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Abstract

This paper gives a description of the class of continuous functions that are compar-
ison meaningful in the sense of measurement theory. When idempotency is assumed,
this class reduces to the Boolean max-min functions (lattice polynomials). In that
case, continuity can be replaced by increasing monotonicity, provided the range of
variables is open. The particular cases of order statistics and projection functions are
also studied.

Keywords: Aggregation function; Ordinal scale; Comparison meaningfulness; Ordinal
stability.

1 Introduction

Consider a set of real numbers defining an ordinal scale, i.e., a scale where only order
matters, and not numbers. For example, a scale of evaluation of a scientific paper by a
referee such as

1=Poor, 2=Below Average, 3=Average,

4=Very Good, 5=Excellent

is a (finite) ordinal scale, despite the coding by numbers 1 to 5. These numbers are actually
meaningless since any other numbers that preserve order could have been used. For instance,

-6.5=Poor, -1.2=Below Average, 8.7=Average,

205.6=Very Good, 750=Excellent.

Thus, the numbers that are assigned to that scale are defined up to a continuous and strictly
increasing function φ : R→ R. For a general discussion of ordinal scales and for definitions
of other scale types; see for instance Roberts [19] and Luce et al. [8].

Now, let x1, . . . , xn be real numbers given according to an ordinal scale. It is clear that
any aggregation of these numbers cannot be made by means of usual arithmetic operations,
unless these operations involve only order. For example, computing the arithmetic mean is
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forbidden, but the median or any order statistic is permitted. More precisely, the aggregated
value can be calculated only by a synthesizing function M : Rn → R satisfying the following
condition:

M(x1, . . . , xn)
{

<
=

}
M(x′1, . . . , x

′
n)

⇓
M(φ(x1), . . . , φ(xn))

{
<
=

}
M(φ(x′1), . . . , φ(x′n))

for any x, x′ ∈ Rn and any continuous and strictly increasing function φ : R→ R. Such an
order invariant function is said to be comparison meaningful (from an ordinal scale); see
Orlov [14].

A typical example of comparison meaningful function is given by the Boolean max-min
functions [9, 11], also called lattice polynomials [4, 16, 17]. These functions are of the form

M(x) =
∨

T∈T

∧

i∈T

xi (x ∈ Rn),

where T is a non-empty family of non-empty subsets of {1, . . . , n}. Moreover, symbols ∨
and ∧ denote maximum and minimum, respectively.

Marichal and Mathonet [12] described the family of continuous and comparison meaning-
ful functions M : [a, b]n → R, where [a, b] is an arbitrary bounded closed interval of the real
line. They have also showed that, when idempotency is assumed (that is, M(x, . . . , x) = x),
these functions are exactly the Boolean max-min functions. In this case, increasing mono-
tonicity can be substituted to continuity without change.

In this paper we generalize these results by removing two restrictions. Firstly, we assume
that M is defined in En, where E is any real interval, possibly unbounded. Secondly,
we assume that the set of functions φ (which lead from a scale value to an equivalent
one) is reduced to increasing bijections, thus weakening the comparison meaningfulness
property. This latter relaxation is essential, as the admissible transformations characterizing
an ordinal scale actually should be only bijections preserving order (automorphisms); see
[8].

The organization of the paper is the following. In Section 2 we present the Boolean max-
min functions as well as some of their properties. In Section 3 we present the aggregation
properties that will be used and we point out some connections between them. Section 4
is devoted to the main results mentioned above. Section 5 deals with the cases of order
statistics and projection functions.

Note that similar studies have been done for ratio scales and interval scales by Aczél
and Roberts [2] and Aczél, Roberts, and Rosenbaum [3].

2 Boolean max-min functions

In this section we investigate the Boolean max-min functions, which play a central role in
this paper. The word ‘Boolean’ refers to the fact that these functions are generated by
{0, 1}-valued set functions. They are also order invariant extensions in Rn of non-constant
and increasing (monotone) Boolean functions.

To simplify the notation, we set N := {1, . . . , n}.
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Definition 2.1 For any non-constant set function c : 2N → {0, 1} such that c(∅) = 0, the
Boolean max-min function B∨∧c : Rn → R associated to c is defined by

B∨∧c (x) :=
∨

T⊆N
c(T )=1

∧

i∈T

xi (x ∈ Rn).

