k( of the incoming neutron beam (ko L Hy), the
expectation value of the function sin® « varies between a
value of 1/2 at saturation and a value of 2/3 in the de-
magnetized state (random domain orientation); note that
while the azimuthal anisotropy on a two-dimensional de-
tector changes considerably (between these two cases),
the azimuthal average of the sin” & term changes only rela-
tively weakly. Forky || Hy, the expectation value of sin® o
varies between a value of 1 at saturation and a value of 2/3
in the demagnetized state [108, 113]. In other words, for
ko L Hjy an intensity increase (of azimuthally-averaged
data) by a factor of 4/3 is predicted between saturation
and the demagnetized state, whereas for kg || Ho, a corre-
sponding intensity decrease by a factor of 2 /3 is expected.
These predictions are, however, in striking contrast to ex-
perimental observations (see, e.g. figure 3(a) below).
(c) Magnetic SANS cross-sections based on equation (2) pre-
dict g-scaling, i.e. the (f—ﬂ that are measured at different
fields are expected to be parallel to each other (i.e. shifted
along the dis";g axis), which is also in contrast to experi-
ment. In other words, there are no characteristic magnetic
length scales contained in equation (2), which may vary
as a function of the applied field.

The decisive point to realize is that magnetic SANS cross-
sections based on equation (2) entirely ignore the continuous
spatial variations of the local orientation of the magnetization
vector M(r) both within and between the domains. It is the
purpose of this article to contribute to resolving these issues by
introducing a theory of magnetic SANS of bulk ferromagnets
in terms of the continuum theory of micromagnetics.

Micromagnetics is a phenomenological continuum theory
which has been developed in order to compute the magnetiza-
tion vector field M(r) of an arbitrarily-shaped ferromagnetic

body, when the applied magnetic field, the geometry of the fer-
romagnet, and the magnetic materials parameters are known
[114-117]. The characteristic length scale to which micro-
magnetic calculations apply ranges between a few nanome-
ters and a few hundred nanometers (~ resolution range of the
SANS technique). Therefore, the combination of micromag-
netic computations with SANS is straightforward and adapted
to the problem. Pioneering work in this direction was per-
formed by Kronmiiller e al [118] who calculated the magnetic
SANS due to spin disorder related to the strain fields of dislo-
cations. For more information about dislocation studies using
small-angle scattering, we refer the reader to [1, 4, 118—130].

We are interested in the elastic spin-misalignment scatter-
ing, which results from the static magnetic microstructure of
a bulk ferromagnet. Spin-misalignment scattering is of rele-
vance whenever the magnitude of the externally applied mag-
netic field is insufficient to completely saturate the sample.
The magnetic materials that we have in mind are characterized
by a large number of microstructural defects (e.g. pores, grain
or phase boundaries, dislocations, point defects). Examples
for such materials are polycrystalline elemental magnets with
a nanometer crystallite size, heavily deformed (cold worked)
metals, nanoporous ferromagnets, or multiphase magnetic
nanocomposites, including magnetic steels. As one of its cen-
tral themes, the present work points out that spin-misalignment
scattering will typically dominate the magnetic SANS signal
from bulk ferromagnets (compare e.g. figure 3(a) below).

The mechanisms by which spin disorder is generated
are essentially related to (a) magnetoelastic and magnetocrys-
talline anisotropy and (b) internal magnetostatic stray fields,
for instance due to spatially fluctuating materials’ parameters.
To be more specific, forces due to the distortion of the lattice (in
the vicinity of a defect) tend to rotate the local magnetization
vector field M(r) along the main axes of the system of in-
ternal stresses (magnetoelastic coupling), while magnetocrys-
talline anisotropy tries to pull the magnetic moments along the
principal axes of the crystal; figure 1 illustrates the magne-
tization distribution in the vicinity of point and line defects.
Likewise, jumps in the values of magnetization, exchange, or
anisotropy constants at internal interfaces (e.g. in a magnetic
nanocomposite or nanoporous ferromagnet) give rise to inho-
mogenous magnetization states, which contribute significantly
to the magnetic SANS signal; figure 2 depicts M(r) around a
pore in a ferromagnetic matrix.

For the discussion of magnetic SANS, it is important to
emphasize that the adjustment of the magnetization along the
respective local ‘easy’ axes does not occur abruptly, i.e. on a
scale of the interatomic spacing, but requires a more extended
range. This is a consequence of the quantum-mechanical ex-
change interaction, which spreads out local perturbations in
M(r) over larger distances [131]". The sizes of such spin in-
homogeneities (i.e. gradients in M) are characterized by the
field-dependent exchange length /5 of the field (see figure 1),
which takes on values (~1-100 nm) that are routinely acces-
sible by the SANS technique.

! This statement should not imply that the exchange interaction is the
only important interaction for the discussion of magnetic SANS of bulk
ferromagnets.
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Figure 1. Qualitative magnetization distribution around (a) a vacancy-type defect, (b) an isolated quasidislocation, and (c¢) a quasidislocation
dipole. Reprinted with permission from [117] (courtesy of Dagmar Goll, Aalen University, Aalen, Germany). Copyright 2007 by Wiley.

It is of crucial importance to realize that-even in the
approach-to-saturation regime-spin-misalignment SANS is
strongly dependent on the applied magnetic field and that it
usually dominates the dX /dS2 of a bulk ferromagnet. As an
example, figure 3(a) shows the unpolarized (nuclear and mag-
netic) dX /d2 of nanocrystalline Co with an average crystal-
lite size of 9.5 & 3.0nm [62,63]; we note that the sample
under study is a fully dense polycrystalline bulk metal with a
nanometer grain size, not nanoparticles in a matrix. The cross-
section at the smallest momentum transfers varies by more than
three orders of magnitude between S mT and 1800 mT. Even in
the saturation regime (compare hysteresis loop in figure 3(b)),
dX /d€2 exhibits an extraordinarily large field variation, which
cannot be reproduced by means of equation (2) (see above).
The origin of the large field dependence of d ¥ /d€2 near satura-
tion is not related to a macroscopic magnetic domain structure,
but to the failure of the spins to completely align along the ex-
ternal field, in other words, it is due to spin-misalignment.

Furthermore, closer inspection of the d¥/d2 data in
figure 3(a) reveals that, with an increasing field, a characteristic
length scale is evolving towards larger ¢ values (i.e. g-scaling
is lost). This observation provides evidence for the existence
of characteristic magnetic-field-dependent length scales in the
system. In fact, micromagnetic theory predicts that long-
wavelength magnetization fluctuations (characterized by /y)
are selectively suppressed by an increasing applied field.

The remarkably strong field dependence of magnetic
SANS near saturation may have important consequences for
the analysis of SANS data. In unpolarized SANS experiments
on apparently saturated samples, the scattering along the field
direction Hy is often taken as the nuclear SANS contribution.
This is common practice, for instance in SANS studies on
steels, where applied fields of the order of 1T are usually
employed for carrying out the separation of nuclear and
magnetic SANS (e.g. [74]). As we will see later on, a large part
of the spin-misalignment SANS scatters along Hy. Therefore,
when H is not large enough to sufficiently suppress the spin-
misaligned SANS, the determined nuclear SANS may contain
asignificant (and in view of the results shown in figure 3 an even
dominating) ‘contamination’ due to magnetic scattering [76].

Once spin-misalignment SANS is suppressed by a large
applied magnetic field, the remaining nuclear and magnetic

Figure 2. Result of a micromagnetic simulation for the
magnetization distribution around a spherical pore (diameter:

10 nm) in a ferromagnetic iron matrix (two-dimensional cut out of a
three-dimensional simulation). The external magnetic field Hy is
applied horizontally in the plane (o Hy = 0.6 T). Note that the
jump of the magnetization magnitude at the pore-matrix interface is
noAM = 2.2'T. The left image shows the magnetization
distribution (arrows) in the iron matrix. In order to highlight the
spin-misalignment in the iron phase, the right image displays the
magnetization component M perpendicular to Hy; thickness of
arrows is proportional to the magnitude of M . Data courtesy of
Sergey Erokhin, General Numerics Research Lab, Jena, Germany
(www.general-numerics-rl.de/).

SANS (at Hy — o0)-the so-called residual SANS cross-
section-may be analyzed in terms of the classical particle-
matrix concept, equations (1) and (2).

The present review article is largely based on previous
experimental and theoretical SANS work [48, 51, 53-56,
66-68]. In particular, we have developed a theory for the
magnetic SANS of weakly inhomogeneous ferromagnets such
as nanocomposites or steels [53], which, besides spatially in-
homogeneous magnetic anisotropy fields, takes into account
small variations of the magnitude of the magnetization. This
represents an important extension of earlier work, summa-
rized in [26], which has considered magnetic SANS due to
anisotropy fields in homogeneous magnets with uniform satu-
ration magnetization.

The paper is organized as follows: section 2 introduces
the micromagnetic model based on which magnetic SANS
is described. In particular, we briefly discuss the main
magnetic energy contributions (section 2.1), and we solve


http://www.general-numerics-rl.de/

J. Phys.: Condens. Matter 26 (2014) 383201

Topical Review

10° 77— -

s I._ B SmT
104ee, ® 25mT 3
4] a, % A 54mT
10°4% ;‘;iiA v 80mT 3
10°1 ® 107mT |

s 243 mT

1800 mT 73

dz/dQ (cm'1 sr'l)

1] (@) nc Co

104 729205k
107+ - -
0.01 01 ]

g (nm’)

2.0 . . :
/9003 -dPIeTD
1.61 y -
_ /
= 1.2 1
N
E? 0.8 /° .
0.41 f (b) nc Co
o T=300K
0= . : .
1E-3 0.01 0.1 1 10

B, (T)

Figure 3. (a) Azimuthally-averaged unpolarized SANS cross-section dX /dS2 of nanocrystalline Co metal (average grain size: 9.5 & 3.0 nm)
as a function of momentum transfer ¢ (ko L Hy) at selected applied magnetic fields (see inset) (log—log scale). (b) (o) Room-temperature
magnetization curve of nanocrystalline Co (log-linear scale) [62]. The M (By) values where the SANS measurements shown in (a) have been
carried out are indicated by the large data points. Reprinted with permission from [63]. Copyright 2003 by the American Physical Society.

the linearized micromagnetic equations to obtain closed-form
expressions for the magnetization Fourier coefficients (sec-
tion 2.2), which are used in order to compute the magnetic
SANS cross-section (section 2.3). In section 3, we briefly in-
troduce the typical SANS setup (section 3.1) and the nomencla-
ture and approximations used (section 3.2), we explicitly dis-
play the spin-resolved (POLARIS, section 3.3), half-polarized
(SANSPOL, section 3.4), and unpolarized (section 3.5) SANS
cross-sections, and we discuss and graphically display SANS
at magnetic saturation (section 3.6). In section 4, spin-
misalignment scattering is discussed. We comment on the
usefulness of half-polarized experiments for the analysis of
spin-misalignment SANS (section 4.1), and we demonstrate
how experimental unpolarized (section 4.2) and spin-resolved
(section 4.3) SANS data on nanocrystalline bulk ferromagnets
can be analyzed in order to decipher the magnetic interac-
tions. Section 5 provides an account of the real-space analysis
of magnetic SANS data in terms of the autocorrelation func-
tion of the spin-misalignment, which is defined in section 5.1.
Magnetization profiles, theoretical and experimental correla-
tion functions (section 5.2) and the field dependence of the
spin-misalignment length (section 5.3) are discussed. Finally,
section 6 summarizes the main results of this work and provides
an outlook on future challenges in the field. In the appendix,
we list the most important parameters, quantities, and relations.

2. Micromagnetic model of bulk ferromagnets
near saturation

In section 2.1, we discuss briefly the main micromagnetic en-
ergy contributions, section 2.2 provides the solution of Brown’s
balance-of-torques equation for the Fourier coefficients of the
magnetization, whereas section 2.3 establishes the relation be-
tween micromagnetics and SANS.

2.1. Magnetic energy contributions

The magnetic energy contributions that are taken into account
in standard micromagnetic computations are due to the
exchange interaction, the magnetic anisotropy, and the external
and magnetodipolar field.

2.1.1. Exchange energy. In the limit of a continuous ferro-
magnetic material, the exchange energy Ex.p (for cubic crystal
structures) can be approximated by [132, 133]

Eoxen = / A[(Vm)? + (Ym,) + (Vm ] 4V, ()
\%

where A > 0 denotes the exchange-stiffness constant, my , .
are the Cartesian components of a unit vector m = M/M;
in the direction of the magnetization, and the integral extends
over the sample volume V. The exchange energy is a posi-
tive definite quantity, which favours the parallel alignment of
neighbouring atomic magnetic moments in the crystal lattice.
Any nonuniformity in M has an energy cost. Typical values
for A are in the 10 pJ m~! range [116, 134]. Note that in mul-
tiphase magnets, the exchange constant is a function of the
position inside the material, i.e. A = A(r) [135-137].

Equation (3) represents a continuum expansion based on
the discrete Heisenberg Hamiltonian

Hexen = — Y Jij(r;j) Si(r;) S (r)), )

ij

where J;; denotes the quantum mechanical exchange integral
between localized magnetic moments with spins S; and S; sep-
arated by a distance r;; =r; — r;. Equation (3) follows from
equation (4) by treating the S; as (quasi)classical continuous
vectors, taking into account only nearest neighbour exchange
interactions (of equal strength J), and by assuming small an-
gles between neighbouring spins (see e.g. [138] for a derivation



J. Phys.: Condens. Matter 26 (2014) 383201

Topical Review

of equation (3)). Therefore, the applicability of the above con-
tinuum expression for the exchange energy is restricted to situ-
ations where the magnetization changes smoothly. Strongly in-
homogeneous magnetization configurations are expected, e.g.
at/across internal interfaces such as grain boundaries, where
the materials parameters may take on different values as com-
pared to the bulk [139].

Furthermore, for crystal lattices of low symmetry, the ex-
change interaction is anisotropic and the tensor character of A
should be taken into account [132, 133]. For example, hexago-
nal or tetragonal crystal structures would require two exchange
constants. In fact, equation (3) has been derived for cubic
crystals; here, A = JS%c/a, where S is the spin quantum
number (measured in units of 72), a is the lattice constant, and
¢ = 1, 2,4 for simple cubic, body-centred cubic, and face-
centred cubic lattices, respectively. However, we would like to
note that the vast majority of micromagnetic computations that
are reported in the literature model nonuniform spin states by
a single stiffness parameter. Likewise, one may also question
the usefulness of the (short-range) expression, equation (3), for
describing long-range indirect exchange interactions in ferro-
magnets such as in the 4f metals. Again, we emphasize that
the purpose of equation (3) is to model to a first-order approx-
imation the effect of magnetization inhomogeneities. See the
book by Kronmiiller and Fihnle [116] for a micromagnetic
treatment of itinerant exchange.

2.1.2. Magnetic anisotropy.

Magnetocrystalline anisotropy. The magnetocrystalline ani-
sotropy energy Ey,. expresses the dependence of the magnetic
energy of a ferromagnet on the orientation of the magnetization
M relative to the crystal axes. The origin of magnetocrystalline
anisotropy is related to the combined action of the spin—orbit
(L-S) coupling and the crystal-field interaction. The mag-
netodipolar interaction may also contribute to Ey,. [140, 141];
however, dipolar anisotropy is generally small and vanishes for
ideal cubic and hexagonal lattices [138]. On a phenomenologi-
cal level, E, is determined by an expression for the anisotropy
energy density wpc, which is a function of the position r and
of M [114],

Ene = [ W [T, M(I’)] dav. (5)
14
Note that due to the micromagnetic constraint

M| = (M2 + M2+ M2)'? = m,, 6)

where M, denotes the saturation magnetization, wn,. depends
only on two independent components of M. The magnetocrys-
talline anisotropy energy favours the orientation of M along
certain crystallographic directions, the so-called easy axes.
Expressions for Ey, reflect therefore the symmetry of the un-
derlying crystal lattice. In particular, E,, must be an even
function of M.

In [116], various anisotropy expressions for cubic, hexag-
onal, tetragonal, and orthorombic crystal structures can be
found. For the case of cubic (‘c’) and uniaxial (‘u’) anisotropy,

wme can be expanded in powers of the reduced magnetization
components m=M/M; = (m,, m,, m;) as [115]

c 2.2 22 2.2
oy, = Ky (mxmy+mxmz+mymz)

+Kymimim? + ..., (7)
and

ot =K (1—=m)+Kp(l—md)?+...

