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In this paper, both singular and hypersingular
fundamental solutions of plane Cosserat elasticity
are derived and given in a ready-to-use form.
The hypersingular fundamental solutions allow to
formulate the analogue of Somigliana stress identity,
which can be used to obtain the stress and couple
stress fields inside the domain from the boundary
values of the displacements, microrotation and stress
and couple stress tractions. Using these newly
derived fundamental solutions, the boundary integral
equations of both types are formulated and solved
by the boundary element method. Simultaneous use
of both types of the equations (approach known
as the dual BEM) allows to treat problems where
parts of the boundary are overlapping, such as
crack problems, and to do this for general geometry
and loading conditions. The high accuracy of the
boundary element method for both types of equations
is demonstrated for a number of benchmark problems,
including a Griffith crack problem and a plate with
an edge crack. The detailed comparison of the BEM-
results and the analytical solution for a Griffith crack
and an edge crack is given, particularly, in terms of
stress and couple stress intensity factors, as well as
the crack opening displacements and microrotations
on the crack faces and the angular distributions of
stresses and couple stresses around the crack tip.
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1. Introduction
This paper presents both a complete derivation of the fundamental solutions arising in plane
Cosserat elasticity and a demonstration of their use within a boundary element framework based
on the simultaneous use of two types of boundary integral equations on the crack faces.

Cosserat (also known as micropolar) theory of elasticity was first introduced by the Cosserat
brothers [1] and further developed by Eringen [2], Nowacki [3] and others as a generalization
of the classical elasticity, which takes into account the effects of material’s microstructure by
enriching material infinitisimal elements with additional rotational degrees of freedom and
introducing material internal length scale parameters directly into the constitutive equations.
This theory is known to represent well a number of natural and engineered materials, e.g.
fiber-reinforced composites, metal foams, concrete, synthetic polymers, and human bones.

A number of analytical and numerical methods, that have been successfully used to treat
boundary value problems in classical elasticity, have been developed for micropolar elasticity
as well. While the finite element method remains the most popular tool of numerical analysis, the
boundary element method (BEM) is evolving as an efficient alternative, especially in modelling
problems with discontinuities.

The mathematical foundation of BEM is the boundary integral equation (BIE) method, which
has been introduced in [4], [5] to study the solvability of boundary value problems in plane
micropolar elasticity. It has been shown that the solutions of these boundary value problems can
be found in terms of the single layer and double layer potentials, i.e. in the form of an integral
of the product of the unknown densities and the kernel functions, known as the fundamental
solutions. This representation allows one to reduce a boundary value problem to the systems
of weakly singular, singular and hyper-singular boundary integral equations, which can be
subsequently solved by the BEM.

The BEM for singular integral equations, which are also known as displacement/microrotation
boundary integral equations (DBIEs), was developed in [7], [8], [9]. To the authors’ knowledge,
no BEM-solutions for the traction boundary integral equations (TBIEs) of micropolar elasticity
have been published yet. This might be attributed to the fact that the hyper-singular fundamental
solutions are available in the literature only in an implicit form, which requires additional
derivations before it can be implemented into a computer code. However, application of the
DBIE-based BEM to crack problems results in a singular system matrix, due to the coincident
crack surfaces, and therefore it is limited to the problems with symmetry [10], which avoid use of
one of the coincident boundaries. The most common approach to overcome this difficulty, which
has been successfully used in classical elasticity, is known as the dual BEM and it consists in
simultaneous use of the both types of the BIEs on the crack surfaces.

For this purpose, in the present work, the BEM is developed for the BIEs of both types and its
accuracy is demonstrated in various numerical examples, including problems with cracks. Only a
limited amount of research in Cosserat fracture has been available in the literature and it has been
limited to the studies of some specific cases (see, for example, [11], [12], [13], [14]). The present
work contains the first BEM-approach to a general case of a crack problem in Cosserat elasticity.
For the sake of comparison with the analytical solution, a classical problem of a Griffith crack is
chosen as a numerical example. The obtained data is shown to be in a excellent agreement with
the exact solutions in terms of stress and couple stress intensity factors and the crack opening
displacements and microrotations along the crack faces.

The BEM-results are also compared with the analytical asymptotical solutions and the finite
element data obtained in [14] for an edge crack problem in mode I and mode II in terms of angular
distributions of the stresses and couple stresses around the crack tip.

The paper is organized as follows. Section 2 contains mathematical foundations of Cosserat
elasticity, in section 3 the boundary integral equations are formulated, in section 4 the boundary
element method is outlined. Numerical examples are presented in section 5 and the main results
are summarized in 6.



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

2. Mathematical foundations of plane micropolar elasticity
In what follows, a linear homogeneous micropolar elastic solid is considered. The solid occupies
an open domain S ∈R2 with the boundary ∂S. The plane strain state is described by two
in-plane displacements u1, u2 and one out-of-plane microrotation φ3. In addition to stresses
σ11, σ12, σ21, σ22 (note, that σ12 6= σ21), two couple stresses m13,m23 are introduced (Fig.1), and
the following constitutive equations hold [4].