It can be proved [4, Chap. 2, Sect. 5] that any expression constructed from the real
variables x1, . . . , xn and the symbols ∧, ∨ (and, of course, parentheses) is a Boolean max-
min function. This shows that the concept of Boolean max-min function is very natural
despite its rather strange definition.

Now, we can readily see that any Boolean max-min function B∨∧c fulfills the following
property:

B∨∧c (x) ∈ {x1, . . . , xn} (x ∈ Rn).

Actually, we can point out a stronger property. Let Π denote the set of all permutations
on N , and let us introduce the following sets which cover Rn:

Oπ := {x ∈ Rn |xπ(1) ≤ · · · ≤ xπ(n)} (π ∈ Π).

Clearly, any Boolean max-min function M = B∨∧c fulfills the following property:

∀π ∈ Π, ∃ k ∈ N such that M(x) = xk ∀x ∈ Oπ.

More precisely, we have the following result:

Proposition 2.1 For any π ∈ Π, we have

B∨∧c (x) = xπ(j) (x ∈ Oπ),

with
j =

∨
T⊆N

c(T )=1

∧

π(i)∈T

i.

Proof. We simply have

B∨∧c (x) =
∨

T⊆N
c(T )=1

∧

i∈T

xi =
∨

T⊆N
c(T )=1

∧

π(i)∈T

xπ(i),

which leads to the result.

The set function c that defines B∨∧c is not unique. For example, we have

x1 ∨ (x1 ∧ x2) = x1 (x1, x2 ∈ R).

It can be shown, however, that there is a unique increasing (monotone) set function c that
defines B∨∧c , which is given by

c(T ) = B∨∧c (eT ) (T ⊆ N),

where, for any T ⊆ N , eT is the characteristic vector of T in {0, 1}n. In the appendix we
present all the possible set functions that define the same Boolean max-min function.
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Using classical distributivity of ∨ and ∧, we can see that any Boolean max-min function
can also be put in the form: ∧

T⊆N
d(T )=0

∨

i∈T

xi,

with an appropriate set function d : 2N → {0, 1}. In the appendix we give the conversion
formulas between the set functions c and d as well as some other representations of B∨∧c .

Let f : {0, 1}n → {0, 1} be a non-constant increasing Boolean function. Then the
function B∨∧c , defined with c(T ) = f(eT ) (T ⊆ N), is an extension in Rn of f since
f(eT ) = c(T ) = B∨∧c (eT ) for all T ⊆ N . Consequently, any Boolean max-min function
is an order invariant extension in Rn of a non-constant and increasing Boolean function.
Moreover, we have the following axiomatic characterization; see [10, Lemmas 4.1 and 4.2].

Proposition 2.2 The function M : Rn → R satisfies the following properties:

• increasing monotonicity (in each argument),

• M(eT ) ∈ {0, 1} for all T ⊆ N ,

• interval invariance property:

M(r x1 + s, . . . , r xn + s) = r M(x1, . . . , xn) + s,

for all x ∈ Rn, all r > 0, and all s ∈ R,

if and only if there exists a set function c such that M = B∨∧c .

Consider now the case of symmetric Boolean max-min functions. For this purpose we
recall the concept of order statistic (cf. van der Waerden [20, Sect. 17]).

Definition 2.2 For any k ∈ N , the order statistic function OSk : Rn → R associated to
the kth argument is defined by

OSk(x) = x(k) (x ∈ Rn),

where (·) indicates a permutation on N such that x(1) ≤ · · · ≤ x(n).

By Proposition 2.1, we immediately see that any symmetric Boolean max-min function is
an order statistic. Conversely, any order statistic is a symmetric Boolean max-min function
(see the appendix).

Note that when n is odd, n = 2k−1, the particular order statistic x(k) is the well-known
median function:

median(x1, . . . , x2k−1) = x(k).

Another particular case of Boolean max-min functions is given by the projection func-
tions.

Definition 2.3 For any k ∈ N , the projection function Pk : Rn → R associated to the kth
argument is defined by

Pk(x) = xk (x ∈ Rn).

The projection function Pk consists in projecting x ∈ Rn onto the kth axis. As a
particular synthesizing function, it corresponds to a dictatorial aggregation.
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3 Aggregation properties

Let E be any real interval, bounded or not. Its interior is denoted E◦. The automorphism
group of E, that is the group of all increasing bijections φ : E → E is denoted by Φ(E) and
the set of all continuous and strictly increasing functions φ : E → E by Φ′(E). We clearly
have Φ(E) ⊂ Φ′(E). For the sake of simplicity, we also denote the vector (φ(x1), . . . , φ(xn))
by φ(x).