= K, sin’ y+ K sin* 2 ®)

where the respective K represent the temperature-dependent
anisotropy constants, and y denotes the angle between m and
the direction of the uniaxial anisotropy axis. The easy di-
rections for the magnetization are found by solving the ex-
treme conditions dwp/dm; = 0 and 3% wme/ 8m§ > 0, where
Jj = x,¥,z; see [116] for the phase diagrams of cubic and
hexagonal crystals. For the examples of «-Fe (bcc) and Ni
(fce), the respective easy directions at room temperature are
the cube axes (100) and the body diagonals (111), whereas in
hcp Co single crystals, the magnetic moments at room tem-
perature are aligned along the c-axis and the basal plane is a
so-called hard plane for the magnetization. Experimental val-
ues for the anisotropy constants range between about 10? J m—3
(for soft magnetic materials) and 107J m~> (for hard mag-
nets) [116, 134, 142]. Note also that, as with the exchange
constant, the K’s may depend on the position, i.e. K = K (r)
(e.g. [143, 144]).

Magnetoelastic anisotropy. When an unstressed ferromag-
netic specimen is magnetized by an increasing applied mag-
netic field, the dimensions of the body change. The process
continues until elastic counterforces provide for a state of stable
equilibrium. This phenomenon is called magnetostriction, and
it demonstrates that there is a connection between the elastic
and magnetic properties of magnetic materials. Magnetostric-
tion occurs because the magnetic energy of a ferromagnetic
crystal depends on the components of the strain tensor, and
it may be energetically favourable for an unstrained lattice to
spontaneously deform and lower its energy. The associated
interaction energy is called the magnetoelastic energy Epe,
which can also be defined via a volume integral over some
energy density wy, (compare equation (5)),

Emez/a)medV. C))
14

The general treatment of magnetostrictive effects in de-
formable magnets is a highly complicated task [116], and we
refer the reader to chapter 8 in Brown’s book [114] for a critical
discussion of the underlying assumptions of the Voigt approx-
imation.

For polycrystalline magnetic materials, it is well known
that the mechanical lattice strain, which is related to mi-
crostructural imperfections, couples to the spin distribution and
may give rise to nonuniform magnetization patterns [ 145, 146].
For instance, the long-range stress field of a straight dislocation
line (o o< 1/r) produces a characteristic magnetic structure
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(see figure 1), which can be resolved via the SANS tech-
nique [126]. We will close this subsection by stating the rel-
evant expressions for the magnetoelastic coupling energy of
cubic and hexagonal crystal structures, which form the basis
for determining the spin distribution in the vicinity of stress-
active defects. For cubic crystals, the magnetoelastic coupling
energy-density (in cubic crystal coordinates) can be expressed
as [116]

3
Whe = —g A100 me m; — g)»m ZGU m;mj, (10)
i=1 i#]

where Ajgp and X, denote the saturation magnetostriction
constants along the indicated crystallographic directions, the
m; (i = x,y, z) are the Cartesian components of the unit vec-
tor in the direction of the magnetization, and the components
of the stress tensor o are due to internal stresses related to mi-
crostructural defects (or to externally applied stresses). Values
for the A’s range between about 1073 and 10~°. For hexagonal
materials, one finds [147]

- E Oii
i,j#3

=2 (A1 —Ap) opmymy — )»44201'3 mzm;, (11)
i3

1
2 2 2
wrune = (Aii m; + 5)\,‘]' mj — 033 }\.33 ms

With respect to the micromagnetic SANS theory (see sec-
tions 2.2 and 2.3 below), we note that we do not employ any
of the equations (7)—(11) for the magnetocrystalline and/or
magnetoelastic energy density. Rather, the linearized micro-
magnetic equations are solved by using an approximate formal
expression for w, which includes both magnetocrystalline and
magnetoelastic anisotropy. As discussed in section 4.2, the
analysis of experimental magnetic-field-dependent SANS data
allows one to determine the Fourier coefficients of the magnetic
anisotropy field which are related to that particular w.

2.1.3. Magnetostatic energy.

External magnetic field.  An externally applied magnetic field
Hj (assumed to be homogeneous throughout this paper) im-
poses a torque on the magnetization and tries to rotate the
magnetic moments along its direction. The corresponding in-
teracting energy is called the Zeeman energy E, and is given by

E, = —uo / MH,dV, (12)
\%

where 1o = 471077 T m A~ is the permeability of free space.

Magnetodipolar interaction. Within the Lorentz continuum
approximation, the magnetostatic field H,(r) that is created
by the magnetization M is related to a magnetostatic self-
energy [115]

En 13)

1
- -MO/ MH, dV
2 %

1
bamo [ R av.
2 all space

Note that the second integral in equation (13) extends over all
space; the factor 1/2 comes from the fact that the magneto-
static energy is a self-energy and, without it, the interaction of
each pair of magnetic moments is counted twice. Basic mag-
netostatics (i.e. the solution of the Poisson equation), allows
one to compute H, from the scalar potential function

1 ( Ve -M@) n-Mx)
Ur)=— —/—dV+/—dS>,
4 v r—r] s |r—1r/| 14

according to

H;(r) = -VU(r)
1 (r—r) Ve -M@)
=— |- d
4 ( ,/V Ir — r’|3 v

+/‘ (r—r/)n-M(r)ds/)'
s

15
|1~—r’|3 (1%

The first integral in equation (14) is over the volume and the
second integral over the surface of the ferromagnetic body. The
last expression on the right hand side of equation (13) embod-
ies the pole-avoidance principle: the magnetostatic self-energy
Ey > 0 tries to avoid any sort of fictitious magnetic volume
(—=V - M) or surface (n - M) charges. The sources of H, are
due to inhomogeneities in M, either in orientation or in mag-
nitude. In contrast to the previously discussed energy terms
(equations (3), (5), (9), and (12)), which involve only a sin-
gle integration over the sample volume, equation (13) requires
integrating twice over the same volume.

2.2. Balance of torques

In order to find the equilibrium magnetization distribution, the
total magnetic energy

E = Eexeh + Eme + Ene + E, + Ey (16)

of a ferromagnet should be considered as a functional of its
magnetization state,

Eo = Eo [M(r)]. a7

The state which delivers a (local) minimum to this functional
corresponds to an equilibrium magnetization configuration.
Therefore, at static equilibrium, the variation of E\, must van-
ish,

SElot = S(Eexch +Enc+ Epe+ E, + Em) =0. (18)

As detailed in [114-117], variational calculus leads to a set
of nonlinear partial integro-differential equations for the bulk,
along with quite complex boundary conditions for the mag-
netization at the surface. In keeping with our interest in the
magnetic microstructure within the bulk of macroscopic mag-
netic bodies, we restrict our attention here to the bulk equi-
librium conditions. The static equations of micromagnetics
(so-called Brown’s equations) can be conveniently expressed
as a balance-of-torques equation [114-117],

M(r) x Heg(r) = 0. (19)
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Equation (19) expresses the fact that at static equilibrium the
torque on the magnetization vector field M(r) due to an ef-
fective magnetic field Heg (r) vanishes everywhere inside the
material. The effective field

Heg (r) = Ho + Hy(r) + H, (r) + V2M(r) (20)

proM;
is composed of a uniform applied magnetic field Hy, of the
magnetostatic field H,(r), of the magnetic anisotropy field
H,(r), and of the exchange field (last term on the right hand
side of equation (20)); V = e,d/0x +e,0/0y +e,0/0z, where
€., e,, and e, represent the unit vectors along the Cartesian
laboratory axes.
In the following, we assume the material to be nearly sat-
urated along Hy || e;, i.e. we write
M(r) = M,(r)e, + M,(r)e, + M (r) e, 21
with M, < M, and M, <« M (small-misalignment approx-
imation). The local saturation magnetization is assumed to
differ only slightly from its spatial average, i.e. M, (r) = M;.
Furthermore, we assume that the anisotropy-energy den-
sity w = w(r, M) depends only linearly on the components of
the magnetization, i.e. w = go + g (r)M, + g2(r)M,, where
the g; are functions of position [114]. As a consequence, the
resulting anisotropy field
H, = —u;' (dw/dM,, d0/dM,, d0/dM,)  (22)
is independent of M and, therefore, also independent of the
applied magnetic field, implying that near saturation H, =
H,(r). As mentioned in section 2.1.2, due to the micromag-
netic constraint |M| = M,, an anisotropy-energy density of
the form w = w(r, M, M,, M) may be re-expressed as w =
w(r, M, M) with the consequence that only two independent
components of H, exist [145]. In the approach-to-saturation
regime, when M is nearly aligned parallel to the external mag-
netic field Hy, only those components of H,, which are normal
to Hy are physically effective in producing a torque on the mag-
netization. For the solution of the balance-of-torques equation,
it proves to be convenient to introduce the Fourier transform

h(q) = (h.(Q), h,(q), 0) (23)
of the magnetic anisotropy field H, (r) as
— H 3
Hy0) = oo f h(q) expligr) . (24)

The details of the sample’s microstructure (e.g. grain size, lat-
tice strain, crystallographic texture) are included in H,, (r) [62].
The micromagnetic treatment of the magnetostatic self-
interaction starts with Maxwell’s equations. One of them states
that the magnetic flux density B is divergence-free, i.e.
V-B=0, (25)

where

B:pLQ (H0+Hd+M). (26)

From equations (25) and (26), it follows that

V-Ho+H;) =-V-M, (27)
and again from Maxwell’s equations for the static case and no
currents

V x (Hy+Hy) =0. (28)

The magnetostatic field H, (r) can be written as the sum of the
surface demagnetizing field H);(r) and of the magnetostatic
field HZ (r) which is related to volume charges, i.e.
H,(r) = H)(r) + H)(r). 29)
In the high-field limit (when the magnetization is close to
saturation) and for samples with an ellipsoidal shape with
H, directed along a principal axis of the ellipsoid, one may
approximate the demagnetizing field due to the surface charges
by the uniform field
H), = —N M;e., (30)
where 0 < N < 1 denotes the corresponding demagnetizing
factor. In Fourier space (at q # 0), the above magnetostatic

relations suggest the following expression for the Fourier
coefficient h%(q) of Hj(r) [133],

h)(q) = (k) (@), 1} (@), h] (@)
_ q[ql\g(q)], 31)
q
where
b 1 b : 3
H,(r) = ISR f h;(q) exp(igr)d’g (32)
and
M(q) = (M.(q), M,(q), M.(q)) (33)

represents the Fourier transform of the magnetization M(r),

1

MO G

[ S epian . G4
By inserting equations (21)—(24) and equations (29)—(34)
into equations (19) and (20) and neglecting terms of higher
than linear order in M, or M, including terms such as H, 5_ My
or Hf’iMy (where i = x, y, z), we obtain, in Fourier space,
the following set of linear equations for M . and M y [115]:

H;

ik Mo+ M —hl, —he =0, (35
2A ~ H;, ~

—— ¢ My+ —- M, —hl)  —h,=0. (36)

MOMS Ms ’ '

Note that the Cartesian components of hz depend also
only linearly on the components of M (compare equation (31)).
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For a general orientation of the wave vector q =

(gx, gy, q-), the solutions for M (q) and M (q) can be then
written as [53]

M, (q)
~ 2 ~
M (h,x - MZ%) <Heff +Ms%) - qu;# (hy - MZ%)

- s

2 2
Hegt (Heff + M qx,;f“)
37

7 vdz 2 xqy . xqz
M (hy - Mz q;;{) (Heﬂ’ + Ms Z%) - Ms qq(zi‘ (hx - Mz%)

2. .2
at+a?
Hegr (Heff + M %)

(38%)

Note that both Fourier coefficients M, (q) and M y(q) depend
explicitly on the longitudinal magnetization Fourier coefficient
M,(q). Since M, o« AM [148], this term models inhomo-
geneities in the magnetic microstructure that are due to jumps
in the magnetization at internal interfaces. The corresponding
expressions for M, and M for the single-phase material case
do not contain such terms (compare equations (2.15) in [26]).
Analytical micromagnetic calculations of the type presented
here have already been carried out by other authors, for instance
for the study of the approach to magnetic saturation [148—151].
The quantity

H; (1+154%)

denotes the effective magnetic field (not to be confused with
the effective field of equation (19)), which depends on the
internal (applied) field H; = Hy — NM;, on ¢ = |q|, and on
the exchange length of the field

Hee(q, H) = 39)

2A

ly(H) = | —————.
D) =M,

(40)

The length scale /[y may take on values between a few
nanometers and a few hundred nanometers (compare figure 2
in [26]), and it characterizes the range over which perturbations
in the spin structure decay [53,63,66]. Likewise, when
magnetostrictive interactions are explicitly taken into account,
then an additional exchange length of the stress appears [116],

2A
oy =\ o, @1)

310
where A is a magnetostriction constant and o is some appro-
priate average of the internal stress; for typical values of A and
o, I, takes on values of the order of a few 10nm [116]. Such
length scales can also be probed with SANS. H.g consists of
a contribution due to the internal field H; and the exchange
field 2Aq2 /(;oMy). An increase of H; increases the effective
magnetic field only at the smallest g values, whereas Heg at the
larger g is always very large (~10T) and independent of H;
(compare figure 2 in [26]). Since H.g appears predominantly
in the denominators of the expressions for M, and M,, its role
is to suppress the high-g Fourier components of the magneti-
zation, which correspond to sharp real-space fluctuations. On

the other hand, long-range magnetization fluctuations, at small
q., are effectively suppressed when H; is increased.

We would particularly like to emphasize that in deriving
equations (37) and (38), no assumption was made about the
particular form of the magnetic anisotropy (magnetocrystalline
and/or magnetoelastic). Rather, we formally operate with the
Fourier coefficient h(q) of H,(r). As we will see in section 4,
analysis of magnetic-field-dependent SANS data allows one to
determine model-independently the squared magnitude of the
magnetic anisotropy field.

At this point, we find it appropriate to pause and to re-
call the approximations made during the calculation. Be-
sides the small-misalignment approximation (M, < M, and
M, < M), we have introduced (at least) the following further
approximations: (i) The exchange interaction is assumed to be
homogeneous, i.e. A = constant and jumps in this quantity
(e.g. in a two-phase magnet) are not taken into account. Such
an approximation is permissible as long as exchange fluctua-
tions are not too large, in particular, for soft magnetic materi-
als [134]. (ii) The function M, (q) is introduced into our theory
only in q-space via h? (@) = —qlq M(q) /q* (equation (31)).
This is an approximation, since in real space we have assumed
that M, = M, = constant, and hence M (q) o §(q) would re-
sult, as is appropriate for ahomogeneous single-phase material.
However, by explicitly considering only the q 7 0 Fourier co-
efficients of M, it becomes possible to directly include jumps
in the longitudinal magnetization (e.g. at particle-matrix in-
terfaces), and to avoid the otherwise necessary calculation of
convolution products [148—150]. (iii) The combined magne-
tocrystalline and magnetoelastic anisotropy-energy density is
assumed to depend only linearly on the components of the
magnetization. This then implies that the anisotropy field H,,,
which enters the balance-of-torques equation, is independent
of M and, hence, independent of the applied magnetic field.

2.3. Connecting micromagnetics and SANS

For the following discussion of magnetic SANS, itis of interest
to consider special projections of equations (37) and (38) into
the plane of the two-dimensional detector. The two scatter-
ing geometries which are of particular relevance to experiment
have the external magnetic field Hy either perpendicular or par-
allel to the wave vector Kk of the incoming neutron beam (com-
pare figure 6). For Kk, || e, and Hy || e,, the scattering vector
can be approximated as q = (0, gy, g;) = ¢ (0, sin6, cos ),
i.e. ¢y = 0, and equations (37) and (38) reduce to

- h,
%@=M;? “2)

_ hy (@) — M (@) 2%

M@ = M, : 43)

q
Heff + MY q_‘z

For ko || Hy || e;, @ = (gx,qy,0) = g (cosB,sin6, 0), i.e.
q. = 0, and the results for the Fourier coefficients simplify to

~ h (Q)( etf+Mv 2>_hy(q)Mv%
Mx(q) = Mv
Hegr (Her + M)

)

(44)
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hy(q) (Her + My %) — o (q) M, 22
y (fI) eff + M 7’ x(q) 5742
Hefr (Hetr + M)

Mﬁ\' (q) - MS
(45)

Note that equations (44) and (45) are independent of A}Z and
similar to equations (2.15) in [26]. Furthermore, in equa-
tions (42)—(45) we have made use of the ‘usual’ small-angle
approximation, which neglects the component of the scatter-
ing vector along the direction of the incident beam. This ap-
proximation might not be justified anymore at large scattering
angles, where typically SANS from objects of the order of a
nanometer is probed. - -

Both Fourier coefficients M,(q) and M,(q) can be con-
sidered as a sum of products of components of the anisotropy-
field Fourier coefficient h(q) and M_,(q) with micromagnetic
functions, which contain the effective magnetic field H¢ and
terms that depend on the orientation of the wavevector (e.g.
M;q;/q?). The convolution theorem then implies that the
magnetic microstructure in real space, M(r), is tantamount to
a complicated convolution product between the corresponding
real-space functions. As a consequence, sharp features in the
nuclear or anisotropy-field microstructure are washed out and
smoothly-varying magnetization profiles are at the origin of
the related spin-misalignment scattering. Consistent with this
notion is the observation of power-law exponents significantly
larger than 4 and the finding that the slope of the correlation
function at the origin vanishes (see section 5 below) [152].

