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Abstract—Network traffic is a rich source of information for
security monitoring. However the increasing volume of data to
treat raises issues, rendering holistic analysis of network traffic
difficult. In this paper we propose a solution to cope with the
tremendous amount of data to analyse for security monitoring
perspectives. We introduce an architecture dedicated to security
monitoring of local enterprise networks. The application domain
of such a system is mainly network intrusion detection and
prevention, but can be used as well for forensic analysis. This
architecture integrates two systems, one dedicated to scalable
distributed data storage and management and the other dedicated
to data exploitation. DNS data, NetFlow records, HTTP traffic
and honeypot data are mined and correlated in a distributed
system that leverages state of the art big data solution. Data
correlation schemes are proposed and their performance are eval-
uated against several well-known big data framework including
Hadoop and Spark.

I. INTRODUCTION

The detection and prevention of network intrusions is a
recurrent security problem. It has been studied for over thirty
years [1] with the first concept of Intrusion Detection System
(IDS) being proposed in 1987 [2]. However it remains an open
research topic due to the constant evolution of types of data
to analyse. In addition, the adaptation of attackers’ techniques
to cope with new means of protection and firewall policy
makes it a continuously evolving field. Moreover, it raises
new challenging issues related to identifying relevant features
for intrusion detection, as well the means of processing the
increasing volume of heterogeneous security data produced
by a network.

The operations of Network Intrusion Detection Systems
(NIDS) rely on network traffic analysis, where Snort [3], Bro
[4] and Suricata [5] are typical examples. Network traffic
from several protocols (HTTP, SIP, DNS, etc.) is inspected
to find anomalies. These anomalies are defined by rules that
rely on either signatures or anomalous traffic behaviour. If
such anomalies are observed, the system either raises an
alert (IDS) or stops the communication (IPS). Current IDSs
analyse several protocols and data and events observed by
them are correlated by SIEM (Security Information and Event
Management) in order to detect intrusions. One shortcoming is
that current solutions realizing in-depth packet analysis are not
scalable and adaptable to big network producing high quantity
of data.

Operators, i.e. the Internet Service Providers (ISPs), have to
deal with huge quantities of traffic data. Due to such scalability
issues, ISPs usually collect IP flow data as this represents
an aggregated view of traffic by discarding the payload. This
also preserves the privacy of end users. Main IP flow record
attributes are source and destination IP addresses, source and
destination ports, the version of IP protocol, a timestamp, the
number of bytes and number of packets exchanged. However,
not only the volume of data and its velocity but also the variety
of information is a challenge. Data can come from different
sources: honeypots, DNS monitoring, standalone intrusion
detection systems, such that having an unified approach for
its analysis is needed.

We have addressed this issue in this paper and proposed a
system architecture dedicated to intrusion detection and pre-
vention of a local company network. The proposed approach
relies on the inspection of several relevant data sources such
as DNS traffic, HTTP traffic, IP flow records and honeypot
data. Each of them was already used for intrusion detection
individually and proved efficient [6], [7], [8], [9], [10]. How-
ever to cope with new hybrid attack techniques that exploit
all means and flaws of the network, protection systems must
use all data sources available. The proposed system integrates
three different data storage systems in the same distributed
data storage and processing facility. This data is exploited by
a distributed data correlation system to provide a large scale
security monitoring system.

The contribution of this paper are:

• we introduce a new intrusion detection architecture that
correlates several data sources (HTTP, DNS, IP flow,
etc.),

• we propose a solution for processing and storing data
coming from different data storage system in a single
facility,

• we present data correlation schemes useful for security
monitoring and evaluate these against several state of the
art distributed computing system including Hadoop and
Spark.

The remaining of the paper is structured as follows. In
Section II we introduce the architecture of the system and the
data correlation schemes as well as their usage. In Section III



we present the global distributed data storage and processing
facility. We evaluate the performance of correlation operations
against several big data frameworks in Section IV. We briefly
talk about the related work in Section V and we conclude in
section VI.