In this section we present some aggregation properties that we will use to characterize
the set of Boolean max-min functions. The main one is the comparison meaningfulness
property, introduced by Orlov [14]. Let us recall its definition.

Definition 3.1 A function M : En → R is Φ-comparison meaningful (Φ-CM) if, for any
φ ∈ Φ(E) and any x, x′ ∈ En, we have

M(x)
{

<
=

}
M(x′) ⇒ M(φ(x))

{
<
=

}
M(φ(x′)).

A stronger requirement is the Φ-ordinal stability, proposed by Marichal and Roubens [13].

Definition 3.2 A function M : En → E is Φ-ordinally stable (Φ-OS) if, for any φ ∈ Φ(E)
and any x ∈ En, we have

M(φ(x)) = φ(M(x)).

Replacing Φ by Φ′ in the two definitions above, we define the Φ′-comparison meaning-
fulness (Φ′-CM) and the Φ′-ordinal stability (Φ′-OS).

The following proposition was proved by Ovchinnikov [15, Theorem 4.1] in the particular
case of means; see also [6, 13, 16].

Proposition 3.1 Let the function M : En → E fulfill Φ-OS. Then

M(x) ∈ {x1, . . . , xn} ∪ {inf E, sup E} (x ∈ En).

Furthermore, if E is open or if M fulfills Φ′-OS then

M(x) ∈ {x1, . . . , xn} (x ∈ En).

Proof. Consider x = (x1, . . . , xn) ∈ En reordered as x(1) ≤ . . . ≤ x(n) and set x0 := M(x).
Suppose the result is false. We then have three exclusive cases:

• If x(i) < x0 < x(i+1) for one i ∈ {1, . . . , n− 1} then there are elements u, v ∈ E and a
function φ ∈ Φ(E) such that x(i) < u < x0 < v < x(i+1), φ(t) = t in E \ [x(i), x(i+1)],
and φ(u) = v. This implies φ(x0) > x0, which is impossible because

φ(x0) = φ(M(x)) = M(φ(x)) = M(x) = x0.

• If x0 < x(1) then there are v ∈ E and a function φ ∈ Φ(E) such that x0 < v < x(1),
φ(t) = t for all t ≥ x(1), and φ(x0) = v. This implies φ(x0) > x0, a contradiction.

• The case x(n) < x0 can be dealt with as the previous one.
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The second part of the statement is then immediate.

In the second part of Proposition 3.1, the assumption that E is open is necessary when
not considering Φ′-OS. Indeed, if a := inf E ∈ E for example, then any φ ∈ Φ(E) is such
that φ(a) = a and thus the constant function M = a fulfills Φ-OS.

When E is open, a complete description of the class of functions M : En → E fulfilling
Φ-OS was given by Ovchinnikov [16, Theorem 5.1] as follows. Let R be a total preorder on
N . A cell OR in En is defined by

OR := {x ∈ En |xi < xj ⇔ i P j and xi = xj ⇔ i I j},

where P and I are the asymmetric and symmetric parts of R, respectively. The set of all
cells forms a partition of En. The result is then the following.

Proposition 3.2 Assume that E is open. The function M : En → E fulfills Φ-OS if and
only if for each total preorder R on N , there exists k ∈ N such that M(x) = xk for all
x ∈ OR.

The most often encountered synthesizing functions in the literature on aggregation are
means or averaging functions, such as the weighted arithmetic means. Cauchy [5] considered
in 1821 the mean of n independent variables x1, . . . , xn as a function M(x1, . . . , xn) which
should be internal to the set of xi values.

Definition 3.3 A function M : En → R is internal (Int) if

min xi ≤ M(x1, . . . , xn) ≤ max xn (x ∈ En).

Such means satisfy trivially the property of idempotency, i.e., if all xi are identical, M(x)
restitutes the common value.

Definition 3.4 A function M : En → R is idempotent (Id) if

M(x, . . . , x) = x (x ∈ E).

The characterizations we will present in the next section are mainly devoted to idem-
potent functions. We shall also use two other aggregation properties: continuity (Co) and
increasing monotonicity in each argument (In).

The Id property seems natural enough, even when values to be aggregated are defined on
an ordinal scale. Besides, one can readily see that, for functions fulfilling In, it is equivalent
to Cauchy’s internality Int, and both are accepted by all statisticians as requisites for means
and typical values.