Since the magnetic SANS cross-section dX /d€2 depends
on the squared magnitudes of the magnetization Fourier coef-
ficients (compare sections 3.3-3.5), it is necessary to compute
appropriate averages of these functions. For this purpose, we
assume that the Fourier coefficient of the anisotropy field is
isotropically distributed in the plane perpendicular to Hy,

h(q) = (h(q) cos B, h(q) sin B, 0) (46)

where the angle 8 specifies the orientation of h. In other words,
we assume that the vector h(q) takes on all orientations (i.e.
angles B) with equal probability. This allows us to aver-
age Mf(q, 0, H;, B), Myz(q, 0, H;, B), and both cross terms

—ZZlZyMZ and —21\7,61\7}, over B, i.e.

2
5| s @7)
T Jo
For ko L Hy, this results in
~ h2
M2(q. 6, Hy) :Mj%’ 48)
2H(q, H;)
~ h2(q) + 2M>(q) sin® 6 cos? @
M;(q.0. Hy) = M W+ 2¥, @ =, (49)
2 [Het(q, H;) + M, sin* 6]
~ ~ 21\71,2(q) sin 6 cos 6
— ZM);MZ = Ms hd (50)

Hesr(q, Hy) + M sin? 6’

whereas for kg || Hy, we obtain

[Her (g, Hy) + M, sin>6]” + M2 sin” 6 cos? 0
2Hz:(q. H) [Hen (g, H)) + M,

M? = M2 h*(q)

)

(51

10

i = MR [Herr (g, H;) + M, cos® 9]2+M32 sin® @ cos? 0
= q
’ ) 2H2(q, H;) [Heit (q, H;) + M,

’

(52)

M; [2He(q, H;) + M;]sin 6 cos 6
HZ:(q. H) [Hewr(q, H) + M,
(53)

— 2M, M, = M? h*(q)

In writing down equations (48)—(53), we have treated all func-
tions as real-valued. We have also assumed that the longi-
tudinal Fourier coefficient M, is independent of the orien-
tation of the anisotropy field, which may be approximately
valid for polycrystalline bulk ferromagnets in the approach-to-
saturation regime. Note also that interference terms o &, M, or
hyh, vanish in this averaging procedure. The case of a texture
present in the orientation distribution of the anisotropy field is
treated in the appendix of [62].

For the later derivation of the spin-misalignment SANS
cross-sections (section 4), it is convenient to introduce the
dimensionless function

s MS

(q. Hy) = -
P Har(q. H)  Hi(1+15¢?)

(54)

(see figure 12(a)) and to re-express equations (48)—(53) in
terms of p. We then obtain for the squared Fourier components
and cross terms:

~ h2 2
== (55)
2
072 _ h*p* + 2]‘7[12172 sin” 6 cos” 0 56)
’ 2 (1+ psin®0)’
~ ~  2MZ?psinfcosf
—2MM, = — (57)
(1+ psin®0)
in perpendicular (ko L Hy) and
~ 1+ sin292+ 2sin” 6 cos? 0
Mf:thZ( p ) P2 68
2(1+p)
YT (1+ pcos? 9)2 + p2sin® 6 cos? 0 s
y p 2 ) ( )
2(1+p)
Yy 2+ p)sinf cos 6
—2M, M, = h* p? p@+p)sinfeosd L

(1+p)°
in parallel (k¢ || Hyp) geometry. The above Fourier coefficients
only need to be multiplied by the corresponding trigonometric
functions (and summed up) in order to obtain the magnetic
SANS cross-section for the respective scattering geometry.
Note also the symmetry of the transversal Fourier coefficients
in the parallel scattering geometry (equations (58) and (59)),
which is absent in the perpendicular case (equations (55)
and (56)).

Figures 4 and 5 show the applied-field dependence of
the above Fourier coefficients. For the functions h? and M2,
we have for simplicity assumed the form factor of the sphere
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Figure 4. Contour plots of M 2 (upper row), i[f (middle row), and —2117Iy 1171Z (lower row) for ko L Hj at selected applied magnetic fields

(equations (55)—~(57)). Hy || e is horizontal. For A%(q R) and 1\73 (gR), we used the form factor of the sphere with a radius of R = § nm
(equations (104) and (105)). Materials parameters: A = 2.5 x 107" J/m; uoM,; = 1.5T; noH, =0.125T; poAM =0.25T

(H,/AM = 1/2). H; values (in T) from left to right column: 0.1; 1.0; 10.0. In (a)-(f), yellow colour corresponds to ‘high intensity’ and
blue colour to ‘low intensity’, whereas in (g)—(i) yellow colour corresponds to positive and blue colour to negative values of —2M f 1\7Iz.

(see equations (104) and (105) below). It is seen that for the
transversal scattering geometry (ko L Ho), M? is isotropic at
all fields, whereas M y2 is highly anisotropic, with a character-
istic ‘clover-leaf-shaped’ angular anisotropy. For the parallel
case (Ko || Ho), M} and M are both strongly anisotropic with
characteristic maxima in the plane perpendicular to Hy. Note
thNat in the considered high-field regime, the Fourier coefficient
| M. |?* is (for polycrystalline bulk ferromagnets) isotropic and
approximately independent of the applied magnetic field. It
is also worth mentioning that due to the sin 6 cos ¢ term, both
cross terms (—2M, M and —2M, M) change their sign at the
border of quadrants on the detector. However, when both cross
terms are multiplied with the additional factor sin 6 cos 8, in
order to arrive at the contribution to the respective cross-section
(compare, e.g. equations (77) and (78)), they turn into positive
definite contributions. The results in figures 4 and 5 agree qual-
itatively with the micromagnetic simulations reported in [31].

It is very important to note that the angular anisotropy
(6-dependence) present in the Fourier coefficients is a con-
sequence of the magnetodipolar interaction: neglecting this
contribution results (for isotropic h) in isotropic Fourier

coefficients, which do not reproduce the experimentally ob-
served clover-leaf anisotropy [46, 60, 65, 76]. These observa-
tions underline the importance of the magnetodipolar interac-
tion for understanding magnetic SANS.

The above expressions for the Fourier coefficients are
quite generally valid for bulk magnetic materials in the
approach-to-saturation regime. In particular, the cross terms
are believed to be of relevance for practically all bulk ferro-
magnets, where the magnetodipolar interaction is an almost
inevitable part of the total magnetic energy: whenever the di-
vergence of M is nonzero, one has a magnetostatic field, which,
by virtue of the anisotropic character of the dipole-dipole in-
teraction, gives rise to 8-dependent Fourier coefficients and
cross-sections. Whether or not the cross terms show up in
experimental SANS data is of course only a question of their
magnitude relative to the other Fourier coefficients M? and M y2

For example, since M . ¢ AM, one may expect that the cross
term —2M, M, sin 6 cos 6 makes only a small contribution to
the overall cross-section of a single-phase ferromagnet with
homogeneous saturation magnetization (compare figure 23(b)
and figure 8 in [31]).
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Figure 5. Contour plots of M f (upper row), IlN/I}2 (middle row), and —2M . 1\7}, (lower row) for k¢ || Hy at selected applied magnetic fields

(equations (58)—(60)). Hy || e. points into the detector plane. Form factors for #>(gR) and 1\72 (g R) and materials parameters are the same
as in figure 4. H; values (in T) from left to right column: 0.1; 1.0; 10.0. In (a)-(f), yellow colour corresponds to ‘high intensity’ and
blue colour to ‘low intensity’, whereas in (g)—(i) yellow colour corresponds to positive and blue colour to negative values of —2M, M,.

3. SANS cross-sections

The purpose of this section is to display in a compact man-
ner the relevant expressions for the SANS cross-sections of
magnetic materials. Magnetic SANS, in contrast to magnetic
(small-angle) neutron diffraction, which is used, e.g. to study
the vortex lattice of superconductors [29] or skyrmion struc-
tures [153], measures the diffuse scattering along the forward
direction which arises from nanoscale variations in the mag-
netic microstructure [20,21,26,27]. The unique strength of
the SANS technique resides in the fact that it probes bulk prop-
erties on a length scale from a few to a few hundred nanometers.
Since magnetic SANS experiments typically employ cold neu-
trons (with wavelengths above the Bragg cuttoff, & = 5 A), the
discrete atomic structure of condensed matter is generally of
no relevance, and the magnetization state of the sample can be
represented by a continuous magnetization vector field M(r),
where r denotes the position vector inside the material. Mag-
netic SANS is a consequence of nanoscale variations in both
the orientation and/or magnitude of M.

Typical SANS instrumentation does not allow for en-
ergy analysis of the scattered neutrons and the measurable

quantity-the energy-integrated macroscopic differential scat-
tering cross-section d¥ /d€2 at scattering vector g-is a func-
tion of the magnetization Fourier coefficients M(q). These
Fourier coefficients depend in a complicated manner on the
magnetic interactions (e.g. exchange, magnetic anisotropy,
magnetodipolar interaction), the underlying microstructure
(particle-size distribution or crystallographic texture), and on
the applied magnetic field. The continuum theory of micro-
magnetics [114-117] is designed to compute spin structure on a
mesoscopic length scale (~1-1000 nm) [154], which overlaps
with the resolution range of the SANS technique. It is there-
fore straightforward to calculate SANS cross-sections based
on micromagnetic theory.

Since we are specifically interested in the static magnetic
microstructure of bulk ferromagnets, which is probed by elastic
scattering, it is necessary to estimate the influence of inelastic
scattering to the energy-integrated cross-section. Potential
sources of inelastic scattering contributions to d ¥ /d€2 are spin
waves (magnons) [155, 156] and lattice vibrations (phonons).
As discussed in section 3.5 of [26], throughout the major
part of the parameter space which is probed in typical SANS
experiments, the requirements of momentum and energy
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conservation upon absorption or emission of a magnon or
phonon cannot be satisfied simultaneously for any scattering
vector in the small-angle regime, in particular at large applied
fields or for strongly anisotropic materials. However, the
so-called left-right asymmetry method [157], which employs
the initial low-g magnon dispersion, allows one to measure
the spin-wave stiffness constant of magnetic materials (using
polarized SANS in inclined field geometry). See also the
article by Maleev [158] for a discussion on inelastic SANS.

Before displaying the fully spin-resolved SANS cross-
sections (section 3.3), the half-polarized cross-sections
(section 3.4), and the unpolarized d¥/d2 (section 3.5), we
briefly describe in section 3.1 the main features and the typical
setup of a SANS instrument. Section 3.2 introduces the
nomenclature, whereas section 3.6 provides a discussion of
the cross-sections in the completely saturated magnetization
state (at large applied magnetic field), which is often taken as
a reference for data recorded at lower fields.

3.1. Description of the SANS setup

Figure 6 shows schematically the typical SANS setup along
with sketches of the two most commonly used scattering ge-
ometries. Cold neutrons, which emerge from a nuclear re-
actor or from a spallation source, are monochromatized by
means of a mechanical velocity selector. Depending on the
rotational speed and tilting angle of the selector drum relative
to the incident neutron-beam direction, a mean wavelength
between about 5 and 20 A and with a wavelength resolution
AX/X between 10 and 30% (full width at half maximum) can
be selected. In the evacuated pre-sample flight path (source-
to-sample distance ~1-20 m), a set of circular pinholes colli-
mates the monochromatized beam. A particular strength of the
SANS technique is that experiments can be conducted under
rather flexible conditions and under different sample environ-
ments (temperature, electric and magnetic field, pressure, neu-
tron polarization, time-resolved data acquisition, etc.). The
typical size of the irradiated area of sample is of the order
of 1cm?.

A two-dimensional position-sensitive detector, moving
along rails in an evacuated post-sample flight path (sample-
to-detector ~1-20m), counts the scattered neutrons during
acquisition times ranging between a few minutes and a few
hours. The recorded neutron counts (in each pixel element
of the detector) are corrected for detector dead time, normal-
ized to incident-beam monitor counts, and a solid-angle cor-
rection is applied to the data which corrects for the planar
geometry of the detector; further corrections relate to sam-
ple transmission, background scattering, detector dark current
and detector efficiency. The scattering cross-section of the
sample is obtained by comparing the corrected signal to that
of a reference sample (e.g. water, polystyrene, porous sil-
ica, vanadium single crystal) of known cross-section. The
data-reduction procedure provides the macroscopic differen-
tial scattering cross-section d¥ /dS2 of the sample in absolute
units (typically cm~!sr~!) and as a function of the magni-
tude and orientation of the momentum-transfer or scattering
vector q (see figure 6). In order to conveniently present the

Figure 6. Sketch of the SANS setup and of the two most often
employed scattering geometries in magnetic SANS experiments.
(a) ko L Hy; (b) ko || Hp. The scattering vector q is defined as the
difference between the wave vectors of the scattered and incident
neutrons, i.e. ¢ = k — Ko; its magnitude ¢ = |q| = (47 /A) sin
depends on the mean wavelength A of the neutrons (selected by the
velocity selector) and on the scattering angle 2. The symbols ‘P’,
‘F’, and ‘A’ denote, respectively, the polarizer, spin flipper, and
analyzer. SANS is usually implemented as elastic scattering

(ko = k = 27 /A), and the component of ¢ along the incident
neutron beam (i.e. g, in (@) and ¢, in (b)) is neglected. The angle 6
may be conveniently used in order to describe the angular
anisotropy of the recorded scattering pattern on a two-dimensional
position-sensitive detector.

neutron data, one often carries out a so-called azimuthal aver-
aging procedure, whereby the data at a constant magnitude of
q are summed up (integrated) within a certain angular range
(e.g. by 360°); this yields dX/d2 as a function of |q| = ¢.
As quoted in [159], the uncertainty in the cross-sections de-
termined by this procedure is estimated to be 5-10%. Since
q = (4 /X)) sin ¢, where 2¢ denotes the scattering angle, dif-
ferent momentum transfers (scattering angles) can be accessed
by varying the distance between the sample and the detector.
With conventional SANS instruments it becomes thus possi-
ble to cover a g-range of 0.01nm~! < ¢ < 5nm~!, which
translates into structure sizes of the order of 1-100 nm. The
g-resolution of a SANS instrument is mainly related to the
wavelength spread of the incident neutrons, the finite collima-
tion of the beam, and the detector resolution (finite pixel size).
For studies which describe the optimal instrument configura-
tion, instrumental resolution (smearing) effects, the impact of
gravitation, the data-reduction procedure, the performance of
SANS instruments, or the treatment of multiple scattering see
[5, 159-169] and references therein.

The neutrons incident on the sample may be polarized by
means of a supermirror transmission polarizer and the initial
neutron polarization can be reverted by 180° using a (radio-
frequency) spin flipper [170, 171] (see figure 6). In magnetic
SANS experiments, *He spin filters act as spin analyzers and,
correspondingly, are installed behind the sample (sometimes
inside the detector housing). Magnetic guide fields of the
order of 1 mT serve to maintain the polarization between
polarizer and 3He filter. Recent progress in the development of
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efficient *He spin filters [172] allows one to perform routinely
uniaxial (also called longitudinal or one-dimensional) neutron-
polarization analysis on a SANS instrument, for instance, at
the instruments D22 and D33 at the Institut Laue-Langevin,
Grenoble, France or at NG3 and NG7 at the NIST Center
for Neutron Research, Gaithersburg, USA. The principle of
operation of a *He spin polarizer/analyzer is based upon the
strongly spin-dependent absorption of neutrons by a nuclear-
spin-polarized gas of 3He atoms [173]; only neutrons with spin
component antiparallel to the *He nuclear spin are absorbed.
The advantages of 3He spin filters as compared to other
polarizing/analyzing devices are (i) that they can be used over
a rather broad wavelength band (from cold to thermal to hot
neutrons) and (ii) that they allow for a rather large phase space
(neutron-energy transfer and scattering angle) to be covered.

In uniaxial polarization analysis [174], the polarization of
the scattered neutrons is analyzed in the direction parallel to
that of the initial polarization (before entering the detector).
The externally applied magnetic field at the sample position
defines the quantization axis for both incident and scattered
polarization. For more information on (polarized) neutron
scattering (and on spherical neutron polarimetry), we refer
the reader to the classic papers [108, 113, 174-184, 185] and
textbooks [186—189].

With the above described setup it becomes possible to
measure four intensities that connect two neutron-spin states.
Following [174], the four partial scattering cross-sections are

. . .o, . d2+ dz**
the two non-spin-flip quantities <55~ and 55— and the two

aQ
spin-flip cross-sections % and dz . When the rf flipper is

off (inactive), we measure, dependlng on the spin state of the
3He filter, the non-spin-flip or the spin-flip cross-section 42—

ae
or =, L1kew1se when the flipper is on (active), we either
measure ddEQ or Y27 In the context of magnetic SANS, the

corresponding expressmns for the cross-sections are denoted
as the POLARIS equations (see section 3.3).