II. SYSTEM ARCHITECTURE AND APPLICATIONS

The global architecture of the proposed security monitoring
system is depicted in Figure 1. It is composed of an hetero-
geneous distributed data storage system — further described
in section III — and a distributed data correlation system.

Four kinds of data are gathered to be correlated by our
system for security monitoring:
• DNS replies
• HTTP packets
• IP flow records
• Honeypot data
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Fig. 1. Large scale security monitoring architecture

A. Data Presentation

Almost all network communications nowadays are initiated
via DNS, which is a core service of the Internet. DNS requests
are performed to get IP addresses associated with a domain
and then consult the needed resource. Hence, monitoring
DNS to identify malicious domains is an efficient way to
proactively detect and prevent an important part of malicious
communications. By setting up a DNS probe at the recursive
DNS server of a company network as proposed by Weimer
[11], all relevant DNS requests and replies of the network
are gathered without data redundancy. The DNS probe of our
system is set up according to ISC passive DNS architecture
[12]. DNS replies addressed to the recursive DNS server are
captured and the information is extracted from DNS packets.
Every observed domain along with its extracted information

are stored in an Apache Cassandra database [13], a highly
scalable and available database.

HTTP traffic represents a significant portion of Internet
users’ traffic and is a well-known intrusion vector. The study of
URIs embedded in HTTP packets and their payload is useful
in the detection and prevention of malicious communications.
Studying URIs involved in communications between one sin-
gle machine of the enterprise network and other machines from
the Internet is interesting for security monitoring perspectives.
Hence, HTTP traffic is monitored at the HTTP proxy level of
the network. All HTTP connection attempts of the network go
through this proxy and different URIs successively involved in
the same communications are analysed on the fly by examining
embedded domains and IP destination of the packets. We limit
in our system the study to payload and URI embedded in
HTTP traffic but the same technique can be applied to any
king of protocol including IP addresses and URI such as SIP
packets for instance.

Cisco NetFlow [14] is a well-known IP flow monitoring
format to observing traffic through routers. This records fea-
tures about communications forwarded through a router. It
consists in source and destination IP addresses, source and
destination ports, a timestamp, the protocol used, the amount
of data exchanged, etc. Flow records are valuable data to detect
intrusions [8] or to highlight botnet communications [9] for
instance. By exporting NetFlow records from the core router
of the network, we store traces of every communication from
the enterprise network to the Internet and vis versa. NetFlow
records are distributively stored in nfcapd binary files.

The last kind of data used in our system is honeypot data.
A honeypot is a machine that seems to be part of a production
network but is actually not. It generally emulates vulnerable
services and contains fake production data. It is intended to
be attacked because it looks like a machine presenting flaws.
Connection attempts to a honeypot are proofs of undesired
activities, being either the result of misconfiguration, or of
probing attacks, with the latter representing the main part.
Hence logging honeypot information gives knowledge about
attackers targeting a specific network, such as IP addresses
used, protocols used, exploit file used, scanning strategies,
etc. Exploiting honeypot data allows to adapt security policies
in order to prevent attacks perpetrated against production
machines by the same attacker. The honeypot solution chosen
in our architecture is Dionaea [15], a low interaction honeypot
that emulates several vulnerable network services (HTTP, FTP,
MSSQL, SMB, etc.). All connections attempts are stored
in a SQLite database according to basic implementation of
Dionaea.

B. Data correlation

We describe in this section the rationale and processing of
the data in the distributed data correlation system. Data from
the four sources are combined in order to compute scores
depicting the level of risk for communications.

When a domain is queried by a client, the request goes to the
local Recursive DNS server. It treats the request by consulting



its cash or making recursive requests to authoritative DNS
servers to resolve the domain. All the authoritative DNS
replies coming to the recursive DNS server are continuously
stored in the Cassandra database. As DNS replies are gathered,
three operations are performed to infer the maliciousness of a
domain:
• Domains are checked against three publicly available

blacklists123. For every blacklist the domain belongs to,
a score, BLdom is incremented.