The following result, adapted from Lemma 2.2 in [15], shows that ordinal stability and
comparison meaningfulness are closely related properties.

Proposition 3.3 Consider a function M : En → E.
i) If M fulfills Id and Φ-CM then it fulfills Φ-OS.

ii) If M fulfills Φ-OS then it fulfills Φ-CM.
iii) If E is open then M fulfills Id and Φ-CM if and only if it fulfills Φ-OS.
iv) M fulfills Id and Φ′-CM if and only if it fulfills Φ′-OS.
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Proof. Let us prove i), ii) and iii). The proof is identical for iv).
Let M : En → E fulfill Id and Φ-CM. Let x ∈ En and set x0 := M(x). By Id, we have

M(x) = M(x0, . . . , x0) and thus, for any φ ∈ Φ(E),

M(φ(x))
CM
= M(φ(x0), . . . , φ(x0))

Id
= φ(x0) = φ(M(x))

and M fulfills Φ-OS. Conversely, it is clear that if M fulfills Φ-OS, it also fulfills Φ-CM.
Moreover, if E is open then, by Proposition 3.1, M fulfills Id.

4 Main results

In the present section we give the axiomatic characterizations stated in the introduction.
Consider first the case where E is a bounded closed interval [a, b]. Marichal and Math-
onet [12, Theorem 4.1] proved the following result.

Theorem 4.1 The function M : [a, b]n → R fulfills Co and Φ′-CM if and only if
• either M is constant,
• or there exists a set function c and a continuous and strictly monotonic

function g : [a, b] → R such that M = g ◦ B∨∧c .

We intend to generalize this theorem by assuming that M is defined on any real interval
E and also by replacing Φ′ by Φ. We then have the following characterization.

Theorem 4.2 The function M : En → R fulfills Co and Φ-CM if and only if
• either M is constant,
• or there exists a set function c and a continuous and strictly monotonic

function g : E → R such that M = g ◦ B∨∧c .

Proof. (Sufficiency) Trivial.
(Necessity) Let (am)m∈N and (bm)m∈N be two arbitrary sequences of E◦ such that

lim
m→∞ am = inf E, lim

m→∞ bm = sup E,

and
am+1 < am < bm < bm+1 (m ∈ N).

For any fixed m ∈ N, the restriction of M to [am, bm]n fulfills Co and Φ′-CM. By The-
orem 4.1, either there exists a constant Cm such that M = Cm in [am, bm]n, or there
exists an increasing set function cm and a continuous and strictly monotonic function
gm : [am, bm] → R such that M = gm ◦ B∨∧cm

in [am, bm]n. Similarly, either there exists
a constant Cm+1 such that M = Cm+1 in [am+1, bm+1]

n, or there exists an increasing set
function cm+1 and a continuous and strictly monotonic function gm+1 : [am+1, bm+1] → R
such that M = gm+1 ◦ B∨∧cm+1

in [am+1, bm+1]
n.

Clearly, M is constant in [am, bm]n if and only if M is constant in [am+1, bm+1]
n. Hence,

either we have
M = Cm = Cm+1 on [am, bm]n,

or
M = gm ◦ B∨∧cm

= gm+1 ◦ B∨∧cm+1
on [am, bm]n.
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However, for any t ∈ [am, bm], we have

gm(t) = (gm ◦ B∨∧cm
)(t, . . . , t) = (gm+1 ◦ B∨∧cm+1

)(t, . . . , t) = gm+1(t),

and hence gm = gm+1 in [am, bm]. Moreover, defining ψm : [0, 1] → [am, bm] by

ψm(t) = am + t (bm − am) (t ∈ [0, 1]),

we have, for any T ⊆ N ,

ψm(cm(T )) = ψm

[
B∨∧cm

(eT )
]

= B∨∧cm
(ψm(eT ))

= B∨∧cm+1
(ψm(eT )) = ψm

[
B∨∧cm+1

(eT )
]

= ψm(cm+1(T )),

and hence, cm = cm+1.
Consequently, either M is constant in (E◦)n, or there exists a set function c and a

continuous and strictly monotonic function g : E◦ → R such that M = g ◦ B∨∧c . By Co,
this result still holds in En.

The following two characterizations follow immediately from Theorem 4.2.

Corollary 4.1 The function M : En → R fulfills Co, Id, and Φ-CM if and only if there
exists a set function c such that M = B∨∧c .

Proof. Trivial.