SANS experiments with a polarized incident beam only
(and no detection of the polarization of the scattered neutrons)
pr0v1de access to the so-called SANSPOL cross-sections 9=

aQ
and 4 dQ . In particular (see section 3.4),
dx* dx* dx*t
= + , 61)
dQ dQ dQ
dx- dX— dx¥*
= + . (62)
dQ dQ dQ

The difference between ‘spin-up’ and ‘spin-down’ SANSPOL
cross-sections yields the polarization-dependent nuclear-
magnetic and chiral scattering terms. As demonstrated, e.g.
in [171] on an Fe;O4 glass ceramic, this difference allows one
to highlight weak magnetic contributions relative to strong
nuclear scattering (or vice versa). Finally, the unpolarized
SANS cross-section is obtained as (see section 3.5)

dx 1 (dz* . dx-
dQ  2\dQ  dQ
1 /dz* d¥—— dx+ dx
= . (63)
2\ dQ dQ dQ dQ

3.2. Nomenclature and simplifications

In the equations for the various cross-sections that follow, V
denotes the scattering volume,

by =270 x 107" mug' =291 x 10*A™'m™" (64)

is a constant (see below), N (q) is the nuclear scattering
amplitude, and

M(g) = [M. (@), M, (@), M.(@)], (65)
represents the Fourier coefficient of the magnetization vector
field

M(r) = [M,(r), M(r), M (1)]; (66)
c* is a quantity complex-conjugated to c. We adopt a Cartesian
laboratory coordinate system with corresponding unit vectors
ey, ey, and e;. Hy is assumed to be always parallel to e, so that
M. :(q) denotes the corresponding longitudinal magnetization
Fourier coefficient, and M, (q) and M,(q) are the transversal
components, giving rise to spin- mlsahgnment scattering. For
ko L Hy, the angle 6 is then measured between Hy and

q=¢q (0,sin6, cosh), (67)
whereas for Kq || Hy, 0 is the angle between e, and
q = g (cosé,sin6, 0) (68)

(compare figure 6). In these expressions for q, we have
made use of the small-angle approximation (note that typically
24y < 10°), i.e. the magnitude of the component of q along
the incident-beam direction is negligible as compared to the
other two components. The atomic magnetic form factor f(q)
in the expression for the atomic magnetic scattering amplitude

by =270 x 105 m f(q) Z— —bype (69
B

was set to unity, which is permissible along the forward
direction (1, atomic magnetic moment; ;g: Bohr magneton).

In an attempt not to unnecessarily encumber the notation
in the expressions for the POLARIS (and SANSPOL) cross-
sections, we assume a perfectly working neutron optics, i.e. we
set the efficiencies of the polarizer, analyzer, and spin flipper
to unity. However, since in actual POLARIS experiments
these devices are characterized by efficiencies close to but
smaller than unity, it is necessary to measure all four partial
cross-sections in order to correct for spin leakage between the
different channels [190]. Such a correction can for example
be accomplished by means of the BERSANS [191,192] and
Pol-Corr [193] software tools.

We would like to particularly emphasize that nuclear spin-
incoherent SANS, which is partly spin-flip scattering, is ne-
glected in the spin-flip SANS cross-sections (equations (72)
and (74) below). This is motivated by the fact that its mag-
nitude [18] is very small relative to the here relevant coherent
magnetic SANS (comparee.g. the field-dependent < ‘jz; shown
in figure 23).
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Figure 7. (a) Spin-flip SANS cross-section 4 dQ — of an FeCr-based

nanocomposite at a saturating applied magnetic field of 1.31T
(ko L Hy) (logarithmic colour scale) (b) Azimuthally-averaged

spin-flip cross-sections 4% — and dz (log—log scale). Reproduced
from [48] with permlssmn from Sprlnger Science & Business Media.

Furthermore, since the focus of this review article is on
magnetic SANS of statistically isotropic polycrystalline bulk
ferromagnets, polarization-dependent chiral scattering terms,
proportional to

Fi(0. 0y - 05 0)), (70)
where O, and @, denote the Cartesian components of the
Halpern—Johnson vector [174], have also been ignored in the
spin-flip cross-sections. Consequently, the two spin-flip cross-
sections are independent of the incident neutron polarization,
as is shown in figure 7 for the case of a nanocrystalline FeCr-
based magnetic alloy [48].

As demonstrated, e.g. in [106], the polarization depen-
dence of the chiral terms and the related asymmetry of the
cross-section with respect to q may be employed for the
study of crystal handedness and spin-helix chirality in non-
centrosymmetric cubic single crystals.

Since the vast majority of magnetic SANS experiments are
carried out by employing the two scattering geometries where
the externally applied magnetic field Hy is either perpendicular
(figure 6(a)) or parallel (figure 6(b)) to the wave vector K of the

incoming neutron beam, we restrict our attention to these two
specific situations. We refer the reader to [194] (and references
therein) for a study of critical two and three-spin correlations
in EuS which employs an inclined magnetic field geometry
(Hy at 45° to ko).

3.3. POLARIS cross-sections

3.3.1. ko L Hy.
dz:l::l: 3 ~ -
= (IN|* + b3 | M, |* sin> 6 cos® 0
+b%,| M. |* sin* 6
—b%(ﬁyﬂj +A7;Mz) sin’ 0 cos 6
Thy(NM? + N*M,) sin> 0
+by(NM; + N*M,)sin6 cos0) . (71)
dzﬂ 83 ~ ~
( ) = — by (IM.* + |M,|* cos* 0
+|1\’/VIZ|2 sin? 6 cos” 0
—(M,M? + M;M.)sinfcos*0).  (72)
3.3.2. ko || Hp.
dx*t 873~ ~
1q @ = — (INP + b3, | M. |?
Fhu(NM! + N*M.,)). (73)
dziﬂF ~ ~
5 @= —b2 (IM,|?sin® 6 + | M, |* cos® 6

—(M M} + M} M,)sin6 cos9) . (74)

3.4. SANSPOL cross-sections

3.4.1. ko L Hy.
dx* 3L ~ ~
d—Q(q) = (INI* + by | M, |* + by | M, |* cos® 6
+b%| M| sin® 0
—b}, (MyM? + M M.) sin 6 cos
Fby(NM* + N*M,)sin> 0
in(ﬁA};‘ +N*M,)sin6 cos) .
(75)
3.4.2. ko | Ho.
dz*
—( )——(|N| + b2 | M, | sin® 6 + b2 | M, | cos® 6

+b3, | M. |? — (MXM;k + M*M,) sin 6 cos 0
Fou(NM* + N*M,)).

(76)
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3.5. Unpolarized SANS cross-sections

3.5.1. ky L Hp.
dx
—(q) (INI +b% | M,
+b§,|M 1? cos 9 + b2 | M, sin® 6
—b%, (M, M + My M.)sin6 cos6) . (77)
3.5.2. ko | Ho.
dx o~ ~ o,
0 @= (IN|* + b3, | M, |* sin® 0
+b% | M, |* cos® 6 + b2, | M|
—by (M M + M} M,) sin6 cos ) . (78)
3.6. Magnetic SANS at saturation
The completely saturated magnetization state, M(r) = [0, O,

M, (r)], is often used as a reference, for instance, when dis-
cussing the results of SANS measurements at lower applied
magnetic fields. In fact, it turns out that the analysis of the spin-
misalignment scattering is best performed when the nuclear
and magnetic SANS cross-section at a saturating field-also
called the residual SANS cross-section-has been subtracted.
Therefore, we find it useful to explicitly display in the fol-
lowing the SANS cross-sections for saturated magnetic mi-
crostructures.

3.6.1. POLARIS.

ko L Hy.
dx*E 873 ~ ~
1o (@ =~ (NP + b5 M. sin' 6
Fbu(NM* + N*M,) sin>6) . (79)
ds*F 873, ~
(qQ) = — by |M| sin? 0 cos? 6. (80)
dQ %
Ko || Ho.
dEii 3 » ~
1o~ @ =~ (NP b, M2
Fhu(NM* + N*M.,)). 81)
dx*+F
(@) =0. (82)

We remind the reader that nuclear spin-incoherent SANS [18]
has been ignored here.

3.6.2. SANSPOL.

ko L Hop.

dx*
_( )=

q:bH(NM;+N M.)sin®6) .

3
(|N|2+b2 |M.|?sin 6

(83)

ko || Ho.
dz*
4o @ )= (|1v|2+b2 |M,|?
:FbH(NMZ* + N*MZ)) ) (84)
3.6.3. Unpolarized SANS.
ko L Hy.
3 ~
—(q) (|N| +by|M,|*sin®9) . (85)
ko || Ho.
= sz (INJ? +b21M, %) (86)
dQ v HI™2 /-

3.6.4. Models for the nuclear and magnetic structure factors at
saturation. The present article is concerned with magnetic
SANS of bulk ferromagnets, e.g. single-phase elemental
ferromagnets such as nanocrystalline Co and Ni [62] or
multiphase nanocomposites such as two-phase NdFeB-based
alloys [55,56] or steels [77]. For the latter class of
materials, the magnetic scattering contrast at saturation arises
from variations of the magnitude of the magnetization at
internal (e.g. particle-matrix) interfaces, whereas for idealized
homogeneous single-phase magnets (with constant values of
the magnetic materials parameters), coherent magnetic SANS
is absent at saturation.

In experimental studies on single-phase magnets,
however, the nuclear density and/or composition will generally
be nonuniform (e.g. due to the presence of second-phase
particles, pores, or impurities), and consequently there can
be a nanoscale nonuniformity in the magnetization, even at
the highest fields when all spins are aligned. The ensuing
combined nuclear and magnetic residual scattering cross-
section d X5 /dS2 is not accounted for in our micromagnetics
approach. In order to analyze the dominant spin-misalignment
scattering (at lower fields), one can either subtract the measured
dX.s/dQ2 (at saturation) from a measurement of the total
dX /d€2 ata particular field, or (if saturation cannot be reached)
assume a particular microstructural model for dX..s/dS2 (see
below) and include it in the expression for dX /d€2.

While analytical expressions for particle form factors
have been derived for practically all particle shapes, there
are only few closed-form results for the structure factor
[13,32,34,35]. Most of the structure-factor models (e.g.
hard-sphere, sticky hard-sphere or screened Coulomb potential
with or without polydispersity) have been derived for particles
with spherical symmetry interacting through a spherically
symmetric potential. We refer to the review article by Pedersen
[13] for a detailed discussion of this topic. Likewise, several
software packages [195, 196] are available which contain an
extensive collection of particle form factors (including particle-
size distributions) and structure factors.

For a saturated two-phase particle-matrix-type bulk
ferromagnet, the general expressions for the pure nuclear and
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magnetic SANS take on a particularly simple form [5, 148]

dznuc 87'[3 ~ 2
e =N
e (@) | (@]
2
(AP) " al
=M (D Vi Fi@) exp(—iqr))| . (87)
j=1
d>n. 873 ~ )
Wg(Q) = 719%1,|Mz(q)|2 sin® 6

2

(A )m S
00 ey Z V. Fi(q) exp(—iqr;) sin® 6,
j=1

(88)

where Apne and Apy,e denote, respectively, the nuclear
and magnetic scattering-length density contrast between the
particle (‘p’) and the matrix (‘m’), N, is the number of
particles in the scattering volume V, and V, ;, F;, and r;
represent, respectively, the particle volume, the form factor
and the position vector of particle ‘j’. In writing down
equations (87) and (88), we have assumed uniform nuclear and
magnetic scattering densities of the particles (so that the factors
(Ap)nuc and (Ap)mae can be placed in front of the form-factor
integral). Furthermore, equation (88) is valid for the scattering
geometry where the wavevector Kq of the incoming neutron
beam is perpendicular to Hy (figure 6(a)); in the parallel case
(figure 6(b)), the factor sin® 6 is replaced by unity (see below).
The magnetic contrast is related to the jump AM of the
magnitude of the magnetization at the particle-matrix interface
according to
(AP = b3 (AM)? = by (MP — M), (89)
where M and M denote, respectively, the saturation mag-
netizations of the particle and matrix phase; for ugAM =1T,
(AP)mag = 2.3 x 10" m~2. In the monodisperse and dilute
limit, d ¥ /dS2 for unpolarized neutrons and for ko L Hy can
then be written as

dXe N

S _ P2 2
10 (@ = v vV, IF(@Q)l

(P2 + (A9 sin?0],
90
whereas for kg || Ho,

A% N,

aQ (@) = 7

V2 IF@P (A0 + (M)

oD

Note also that nuclear and magnetic form factors need not to be
identical. For instance, spin canting at the surface of nanopar-
ticles (e.g. [94, 111, 197]) may result in different nuclear and
magnetic structure sizes.

3.6.5. Graphical representation. Figure 8 qualitatively shows
the SANS cross-sections at saturation for kg L. Hy and for
different ratios of nuclear to magnetic scattering,

IN|?

R(G) = ——mn—, 92
(@) EADAE (92)

assuming for simplicity the sphere form factor for both nuclear
N and longitudinal magnetic M, scattering amplitudes (dilute
limit). For statistically isotropic microstructures, the case
ko || Hp is of low interest, since the corresponding SANS
cross-sections are all isotropic (no 8-dependence). While most
of the images in figure 8 have been reported countless times
in the research literature, we would like to draw the attention
of the reader to the cross-shaped angular anisotropy in the
non-spin-flip ++ channel depicted in figure 8(b). This type
of anisotropy has only recently been observed in an Fe-based
two-phase nanocomposite [51] (see figure 9(a)). Analysis of
equation (79) reveals that, for this class of materials, the cross-
shaped anisotropy is only observable at saturation in %,
provided that the ratio of nuclear to magnetic scattering is
smaller than unity (roughly R ~ 0.1-0.4), as is experimentally
observed (see figure 9(b)). The observation of the cross-
shaped anisotropy represents an example where POLARIS
provides information that is not accessible via conventional
(unpolarized) SANS or SANSPOL techniques.

4. Spin-misalignment SANS: micromagnetic
description

When the micromagnetic expressions for the Fourier coeffi-
cients M2 M2 and —2M, M, and —2M, M~ (equations (55)—
(60)) are mserted into the SANS cross-sections of sections
3.3-3.5, one can obtain closed-form expressions for dX /d<2.
Analysis of magnetic-field-dependent SANS data then pro-
vides quantitative information on the magnetic interactions,
i.e. the value of the exchange-stiffness constant and the strength
and spatial structure of the magnetic anisotropy field and
magnetostatic field (due to AM fluctuations). As discussed
in section 3.6.4, in the analysis procedure, it proves to be
advantageous to separate the nuclear and magnetic residual
SANS cross-section dX.s/d€2, which is measured at com-
plete magnetic saturation (infinite field), from the respective
spin-misalignment SANS.

In this section, we provide closed-form expressions
for the spin-misalignment SANS for unpolarized neutrons
(section 4.2) and for the spin-flip cross-section (section 4.3).
The data-analysis procedure is explained and experimental re-
sults on hard and soft magnetic nanocomposites are discussed.
It turns out that the ratio of anisotropy-field strength H, to
magnetization jump AM at internal interfaces is the deci-
sive parameter determining, e.g. the angular anisotropy of the
cross-section and the asymptotic power-law exponent. How-
ever, we start our discussion by commenting on the relevance
of SANSPOL for the study of spin-misalignment scattering.

4.1. Comment on the relevance of SANSPOL for the study of
spin-misalignment scattering

We have argued in the introduction that-for bulk ferromagnets-
the spin-misalignment SANS cross-section dX,,/d<2 repre-
sents the dominant contribution to the total unpolarized SANS
cross-section, at least for applied fields not too close to satura-
tion. In particular, there exist numerous experimental SANS
data (e.g. [26]) which exhibit an extremely large field depen-
dence. For instance, the SANS signal of nanocrystalline Co
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Figure 8. Qualitative variation of the SANS cross-sections at magnetic saturation for ko L Hy and for different ratios R of nuclear to

magnetic scattering (R = |ﬁ|2/(bﬁ|ﬂz|2)). (From left to right column) R = 0.01, R = 0.25, R = 3, R = 400. (a)-(d)

as*t,
dQ

-

ds+

. dx—
dQ

aQ

(e)—(h

(m)—(p %; (g)—(t) unpolarized %. For the calculation of the cross-sections, we have assumed the sphere form factor (sphere

diameter: 16 nm) for both |ﬁ |? and |1\A/1Z |2; the prefactor 8773/ V in the corresponding expressions was set to unity. Yellow-green colour

corresponds to ‘high intensity” and blue colour to ‘low intensity’.