• Automated classification techniques relying on DNS data
such as [6], [7], [16] are used to identify malicious
domains. The confidence score given by the machine
learning algorithm is used as a risk score Cdom. The
closer it is to 1, the more the domain is likely to be
malicious.

• Every IP address appearing in DNS resource records are
checked against IP addresses logged by the honeypot. For
each match a counter Hdom is incremented. Assuming
a domain having five A resource records i.e. five IP
addresses associated, if three of these were logged by
the honeypot, its score is 3.

These three scores are used to compute a score that
quantifies a domain maliciousness in Equation 1. This score,
Domscore, is computed and stored along with every domain
name in the database.

Domscore = α ∗BLdom + β ∗ Cdom + γ ∗Hdom (1)

For every flow exported by the core router three correlation
schemes are applied to infer the maliciousness of a communi-
cation. These correlation schemes are applied to IP addresses
that do not belong to the enterprise network range:
• IP addresses related to a flow are checked against IP

addresses logged by the honeypot. If there is a match,
ports are checked as well. Hflow is computed by adding
two boolean values corresponding to IP address matching
and port matching. The latter being only computed if
there is an IP address matching first.

• IP addresses related to a flow are checked against the
DNS database as well to determine if these are associated
with domains we consider as malicious. Typically we
compute MDflow as a score corresponding to a sum of
Domscore for all domains associated with the IP address
of a flow record.

• If an IP address appearing in flow records is not associ-
ated with any domains of the DNS database, this address
has a score NOflow = 1. This denotes communications
using hard-coded IP addresses, this can be suspicious as
they may try to bypass DNS based intrusion detection.

Using these three scores we compute a score determining
the risk of a communication described by a flow record. The
formula to compute this Flowscore is given in Equation 2.

Flowscore = α ∗Hflow + β ∗MDflow + γ ∗NOflow (2)

1www.malwaredomainlist.com
2www.malwaredomains.com
3zeustracker.abuse.ch

HTTP traffic is mined on line and no trace is kept of regular
traffic. While HTTP packets go through the proxy they are
forwarded to our analysis system to be rated:
• The URI of HTTP packets is checked to determine if

it embeds a domain present in the DNS database. Then
Dweb = Domscore is computed to highlight if the URI
is malicious.

• HTTP packets having an IP address logged by the hon-
eypot as destination or source IP have a Hweb score
equal to 1 and 0 else. This denotes communication
with potentially malicious sources because logged in the
honeypot.

• HTTP packets including payload received by the emu-
lated HTTP server of the honeypot have PLhweb score
equal to 1 and 0 else. This can disclose trace of injecting
code or shell scripts in HTTP packets.

• Finally payload of HTTP packets is mined to observe
if it includes some domains present in the passive DNS
database. If some domains are found then PLdweb score
is equal to the sum of Domscore of the corresponding
domains.

Hence we have Webscore, a score depicting the malicious-
ness of an HTTP packet and described in Equation 3.

Webscore = α∗Dweb+β∗Hweb+γ∗PLhweb+δ∗PLdweb (3)

C. Applications

We showed with three metrics, i.e. Domscore, Flowscore

and Webscore, how to evaluate the likelihood for a domain
name, a flow and respectively an HTTP packet to be malicious.
These scores can be sequentially used while a communication
is taking place to either raise an alert in an IDS or to block
the communication by an IPS.

Figure 2 depicts an example of the information flow
while a user performs a HTTP request for the domain
www.malicious.com. This action is divided in six sequential
steps in Figure 2, which also shows how the scores introduced
previously are computed. We assume that the honeypot was
already running and gathered information.

To request www.malicious.com via HTTP, the domain must
first be resolved by the recursive DNS server. While the
recursive resolution is performed, DNS replies coming from
authoritative servers are probed and stored in the database
to allow computation of BLdom, Cdom, Hdom and thus
Domscore. Then, the DNS reply is sent to the host which
made the original HTTP request. This request is forwarded
to the HTTP proxy, then Dweb and Hweb relying on the
URI and the IP destination are computed as well as a partial
Webscore. While the HTTP proxy performs the HTTP request,
IP flows are exported by the router. Hflow, MDflow and
NOflow are computed as well as Flowscore. Finally when
the HTTP reply arrives, its payload is analysed to compute
PLhweb and PLdweb in order to deliver a final Webscore.