Note that the result in Corollary 4.1 was stated and proved first in social choice theory
by Yanovskaya [21, Theorem 1] when E = R.

Corollary 4.2 Assume that E is open. Then the function M : En → E fulfills Co and
Φ-OS if and only if there exists a set function c such that M = B∨∧c .

Proof. The proof follows immediately from Proposition 3.3 and Corollary 4.1.

The result in Corollary 4.2 was stated and proved by Ovchinnikov [16, Theorem 5.3]
in the more general setting where the range of variables is a doubly homogeneous linear
order (i.e., a linear order X fulfilling the following property: for any x1, x2, y1, y2 ∈ X, with
x1 < x2 and y1 < y2, there is an automorphism φ : X → X such that φ(x1) = y1 and
φ(x2) = y2).

Note also that the extension of this result to the (infinite) case of functional operators
can be found in [18].

We have already observed in the remark regarding Proposition 3.1 that, when E is not
open, there exist functions M : En → E fulfilling Co and Φ-OS other than B∨∧c . The
complete description of that family is given in the following result.

Corollary 4.3 The function M : En → E fulfills Co and Φ-OS if and only if
• either M = inf E (unless inf E /∈ E),
• or M = sup E (unless sup E /∈ E),
• or there exists a set function c such that M = B∨∧c .
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Proof. (Sufficiency) Trivial.
(Necessity) By Proposition 3.3, M fulfills Φ-CM. Moreover, by Theorem 4.2, we have two
exclusive cases:

• M is constant. By Proposition 3.1, we have M = inf E (unless inf E /∈ E) or M =
sup E (unless sup E /∈ E).

• There exists a set function c′ and a continuous and strictly monotonic function g :
E → R such that M = g ◦ B∨∧c′ . By Proposition 3.1, the restriction of M to (E◦)n

ranges in E◦ and fulfills the assumptions of Corollary 4.2. Hence, there exists a set
function c such that M = B∨∧c in (E◦)n and even in En since M fulfills Co.

It follows from Corollary 4.3 that the functions M : En → E that fulfill Co, Id, and
Φ-OS are exactly the Boolean max-min functions.

Now, let us turn to the case of increasing functions. Marichal and Mathonet [12, Theo-
rem 3.1] proved the following result.

Theorem 4.3 The function M : [a, b]n → R fulfills In, Id, and Φ′-CM if and only if there
exists a set function c such that M = B∨∧c .

As already mentioned in [12], Φ′ cannot be replaced by Φ in Theorem 4.3. Indeed,
since Φ([a, b]) is the set of all continuous and strictly increasing functions φ : [a, b] → [a, b]
with boundary conditions φ(a) = a and φ(b) = b, we immediately see that the function
M∗ : [a, b]n → R, defined by

M∗(x) =
{

b, if maxi xi = b,
mini xi, else,

(1)

fulfills In, Id, and Φ-CM, but is not a Boolean max-min function in [a, b]n.
This example shows that if E is not open, the set of Boolean max-min functions in En

cannot be characterized by the properties In, Id, and Φ-CM. The following result shows
that this characterization holds when E is open.

Theorem 4.4 Assume that E is open. Then the function M : En → R fulfills In, Id, and
Φ-CM if and only if there exists a set function c such that M = B∨∧c .

Proof. The proof is similar to that of Theorem 4.2. Note however that the absence of Co
forces E to be open.

Theorem 4.4 shows that the discontinuities as in (1) occur only on the border of En.
Thus, any function M : En → R fulfilling In, Id, and Φ-CM is a Boolean max-min function
in (E◦)n.

Corollary 4.4 Assume that E is open. Then the function M : En → E fulfills In and
Φ-OS if and only if there exists a set function c such that M = B∨∧c .

Proof. The proof follows from Proposition 3.3 and Theorem 4.4.
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5 Order statistics and projection functions

We now intend to characterize the order statistics and the projection functions, which are
particular Boolean max-min functions.

Since the order statistics are exactly the symmetric Boolean max-min functions, we
immediately have the following three characterizations. The notation Sy stands for the
symmetry property.

Corollary 5.1 The function M : En → R fulfills Sy, Co, and Φ-CM if and only if
• either M is constant,
• or there exists k ∈ N and a continuous and strictly monotonic function

g : E → R such that M = g ◦OSk.

Corollary 5.2 The function M : En → R fulfills Sy, Co, Id, and Φ-CM if and only if
there exists k ∈ N such that M = OSk.