(at the smallest ¢g) can vary by up to three orders of magni-
tude between zero field (or coercivity) and a large field close
to saturation (cgmpare~ figure 3(a)). Since dX;,/dQ2 is re-
lated to terms | M, 12, IM, |2, and to cross terms such as MM,
or MM, and, since these contributions are independent of
the polarization of the incident neutron beam, it appears to
be rather straightforward to conclude that the measurement of
the SANSPOL ‘spin-up’ and ‘spin-down’ cross-sections does
not provide significantly more information regarding d X, /d 2
than can already be learned by the measurement of the unpo-
larized cross-section alone. This circumstance is illustrated in
the following.

The two SANSPOL cross-sections dX*/dQ2 and dX~ /dQ2
contain terms which depend on the polarization of the

incident neutron beam (compare section 3.4). In particular, the
difference between data taken with the neutron-spin flipper
on and off, A(dX/dQ) = d¥~/dQ — d¥*/dQ, depends
(for kg L Hy) on terms N M. sin’ 6 and NM, sin6 cos0; we
remind that polarization-dependent chiral terms are ignored
here (compare figure 7).

Figure 10 shows the results of magnetic-field-dependent
SANSPOL measurements on a NdFeB-based nanocompos-
ite; figure 10(a) depicts the ‘spin-up’ and ‘spin-down’ cross-
sections at selected field values, while figure 10(b) shows
the corresponding difference A(dX/dS2) of the SANS cross-
sections between the two spin states. Itis seen that the d X+ /dQ2
(at a given field) are practically independent of the incom-
ing polarization. A small difference can be detected at the
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largest applied field of 10T, where the spin-misalignment
scattering is weak. Given that the total unpolarized dX/d2
(and dX,,/dS2) of this sample varies strongly as a function
of the external field (compare figure 32), the observation in
figure 10(b) that A(dX/d2) is essentially field-independent
suggests that in bulk ferromagnets the interference between nu-
clear and transverse spin-misalignment scattering amplitudes
N My sinf cos O is negligible. The very weak polarization
dependence of dX*/dQ2 can therefore be attributed to terms
NM . sin? 6.

As a further example, figure 11 depicts (for a two-phase
Fe-based nanocomposite) the difference between data taken

with the neutron-spin flipper on and off at several applied
magnetic fields [46]. The angular anisotropy of the scat-
tering pattern (figure 11(a)) is (for all fields) clearly of the
sin? O-type, and the corresponding azimuthally-averaged data
(figure 11(b)) are small in magnitude compared to the unpolar-
ized data (see figure 4 in [46]) and only very weakly dependent
on the applied field, in agreement with the previous conclu-
sions. Similar results were also obtained on nanocrystalline
Co [62].

These observations strongly suggest that for the study of
spin-misalignment scattering it is already sufficient to measure
the field dependence of the unpolarized SANS cross-section.
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Similar statements refer to the POLARIS non-spin-flip cross-
sections dX**/dQ and dX ~~ /d<2 for the transverse scattering
geometry (equations (71)) (Note that for kq || Hg, dX*/dQ2
and dX77/dQ2 are independent of the transversal Fourier
coefficients (equations (73))). Therefore, in order to provide

20

a micromagnetic description of magnetic SANS of bulk
ferromagnets, we restrict our considerations in the subsequent
sections to the unpolarized and the spin-flip cross-sections.

4.2. Unpolarized case

4.2.1. kg L Hy. Theunpolarized elastic SANS cross-section
dX/dS2 for ko L Hy (equation (77)) can be written as [53, 54]
dx dXes dXy
—Z(q) = + —(q), 93
TS AT (@ 1 (@ 93)
where (compare equations (85) and (87)—(91))
dX e 873 ~ ~ ]
1 @ = (NP +b4IM.Psin’0) - (94)
and
dEM 87‘!’3 ~ ~
g (@ = = by (1Mol + M, | cos® 0

—(Myﬂj + M;MZ) sin 6 cos 9)

= Su(@) Ru(q,0, Hi) + Sy (q) Ru(q, 0, Hy)
95)

is the purely magnetic SANS cross-section due to transversal
sBin-mjsalignment, with related Fourier amplitudes M, (q) and
M, (q); equation (95) follows by inserting equations (55)-
(57). dX);/d2 decomposes into a contribution Sy Ry due
to perturbing magnetic anisotropy fields and a part Sy Ry
related to magnetostatic fields. We remind the reader that the
micromagnetic SANS theory considers a uniform exchange
interaction and a random distribution of magnetic easy axes,
but explicitly takes into account variations of the magnitude of
the magnetization.
The anisotropy-field scattering function

87 , 2
Su(@) = =~ by (@) (96)
depends on the Fourier coefficient i(q) of the magnetic
anisotropy field, whereas the scattering function of the
longitudinal magnetization
3
Su(q) = 8% by IM(q)|? ©7)
provides information on the magnitude AM Mz of the
magnetization jump at internal (particle-matrix) interfaces. As
we will see below (figure 18), both functions Sy and Sy, (in
units of cm~!sr™!) can be determined model-independently
from the analysis of magnetic-field-dependent SANS data.
Likewise, one may also employ a particle-matrix-type model
based on equation (87) for both Sy and S);; note, however, that
the characteristic structural sizes that are contained in |2 (q) 2
and |M.(q)|? need not to be identical.
The corresponding (dimensionless) micromagnetic re-

sponse functions
) (98)

p? cos? 6
Ru(q,0, H;) = 5 I+ ———
(1+ psin®0)
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and
p?sin®@cos*0  2psin® 6 cos? b

Ry(q,0, H;)) = +
" (1 +psin29)2

. (99
1+ psin®6 ©9

depend explicitly on the magnitude g and orientation 6
of the scattering vector (compare figure 6(a)), on the
applied magnetic field Hp, and on the magnetic materials
parameters; p(q, H;)) = M,/H (compare equation (54)
and see figure 12(a)), where the effective magnetic field
Her(q, H;) = H; (1 +13,q*) depends on the internal magnetic
field H; = Hy — N M, and on the exchange length [y (H;) =

V2A/(noMsH;) (compare section 2.2) (M,: saturation
magnetization; N: demagnetizing factor; A: exchange-

stiffness parameter; o = 47107’ Tm/A). Inspection of
equations (98) and (99) shows that, depending on the values
of ¢ and H;, a variety of angular anisotropies may be seen on
a two-dimensional position-sensitive detector (see figures 13
and 14 below; compare alsg ﬁ&ure 11in [31]).

When the functions N, M,, and & depend only on the
magnitude g of the scattering vector, one can perform an
azimuthal average,

2

(...) do,

100
o ), (100)

of equation (95). The assumption that 1\71Z is isotropic is sup-
ported by experiment [48] and by micromagnetic simulations
[50]. The Fourier coefficient & describes the spatial distribu-
tion (and magnitude) of magnetic anisotropy fields in the sam-
ple, and we believe that the assumption of isotropy is justified
for polycrystalline (non-textured) magnetic materials. Assum-
ing that N, M., and h are isotropic, the resulting expressions
for the response functions then read [53, 54]

2 1
Rutg, Hy =2 <2+ M) (101)
and
Ru(q, Hy = Y221 (102)

> )
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with the consequence that the azimuthally-averaged total
nuclear and magnetic SANS cross-section can be written as

dx dXes
1o ) (@)+Su(q) Ru(q, H)+Su(q) Ru(q, H;).

Hi)Zd—
(103)

(g,
Equation (103) is the central result.

In figure 12(b), both response functions Ry (equa-
tion (101)) and R, (equation (102)) are plotted as a function of
the dimensionless parameter p. Assuming that the functions
Sy and Sy, are of comparable magnitude, it is seen that at large
applied fields or large momentum transfers (when p < 1, see
figure 12(a)), dX ) /d2 = Sy Ry + Sy Ry is dominated by the
magnetostatic term Sy, Ry, whereas at small fields and small
momentum transfers (when p > 1), dX,,/d<2 is governed by
the anisotropy-field contribution Sy Ry.

In order to illustrate the ‘zoo’ of angular anisotropies that
can be obtained, figure 13 qualitatively displays the applied-
field dependence of dX,,/d2 for ky L Hy (equation (95)) and
for Sy = Sy (H,/AM = 1), whereas figure 14 shows the an-
gular anisotropy of the detector pattern as a function of the ratio
H,/AM at a fixed internal magnetic field. Additionally, we
have included in figure 13 (lower row) the spin-misalignment
SANS of a single-phase ferromagnet with a uniform satura-
tion magnetization (i.e. AM = 0); for such a material, per-
turbations in the spin-microstructure are exclusively due to
spatially nonuniform magnetic anisotropy fields, and, conse-
quently, dX,/dQ2 = Sy Ry [62,199]. For the graphical rep-
resentation of dX,/d€2, we have for simplicity assumed that
both Sy o h%(gR) and Sy MZ2 (g R) can be represented by
the form factor of the sphere (with radius R). Explicitly,

H; Jt@R)
h*(@R) = —2-9v> - 104
@R =Gy ” Y Ry (109
and 5 )
~ (AM) 2 -]1 (gR)
MZX(qR) = , 105
-(@R) &0 " (gR)? (105)
where V,, = %”R3 is the particle volume and J; (g R) denotes

the spherical Bessel function of first order. Under these as-
sumptions, Sy and Sy, differ only by the prefactors, i.e. the
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magnitude of the magnetic anisotropy field H, and the jump
AM of the magnitude of the magnetization at the particle-
matrix interface. In fact, it is the ratio of H,/AM which
determines the angular anisotropy and the asymptotic power-
law dependence of dX,,/d<2 as well as the characteristic de-
cay length of spin-misalignment fluctuations (see figure 36
below) [53].

The dX,/dQ2 in figure 13 exhibit a strongly field-
dependent angular anisotropy. At the largest fields and mo-
mentum transfers (figures 13(c) and (d)), the pattern exhibits
maxima roughly along the diagonals of the detector-the so-
called ‘clover-leaf’ anisotropy-previously observed in the Fe-
based two-phase alloy NANOPERM (compare, e.g. figure 3
in [46]). We note that such an anisotropy type cannot be re-
produced by the d X, /d<2 for the single-phase case (AM =0).
Here, at large g and H; (figures 13(g) and (%)), one observes
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an elongation of the spin-misalignment scattering along the
field direction (cos® O-type). The ‘flying-saucer-type’ sharp
spike in dX,,/d2 (figures 13(a) and (e)) is due to the mag-
netostatic interaction and was first predicted by Weissmiiller
et al [199]. The transition from magnetostatic (H,/AM < 1)
to anisotropy-field dominated scattering (H,/AM > 1) is de-
picted in figure 14.

The asymptotic power-law exponent n of the fotal mea-
sured SANS cross-section, dX/d2 o< ¢7", is frequently dis-
cussed in the literature. For particles with sharp interfaces,
both h%(q) and Mf(q) vary asymptotically as ¢ ~* [152], as
does the function He;f (compare equation (39)). Taking into
account that then Ry o ¢~* and Ry, o g2, it is readily veri-
fied that the anisotropy-field contribution to d X, /dS2 varies as
SuRy o< q~8, whereas Sy Ry o< ¢~°. Therefore, depending
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(ko L Hy). The fits of the above power law to the simulated
azimuthally-averaged data dX,,/d2 = Sy Ry + Sy Ry were
restricted to the interval 1.0nm™! < ¢ < 2.0nm~'. Form factors
for h*(gR) and M. 2 (g R) and materials parameters are the same as in
figure 13. The line is a guide to the eye. Reprinted with permission
from [53]. Copyright 2013 by the American Physical Society.

on the relative magnitude of both contributions to d3,,/d<2,
one observes different asymptotic power-law exponents of
dX;,/d2 and, hence, of dX/d€2. This is shown in figure 15,
where n in dX),/dQ2 = K/q" is plotted (at uoH; = 1.07T)
as a function of H,/AM. We note that other models for the
anisotropy-field microstructure may result in different expo-
nents; in particular, the 42 (g) that are related to the long-range
stress fields of microstructural defects (dislocations) will give
rise to asymptotic power laws that are different from the Porod
exponent [200, 201].

For the case of a soft magnetic two-phase nanocom-
posite, figure 16 provides a qualitative comparison between
experiment, the present analytical theory, and numerical mi-
cromagnetic simulations for the field dependence of d X, /d<2
[54]. The figure demonstrates that the experimental anisotropy
(6-dependence) of dX;;/d<2 (upper row in figure 16) can be
well reproduced by the theory (equation (95)). At the largest
field of 163 mT, one observes the so-called clover-leaf-shaped
angular anisotropy with maximain dX,, /d<2 roughly along the
diagonals of the detector. This feature is related to the mag-
netostatic term Sy Ry in dXj,/dS2 (compare equation (99)).
Reducing the field to 45 mT results in the emergence of a scat-
tering pattern that is more of a cos? 6-type, with maxima along
the horizontal field direction, as described by the term Sy Ry
in d¥;,/dQ2 (compare equation (98)). The observed transi-
tion in the experimental data is qualitatively reproduced by
the analytical micromagnetic theory (middle row) and by the
results of full-scale three-dimensional micromagnetic simu-
lations for dX;;/d2 (lower row). For further details on the
micromagnetic simulation methodology, we refer the reader
to [31, 49, 50].

The ratio of dX, /d2 along different directions in
momentum space can be easily obtained from equations (98)
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and (99). In particular,
S0 =0)

(106)
dEZy _ o
Eu (9 = 90°)

Equation (106), which is independent of ¢ and H;, also
holds for spin-flip scattering (compare equations (115)—(117)
below). Figure 17 depicts the field dependence of the
above ratio (£7.5° sector averages) for the case of spin-flip
scattering from nanocrystalline Co [67]. Note that the value
of r =2 is expected to be strictly valid only for § = 0° and for
6 =90°; sector averaging and the related additional scattering
contributions may result in r < 2.

In experimental situations, it is often advantageous to
analyze azimuthally-averaged data, instead of dX,,/dQ2 as
a function of two independent variables, e.g. ¢, and g.
In the following, we outline how azimuthally-averaged data
for the fotal unpolarized d¥/d2 (and spin-flip SANS) can
be analyzed in terms of the micromagnetic SANS theory.
For given values of the materials parameters A and M, the
numerical values of both response functions are known at each
value of ¢ and H;. Equation (103) is linear in both Ry and Ry,
with a priori unknown functions dX../d<2, Sy, and Sy;. By
plotting at a particular ¢ = ¢* the values of dX /d2 measured
at several H; versus Ry(q*, H;, A) and Ry (¢*, H;, A), one
can obtain the values of dX.s/dS2, Sy, and Sy at ¢ = g* by
(weighted) least-squares plane fits. In this way, one obtains the
theoretical dX /dQ2 = d¥es/d2 + Sy Ry + Sy Ry at discrete
g and H;. This procedure is illustrated in figure 18 for the
case of a two-phase Fe-based nanocomposite [54]. Treating
the exchange-stiffness constant in the expression for Hegr as an
adjustable parameter, allows one to obtain information on this
quantity. Note that in order to obtain a best-fit value for A from
experimental field-dependent SANS data, it is not necessary
that the data is available in absolute units.

We would also like to particularly emphasize that the
micromagnetic fitting routine does not represent a ‘continuous’
fit in the traditional sense, rather we compute the theoretical
cross-section at discrete ¢ and at several H;; for comparison to
experiment, these simulated data points may then be connected
by straight lines (compare e.g. solid lines in figures 19, 22 and
23(a)).

The azimuthally-averaged field-dependent SANS cross-
sections of two soft magnetic nanocomposites from the
NANOPERM family of alloys along with the fits to the mi-
cromagnetic theory (equation (103)) are displayed in fig-
ures 19(a) and (b). It is seen that for both samples the entire
(g, H;)-dependence of dX/d2 can be excellently described
by the micromagnetic prediction. As expected, both residual
SANS cross-sections dX,.s/dS2 (o) are smaller than the re-
spective total dX /d€2, supporting the notion of dominant spin-
misalignment scattering in these type of materials. From the
fit of the entire (¢, H;) data set to equation (103) one obtains
values for the volume-averaged exchange-stiffness constants
(compare insets in figures 19(a) and (b)). We obtain A =3.1 &+
0.1 pJm~! for the Co-free alloy and A =4.7 4+ 0.9 pJ m~" for
the zero-magnetostriction NANOPERM sample.

Since jumps in A are not taken into account in the mi-
cromagnetic SANS theory (equation (103)), the determined A
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Figure 16. Qualitative comparison between experiment, analytical theory, and numerical micromagnetic simulations. Upper row:
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blue colour to ‘low’ values of dX,,/d2. Reprinted with permission from [54]. Copyright 2013 by the American Physical Society.
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values represent mean values, averaged both over crystalline
nanoparticle and amorphous matrix regions within the sam-
ple. The thickness § of the intergranular amorphous layer be-
tween the bce iron nanoparticles can be roughly estimated by
§=D(x. 3_ 1) [203], where D is the average particle size and
x¢ denotes the crystalline volume fraction. For FeggZr;B;Cu
with D =12nm and x¢c =40% we obtain § = 4 nm, whereas
8 = 2nm for (Fegg5C00.015)90Zr7B3 with D =15nm and
xc =65% [54]. Since one may expect that the effective ex-
change stiffness is governed by the weakest link in the bce-
amorphous-bec coupling chain [204,205], the above deter-
mined experimental values for A reflect qualitatively the trend
in § (and hence in x¢) between the two samples.