By fixing thresholds to individual scores (BLdom, Cdom,
Hdom, etc.) or to meta scores (Domscore, Flowscore and
Webscore), alerts are raised and connection can be blocked



at different steps of a communication. Two thresholds can be
fixed for each score, one dedicated to intrusion detection: thd
and an other to intrusion prevention: thp with thd < thp.
Properties can be combined in order to wait for having enough
information before raising an alert. Typically DNS information
is the first we get with our system. Then rules such as the
following one can be defined:
if Domscore > th1 :

raise an alert
else if Domscore > th2 & Webscore > th3 :

raise an alert
with th2 < th1

If there is a high confidence with the maliciousness of a
domain i.e. high value of Domscore, an alert is raised right
after Domscore computation. If the score is lower, then the
system waits for more information such as information about
HTTP communication. Once this information is available
Webscore is computed and if rules are met an alert is then
raised.
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Fig. 2. Information flow graph for HTTP request to www.malicious.com

Even if first tailored for intrusion detection and prevention,
the proposed system can be used for forensic purposes as well.
This system stores in a distributed architecture every requested
domain name, every flow that goes through the core router of
the network and every connection attempts to the honeypot.
The distributed data storage architecture along with a big data
framework such as Hadoop or Spark provides fast access to

worthy historical data. The latter can be used to disclose proof
of intrusions as well as their origins long time after these
happen.

Some other relevant information can be revealed by our
mining system such as finding the machines on the Internet
that are the most contacted by a single machine of the en-
terprise network. This can reveal anomalies if some machines
that connect to the honeypots have a lot of interaction with
production machines. The number of different protocols and
ports used by a single host on the Internet while it is commu-
nicating with the enterprise network can be revealed. If a host
is not communicating intensively with network machines but
always tries new way, by new protocols and new ports, it is
suspicious and can disclose a probing campaign. These are few
examples of other applications that the proposed architecture
can have.

III. DATA STORAGE AND PROCESSING

We briefly introduced in previous section that the data
exploited by our system is captured at different points and
stored in various data storage systems (see Figure 1). This
data storage heterogeneity is due to specific requirements for
each kind of data (passive DNS, Dionaea, NetFlow). During
experiments our system was deployed in a 200 employees
company having activities related to electronic payment. To
give an idea of the amount of data collected per time period
and justify the storage choices here are some values measured
during the testing phase:
• Dionaea honeypot: around 1,000 connection attempts

from 15 different hosts per day.
• NetFlow: average of 9,600,000 flows per day with an

export every minute (approximately 450 Megabytes).
• DNS: around 13 millions DNS replies per day (approxi-

mately 1.5 Gigabyte).
Dionaea honeypot, with few daily connections initiated by

few attackers does not have high requirements. In addition
over the observation period some IP addresses seemed to be
redundantly connecting over time. A basic SQLite database
is chosen to store the logged information (IP, port, protocol,
uploaded payload, etc.). Consultation of the SQLite database
is fast enough for this small quantity of data. It is worth noting
that even with a larger network to monitor this amount of data
would not vary a lot. Having a network of 500 machines or
10,000 would not impact the quantity of data logged by a
single honeypot machine deployed in the network.