Corollary 5.3 Assume that E is open. Then the function M : En → R fulfills Sy, In, Id,
and Φ-CM if and only if there exists k ∈ N such that M = OSk.

Note that the second characterization, when Int replaces Id, was proved first by Orlov [14]
in Rn, then by Marichal and Roubens [13, Theorem 1] in En, and finally by Ovchinnikov [15,
Theorem 4.3] in the more general framework of ordered sets. The two other characteriza-
tions were previously unknown.

Now, let us characterize the median function, which is a particular order statistic. For
that purpose we introduce the following property.

Definition 5.1 Let ψ : E → E be a decreasing bijection. A function M : En → R is stable
with respect to a ψ-reversal of the scale (ψ-SR) if for any x, x′ ∈ En, we have

M(x) = M(x′) ⇒ M(ψ(x)) = M(ψ(x′)),

where the notation ψ(x) means (ψ(x1), . . . , ψ(xn)).

We then have the following lemma.

Lemma 5.1 Assume that n is odd. For any decreasing bijection ψ : E → E, the function
M : En → R is an order statistic fulfilling ψ-SR if and only if M = median.

Proof. (Sufficiency) Trivial.
(Necessity) As in the proof of Proposition 3.3, we have M(ψ(x)) = ψ(M(x)) for all x ∈ En.

Let k ∈ N . By ψ-SR, we have

ψ(x(k)) = ψ(OSk(x)) = OSk(ψ(x)) = ψ(x(n−k+1)),

for all x ∈ En. Consequently, we have OSk = OSn−k+1 in En, and hence n = 2k − 1.

Combining Lemma 5.1 with Corollaries 5.1 to 5.3, we have immediately the following
results.
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Corollary 5.4 Assume that n is odd. There exists a decreasing bijection ψ : E → E such
that the function M : En → R fulfills Sy, Co, Φ-CM, and ψ-SR if and only if
• either M is constant,
• or there exists a continuous and strictly monotonic function

g : E → R such that M = g ◦median.

Corollary 5.5 Assume that n is odd. There exists a decreasing bijection ψ : E → E
such that the function M : En → R fulfills Sy, Co, Id, Φ-CM, and ψ-SR if and only if
M = median.

Corollary 5.6 Assume that E is open and that n is odd. There exists a decreasing bijection
ψ : E → E such that the function M : En → R fulfills Sy, In, Id, Φ-CM, and ψ-SR if
and only if M = median.

The two latter results are to be compared with the following characterization in Rn of
the arithmetic mean; see Aczél [1, Sect. 5.3.1].

Proposition 5.1 The function M : Rn → R fulfills Sy, Id, and the following additivity
property:

M(x1 + x′1, . . . , xn + x′n) = M(x1, . . . , xn) + M(x′1, . . . , x
′
n) (x, x′ ∈ Rn),

if and only if M(x) = (
∑

i xi)/n for all x ∈ Rn.

Now, let us turn to the case of projection functions. As we can easily see, the projection
functions fulfill the following property [2, 7].

Definition 5.2 A function M : En → R is Φ-comparison meaningful from independent
ordinal scales (Φ-CMI) if, for any φ1, . . . , φn ∈ Φ(E) and any x, x′ ∈ En, we have

M(x)
{

<
=

}
M(x′) ⇒ M(φ(x))

{
<
=

}
M(φ(x′)),

where the notation φ(x) means (φ1(x1), . . . , φn(xn)).

We shall prove that the projection functions are exactly those Boolean max-min func-
tions which fulfill Φ-CMI. On this issue, Kim [7, Corollary 1.2] proved the following result.

Proposition 5.2 The function M : Rn → R fulfills Co and Φ-CMI if and only if
• either M is constant,
• or there exists k ∈ N and a continuous and strictly monotonic function

g : R→ R such that M = g ◦ Pk.

From this result, we can deduce the following lemma, which will enable us to characterize
easily the projection functions.

Lemma 5.2 The function M : En → R is a Boolean max-min function fulfilling Φ-CMI
if and only if there exists k ∈ N such that M = Pk.

11



Proof. (Sufficiency) Trivial.
(Necessity) Suppose that the Boolean max-min function B∨∧c fulfills Φ-CMI in En. If
E = R then, by Proposition 5.2, B∨∧c is trivially a projection function.