In addition to the exchange-stiffness constant, analysis
of field-dependent SANS data in terms of equation (103)
provides the magnitude squares of the Fourier coefficients of
the magnetic anisotropy field Sy |h(g)|*> and of the lon-
gitudinal magnetization Sy, o< |M.(g)|> < (AM)?. The ob-
tained results for these functions are shown in figure 20. It is
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RII

Figure 18. Illustration of the neutron-data analysis procedure
according to equation (103). The sample under study is a soft
magnetic two-phase nanocomposite (Feg 935C0¢015)90Zr7B3. The
total (nuclear and magnetic) unpolarized dX /dS2 (e) at a fixed

g* = 0.114nm™"! is plotted versus the response functions Ry and
Ry evaluated at A = 4.7 pJm~! and experimental field values (in
mT) of 1270, 312, 103, 61, 42, 33. The plane represents a fit to
equation (103). The intercept of the plane with the d¥ /d2-axis
provides the residual SANS cross-section dX,.;/d<2, while Sy and
Sy are obtained from the slopes of the plane (slopes of the thick
black and red lines). Reprinted with permission from [54].
Copyright 2013 by the American Physical Society.

immediately seen in figure 20 that over most of the displayed
g-range |M.|? is orders of magnitude larger than |4|?, suggest-
ing that jumps AM in the magnetization at internal interfaces
is the dominating source of spin disorder in these alloys.

Numerical integration of Sy (¢) and Sy, (g) over the whole
g-space, i.e.

1

- (107)
2723,

o0
/ Su.mq*dq,
0

yields, respectively, the mean-square anisotropy field (|H,|*)
and the mean-square longitudinal magnetization fluctuation
(|M.|?). These quantities are, respectively, defined as

I
(1, ") = V/v H,r)|* dvV (108)

and

(IM%) = 1/ M- (r)]* dV. (109)
Vv

Equations (107) follow from equations (108) and (109) by
using Parseval’s theorem of Fourier theory and the definitions
of Sy and Sy (equations (96) and (97)). However, since
experimental data for Sy and S), are only available within
a finite range of momentum transfers (between g, and gmax)
and since both integrands Sy ¢* and Sy;¢* do not show signs
of convergence, one can only obtain rough lower bounds
for these quantities: for the (Feg9g5C00.015)90Zr7B3 sample
(for which dX/d€2 is available in absolute units), we obtain
wo(H,*)/2 = 10mT and wo(|M,|*)!/> = 50mT. This
finding qualitatively supports the notion of dominant spin-
misalignment scattering due to magnetostatic fluctuations.
Note also that in a SANS experiment only the components of
the momentum-transfer vector q perpendicular to the incident-
beam direction (k) are effectively probed, which may also
limit the values of the integrals in equations (107).
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Figure 19. Azimuthally-averaged d¥/dS2 of (a) FegyZr;B;Cu and
(b) (Feg.985C00.015)90Z17B3 at selected applied magnetic fields
(log-log scale). Field values (in mT) from bottom to top: (a) 1994,
321, 163, 85, 45; (b) 1270, 312, 103, 61, 33. Solid lines in (a) and
(b): fit to the micromagnetic theory (equation (103)); the solid lines
connect the computed d¥ /dS2 at each value of g and H;. (o)
Residual scattering cross-sections dX,.s/d€2. The insets depict the
respective (reduced) weighted mean-square deviation between
experiment and fit, x2/v, as a function of the exchange-stiffness
constant A. Reprinted with permission from [54]. Copyright 2013
by the American Physical Society.

Knowledge of Sy |1\7[Z|2 and of the residual SANS
cross-section d X, /d2 (Equation (94)) allows one to obtain
the nuclear scattering |N|*> (see figure 20), without using
sector-averaging procedures (in unpolarized scattering) or
polarization analysis [48].

4.22. Ko || Hy. Forky || Hy (compare figure 6(b)), the un-
polarized elastic SANS cross-section dX /d€2 (equation (78))
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Figure 20. Best-fit results for the scattering function of the
anisotropy field Sy = (87%/ V)b% |h(g)|* and for the scattering
function of the longitudinal magnetization Sy = (87°/ V)b,

M. (q) |2 of (a) FegoZr7B3Cu and (b) (Feg.9s5C00.015)90Z17B3
(log-log scale). dZy,c/d2 = (87%/ V)|N|* denotes the nuclear
SANS, which was, respectively, obtained by subtracting the | M, |?
scattering from the residual SANS cross-section d X, /d2 (compare
equation (94)). Reprinted with permission from [54]. Copyright
2013 by the American Physical Society.

can be written as [53]

dx dx dx
10 @ = 5 @+t @, (110)
where (compare equations (86)—(91))
dx 873 ~ ~
1o @ = (NI +b51M.P) (111)
and
dx 83 ~ ] ~
d_sg/[(q) = b3, (IM|*sin® 6 + | M, |* cos® 6
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—(MXM; + M;My) sin cos0)
= Su(q) Ru(q, 0, H;). (112)

Note that in the longitudinal SANS geometry the response
function

2
Ru(q.0.H) = Ru(q. H) = = (113)
is isotropic (i.e. f-independent) [53]; Sy is given by
equation (96). Equations (112)—(113) follow by inserting
equations (58)—(60). Furthermore, we note that the spin-
misalignment scattering d X, /d<2 does not depend on M, fluc-
tuations and equals the expression for the single-phase material
case (compare equation (33) in [199]). In other words, the two-
phase nature of the underlying microstructure is (for Kq || Hyp)
only contained in dX/d€2, and not in dX,,/d€2. For statis-
tically isotropic microstructures, the total dX /dS2 is isotropic.
This is illustrated in figure 21 for the case of a NdFeB-based
nanocomposite. The corresponding azimuthally-averaged
dX/d2 shown in figure 22 can be excellently described by
the micromagnetic theory (solid lines), which provides an av-
erage exchange-stiffness constant of A = 12.5pJm~! [56].

4.3. POLARIS case

4.3.1. kg 1 Hy. As in the previous sections,
one may subtract the SANS signal at saturation, d%*~/
dQ = (873 / V)b% | M, |* sin® 6 cos® 0, from the d=+~/dQ at
lower fields in order to obtain the spin-flip scattering that
is related to spin-misalignment (compare equation (72)).
Inserting equations (55)—(57) into the remaining

dxi- 83 ~ -
dg (@ = 719%1 (IM.?> + M, > cos* 6
—(MyM? + M:M,)sin6 cos’ 0)  (114)
results in
dEIT/I_ +— +—
e (@) = Su(qQ) Ry (q.0, H) + Sy (q) Ry, (¢, 9, Hy),

(115)

where Sy (q) = (87°/V)bj,h*(q) and Sy (q) = (873 /V)by,
M?(q) remain unchanged, but

2 49
Ry (.0, Hy="2 (14 —22 (116)
2 (1+ psin®0)
and
R (g0, Hy) = p?sin’ 0 cos® 0 2psin29cos49. 117

(1+psin?p)’ 1+ psin’6

The azimuthal averages of the response functions (1/(2r) fozn
(...)dO) read

242p -2 —p)J/I+p
4

Ry (q. Hi) = (118)
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Figure 21. Experimental (unpolarized) SANS intensity distribution of a NdFeB-based nanocomposite at selected applied magnetic fields
(see insets) (ko || Hy) (logarithmic colour scale). Pixels in the corners of the detector correspond to ¢ =0.30nm™".
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Figure 22. Azimuthally-averaged (unpolarized) d¥/d€2 of a
NdFeB-based nanocomposite as a function of momentum transfer ¢
(ko || Hp) (compare figure 21) (log—log scale). Values of Hy (see
inset) increase from top to bottom. The solid lines represent a fit of
the experimental data to the micromagnetic theory

(equations (110)—(113)); we remind that the fitting procedure yields
the theoretical cross-section at discrete g and Hj (rather than as a
continuous function). (e) Nuclear and magnetic residual SANS
cross-section d ¥, /d€2. Reproduced with permission from [56].
Copyright 2013, American Institute of Physics.

and
Ry (q. Hy)
8(~/1+p—1)—p(16—12«/1+p+p[9—4«/1+p])

8 p2

(119)

Figure 23 depicts the results of a micromagnetic neutron-
data analysis of the field-dependent spin-flip cross-section of a
nanocrystalline Co sample [67]. Global fitting of thed X~ /d2
data (solid lines in figure 23(a)) yields a room-temperature
value of A = (2.8 £0.1) x 107" Jm™! for the volume-
averaged exchange-stiffness constant (compare inset in fig-
ure 23(b)). This value agrees with literature data on single crys-
tals obtained by means of inelastic neutron scattering [206].
The results for the anisotropy-field scattering function Sy and
the longitudinal magnetization Sy, (figure 23(b)) demonstrate
that, as expected for a single-phase magnet, fluctuations in the
magnetic anisotropy field represent the dominating source of
spin disorder and dominate in strength over AM fluctuations.
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Another nice ‘feature’ of the POLARIS technique is that
both magnetization Fourier coefficients |M,|> and |My|2 can
be obtained by means of appropriate averaging along certain
directions in momentum space [48,91]. In particular, sector
averages of the two-dimensional spin-flip cross-section along
the vertical (8 = 90°) argi the horizontal (¢ = 0°) direc-
tion yield, respectively, |M,|> and |M,|* + |My|2 along the
respective directions (compare equation (72)). In figure 24,
we show (for an FeCr-based nanocomposite) both correlation
functions at different applied magnetic fields [48]. Roughly,
the |M,|* + |M,|* data appear to be twice as large as |M,|*.
The longitudinal Fourier component |M,|> may be obtained
from a measurement of dX*~/dQ at saturation (compare
figure 7).

dx*t

4.32. ko || Hy. Since =55 for the longitudinal scattering
geometry (equation (74)) is identical to the corresponding spin-
misalignment SANS cross-section d¥;,/d<2 for unpolarized
neutrons (compare equations (78) and (86)), it follows that
% for kg || Hy is described by equations (112) and (113).

5. Real-space analysis of magnetic SANS data:
autocorrelation function of the spin-misalignment

As discussed in the preceding sections, by means of the
continuum theory of micromagnetics it becomes possible to
calculate the spin-misalignment SANS cross-section of bulk
ferromagnets as a function of momentum transfer, applied
magnetic field, as well as of magnetic and microstructural
parameters (e.g. particle size). In addition to analyzing
field-dependent SANS data directly in reciprocal space, one
may also Fourier transform the data and carry out a study in
real space. This approach provides not only complementary
information about characteristic magnetic length scales,
but it is essentially model independent. In particular, the
real-space approach does not rely on the assumption of small
misalignment of magnetic moments relative to the applied-
field direction. It may therefore be applied to hard magnetic
materials, which cannot be brought into the approach-to-
saturation regime with available laboratory magnetic fields.
In section 5.1, we define the autocorrelation of the spin-
misalignment, and in section 5.2 we discuss the impact of
various models for the anisotropy-field microstructure on the
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Figure 23. (a) Azimuthally-averaged spin-flip SANS cross-section
dX*~/dSQ2 of nanocrystalline Co (average grain size: 9.5 + 3.0 nm)
as a function of momentum transfer ¢ (ko L Hy) at selected applied
magnetic fields (log—log scale); field values (in mT) from bottom to
top: 1239, 181, 53, 24. The solid lines represent a fit of the data to
the micromagnetic theory (equation (115)). (o) Residual scattering
cross-section d X, /dQ = (7w3/ V)b% | M (¢)]?. Data taken

from [67]. (b) Scattering functions of the anisotropy field

Sy = 8n3/ V)b |h iq)lz and of the longitudinal magnetization

Sy = 873/ V)b%|M,(q)|* (log-log scale). The inset depicts the
(reduced) weighted mean-square deviation between experiment and
fit, x2/v, as a function of the exchange-stiffness constant A.

magnetization profile and on the shape of the correlations.
Section 5.3 discusses (for the example of a NdFeB-based
nanocomposite) the field dependence of experimental spin-
misalignment correlations, and it is shown that the ratio of
anisotropy-field strength H, to magnetization jump AM at
internal interfaces determines the size of gradients in the spin-
microstructure.
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Figure 24. Field dependence of (£7.5°) sector averages of the
spin-flip cross-section of an FeCr-based nanocomposite (ko L Hp)
(log—log-scale). The curves labelled 6 = 90° are related to | M. |2,
while the § = 0° data are proportional to |M,|* + |M,|* (compare
equation (72)). Reproduced from [48] with permission from
Springer Science & Business Media.

5.1. Definition

The autocorrelation function C(r) of the spin-misalignment is
defined by close analogy to the well-known Patterson function
in x-ray crystallography [207] as [58, 63, 66]

cory =+ / WD g

v , (120)
where V is the sample volume, and sM(r) = M(r) — (M)
denotes the fluctuation of the local magnetization M(r) about
its position-independent average (M), which in the high-field
limit is directed along the externally applied magnetic field Hy.

For an isotropic distribution of the magnetization Fourier
coefficient, it was shown in [58] that C(r) can be related
to the experimental spin-misalignment SANS cross-section

dX;,/dS2 according to
oo
w dEM .
sin(gr) q dq,
0

22 b2 p2r

C(r) = (121)

de

where w = 3/2 at small applied magnetic field (demagnetized
state), and w 4/3 for the nearly saturated, texture-free
ferromagnet; b,, and p, denote, respectively, the atomic
magnetic scattering length and the atomic density. From
experimental correlation functions, one may then estimate the
correlation length [~ of the spin-misalignment, which is a
measure for the size of inhomogeneously magnetized regions
around lattice imperfections. We have identified /- with the
r-value for which the extrapolated value of C(r) to the origin,
C(0), has decayed to C(0) exp(—1), i.e.

lc =r for which C(r) = C(0)exp(—1).

(122)

5.2. Magnetization profiles and correlation functions

Based on linearized micromagnetic theory, we have computed
in [66] the autocorrelation function of the spin-misalignment
for various models for the magnetic anisotropy field. In
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Figure 25. Models for the spatial structure of the magnetic anisotropy field H,(r) of a spherical particle (core-shell), which is embedded in
an anisotropy field free, infinitely extended magnetic matrix. The following functional dependencies for H,,(r) are assumed:

H,(r) = H,, = constant for r < R; (uniform sphere); H,(r) = H,, forr < R and H,(r) = H, for R; < r < R, (uniform core-shell
partlcle) H,(r) = H, exp(—r/R;) (exponential decay); H,, (r) = H,i1 (R /r) (power-law decay); H,(r) = H,(r/R;) (linear increase).
Depending on whether the anisotropy field of the shell, H,,, is larger or smaller than H,,, the interface is denoted as a hard or soft interface.
For illustration purposes, we have chosen Ry = 10nm, R, = 13nm, uoH,; = 0.1T, and noH,, = 0.2T (0.02 T). Reprinted with
permission from [66]. Copyright 2010 by the American Physical Society.

particular, we have considered a single isolated spherical the particular system under study. Moreover, the shapes of the
nanoparticle that is embedded in an infinitely extended mag- " (r) and C(r) curves are very similar and the resulting val-
netic matrix. The particle is characterized by its magnetic ues for the correlation length /¢ of the spin-misalignment are
anisotropy field H) (r), whereas the matrix is assumed to be  almost identical (figure 26(c)). Without going into too much
anisotropy-field free. For different spatial profiles of H,, (uni-  detail, figure 26 should simply serve as a ‘reminder’ that for
form sphere, uniform core-shell, linear increase, exponen- the discussion of the following results (figures 27-30 and fig-
tial and power-law decay), the magnetization response around  yre 37) the magnetodipolar interaction is of minor importance.
the defect and the corresponding correlation functions were  The influence of the magnetostatic interaction on the spin-
calculated.  Figure 25 displays the considered models for  jsalignment correlations of inhomogeneous magnets such as
H)(r). The theory assumes uniform values for A and My,  (yo-phase nanocomposites is discussed in figure 36 below.

i'e_' fu mps in SAXSN ;re got takendiznto gzzcoun;, a;d the spin- The applied-field dependence of the reduced transversal
misalignment reduces to dy /dS2 = Sy Ry (compare magnetization M, (r) (for the various anisotropy-field mod-

equation (103)); the case dy/dS2 = S Ry + S Ry is con- els depicted in ﬁgure 25) are shown in figure 27. Increasing

sidered in section 5.3 below. Analytical expressions for the
Fourier coefficients h of H., can be found in [66]; magnetic the applied field suppresses transversal spin fluctuations. The
materials parameters assu nf ed for Ni were A — 8 2 %Tm" M,/ M, curves reveal that the perturbation which is caused by
and M —p500 KA m-! = %P the anisotropy-field of the particle is largest at the centre of the

s . . .