Storing NetFlow records is more challenging especially if
we need the approach to be scalable. NetFlow are exported
using nfdump every minutes in order to have an almost real
time view of the communications. NetFlow records are stored
in nfcapd format binary files on several distributed servers.
The use of several servers is not mandatory for our example
but the quantity of flows exported by a router grows with
the size of the network it serves. This choice for Netflow
storage ensures to meet storage scalability requirements for
any network size. However it raises some issues for data
treatment as nfcapd files are binary files. Big data framework



such as Hadoop have an input format for MapReduce tasks
that is usually text based. Even though Hadoop supports built-
in sequence file format for binary input/output, nfcapd files
would have to be first converted in a HDFS-specific (Hadoop
Distributed File System) sequence file before being uploaded.
This process implies a high computational over-head which
is time consuming and not acceptable for real-time security
monitoring. The alternative is to develop a new API that
directly reads NetFlow data in the native nfcapd format.
Such solution is proposed in [17] through a binary input
format for reading packet and NetFlow records concurrently
in HDFS. This solution outperforms the previously cited one
and is proved fast, providing a throughput of 14 Gbps in a
200-node testbed according to experiments performed in [17].

As for NetFlow, DNS monitoring produces a massive
amount of data as seen in our measurements. In addition
this volume of data grows with the number of users/machines
making DNS queries, i.e. the size of the network. Contrarily
to NetFlow, all data does not need to be stored for DNS
monitoring and only partial information is extracted from DNS
packets in order to avoid information redundancy and save
storage space. Typically, stored information consists in all
possible DNS resource records for a domain name, the TTL
of each, some flags, the timestamp for first seen and last seen,
etc. All DNS packets do not need to be saved, hence we chose
to store DNS related information in a database.

To meet data storage and availability requirements, DNS
data is extracted from packets and stored in an Apache
Cassandra database. Cassandra [13] is a distributed database
solution for data storage that exhibits high performance in
data access. It is a decentralized database allowing to store
Terabytes of data. In addition, Apache Cassandra integrates
Hadoop management since version 0.6 ensuring easy inter-
facing with state of the art solution for big data processing.
This implementation ensures our architecture to fit to larger
network than the one we performed tests on.

IV. PERFORMANCE ANALYSIS

We presented in previous sections an architecture for large
scale monitoring. We described data extraction and storage as
well as theoretical correlation scheme and their applications. In
this section we test the proposed correlation schemes against
several big data management systems in order to find the most
suitable for such applications.

Two well known open source big data frameworks are
assessed, the popular Apache Hadoop ecosystem [18] and the
Spark project [19] from AMP Lap of Berkeley university. We
focus on performance comparisons of five components of these
two frameworks namely Hadoop, Pig, Hive, Shark and Spark.

A. Big Data Tools Presentation

We briefly present here the big data tools we used for
the performance assessment of our architecture. For a more
detailed description of these tools the reader is referred to
[18], [20], [21], [22], [19], [23].

• Hadoop [18] is a distributed batch processing framework
to process and to analyse large scale datasets. It consists
of two primary components, which are HDFS (Hadoop
File System) and MapReduce data processing model [20].
Hadoop employs a master/slave architecture to manage a
cluster.

• Hive [21] is an open source data warehouse infrastructure
running on top of Hadoop. It proposes a high level
programming language that abstract the implementation
of MapReduce jobs to give an user-friendly interface to
Hadoop. Commands are expressed in the form of SQL-
like queries, thanks to a language called HiveQL.

• Pig [22] is also a high level distributed programming
model built on top of Hadoop. The main difference
between Hive and Pig is on their purpose. Hive is ap-
propriate for database users while Pig targets experienced
programmers who are not used to write declarative SQL
query.

• Spark: Like Hadoop does, Spark [19] proposes a dis-
tributed data processing solution for data-intensive appli-
cations with the difference that data to process is stored
in-memory. Spark has been proved up to 100 times faster
than Hadoop for specific tasks like iterative jobs.

• Shark [23] is a sub-project of Spark that implements
Hadoop’s Hive on top of Spark such that it is fully
compatible with Hive.