Assume that E is an arbitrary open real interval. Let x, x′ ∈ Rn, let φ1, . . . , φn ∈ Φ(R),
and let ψ : E → R be any increasing bijection. Setting yi := ψ−1(xi), y′i := ψ−1(x′i), and
ψi := ψ−1 ◦ φi ◦ ψ for all i ∈ N , we have

B∨∧c (x)
{

<
=

}
B∨∧c (x′)

⇒ B∨∧c (y)
{

<
=

}
B∨∧c (y′)

⇒ B∨∧c (ψ1(y1), . . . , ψn(yn))
{

<
=

}
B∨∧c (ψ1(y

′
1), . . . , ψn(y′n))

⇒ B∨∧c (φ1(x1), . . . , φn(xn))
{

<
=

}
B∨∧c (φ1(x

′
1), . . . , φn(x′n)).

Hence, B∨∧c fulfills Φ-CMI in Rn and is thus a projection function.
Assume now that E is an arbitrary interval, bounded or not. For any open interval

Ω ⊆ E, the function B∨∧c fulfills Φ-CMI in Ωn and is thus a projection function. We then
conclude as in the proof of Theorem 4.2.

Combining Lemma 5.2 with the results obtained in Section 4, we deduce immediately
the following three characterizations.

Corollary 5.7 The function M : En → R fulfills Co and Φ-CMI if and only if
• either M is constant,
• or there exists k ∈ N and a continuous and strictly monotonic function

g : E → R such that M = g ◦ Pk.

Corollary 5.8 The function M : En → R fulfills Co, Id, and Φ-CMI if and only if there
exists k ∈ N such that M = Pk.

Corollary 5.9 Assume that E is open. Then the function M : En → R fulfills In, Id, and
Φ-CMI if and only if there exists k ∈ N such that M = Pk.

A Representations of Boolean max-min functions

The results we present here can be easily extracted from [11], where the discrete Sugeno
integral (i.e., a weighted generalization of Boolean max-min functions) is investigated.

The set function c that defines the Boolean max-min function B∨∧c is not uniquely
determined. The following result gives all the possible set functions that define the same
Boolean max-min function.

Observe first that we have

B∨∧c (eT ) =
∨

K⊆T

c(K) (T ⊆ N).

Proposition A.1 Let c and c′ be set functions defining B∨∧c and B∨∧c′ , respectively. Then
the following three assertions are equivalent:

i) B∨∧c′ = B∨∧c

12



ii) B∨∧c′ (eT ) = B∨∧c (eT ), T ⊆ N

iii) for any T ⊆ N , T 6= ∅, we have




c′(T ) = c(T ), if c(T ) >
∨

K T

c(K),

0 ≤ c′(T ) ≤ ∨

K⊆T

c(K), if c(T ) ≤ ∨

K T

c(K).

Let c be any set function defining B∨∧c and let T ⊆ N , T 6= ∅. If c(T ) = 1 and c(K) = 0
for all K  T then, according to the previous result, c(T ) cannot be modified without
altering B∨∧c . In the other case, it can be replaced by 0.

If all the c(T )’s are taken as small as possible then we say that B∨∧c is put in its canonical
form. By contrast, if c is such that

c(T ) =
∨

K⊆T

c(K) (T ⊆ N),

then the c(T )’s are taken as large as possible and we say that B∨∧c is put in its complete
form. Actually, B∨∧c is put in its complete form if and only if c is increasing. We then have
the following immediate result.

Proposition A.2 We can determine the complete form of any function B∨∧c by taking
c(T ) = B∨∧c (eT ) for all T ⊆ N . We then get its canonical form by considering successively
the T ’s in the decreasing cardinality order and setting c(T ) = 0 whenever there exists i ∈ T
such that c(T \ {i}) = 1.

Thus, the canonical form of B∨∧c is obtained by the following algorithm:

• For all T ⊆ N , repeat: c(T ) ← B∨∧c (eT )
• For t = n, . . . , 2, 1, repeat:
• For all T ⊆ N with |T | = t, repeat:
• If ∃ i ∈ T such that c(T \ {i}) = 1 then c(T ) ← 0.

Now, by exchanging the position of ∨ and ∧ in Definition 2.1, we can define the Boolean
min-max functions as follows.

Definition A.1 For any non-constant set function d : 2N → {0, 1} such that d(∅) = 1, the
Boolean min-max function B∧∨d : Rn → R associated to d is defined by

B∧∨d (x) :=
∧

T⊆N
d(T )=0

∨

i∈T

xi (x ∈ Rn).