σαβ = λuγ,γδαβ + (µ+ κ)(uα,β + uβ,α)− κ(uα,β + εαβ3φ3),

mα3 = γφ3,α.
(2.1)

In eq.(2.1) and throughout the paper it is assumed that Greek indices take values 1,2, while Latin
indices vary from 1 to 3, δij is the Kronecker delta, εijk is the alternating symbol and λ, µ, κ, γ are
material parameters.
In absence of body forces and body couples, the equilibrium equations [4] are given as

σαβ,α = 0,

mα3,α + εαβ3σαβ = 0.
(2.2)

In this work we use the same notations for the main equations of plane micropolar elasticity in the
matrix and operator form, as originally introduced in [28] and employed, for example, in [5], [10],
[29] and others. In order to introduce a unified approach to displacements and microrotations,
it is convenient to denote u3 = φ3 and introduce a vector of generalized displacements u =

(u1, u2, u3)T and generalized tractions t = (t1, t2, t3)T , where boundary tractions t1, t2 and a
couple traction t3 are defined as

tα = σβαnβ , t3 =mα3nα, (2.3)

where n = (n1, n2)T is a unit outward normal to ∂S.
The equations of equilibrium (2.2) then can be rewritten in the form

L(∂x)u = 0, (2.4)

where the matrix differential operator L(∂x) =L(ξα) is given by [5]

L(ξα) =

 (λ+ µ)ξ21 + (µ+ κ)∆ (λ+ µ)ξ1ξ2 κξ2
(λ+ µ)ξ1ξ2 (λ+ µ)ξ22 + (µ+ κ)∆ −κξ1
−κξ2 κξ1 γ∆− 2κ

 , (2.5)

with ξα = ∂/∂xα and ∆= ∂2/∂x21 + ∂2/∂x22 = ξ21 + ξ22 .
Together with L(ξα) the boundary stress operator T (∂x) = T (ξα) is considered [5], which is

defined by the following equation:

T (ξα) = (λ+ 2µ+ κ)ξ1n1 + (κ+ µ)ξ2n2 λξ2n1 + µξ1n2 κn2
µξ2n1 + λξ1n2 (µ+ κ)ξ1n1 + (λ+ 2µ+ κ)ξ2n2 −κn1

0 0 γξαnα

 (2.6)

Operator T (∂x) is defined according to (2.1),(2.3) in such a way that

t = T (∂x)u. (2.7)

Then the boundary value problem (Fig.2) is formulated as follows:

L(∂x)u = 0 in S,

u = û on ∂Su,

t = t̂ on ∂St,

(2.8)
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where û = (û1, û2, û2)T consists of the displacements û1, û2 and the microrotation û3 = φ̂3
prescribed on Dirichlet boundary ∂Su, and t̂ = (t̂1, t̂2, t̂3)T consists of the tractions t̂1, t̂2 and the
couple traction t̂3 prescribed on Neumann boundary ∂St.

Figure 1. Stresses σαβ and couple stresses mα3 acting on a material element in plane micropolar elasticity.

Figure 2. Boundary value problem defined by eq.(2.8)

Together with λ, µ, κ, γ the following (engineering) micropolar material constants are introduced
in [15]:

E =
(2µ+ κ)(3λ+ 2µ+ κ)

2λ+ 2µ+ κ
Young’s modulus

G=
2µ+ κ

2
shear modulus

ν =
λ

2λ+ 2µ+ κ
Poisson’s ratio

l=

√
γ

2(2µ+ κ)
characteristic length (bending)

N =

√
κ

2(µ+ κ)
coupling number 0≤N ≤ 1.

(2.9)

When N = 0 or l= 0 the micropolar theory reduces to classical elasticity. Case N = 1 corresponds
to well-known so-called "couple stress theory", which has been studied independently, for
example, in [16], [17], [20], [21]. In this theory, the couple stresses are taken into consideration;
however, the microrotations are constrained, i.e. defined analogously to macrorotations in
classical elasticity.
Two typical approaches to determine Cosserat material constants are experimental methods ( [15],
[22], [23]) and analytical derivation, based on various homogenization schemes for materials with
periodic microstructure, which have been proposed, for example, in [24], [25], [26], [27].
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3. Boundary integral equations
In what follows, a source point is denoted by x = (x1, x2) and a field point by y = (y1, y2).
The matrix of fundamental solutions D=D(x, y) of system (2.4) is derived in [5], in the implicit
form, using the method of associated matrices, described in [28], in the form