B. Experiments and Results

The five big data solutions are tested in four different sce-
narios relevant for the computation of the metrics introduced
in Section II-B. Experiments were conducted on a cluster of
eight machines (one master node and seven slave nodes). Each
machine runs a 12.04.4 x86 Ubuntu operating system on an
Intel(R) Core(TM)2 Duo with 4GB of RAM. The versions of
experimental frameworks are Hadoop-1.2.1, Hive-0.9.0, Pig-
0.11.1, Spark-0.6.1 and Shark-0.2.1. The Spark framework
was assigned with 2 GB of memory per node i.e. 14 GB of
working memory in total. The dataset used consists in 767
MB of network traffic. All the scenarios were run ten times
for each of the five framework.

The four scenarios are the followings:
• Scenario 1: find packets that match a given source IP

address and a given source port.
• Scenario 2: find packets containing a given substring in

their payload.
• Scenario 3: count the number of destination IP per source

IP and order the result.
• Scenario 4: join two sets according to a common key i.e.

the source IP addresses.
Scenario 1 corresponds to finding information according to

two keys that are a given IP address and a given port. This is
exactly what has to be done to compute Hdom i.e. find whether
an IP address associated with a domain has been logged in
the honeypot. The same operation is performed to compute
Hflow and Hweb, equally BLdom requires the same kind of
operation. The time required to perform this operation is given



in Table I for each of the five frameworks. This table shows
the average, median, minimum and maximum duration taken
to perform the task according to the ten tests performed. We
can see in the table given results for the scenario 1 that Hadoop
and Hive exhibit approximatively the same performance taking
around 17.5 seconds to perform it. Pig is a bit slower than the
previous ones and the slowest of the five frameworks with
26.475 seconds on average. Finally Spark is much faster than
Hadoop doing this task in approximately 1 second. Shark even
improves this performance by needing 0.73 seconds on aver-
age, it is however less steady than other solutions with sparse
amount of time taken among the ten experiments (minimum
duration of 0.559 seconds but maximum of 1.648 seconds). For
this scenario, Spark seems to be the best candidate exhibiting
high speed and steadiness. We mean by steadiness the property
to spend approximatively the same amount of time to perform
the same task while repeating this task several times. In terms
of results it means to have a low standard deviation.

avg σ min max
Hadoop 17.828 17.836 17.255 18.555
Hive 17.611 17.611 17.565 17.802
Pig 26.475 26.53 25.734 30.792
Spark 1.014 1.017 0.941 1.233
Shark 0.73 0.777 0.559 1.648

Scenario 1

avg σ min max
Hadoop 17.382 17.385 17.26 18.641
Hive 11.998 13.034 9.649 26.855
Pig 25.762 25.762 25.725 25.834
Spark 0.634 0.636 0.592 0.775
Shark 0.431 0.433 0.4 0.543

Scenario 2

avg σ min max
Hadoop 34.771 34.773 34.538 35.955
Hive 32.655 32.658 32.023 33.291
Pig 82.744 82.763 82.075 89.477
Spark 1.45 1.979 0.9 6.435
Shark 1.329 1.645 0.913 4.901

Scenario 3

TABLE I
PERFORMANCE OF THE FIVE FRAMEWORKS FOR SCENARIOS 1, 2 & 3
(AVERAGE, MEDIAN, MINIMUM AND MAXIMUM TIME IN SECONDS)

Table I gives the same results for scenarios 2 and 3 as well.
Scenario 2 consists in finding a substring in a payload. This
operation is performed to compute PLhweb and PLdweb. This
computation requires to mine the content of an HTTP packet
to find given code and domain names. It is used as well
to compute Dweb by searching for malicious domains into
URIs. Scenario 3 is useful to highlight the machines inside
the company network that are communicating the most with
machines from the Internet. This is a valuable information
for security monitoring and we described this scenario as
additional application for our architecture in Section II-C.

Almost the same trends as for scenario 1 is observed for
these two other scenarios. Pig is still the slowest solution
especially for scenario 3 where it takes 82.744 seconds to

perform the task. This is more than twice the time that
Hadoop takes and more than a 50-fold increase compared
to Spark. Hadoop and Hive perform almost the same except
in scenario 2, where Hive is faster than Hadoop on average
(12 seconds/17.38 seconds) but Hadoop is steadier than Hive
taking always the same amount of time. Spark and Shark again
are order of magnitudes faster than the three others, exhibiting
results in the order of one seconds for every scenario. Shark
still outperforms Spark by some milliseconds. Both are steady
for scenario 2 as Hadoop, Hive and Pig are but this does
not hold for scenario 3 where there is up to a six-fold fold
difference between minimum and maximum time for Spark
and Shark.