We would like to particularly emphasize that in the model iiomm?;mg defec\;’];,?d t}{leg MPf / ML decggs smoc;lthly at fihei
calculations on homogeneous single-phase low-anisotropy fer- arger distances. tle the at{f‘ or the uniform-sphere mode
(figure 27(a)) and the exponential decay case (figure 27(c)) are

romagnets reported in [66], the magnetostatic field H; due to o —
V - M # 0 is neglected. Specifically, thls means that (besides qualitatively similar, the shapes of the other two M, / M, curves

the M, contribution) the term M, qz /q* = M,sin0 in the ¢ significantly different: the core-shell particle (figure 27(b))
exhibits a peak in M,/ M; due to the presence of the hard shell

one may expect, this simplification is justified in the high-field (8t 10nm < r < 13nm), and for the power-law decay case
regime when the magnetization is nearly aligned along the ap- ~ (figure 27(d)), we find an almost linear decrease of M,/ M; at
plied magnetic field. Figure 26 shows the effect of H, on the ~Small 7 and not loo large fields. Note that the M), /M for a
magnetization profiles, correlation functions, and on the spin- soft interface (i.e. Hp1/Hp > 1) are qualitatively similar to
misalignment length. Since the inclusion of the magnetostatic the uniform-sphere case.

field suppresses M(q) (compare equation (43)), both M,/ M The results in figure 27 also demonstrate the special role of
and C at a given field are larger without Hy (solid lines in  the exchange length [y (H;) = +/2A/(uoM; H;), which can be
figures 26(a) and (b)) than with H; (dashed lines). The differ- taken as the spatial resolution limit of the magnetization [131].
ence between the two cases becomes progressively smaller as ~ Variations in the magnetic anisotropy field on a characteristic
the applied field is increased, thus, corroborating that dipole- microstructural length scale £ can be followed by the magne-
field effects are indeed negligible at the larger fields and for tization only when Iy < £. At the largest fields, Iy is of the

denominator of equation (43) is not taken into account. As

29
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Figure 26. Effect of the magnetostatic interaction on (a) the
magnetization profiles M, /M, and (b) the correlation functions
C(r). In the calculation, we have assumed uniform values for A and
M, and the particle’s anisotropy field increases linearly with
position, i.e. H,(r) = H,(r/R;) with poH, =0.1T and

R, = 10 nm (compare figure 25). Values of the applied magnetic
field are indicated in the insets and increase from top to bottom,
respectively. Solid lines: no magnetostatic field. Dashed lines: with
magnetostatic field. (c¢) Field dependence of the spin-misalignment
length /¢ (log—log scale) obtained by ignoring H, (solid line) and by
taking into account H, (e). Reprinted with permission from [66].
Copyright 2010 by the American Physical Society.

order of a few nm, e.g. [y (5 T) = 2.6 nm for Ni, with the con-
sequence that sharp variations in M, / M, on a scale of the order
of [ can be resolved. This can be clearly seen, for instance in
figure 27(b), where the perturbing effect of the magnetically
hard shell is only seen at the largest field values, and it gives
rise to a peak feature which is washed out at the lower fields.
In agreement with the M,/M; curves, the correspond-
ing correlation functions shown in figure 28 are strongly
field dependent and reveal the long-range nature of the spin-
misalignment fluctuations. Despite the existing differences in
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the underlying functional dependencies of H,(r) and the as-
sociated M, /M, data (compare figure 27), the shapes of the
different C(r) in figure 28 appear to be closely similar: for
the anisotropy-field microstructures investigated in this study,
C(r) at a given field takes on the maximum value at r = O with
(dC/dr),—0 = 0 and then decays towards C = 0 for r — oo.
Clearly, the correlations do neither decay exponentially nor
according to the Ornstein—Zernike formula.

Figure 29 compares the shapes of the C (r) for the uniform-
sphere and the uniform core-shell model with hard interfaces;
the inset depicts the corresponding derivatives dii’).

The observation in figures 28 and 29 that the slope
of C(r) at the origin vanishes is consistent with the lack
of a sharp boundary in the magnetic microstructure and
with the absence of an asymptotic g~* Porod behaviour of
dXy/dQ = Sy Ry, which may be as steep as ¢ 8 (compare
figure 15). The magnetic SANS that is of interest here is due to
infinitely extended smoothly varying magnetization profiles.
Correspondingly, the linear term in the expansion of C in
powers of r is absent [152], i.e.

C(r)=C(0) —ar®+.. (123)
(compare figure 34). By comparison, the correlation function
of a single uniform sphere with radius R reads C(r) =
1—-3r/(4R)+r3/(16R3) forr < 2R, and C = 0 forr > 2R.

The value of the correlation function at the origin,
C(r = 0), is equal to the reduced mean-square magnetization
fluctuation (compare equation (120)) and describes the
approach-to-saturation behaviour, according to [58]

M(H;) = Mg\/1 —C(0, H;). (124)

Figure 30 displays the field dependence of C(0) for the various
anisotropy-field models shown in figure 25. Closed-form
expressions for C(0) can be found in [199] and [66].

For the case of a spherical particle (crystallite) with
a uniform magnetic anisotropy field and neglecting the
magnetostatic field due to nonzero volume divergences of the
magnetization, the following closed-form expression for C ()
can be derived [68],

o0
KR* [ Jo(qr) J3(qR)
H? J (1+1% ¢*)?

C(r)= dg, (125)

where K = 8H§V‘l, and Jy and J; denote, respectively,
the spherical Bessel functions of zeroth and first order.
The parameter R represents the corresponding ‘anisotropy-
field’ radius, and it is emphasized that R is not necessarily
identical with the average crystallite size. Figure 31 shows
the field-dependent (experimental) correlation functions of
nanocrystalline Co and Ni metal together with global fits to
equation (125) (solid lines).

From the fit, one obtains the following values for the
exchange-stiffness constants, A =354 1pJ m~' for nanocrys-
talline Co and A=9.2 + 0.1 pJm~! for nanocrystalline Ni.
These values are about 10 — 20 % larger than the values that
were previously obtained by analyzing the field-dependent
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Figure 27. Reduced transversal magnetization component M, /M, as a function of the distance r from the centre of the inclusion (at » = 0).
Values of the applied magnetic field are indicated in the insets and increase from top to bottom, respectively. (a) Uniform-sphere model

(Ry = 10nm, poH,; = 0.1T). (b) Uniform core-shell model with hard interfaces (R; = 10nm, R, = 13nm, H,;/Hy, = 0.1). ¢ =0°
denotes the angle between the anisotropy field of the core and the shell. (c) Exponential decay. (d) Power-law decay. The corresponding
correlation functions C(r) are displayed in figure 28. Reprinted with permission from [66]. Copyright 2010 by the American Physical
Society.
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Figure 28. Results for the field dependence of the correlation function C(r) of the spin-misalignment. Values of the applied magnetic field
are indicated in the insets and increase from top to bottom, respectively. (a) Uniform-sphere model (R, = 10nm, uoH,; = 0.1T). (b)
Uniform core-shell model with hard interfaces (R; = 10nm, R, = 13nm, H,,;/H,; = 0.1). ¢ = 0° denotes the angle between the
anisotropy field of the core and the shell. (c) Exponential decay. (d) Power-law decay. Reprinted with permission from [66]. Copyright
2010 by the American Physical Society.
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Figure 29. Correlation functions C (r) of the spin-misalignment for
the uniform-sphere model (R; = 10nm, o H,; = 0.1T) and for the
uniform core-shell model with hard interfaces (R; = 10 nm,

R, =13nm, H,,/H,, = 0.1). Inset: respective derivatives dC/dr.
¥ = 0° denotes the angle between the anisotropy field of the core
and the shell. Reprinted with permission from [66]. Copyright 2010
by the American Physical Society.

SANS data in reciprocal space in terms of micromagnetic the-
ory [26]. The values for the anisotropy-field radius, R
14.3 £ 0.2nm (Co) and R = 13.6 £ 0.1 nm (Ni), are con-
sistent with previous results and conclusions [63, 68].

5.3. Field dependence of spin-misalignment correlations

A quantity of particular interest in the analysis of experimental
spin-misalignment scattering data is the correlation length
lc of the spin-misalignment, which specifies the range over
which perturbations in the spin structure (around a lattice
defect) are transmitted by the exchange interaction into the
surrounding crystal lattice (compare figure 1). Besides its
obvious dependence on the applied magnetic field, /c may
depend on the magnetic interaction parameters (A, K, My, A),
and on the nature and spatial extension (size) of the defect. For
a polycrystalline bulk ferromagnet containing a large amount
of different imperfections, the experimental value(s) for /¢
represents a weighted average over the different defects. There
exists a close relationship between /- and the micromagnetic
exchange length [/ (see below).

In the following, we briefly discuss the prototypical SANS
data analysis for the example of a two-phase NdFeB-based
nanocomposite, which consists of hard magnetic Nd,Fe4B
particles (size: ~22nm) and Fe3B crystallites (size: ~29 nm)
[55,56]. It is important to mention that for this particular
alloy the difference AM in the saturation magnetizations of
the Nd,Fe 4B phase and the Fe;B crystallites is rather small,
woAM = 0.01T [208]. As a_consequence, the related
longitudinal magnetic SANS |Mz~|2 o (AM)? is negligible
as compared to the nuclear SANS |N|2.

Figure 32(a) displays the total unpolarized d¥/d2 of
the NdFeB nanocomposite. A strong field dependence
between the largest applied field of 10T and the coercive
field of upH. = —0.55T is observable. Since nuclear
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Figure 30. Applied-field dependence of the reduced mean-square
magnetization fluctuation C(r = 0, H;) = M *(|8M|?) for different
spatial profiles of the magnetic anisotropy field (see inset) (log—log
scale). The observation that C (0, H;) for the hard core-shell model
takes on values > 1 at small fields suggests that here the
small-misalignment approximation is not valid anymore; ¢ = 0°
denotes the angle between the anisotropy field of the core and the
shell. Reprinted with permission from [66]. Copyright 2010 by the
American Physical Society.

SANS is field independent and since SANS due to |]\~4Jz|2
fluctuations is negligible (for this particular alloy), it is
evident that the dominating contribution to dX /d€2 is due to
transversal spin-misalignment. In order to (approximately)
obtain the corresponding spin-misalignment SANS dX,,/d2
(see figure 32(b)), the dX/d2 at 10T was subtracted from
the dX/d2 at lower fields (compare equation (93)). The
resulting dX,,/d€2 is of comparable magnitude as d X /d€2, but
possesses a strikingly different g-dependency. In particular,
the shoulder in dX/dQ2 at about ¢ = 0.2nm~! is absent in
dX,/dQ2. Possible origins for the shoulder in d¥/d2 are
interparticle interferences and/or diffusion zones around the
particles, as discussed in [42]. The different shapes of dX /d2
and dX,,/dS2 are also reflected in different asymptotic power-
law exponents n (see figure 33).

While the spin-misalignment SANS is characterized by
power-law exponents which range between n ~ 5-6 at
all fields investigated, the total unpolarized SANS reveals
significantly lower values for n, which approach the Porod
value of n = 4 at 10T. This finding in conjunction with
the observation that the two-dimensional d¥/d2 at 10T is
approximately isotropic (data not shown) provides support for
the conclusion that the d¥ /dS2 data at 10 T (and large ¢) are
essentially due to nuclear particle scattering.

Fourier transformation of the dX,,/d<2 data according to
equation (121) yields the correlation function C(r) of the spin-
misalignment (see figure 34). The field-dependent correlations
in figure 34 do not decay exponentially, in agreement with
the absence of an n = 4 power-law exponent in dX,,/d<2.
Furthermore, the C () seem to approach the origin r = 0 with
zero slope (dotted line in figure 34), which is in agreement with
the notion of magnetic SANS from continuous magnetization
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M, = 1434kA m~! for Co and M, = 522 kA m~" for Ni were assumed. Reproduced with permission of the International Union of

Crystallography from [68].

10°3

4

104

p—

=)
(8
| -

PRTTIT R RTTTT

[\S}

—_
o

dz/dQ (arb. units)

0l _

g (nm)

105? °°Ina
fg E DAAAA, Wyyy
g 1031§ 9009,
£ 10
10"
§ ]
NE 10015
S 107
R NdFe B/FeB
0.03 0.1 1 1.6

g (nm™)

Figure 32. (a) Azimuthally-averaged total SANS cross-section dX /d<2 of Nd,Fe4B/Fe;B as a function of momentum transfer ¢ and
applied magnetic field H (T = 300K) (ko L Hp) (log—log scale). Solid circles (e): applied-field values (in Tesla) decrease from bottom to
top: 10, 6, 1, —0.25, —0.55; (J): —1T; (A): —3 T. Inset: room-temperature magnetization curve of Nd,Fe4B/Fe;B. (b) Applied-field
dependence of the spin-misalignment SANS cross-section dX,,/d<2 of nanocrystalline Nd,Fe,B/Fe;B. Solid circles (e): field values (in
Tesla) decrease from bottom to top: 6, 1, —0.25, —0.55; (1J): —1T; (A): —3T. The dX,,/d<2 data displayed in (b) were obtained by
subtracting the 10 T data shown in (a) from the d% /dS2 at lower fields. Dashed line: d%,,/dQ2 o< ¢~>°. Reproduced with permission

from [55]. Copyright 2013, American Institute of Physics.

profiles and the absence of a sharp interface in the magnetic
microstructure [152].

By means of the extrapolated value of the correlation
function at the origin, C(0), one can determine the correlation
length /¢ of the spin-misalignment. We used the definition
C(r = l¢) = C(0)exp(—1) (equation (122)), which yields
the exact correlation length for correlations with exponential
decay. The values of /¢ obtained in this way are plotted in
figure 35 as a function of the applied magnetic field, which is
usually the control parameter in magnetic SANS experiments.
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In previous studies [26, 53, 55, 63, 66], we have found that
lc (Hp) data can be well described by an equation of the type

lc(Hy) =L+ 24
T oM, (Ho + H*)’

where the field-independent parameter L is of the order of the
defect size and the second field-dependent term on the right
hand side represents a modified exchange length /y of the
field.

(126)
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Figure 33. Field dependence of the power-law exponent n which
was determined by a fit of, respectively, dX /d<2 (figure 32(a)) and
dX,,/d<2 (figure 32(b)) to C/q" (C = constant). In both cases, the
fit was restricted to the interval 0.6nm~' < ¢ < 0.7nm™". Solid
horizontal line: n = 4. Reproduced with permission from [55].
Copyright 2013, American Institute of Physics.
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Figure 34. Field dependence of the correlation function C(r) of the
spin-misalignment of nanocrystalline Nd,Fe,4B/Fe;B (log-linear
scale). The field values follow the course of a hysteresis loop,
starting from a large positive field and then reducing the field to
negative values (see insets). Dotted line (extrapolating the 6 T data
tor = 0): C(r) = 4.58 — 0.043 2. Reproduced with permission
from [55]. Copyright 2013, American Institute of Physics.

Equation (126) is a phenomenological prediction based
on micromagnetic theory, which embodies the convolution re-
lationship between the magnetic anisotropy-field microstruc-
ture H , (r) and micromagnetic response functions which decay
with Iy [62, 199]. The ‘correlation length’ £ of the magnetic
anisotropy field appears to be the average size over which
the direction and/or magnitude of H, changes. For a statis-
tically isotropic polycrystalline material, where each crystal-
lite is a single crystal with magnetocrystalline anisotropy only,
the parameter £ is sensibly related to the average crystallite
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Figure 35. Applied-field dependence of the correlation length /¢ of
the spin-misalignment of nanocrystalline Nd,Fe4B/Fe;B. Solid
line: fit of the data to equation (126), where £ = 10.9 nm and

noH* = +0.60T are treated as adjustable parameters, and the
quantities A = 12.5pJ m~! and uoM, = 1.6 T are held fixed. In
addition to /- (Hy) data obtained at the instrument Quokka (ANSTO,
Australia), results obtained at the SANS instruments KWS 1 (JCNS,
Germany) and D11 (ILL, France) are also shown. Dashed horizontal
line: average radius of the Nd,Fe 4B particles (R = 11 nm). Dotted
vertical line: coercive field woH. = —0.55 T. Reproduced with
permission from [55]. Copyright 2013, American Institute of
Physics.

size [53, 66]. The field H* (introduced in [55]) is expected to
model the influence of the magnetodipolar interaction and of
the magnetic anisotropy. For soft magnetic materials with low
crystalline anisotropy at large applied magnetic fields (when
the magnetostatic interaction may be negligible), one may ig-
nore the field H*, so that I = L + [y (see e.g. figure 36(b)
below). The latter equation has been found to excellently de-
scribe the field-dependent spin-misalignment correlations in
nanocrystalline Co and Ni [63]. By contrast, for (uniaxial)
hard magnets, the anisotropy field Hy = 2K, /M, which for
Nd,Fe 4B single crystal is about 8 T at 300K [209], is ex-
pected to cut down the size of spin inhomogeneities. Likewise,
jumps AM of the magnitude of the magnetization at internal
phase boundaries, which in Fe-based nanocomposites can be
as large as 1.5 T [46], give rise to magnetic torques that pro-
duce spin disorder in the surrounding magnetic phase; such
kind of perturbations also decrease the size of gradients in
the magnetization (see figure 36 below). It is interesting to
note that at Hy=0 and for H* = Hx =2K,,/(uoM;), equa-
tion (126) reduces to lc = L + /A/K,,.