D(x, y) =L∗(∂x)t(x, y), (3.1)

where L∗(∂x) is the adjoint of L(∂x) (matrix consisting of cofactors of L(∂x)) and t(x, y) is given
as

t(x, y) =
a

8πk4

{
[k2|x− y|2 + 4] log |x− y|+ 4K0(k|x− y|)

}
(3.2)

and constants a , k are defined by

a−1 = γ(λ+ 2µ+ κ)(µ+ κ), k2 =
κ(2µ+ κ)

γ(µ+ κ)
, (3.3)

where K0 is the modified Bessel function of order zero. The full expression of matrix D in polar
coordinates

y1 = x1 + ρ cos θ, y2 = x2 + ρ sin θ (3.4)

is given, for example, in [18] and [19]. In view of (3.1) and (3.2)

D(x, y) = (D(y, x))T . (3.5)

Along with D the matrix of singular solutions P = P (x, y;ny) is introduced by

P (x, y;ny) = (T (∂y)D(y, x))T , (3.6)

where notation ∂y implies that in eq.(2.6) ξα = ∂/∂yα and normal ny is applied at the point y. The
full expression of matrix P is given, for example, in [18]. It can be verified by direct differentiation
that the columns of D(x, y) and P (x, y;ny) satisfy (2.4) at all x, y∈R2, x 6= y.
In order to formulate traction boundary integral equations, two more matrices are required.
Namely, matrix H =H(x, y;nx) and S = S(x, y;nx,ny) which are obtained by applying stress
operator T (∂x) to matrices D(x, y) and P (x, y;ny) :

H(x, y;nx) = T (∂x)D(x, y), S(x, y;nx,ny) = T (∂x)P (x, y;ny) (3.7)

The full derivation of matrices D, P , H , S is presented in [19] with the final expressions in a
ready-to-use form in both, symbolic and C/C++ formats.
In order to investigate the behavior of matrices D, P , H , S in the vicinity of x = y, they are
expanded in Taylor series in polar coordinates (3.4). Straightforward derivations show that as
ρ→ 0, the weakly-singular terms of D are [4]

D11,22 =− b

2π
ln ρ+O(1), D33 =− 1

2πγ
ln ρ+O(1), (3.8)

where

b=
1 + ν

E

(
3− 4ν

2(1− ν)
−N2(1 + ν)

)
,

1

γ
=

1 + ν

2E l2
. (3.9)

The components of matrices P and H with the highest order of singularity being ρ−1 are listed
below:

P12,21 =± µ
′

2π

ny2 cos θ − ny1 sin θ

ρ
+O(1),

H12,21 =∓ µ
′

2π

nx2 cos θ − nx1 sin θ

ρ
+O(1),

(3.10)

where µ′ =
1− 2ν

2(1− ν)
−N2 [4]. Components Pα3, P3α,Hα3,H3α are weakly-singular, i.e. of order

ln ρ.
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For matrix S as ρ→ 0 the expansion is

S11,22 =
µ′′

2π

1

ρ2
+O(ln ρ), S33 =

γ

2π

1

ρ2
+O(ln ρ),

S13,31 =±µ
′′′

2π

sin θ

ρ
+O(ln ρ), S23,32 =∓µ

′′′

2π

cos θ

ρ
+O(ln ρ)

(3.11)

where µ′′ =E

(
1

1− ν2
+ 2N2

)
, µ′′′ =

EN2

1 + ν
and components S12, S21 are of order ln ρ.

The derivation of the boundary integral equations in plane Cosserat elasticity is based on the
following analogue of Somigliana identity [5]

ui(x) =

∫
∂S

[
Dij(x, y)tj(y)− Pij(x, y;ny)uj(y)

]
dsy x∈ S (3.12)

Analogously to the classical theory, the displacement boundary integral equation (DBIE) is
obtained from (3.12) by letting point x tend to the boundary ∂S. Removing a small vicinity of a
singular point x and using the Taylor series expansions of the kernel functions, a straightforward
derivation yields:

1

2
ui(x) +−

∫
∂S
Pij(x, y;ny)uj(y)dsy −

∫
∂S
Dij(x, y)tj(y)dsy = 0, x∈ ∂S (3.13)

Sign −
∫

indicates that the integrals containing P12, P21 are singular and understood as Cauchy
principal values. Factor 1

2 in (3.13) is known in classical elasticity as the "jump term", which
remains equal to 1

2 on a smooth piece of the boundary in Cosserat elasticity for both,
displacements u1, u2 and microrotation u3.
In order to derive the traction boundary integral equation, first operator T (∂x) is applied to
eq. (3.12) (with arbitrary direction n(x)) to obtain the following analogue of Somigliana’s stress
identity:

Tij(∂x)uj(x) =

∫
∂S

[
Hij(x, y;nx)tj(y)− Sij(x, y;nx,ny)uj(y)

]
dsy x∈ S (3.14)

Then, taking n(x) to be the normal to ∂S and performing limiting process analogously to the
procedure described above for DBIE, the following TBIE is obtained:

1

2
ti(x)−−

∫
∂S
Hij(x, y;nx)tj(y)dsy + =

∫
∂S
Sij(x, y;nx,ny)uj(y)dsy = 0, x∈ ∂S, (3.15)

where integrals containing H12, H21, S13, S23, S31, S32 are singular and sign =
∫

indicates, that the
integrals with S11, S22, S33 are hyper-singular and understood as Hadamard finite part integrals.