Finally, scenario 4 is aimed at joining two data feeds
according to a common field. The experiment consists in,
given a list of source IP addresses, return all packets in our
sample that have these IPs as source addresses. The list can
be typically a list of malicious IP addresses in order to find
all packets coming from these IP addresses. This action has
to be done to compute MDflow and NOflow to find if there
is common IP address in the DNS database and in NetFlow
records. If the resulted set is empty then NOflow is set to 1,
otherwise MDflow is computed by adding the corresponding
Domscore as described in Section II-B. This join is performed
for a list of 10, 20, 30, 40, 50 and n

10 IP addresses in the list,
where n stands for the total number of distinct IP addresses
present in the network traffic sample. Results are presented in
Table II with average, median, minimum and maximum time
for the five frameworks.

avg σ min max avg σ min max
10 17.47 17.47 17.28 18.40 28.71 28.72 28.09 30.65
20 17.49 17.49 17.26 18.31 28.43 28.43 28.0 29.50
30 17.80 17.81 17.25 19.29 28.52 28.52 27.33 29.50
40 17.50 17.50 17.26 18.29 28.44 28.44 28.05 29.35
50 17.83 17.85 17.26 19.26 28.55 28.55 28.03 30.73
n
10

17.98 17.98 17.25 18.55 28.30 28.30 27.98 29.17

Hadoop Hive

avg σ min max
10 67.516 67.527 66.979 72.087
20 67.507 67.518 67.014 72.041
30 67.625 67.636 67.135 72.289
40 68.535 68.563 67.453 72.528
50 68.385 68.408 67.552 72.852
n
10

69.048 69.078 67.921 73.259

Pig

avg σ min max avg σ min max
10 1.87 2.27 1.39 6.67 2.78 2.78 2.62 3.16
20 1.43 1.44 1.35 1.79 2.70 2.70 2.57 2.96
30 1.37 1.37 1.33 1.44 2.67 2.67 2.54 2.79
40 1.38 1.38 1.28 1.60 2.64 2.64 2.51 2.92
50 1.33 1.33 1.27 1.52 2.66 2.66 2.52 2.87
n
10

1.33 1.33 1.27 1.49 2.65 2.65 2.56 2.80

Spark Shark

TABLE II
PERFORMANCE OF THE FIVE FRAMEWORKS FOR SCENARIO 4 (AVERAGE,

MEDIAN, MINIMUM AND MAXIMUM TIME IN SECONDS)

For this scenario Spark is the best performer with less



than 2 seconds on average, whereas in previous ones it was
Shark. Hive, Spark and Shark takes decreasing amount of time
to perform this task as the number of values to be joined
increases, contrarily to Hadoop and Pig. Spark and Shark
are significantly faster than Hadoop, Hive and Pig. All the
frameworks are quite steady for this scenario except Spark for
a small list of 10 IPs to join.

We showed in this section that Spark and Shark are the
best candidates to implement the big data security monitoring
system exhibiting fast and steady results in data mining
operations. Most of the scores to compute for our correlation
schemes (BLdom, Hdom, Hflow, MDflow, NOflow, Dweb,
Hweb, PLhweb, PLdweb) rely on the four scenarios described
before and we showed that Spark and Shark are between 10
and 20 times faster than Hadoop for these. We confirm as well
results presented in [19], [23] that Shark outperforms Hadoop
by 10x.

V. RELATED WORK

Snort [3], Bro [4] and Suricata [5] are centralized IDSs
that inspect network packets on the fly to detect intrusions.
The proposed system correlates data coming from different
network points and several network components.