For the NdFeB nanocomposite (with AM 0), we
expect that /¢ describes the spatial extent of magnetization
inhomogeneities, mainly within the soft magnetic Fe;B grains,
that are caused by the jump in the magnetic materials
parameters (exchange constant, direction and magnitude of
magnetic anisotropy) at the interface between the Nd,Fe 4B
particles and the surrounding Fe;B crystallites. As can be seen
in figure 35, /¢ approaches a constant value of about 12.5 nm at
the largest positive fields and increases with decreasing applied
field to take on a maximum value of about 18.5nm at the
experimental coercive field of uoH, = —0.55T. Further
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Figure 36. (@) Normalized autocorrelation function C(r) of the
spin-misalignment at o H; = 1.0 T and for different ratios of
H,/AM (decreasing from top to bottom, see inset) (ko L Hp).
Dashed horizontal line: C(r = I¢) = exp(—1). C(r) represents the
numerically-computed Fourier transform of dX,/dQ2 = Sy Ry+
Sy Ry. For Sy o< h*(gR) and Sy, Mz(qR) we used the form
factor of the sphere with a radius of R = 5nm (equations (104) and
(105)). The following materials parameters were used:
A=25x10""Tm™; poM, = 1.5T; uoAM = 0.25T. (b) Field
dependence of the spin-misalignment length /¢ for k, L Hy and for
different ratios of H,/AM (see inset) (log-linear scale). Solid line:
equation (126) with H* = 0. Dashed horizontal line:

lc = L = R = 5nm. Reprinted with permission from [53].
Copyright 2013 by the American Physical Society.

increase of Hy towards more negative values results again
in a decrease of /¢ towards ~ 12.5nm. From the fit of the
lc(Hp) data to equation (126) (solid line in figure 35), we
obtain £ = 10.9 nm (close to the experimental average grain
radius of the Nd,Fe 4B phase) and uoH* = +0.60 T, which is
close to the absolute value of the experimental coercive field.
At the remnant state, the penetration depth of the spin disorder
into the Fe;B phase amounts to ~5-6 nm.

The influence of internal magnetostatic stray fields in two-
phase nanocomposites on the range of the spin-misalignment
correlations has been investigated in [53]. We remind the
reader that for a bulk ferromagnet, where the main sources
of perturbations in the spin structure are related to spatially
inhomogeneous magnetic anisotropy fields and magnetostatic
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fields, the spin-misalignment SANS cross-section can be ex-
pressed as dX¥j,/d2 = Sy Ry + Sy Ry (equation (103)). Fig-
ure 36(a) depicts the numerically-computed autocorrelation
function of the spin-misalignment at a fixed applied magnetic
field of 1.0'T, but for different ratios of magnetic anisotropy
field strength H, to the magnitude AM of the jump of the
magnetization at internal particle-matrix interfaces; the field
dependence of /¢ for different ratios of H,/AM is plotted in
figure 36(b).

As can be seen, the ratio H,/AM decisively determines
the characteristic decay length Ic: increasing H,/AM
results in the emergence of more long-range magnetization
inhomogeneities, whereas A M dominated perturbations in the
spin structure decay on a smaller length scale. For H,,/AM >
1, the data can be well described by equation (126) with H* =
0 (solid line in figure 36(b)). Irrespective of the value of H,/
A M, itis observed that at large fields /¢ approaches the particle
radius, i.e. [c = £ = R = 5nm (dashed line in figure 36(b)).

When A M fluctuations can be ignored, e.g. in a homoge-
neous single-phase bulk ferromagnet, the spin-misalignment
SANS (in the approach-to-saturation regime) reduces to
dXy/dQ2 = SyRy. Figure 37 depicts the results for the
applied-field dependence of the spin-misalignment length /¢
(extracted from the C(r) shown in figure 28) for the vari-
ous spatial profiles of H,(r) shown in figure 25; we remind
the reader that the magnetostatic field is neglected in these
calculations and that the materials parameters are for Ni.

It is seen in figure 37(a) that irrespective of the detailed
spatial profile of H, of the particle, the relationlc = L+ with
L = R; = 10nm (solid line) provides an excellent descrip-
tion of the field-dependent correlations, except for the core-
shell model with hard interfaces (figure 37(b)), which exhibits
a more complicated behaviour /¢ (H;). It is also demonstrated
that exponentially decaying magnetization fluctuations, which
resultin /¢ = [y (dashed line in figure 37(a)), are not in accor-
dance withl- = L+ already at fields larger than afew 10 mT.

6. Summary, conclusions, and outlook on
future challenges

We have provided a detailed discussion of magnetic small-
angle neutron scattering (SANS) of bulk ferromagnets in terms
of the continuum theory of micromagnetics. For this class of
magnetic materials, microstructural imperfections (e.g. point
defects, dislocations, interfaces, pores) play a decisive role
for magnetic SANS: magnetostrictive forces due to the distor-
tion of the crystal lattice in the vicinity of a defect, magne-
tocrystalline anisotropy, as well as magnetostatic stray fields,
for instance due to variations of the materials parameters (ex-
change, anisotropy, magnetization) at internal interfaces, re-
sult in nonuniform magnetic structures, which give rise to a
large and strongly field-dependent contribution to the overall
magnetic SANS cross-section. In the approach-to-saturation
regime, where Brown’s equations of micromagnetics can be
linearized, analytical expressions for the transversal Fourier
coefficients M, (q) and M,(q) were derived. In combination
with models for the longltudlnal magnetization Fourier coef-
ficient M, (q) and the nuclear SANS N(q), this allows one to
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Figure 37. Results for the field dependence of the correlation length /¢ of the spin-misalignment for the various models of the magnetic
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Reprinted with permission from [66]. Copyright 2010 by the American Physical Society.

obtain closed-form expressions for the four spin-resolved (PO-
LARIS) SANS cross-sections and, consequently, also for the
half-polarized (SANSPOL) and unpolarized cross-sections.

For the most often employed scattering geometry, where
the applied magnetic field is perpendicular to the incoming neu-
tron beam, the results for the spin-misalignment SANS cross-
section dX,,/d€2 exhibit a variety of angular anisotropies that
are fundamentally different from the well-known sin’6 or
cos? f-type patterns. In particular, by explicitly taking into
account the wave-vector dependence of the longitudinal mag-
netization, novel terms appear in d X, /d€2, which give rise to
maxima roughly along the diagonals of the detector (‘clover-
leaf” anisotropy), in agreement with experimental observa-
tions. Besides the value of the applied magnetic field, it is the
ratio of the magnetic anisotropy field H, to the jump AM in the
longitudinal magnetization at internal interfaces (e.g. phase
boundaries) which determines the properties of dX,,/d€,
for instance, the asymptotic power-law exponent, the an-
gular anisotropy, or the decay length of spin-misalignment
correlations.

The micromagnetic approach also underlines the impor-
tance of the magnetodipolar interaction for understanding mag-
netic SANS: ignoring this interaction results (for an isotropic
anisotropy-field microstructure) in all Fourier coefficients to
be isotropic, in contrast to experiment. Moreover, the clover-
leaf-shaped angular anisotropy in dX,,/d2-which was pre-
viously [46] attributed exclusively to nanoscale jumps in the
magnetization magnitude at internal interfaces-is of relevance
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for all bulk nanomagnets with spatially fluctuating magnetic
parameters.

Analysis of unpolarized and spin-resolved experimental
data of various nanocrystalline ferromagnets (hard and soft
magnetic nanocomposites and elemental ferromagnets) pro-
vides values for the average exchange-stiffness constant and
for the volume-averaged magnetic anisotropy field and magne-
tostatic field due to AM variations. Regarding half-polarized
SANS experiments, it is pointed out that we do not observe
interference between nuclear and spin-misalignment scatter-
ing amplitudes. The only spin-dependent terms in SANSPOL
‘spin-up’ and ‘spin-down’ experiments are due to N M, cor-
relations, which have very weak dependence on the applied
magnetic field, compared to the spin-misalignment SANS.
Therefore, since spin-misalignment scattering represents the
dominating contribution to the total unpolarized SANS cross-
section, we believe that the measurement of the SANSPOL
‘spin-up’ and ‘spin-down’ cross-sections does not provide sig-
nificantly more information regarding d¥,,/d<2 than can al-
ready be learned by the measurement of the unpolarized cross-
section alone.

Since the predictions of the present micromagnetic theory
are quite generally valid in the approach-to-saturation regime,
it would be of interest to use these equations in order to study
related phenomena such as neutron depolarization or magnetic
spin-echo small-angle neutron scattering [210-212].

The recent discovery of skyrmion lattices in metallic and
semiconducting B20 transition-metal compounds [107, 153]
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Figure 38. Applied-field dependence of the azimuthally-averaged
unpolarized SANS cross-section dX /d€2 of Co nanowires
(diameter: 27 4+ 3 nm), which are embedded in an Al,O; matrix
(ko L Hy) (log—log scale). The long rod axes are aligned parallel to
the incident neutron beam. Data taken from [96].

has triggered an enormous new research. Skyrmions can be
viewed as a new form of particle-like order in a magnetic ma-
terial. On the phenomenological level of micromagnetic the-
ory, these features are modelled by taking into account (in the
energy functional) terms which depend on the curl of the mag-
netization vector field (DM - (V x M)) (D: Dzyaloshinsky—
Moriya constant), in addition to the usual exchange terms
(A(VM)?) [213-215]. Based on our recent micromagnetic
theory for the magnetic SANS of inhomogeneous ferromag-
nets [53], it would be of interest to investigate analytically the
effect of such terms on the magnetic SANS cross-section.
The present work has focused on the magnetic microstruc-
ture within the bulk of macroscopic magnetic bodies, and,
therefore, we have restricted attention to the bulk equilibrium
conditions for the magnetization, equation (19). Future work
may address the micromagnetic computation of the magnetic
SANS of a dispersion of magnetic nanoparticles in a nonmag-
netic matrix-the classical prototypical sample microstructure
in magnetic SANS. There is ample experimental evidence that
nanosized magnetic particles are not homogeneously magne-
tized (e.g. [91,94,96]), and the question arises whether the
standard expression for the cross-section, equation (2), is still
adequate to describe magnetic SANS (see also the discussion
in the Introduction). As an example, we show in figure 38
the field dependence of the unpolarized SANS cross-section
of Co nanowires that are embedded in a nonmagnetic Al,O;
matrix; dX/d2 clearly changes by a factor of about 5 be-
tween the largest field of 2 T and the coercive field of —0.05 T.
This observation strongly suggests the existence of intraparti-
cle spin disorder. For such a system, boundary conditions for
the magnetization at internal particle-matrix interfaces have to
be taken into account, a task which (from the micromagnetic
point of view) severely complicates the problem. Nucleation
theory [115, 135-137] may provide a guideline for attacking
this problem. As a first attempt in this direction, one may em-
ploy the known analytical solutions for the spin structure of a
cylindrical dotarray [216, 217] for computing magnetic SANS.

37

Recent progress in SANS instrumentation regarding time-
resolved data-acquisition procedures (TISANE) [82] opens
up the way to study the dynamics of the spin system up
to the s regime. The chopper-based TISANE technique
represents an improvement of conventional stroboscopic time-
resolved SANS, which is limited by the neutron time-of-
flight spread resulting from the wavelength distribution of
the incident neutrons (AA/A = 10 %) to about 300 Hz time
resolution [218]. TISANE allows one to probe magnetism
up to the 10kHz regime. Therefore, the (analytical and
numerical) extension of the present static approach to include
magnetization dynamics (Landau-Lifshitz—Gilbert equation)
represents a major challenge.

In view of the continuously increasing power of modern
computers (e.g. multiprocessor systems, CUDA), a further
understanding of magnetic neutron scattering may also be ex-
pected from the development of efficient micromagnetic al-
gorithms. Numerical micromagnetic computations can take
into account the full nonlinearity of Brown’s equations and, in-
deed, have provided fundamental insights into magnetic SANS
[31,47,49,50,99]. A particular importance/advantage of mi-
cromagnetic simulations resides in their flexibility regarding
microstructure variations (particle-size distribution, texture,
magnetic materials parameters, etc.); it also rather straight-
forward to ‘switch on” and ‘off” certain magnetic interactions
and to test in this way their impact on the neutron scattering.
In general, we believe that the combination of experimental
scattering data with large-scale numerical computations will
become more and more important in the future.
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Appendix.

List with most important parameters, quantities, and relations

three-dimensional

M(r) [M(r), My(r), M (r)]:
(Cartesian) magnetization vector field

M(q) = [A7Ix (q), 1\71), (q), 1\~4Z (q)]: Fourier transform of
the magnetization vector field

r = (x, y, z): position vector

q = (gx, gy, gz): Wave vector or scattering vector
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A: exchange-stiffness constant

M, = |M]|: saturation magnetization

H; = Hy — N M;: internal magnetic field

Hy: externally applied magnetic field

0 < N < 1: demagnetizing factor of the sample

dX /d2: macroscopic differential SANS cross-section (in
units of cm~'sr~1)

dXs/d2: nuclear and magnetic residual SANS cross-
section; measured at complete magnetic saturation

dX, /dQ2:  spin-misalignment SANS cross-section;
purely magnetic scattering due to transversal spin-misalignment
measured away from saturation

dX/dQ = dX./dQ2 + dX,/dQ2: the magnetic-field-
dependent SANS cross-section can be written as the sum of
the (nuclear and magnetic ) cross-section at saturation and the
magnetic (spin-misalignment) SANS signal at a field away
from saturation

Su(q): scattering function of the magnetic anisotropy
field (in units of cm~'sr~!) (equation (96)); field-independent
in the approach-to-saturation regime; can be obtained from the
micromagnetic analysis of field-dependent SANS data; inte-
gration of Sy (g) over the whole g-space yields a lower bound
for the average magnetic anisotropy field of the sample (com-
pare equations (107)—(109))

Ry(q,0, H;, A, M;): dimensionless micromagnetic re-
sponse function of the magnetic anisotropy field (equa-
tion (98)); contains the applied-field dependence, the angular
anisotropy, and the dependence of d¥/d2 on the magnetic-
interaction parameters

Sy (q): scattering function of the magnetostatic field (in
units of cm~!sr~!) (equation (97)); field-independent in the
approach-to-saturation regime; can be obtained from the mi-
cromagnetic analysis of field-dependent SANS data; integra-
tion of Sy;(g) over the whole q-space yields a lower bound
for the average magnetostatic field due to fluctuations of the
magnetization (e.g. at internal interfaces) (compare equa-
tions (107)—(109))

Ry (q,0, H;, A, My): dimensionless micromagnetic re-
sponse function of the magnetostatic field (equation (99)); con-
tains the applied-field dependence, the angular anisotropy, and
the dependence of dX /d€2 on the magnetic-interaction param-
eters

0: angle describing the azimuthal orientation of the
scattering vector ¢ on the two-dimensional detector

38

dXy/dQ2 = SyRy + Sy Ry micromagnetic result for
the spin-misalignment SANS cross-section in the approach-
to-saturation regime (unpolarized neutrons)

d¥/dQ = dX./dQ + SyRy + Sy Ry: micromag-
netic result for the total nuclear and magnetic (unpolar-
ized) magnetic-field-dependent SANS cross-section in the
approach-to-saturation regime (equation (103)) (kg L Hy);
central result of this paper; micromagnetic analysis of field-
dependent SANS cross-sections provides the quantities A,
Su (@), Sy (q), and dTree/dQ2

C(r): autocorrelation function of the spin-misalignment;
Fourier transform of d¥,;/d2 (compare equations (121) and
(125))

lg(H;)) = +/2A/(uoMsH;): micromagnetic exchange
length of the field; measure for the size of inhomogeneuously
magnetized regions around microstructural defects

lc(H;): experimental correlation length of the spin-
misalignment (equation (126)); can be obtained from
experimental C(r); measure for the size of inhomogeneuously
magnetized regions around microstructural defects; depends
on [y, the applied magnetic field, the properties of the defect
(e.g. its size), and on the magnetic interactions
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