4. Boundary element method formulation
In the present work, the standard BEM discretisation with the quadratic Lagrange basis is applied
to equations (3.13), (3.15), which makes use of the following set of shape functions:

N1(ξ) =
ξ(ξ − λ0)

2λ20
, N2(ξ) =− (ξ + λ0)(ξ − λ0)

λ20
, N3(ξ) =

ξ(ξ + λ0)

2λ20
. (4.1)

The boundary ∂S is discretized with N elements ∂Sn and the shape functions (4.1) with λ0 = 1,
while the solutions ui(y), ti(y) are approximated with the discontinuous basis with λ0 = 2

3

and the three nodal values at each element. All weakly singular integrals, arising from such
discretization are calculated using Telles transform [30]. Singular and hyper-singular integrals are
calculated by means of so-called singularity subtraction technique [31], [32], which makes use of
the Taylor expansion of the fundamental solutions in the vicinity of a collocation point, given by
eq.(3.10),(3.11). Then the collocation point is placed subsequently at every node at each element,
yielding a system of 9N linear algebraic equations for the unknown nodal values of generalized
displacements and tractions.
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5. Numerical results
In this section four numerical examples are shown. In the first example, the problem of a bending
plate is considered, and it is shown that the exact solution, given by the polynomials of second
degree, can be reproduced with a good accuracy by BEM on a coarse mesh.

In the second example, the problem of the stress concentration around a circular hole is
studied. The stress concentration factors obtained from both types of the equations and the stress
and couple stress field on the boundary and inside the domain are compared with the analytical
solutions.

In the third example, the classical problem of a Griffith crack is solved by means of the dual
BEM with use of both types of boundary integral equations. The BEM-solution is compared with
the analytical data for stress and couple stress intensity factors, as well as for the displacements
and microrotations at the crack faces.

In the fourth example, the dual BEM formulation is applied to the problem of an edge crack
in both loading modes. The BEM-results are shown to be in a good agreement with the analytical
and FEM-solutions, available in the literature for the distribution of stresses and couple-stresses
around the crack tip, as well as the stress and couple stress intensity factors.

(a) A square plate under pure bending
As a first example, a square micropolar plate under pure bending is considered (Fig.3). The
following boundary conditions are prescribed:

u1 = 0, t2 = 0, u3 = 0 at x1 = 0,

t1 = t2 = t3 = 0 at x2 =±h,

t1 = σ0x2, t2 = 0, t3 =−m0 at x1 = 2h,

(5.1)

where

σ0 =
2G

1− ν
M0

D + γh
, m0 =

γM0

D + γh
, D=

Gh3

6(1− ν)
. (5.2)

The analytical solution uA = (uA1 , u
A
2 , u

A
3 )T for this problem was first derived in [6] as

uA1 =
M0x1x2
D + γh

, uA2 =−1

2

M0

D + γh

(
x21 +

ν

1− ν x
2
2

)
, uA3 =− M0x1

D + γh
(5.3)

In [7] this problem, but for a rectangular geometry, was solved by BEM for the following values
of the parameters, which we used in the present study as well:

M0 = 1000N, h= 0.1m, G= 5.1768× 107Nm , ν = 0.3 (5.4)

The relative error ei of every component of the BEM-solution uB = (uB1 , u
B
2 , u

B
3 )T is defined as:

ei =
max |uBi − u

A
i |

max |uAi |
(5.5)

The boundary was discretized with 4 elements, or 36 degrees of freedom, as show in Fig.4. Since
the polynomial form of the solution approximation can represent the solution exactly, the main
source of error in the BEM-results is the integration error. In contrast to the BEM of classical
elasticity, accuracy of integration in the Cosserat case depends significantly on the material
constants due to the presence of small parameter l in the Bessel functions in the fundamental
solutions. Therefore in order to capture the behavior of the kernels, the order of Gaussian
quadrature was chosen depending on material parameter l (increasing for decreasing values of
l), and it was kept the same for different values of N corresponding to the same value of l. The
results for both types of the BIEs are shown in table 1. The obtained relative errors, as defined by
eq.(5.5), are of order between 10−10 and 10−4.It was observed, that for the same values of material
parameters and the order of Gaussian quadrature, TBIEs perform slightly better than DBIEs.
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In [7] the solution at the corner point was shown to have an accuracy of order 10−4 for the
boundary discretization with 8-20 elements, which is comparable with the errors obtained in the
present work for the singular boundary integral equations with the use of 4 elements.