In the realm of network intrusion detection, the concept of
event correlation has been widely explored. The principle is to
correlate and establish relations between alarms generated by
sensors in order to find similarity in attacks. In [24], Valdes
et al. correlate alerts based on similarities of their attributes.
Alerts are clustered in [25] based on their triggering events
in order to identify similar attacks raising different alerts.
Alarms from several IDS are correlated in a single system
in [26] to achieve high-level description of attacks. We aim
in this paper at data correlation more than event correlation.
We identify links between malicious domains, malicious URIs,
malicious IP address and finally malicious communications in
order to disclose common malicious structure. This way DNS
requests for malicious domains can be correlated with a-priori
benign IP addresses and flows that are actually malicious. Data
correlation in this way is briefly introduced in [27] where IP
address, traffic routes and commands entered by attackers are
correlated.

A service model for network security application is pre-
sented in [28]. Ridcciulli proposes an architecture including
honeypots that gather cyber-security intelligence. These hon-
eypots continuously gather and record information such as
flow data, payloads and signature alert about attackers. This
data is stored in a cloud architecture where clients around the
world mine and correlate it with monitored flow data in order
to detect intrusions. The correlation between honeypot data
and clients’ data is made with a Google’s page ranking like
algorithm to find similarities. This work is the closest to ours
since it correlates honeypot data and IP flow records in order
to disclose intrusions; however it does not include DNS data
and HTTP traffic. Due to relying on IP flows and honeypot
data, this system has a prominent role of intrusion detection
and forensic analysis whereas our system is mainly dedicated

to intrusion prevention. Moreover the data management of this
system is not described, when we use a scalable distributed
data management system leveraging state of the art big data
management system in our architecture.

Some other work try to address scalable network intrusion
detection [29], [30], [31], [32]. In [29] and [30] stateful
analysis of network traffic is performed. Both solutions take
advantage of multiple GPUs and multi-core CPUs to paral-
lelize traffic processing and content inspection in order to
process several Gigabit of data per second. In [29], every
operation is parallelized and mapped to the appropriate device
such that the IDS has no serialized component, providing high
performance gain. Both solutions [29], [30] are based on Snort
intrusion detection system [3]. Another similar solution based
on Suricata NIDS [5] is proposed in [31], which also proposes
new load balancing. This solution presents scalability both in
terms of traffic load and size of the ruleset i.e. lot of rules
can be set and processed by the IDS thank to this solution.
These papers address the same problem as we do: to propose
a scalable intrusion detection technique. However, these solu-
tions are based on existing stateful intrusion detection system
(Snort or Suricata) that perform in-depth traffic analysis.
Their contributions rely on optimizing existing method for
network traffic analysis by fully exploiting computers capacity.
Contrarily we propose new schemes for network intrusion
detection that rely on a subset of the whole network traffic..

Moreover, the heterogeneous distributed data system storage
and management system we propose relies on existing well-
known solution such as Hadoop [18] or Spark [19] that we
compared in different scenarios related to security monitoring.
More fundamental performance comparison was described in
[33] between the MapReduce paradigm and parallel SQL
database management system. Blanas et al. analyse the per-
formance of several join algorithms with MapReduce in [34].
Our work is different as we compare existing framework
relying on close concepts to address concrete needs of security
monitoring on specific data.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a new scalable architecture
for protecting from and detecting network intrusions. This
system collects and stores in a distributive manner honeypot
data, DNS data, HTTP traffic and IP-flow records. Several
correlation schemes relying on this data are introduced and
their application, ranging from intrusion detection to forensic
analysis, are listed. Five state of the art big data frameworks
that can fit for such an architecture are evaluated in four
scenarios of data correlation relevant for security monitoring.
Out of this performance analysis Spark and Shark appear to
be the best performers in all scenarios and thus the best suited
to implement the solution.

Even though our architecture computes score with few
delay, it still use off-line analysis tool with Hadoop and
Shark. Future work will consist in implementing the same
system with on-line analysis big data framework such as Spark
Streaming [35] or Storm [36].
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