DBIEs TBIEs
N=0.1 N=0.5 N=0.9 N=0.1 N=0.5 N=0.9

e1 2×10−7 4×10−6 2×10−5 4×10−9 3×10−7 2×10−6

l/(2h)=10−2 e2 3×10−7 6×10−6 3×10−5 6×10−9 6×10−7 3×10−6

e3 2×10−5 2×10−4 6×10−4 2×10−8 3×10−7 1×10−6

e1 5×10−7 7×10−7 1×10−5 5×10−9 6×10−8 2×10−7

l/(2h)=10−1 e2 1×10−6 8×10−7 2×10−5 5×10−8 2×10−7 1×10−6

e3 9×10−6 8×10−6 4×10−5 1×10−8 7×10−8 6×10−7

e1 2×10−6 6×10−7 1×10−6 1×10−7 5×10−8 6×10−8

l/(2h)=100 e2 2×10−6 8×10−7 3×10−6 7×10−7 4×10−7 6×10−7

e3 7×10−7 9×10−6 1×10−6 1×10−9 6×10−8 3×10−8

e1 3×10−5 5×10−5 4×10−5 3×10−6 3×10−6 7×10−7

l/(2h)=101 e2 4×10−5 7×10−5 1×10−5 1×10−5 3×10−5 1×10−5

e3 7×10−7 7×10−7 7×10−7 2×10−10 4×10−9 4×10−9

Table 1. A plate under pure bending: relative errors e1, e2, e3, as defined by eq.(5.5), for both types of the BIEs for

various values of the coupling number N and ratio of the material length l to the size of the plate 2h.

Σ0 m0

x1

x2

2h

2h

Figure 3. A micropolar plate under pure bending.

Element boundaries

´ Collocation points

´ ´ ´

´

´

´

´´´

´

´

´

æ æ

ææ

Figure 4. A plate under pure bending: coarse mesh of

the boundary.

(b) A circular hole in an infinite plate
In the second example, the problem of an infinite plate in tension, weakened by a circular hole
of radius a, is considered (Fig.5). The full analytical solution for all stresses and couple-stresses
is given in [33]. In order to demonstrate the performance of the method for the non-straight
boundaries as well as non-polynomial boundary conditions, the problem is modeled as a finite
quarter-plate of size L× L, L= 4a with the analytical tractions and couple tractions, given by
rational functions, prescribed at x=L and y=L (Fig.6).

In tables 2,3 the stress concentration factors (SCFs) are presented for two values of the material
length l : l= a, l= 0.1a respectively, ν = 0.3 and for different values of the coupling numberN , for
both types of boundary integral equations. In all cases a mesh consisting of 68 elements, uniformly
graded towards the edges of the hole, was used. The number of Gauss points per element was
chosen for all cases to be 200. As it is seen from tables 2,3 the SCF-solutions for a circular crack
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σ0σ0

x1

x2

a

Figure 5. An infinite plate with an circular hole in tension.

N Analytical DBIE e(%) TBIE e(%)
0.10 2.9728 2.9720 0.03 % 2.9790 0.21 %
0.25 2.8484 2.8478 0.03 % 2.8532 0.17 %
0.50 2.5490 2.5489 0.01 % 2.5490 0.0006 %
0.75 2.2739 2.2740 0.004 % 2.2683 0.25 %
0.90 2.1416 2.1418 0.007 % 2.1326 0.42 %

Table 2. Stress concentration factors for a circular hole: l= a.

can be reproduced by both types of equations with the relative error within 1%. The relative error
is defined as

e=
|SCFBEM − SCFAnalyt|

SCFAnalyt . (5.6)

The detailed BEM-analysis of stress concentration around a hole in a micropolar plate is done
in [8]. Case N = 1 corresponds to the couple-stress elasticity and it was studied also by means of
the boundary element method in [21].

The stress distribution along the edges of the quarter plate is obtained as a direct output of
BEM. In fig. (7) distribution of σθθ along θ= π

2 is shown for l= a, ν = 0.3 and various values of
N . Next, the Somigliana stress formula (3.14) is used to obtain the stress distribution inside the
domain. In fig.(8),(9), (10) the distribution of normalized stresses σrθ , σθr and couple stress mrz

respectively, are shown along the line θ= π/4 for l= a, ν = 0.3 and various values of N . As it can
be seen from Figs.(7),(8),(9), (10) the results are in a good agreement with the analytical solution
from [33]. Analytical solutions are shown in all plots by solid black lines.
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a

a

exact tractions and couple traction

t2 = 0

u1 = 0

L

L
ϕ3 = 0

exact
tractions

and
couple

traction

t1 = 0, u2 = ϕ3 = 0

t1 = t2 = t3 = 0

Figure 6. A quarter of a plate with a circular hole, L= 4a.

N Analytical DBIE e(%) TBIE e(%)
0.10 2.9827 2.9819 0.03 % 2.9888 0.21 %
0.25 2.9528 2.9521 0.02 % 2.9580 0.17 %
0.50 2.9292 2.9289 0.01 % 2.9301 0.03 %
0.75 2.9187 2.9190 0.01 % 2.9113 0.25 %
0.90 2.9149 2.9161 0.04 % 2.9003 0.50 %

Table 3. Stress concentration factors for a circular hole: l= 0.1a.

(c) A Griffith crack
In the third example we consider a straight crack in an infinite plane in a uniform tension (Fig.11a)
(known as a Griffith crack). The solution to this problem is a superposition of two solutions. The
first one corresponds to an infinite uncracked plate in tension (Fig.11b) and the second solution
is the one of a crack opened up by a uniform tension applied to the crack faces (Fig.11c). The
solution to the first problem is given in [13] as

u1 =
1

2

σ0
G

(−νx1), u2 =
1

2

σ0
G

(1− ν)x2, φ3 = 0. (5.7)

σ11 = σ12 = σ21 = 0, σ22 = σ0, m13 =m31 =m23 =m32 = 0. (5.8)

Therefore we only consider the problem of Fig.11c for BEM-modelling, i.e. the only BEM-
boundary corresponds to the crack faces ∂S = Γ = Γ+

⋃
Γ− (Fig.12) with prescribed tractions:

t1 = 0, t2 =−σ0, t3 = 0, −c < x1 < c, x2 = 0. (5.9)

In order to avoid the degenerated system matrix due to the coincident collocation points, we
prescribe DBIE on Γ+ and TBIE on Γ−, an approach known as the dual boundary element
method. The obtained results are compared with the analytical solutions obtained in [13]. Note,
that the notations forN and l in [13] differ from the notations used here by the factor

√
2, therefore

we rename material parameters from [13] as l∗, N∗. Therefore, l∗ =
√

2l, N∗ =
√

2N . We present
the BEM-results in the same way as in [13], where the solutions are analyzed depending on two
parameters: τ = l∗

c and M = N∗

τ . The case M = 1 and ν = 0.25 is chosen for comparison. In table
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Σ0

Σ0

Σ0

Σ0

Σ0

Σ0

Figure 11. a) A through crack in an infinite plate in tension, b) uncracked plate in tension, c) crack opened up by a uniform

tension.

Σ0

Σ0

G+

G-

c-c

Figure 12. A crack opened up by a uniform tension.

4 the results are given in terms of four parameters. The first parameter is a value of the crack
opening displacement at the center of the crack:

u0 =

(
1

2

σ0
G

)−1
c−1u2(0, 0) (5.10)

The second parameter is characterized in [13] as "the mechanical energy required to form the
crack" and given by

Ec = 2cσ0

1∫
0

u2(r, 0)dr, r= x1/c, Ēc =Ec/

(
1

2
π(cσ0)2(1− ν)/G

)
(5.11)

Values of u0 and Ēc are listed in table 4. Note, that value τ = 0.001 was used in BEM to
approximate the limiting case of classical elasticity. In all cases a fine mesh consisting of 196
elements, uniformly graded towards the crack tips, was used. The size of the mesh was chosen
for the purpose of extracting stress intensity factors from the limiting values of the crack opening
displacement as described below.
The stress intensity factor Kt and the couple-stress intensity factor Km are defined as

{Kt,Km}=
√

2 r lim
r→1+

{σ22(r, 0),m23(r, 0)} (5.12)

or in non-dimensional form

K̄t =Kt/(σ0
√
c), K̄m =Km/(σ0c

√
c) (5.13)
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τ M u0 [13] u0 (BEM) Ēc [13] Ēc (BEM)
0.5 1 1.3022 1.3022 0.8646 0.8649
0.3 1 1.4222 1.4223 0.9467 0.9468
0.1 1 1.4909 1.4910 0.9938 0.9939

0.05 1 1.4977 1.4978 0.9984 0.9985
0 1 1.5000 1.5001 1.0000 1.0001

Table 4. Results for a problem of a Griffith crack.

The stress intensity factor Kt is directly expressed from the BEM-solution for the crack opening
displacement u2(r, 0) according to its asymptotic expansion in the vicinity of the crack tip:

u2(r, 0) =

√
c(1− ν)Kt

G(1 + 2(1− ν)N2)

√
1− r2 +O(r). (5.14)

In table 5 the values of Kt for various material parameters are compared with those in [13] and
an agreement within 1% is shown.
Following the solution procedure in [13] the couple stress intensity factor Km is derived as

Km = c
√
cσ0

1− Ēc
2

. (5.15)

According to equations (5.11), (5.15), Km for a Griffith crack is entirely defined by the integral of
the crack opening displacement u2(r, 0), i.e. it can be obtained without using the asymptotics of
the microrotation and couple-stress fields. This method allows to use coarser discretisation of the
crack domain to obtain accurate Km for all values of material parameters in comparison with the
methods, which require fitting solutions near the crack tip.

Values of K̄t and K̄m are compared with the analytical solutions from [13] in table 5.
In fig.(13)-(14) the full solutions for the crack opening displacement and microrotations are

plotted for various values of material parameters, and an excellent agreement between the
analytical solutions of [13] and the BEM-data is seen.

Research in fracture mechanics of Cosserat materials (see for example, [34], [11], [35], [14])
indicates that both, displacements and microrotations in the vicinity of a crack tip have asymptotic
expansions of order

√
ρ, where ρ is the distance to the crack tip. The asymptotic expansion of a

microrotation in standard system of polar coordinates (ρ, θ), associated with the crack tip, is given
in [14] as:

φ3 =
Km
√

2ρ

4l2G
sin

θ

2
+O(ρ) (5.16)

In Fig.15 the distribution of microrotations along the crack face is shown for N = 0.9 and varying
values of parameter l/c together with the plot of the first term of eq.(5.16). Fig.15 illustrates the
asymptotic property of microrotations, according to which, the asymptotic range of eq.(5.16) is

ρ << l, (5.17)

i.e. the size of the domain dominated by the first term in (5.16) depends on material parameters
and decreases with decreasing l. This behaviour indicates that in the extended finite and
boundary element methods the adequate choice of the enrichment zone must significantly
depend on the material parameters. However, the application of enriched Cosserat BEM and FEM
need detailed study and remain subject of future work.
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Figure 13. Crack opening displacement for different values of parameter τ =
√
2l/c in comparison with the analytical

solutions [5].
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Figure 14. Variation of microrotations along the crack face for different values of parameter τ =
√
2l/c in comparison

with the analytical solutions [5].
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Figure 15. Variation of microrotations along the crack face for coupling number N = 0.9 and various values of material

length l.

τ M K̄t [13] K̄t (BEM) relative error K̄m [13] K̄m (BEM) relative error
0.5 1 1.0150 1.0222 0.71 % 0.0676 0.0676 0.06 %
0.3 1 1.0059 1.0100 0.41 % 0.0266 0.0266 0.02 %
0.1 1 1.0007 1.0013 0.06 % 0.0031 0.0031 1.13 %

0.05 1 1.0002 1.0004 0.02 % 0.0008 0.0007 7.84 %
0 1 1.0000 1.0001 0.01 % 0.0000 0.0000 - %

Table 5. Stress and couple stress intensity factors for a Griffith crack.

(d) A plate with an edge crack
In this example we consider the problem of a plate with an edge crack (Fig.16) and compare our
results with the FEM-data obtained in [14]. For the sake of comparison, we consider the same
dimensions of the plate and the loading conditions, as in [14], i.e. the width of the plate W = 11

mm, height 2H = 20 mm and the length of the crack c= 1mm. The center of the coordinate system
is placed at the crack tip and the polar coordinates (r, θ) are introduced. However, in order to
avoid the rigid body motions, we impose slightly different Dirichlet condition than the one in [14],
i.e. since in the collocation boundary element method, the boundary condition cannot be imposed
at the crack tip, we fix the point (10, 0) on the boundary of the plate, i.e.

u1(10, 0) = u2(10, 0) = φ3(10, 0) = 0. (5.18)

All sides of the plate are assumed to be traction free, and the loading is applied to the crack faces.
We consider two standard cases: in mode I the crack is opened up by the applied normal stress
σ0 = 100 MPa, i.e:

t1 = 0, t2 =−σ0n2, t3 = 0, −c≤ x1 ≤ 0, x2 = 0. (5.19)
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Mode II corresponds to the applied shear stress σ0 = 100 MPa, i.e.

t1 =−σ0n2, t2 = 0, t3 = 0, −c≤ x1 ≤ 0, x2 = 0. (5.20)

Material parameters were set to E = 100 GPa and ν = 0.3.
In fig.17,18,19,20 we demonstrate the angular distributions of the stresses and couple-stresses (for
an equivalent problem of a crack with the traction-free faces) defined as

fαβ(θ) =
√

2πrσαβ , gαz(θ) =
√

2πrmαz α, β = r, θ (5.21)

which are normalized in such a way that fθθ(0) = gθz(0) = 1 in Mode I and fθr(0) = grz(0) = 1

in Mode II. The remaining material parameters in fig.17,18,19,20 were taken l= 0.025495 mm,
N = 0.849837, which correspond to parameters γ = 100 MPa and α/E = 1 in [14]. The eq.5.21
were evaluated at r= 10−5 mm. In Fig.17,18,19,20 the excellent agreement of the BEM-data
with the analytical solutions, derived in [14] is shown for both loading modes. Note, that due
to the zero boundary condition imposed in [14] for σrθ instead of σθr , our BEM-solution for
σrθ corresponds to σθr in [14], and σθr corresponds to σrθ in [14]. Note, that according to [14],
couple-stresses mrz ,mθz do not have a 1/

√
r-singularity in Mode II. This is in agreement with

our BEM-calculations, as can be seen in Fig. 20, where as a direct implementation of eq.(5.21), we
observe the BEM-data for the regular parts ofmrz ,mθz , which, according to [14], for fixed r, have
the analytical form:

mrz ∼ cos θ,mθz ∼− sin θ. (5.22)

Next, we compare our results in terms of the stress and couple stress intensity factors with
those obtained in [14] by the finite element method. For comparison we have chosen the case
of N = 0.849837 and the four values of the parameter l= 0.025495, 0.254951, 0.806226, 2.54951

corresponding to γ = 102, 104, 105, 106 in [14]. The results for both modes are given in Table 6.
The data in table 6 was obtained by fitting the displacements the crack faces according to

uI2(r) =
4(1− ν2)

E(1 + 2N2(1− ν))

KI
σ
√
r√

2π
+O(

√
r), uII1 (ρ) =

4(1− ν2)

E(1 + 2N2(1− ν))

KII
σ
√
r√

2π
+O(

√
r)

(5.23)
in Mode I and Mode II respectively. Equations (5.23) were obtained from [14], however note, that
there is a typo in their expression for uIIr in eq.(72), which can be easily seen by integrating the
Mode II-stresses from eq.(70) leading to the term 2(µ+ α)(1− ν) instead of 2(µ− α)(1− ν) in
eq.(72). The corrected constant is consisted with our BEM-data.
For all material parameters the same mesh with 193 elements on each crack face, gradually refined
towards the crack tip was employed for the BEM analysis, and the data in the vicinity of r=

10−3lmm was used for fitting. The stress intensity factors in Table 6 were normalized as follows:

K̄I
σ =KI

σ/kI , K̄
II
σ =KII

σ /kII , (5.24)

where kI = 208.1 MPa·mm1/2, kII = 199.3 MPa·mm1/2 are the values corresponding to the Mode
I and Mode II SIF-solutions for an edge-cracked specimen in the case of the classical elasticity.
The couple stress intensity factors were obtained by fitting the microrotations on the crack faces
according to (5.16). The normalized couple stress intensity factors are given by

K̄I
m =KI

m/(σ0c
√
c), (5.25)

which differ with the definition in [14] by the factor of
√
πσ0c

√
c. Values of

√
πσ0c

√
cK̄I

m are also
provided in Table 6. The results in Table 6 are in a good agreement with the data in [14]. For
the Mode I stress intensity factors the difference is estimated to be less than 1.2%, for the mode I
couple stress intensity factors - less than 4.6% and for the mode II stress intensity factors - less than
2.3%. The difference in the results can be explained by the difference in the method of evaluating
KI
σ , KII

σ and KI
m as well as by the slight difference in the boundary conditions.
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Figure 16. Edge crack in a rectangular plate.

N l K̄I
σ K̄I

m
√
πσ0c

√
cK̄I

m K̄II
σ

0.849837 0.025495 1.1819 0.0270 4.79 1.4053
0.849837 0.254951 1.0803 0.2120 37.58 1.2272
0.849837 0.806226 0.9542 0.3689 65.39 1.0154
0.849837 2.549510 0.8836 0.4644 82.32 0.9222

Table 6. Stress and couple stress intensity factors for an edge crack in Mode I and Mode II.

6. Conclusions
This paper presented the derivation of the fundamental solutions for plane Cosserat
elasticity and their application within a boundary element framework. Both singular and
hypersingular boundary integral equations of plane Cosserat elasticity were formulated using
these fundamental solutions and solved by the boundary element method. The dual BEM,
developed in this work, was shown to be an accurate numerical tool which can be used for
analysis of problems with singularities, such as certain crack problems without limitations on
the geometry or the type of the loading conditions. The excellent accuracy of the method was
demonstrated on the classical example of a Griffith crack. The approach can be further used to
model crack propagation in micropolar materials and can be extended to the three-dimensional
case. The accuracy of the method for crack problems can be further improved, for a given number
of degrees of freedom, by incorporating crack tip enrichments into the approximation space which
can be derived from the asymptotic behavior of the displacements and microrotations in the
vicinity of a crack tip, also studied within this paper. This approach is known as the eXtendend
BEM and is the subject of further study.
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Figure 17. Edge crack in Mode I: Angular distribution of stresses around the crack tip in comparison with the analytical

solutions [14].
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Figure 18. Edge crack in Mode I: Angular distribution of couple-stresses around the crack tip in comparison with the

analytical solutions [14].
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