Observe that we have

B∧∨d (eT ) =
∧

K⊆N\T
d(K) (T ⊆ N).

Moreover, we have a result similar to Proposition A.1.

Proposition A.3 Let d and d′ be set functions defining B∧∨d and B∧∨d′ , respectively. Then
the following three assertions are equivalent:

13



i) B∧∨d′ = B∧∨d

ii) B∧∨d′ (eT ) = B∧∨d (eT ), T ⊆ N

iii) for any T ⊆ N , T 6= ∅, we have





d′(T ) = d(T ), if d(T ) <
∧

K T

d(K),

∧

K⊆T

d(K) ≤ d′(T ) ≤ 1, if d(T ) ≥ ∧

K T

d(K).

Let d be any set function defining B∧∨d and let T ⊆ N , T 6= ∅. If d(T ) = 0 and d(K) = 1
for all K  T then d(T ) cannot be modified without altering B∧∨d . In the other case, it can
be replaced by 1.

If all the d(T )’s are taken as large as possible then we say that B∧∨d is put in its canonical
form. By contrast, if d is such that

d(T ) =
∧

K⊆T

d(K) (T ⊆ N),

then the d(T )’s are taken as small as possible and we say that B∧∨d is put in its complete
form. Actually, B∧∨d is put in its complete form if and only if d is decreasing.

Proposition A.4 We can determine the complete form of any function B∧∨d by taking
d(T ) = B∧∨d (eN\T ) for all T ⊆ N . We then get its canonical form by considering successively
the T ’s in the decreasing cardinality order and setting d(T ) = 1 whenever there exists i ∈ T
such that d(T \ {i}) = 0.

Thus, the canonical form of B∧∨d is obtained by the following algorithm:

• For all T ⊆ N , repeat: d(T ) ← B∧∨d (eN\T )
• For t = n, . . . , 2, 1, repeat:
• For all T ⊆ N with |T | = t, repeat:
• If ∃ i ∈ T such that d(T \ {i}) = 0 then d(T ) ← 1.

As already mentioned in Section 2, any Boolean max-min function is also a Boolean
min-max function. The following proposition gives the correspondence formulas between
these two representations.

Proposition A.5 Let c and d be set functions defining B∨∧c and B∧∨d , respectively. Then
we have

B∨∧c = B∧∨d ⇔ ∨

K⊆T

c(K) =
∧

K⊆N\T
d(K) (T ⊆ N).

In particular, if c and d are respectively increasing and decreasing then

B∨∧c = B∧∨d ⇔ c(T ) = d(N \ T ) (T ⊆ N).

Therefore, if c is increasing then the Boolean max-min function B∨∧c can be written in
the following forms

B∨∧c (x) =
∨

T⊆N
c(T )=1

∧

i∈T

xi =
∧

T⊆N
c(N\T )=0

∨

i∈T

xi.
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By analogy to the theory of Boolean functions, the first form is called the disjunctive normal
form (DNF) of B∨∧c and the second one its conjunctive normal form (CNF).

Regarding the order statistics, the following equalities were proved by Ovchinnikov [15,
Sect. 7]:

OSk(x) =
∨

T⊆N
|T |=n−k+1

∧

i∈T

xi =
∧

T⊆N
|T |=k

∨

i∈T

xi (k ∈ N).

Thus, the order statistic OSk is a Boolean max-min function B∨∧c whose canonical form is
defined by c(T ) = 1 if and only if |T | = n − k + 1, and the complete form by c(T ) = 1 if
and only if |T | ≥ n − k + 1. It is also a Boolean min-max function B∧∨d whose canonical
form is defined by d(T ) = 0 if and only if |T | = k, and the complete form by d(T ) = 0 if
and only if |T | ≥ k.

Proposition A.6 Let c be an increasing set function defining B∨∧c . Then the following
assertions are equivalent:

i) c(T ) = c(T ′) whenever |T | = |T ′|.
ii) There exists k ∈ N such that B∨∧c = OSk.

iii) B∨∧c is a symmetric function.

Proof. i) ⇒ ii) Since c is increasing, there exists k ∈ N such that c(T ) = 1 if and only if
|T | ≥ n− k + 1.

ii) ⇒ iii) Trivial.
iii) ⇒ i) Since c is increasing, we have c(T ) = B∨∧c (eT ) = B∨∧c (eT ′) = c(T ′).

Now, it is clear that, for any k ∈ N , the projection function Pk is a Boolean max-min
function B∨∧c whose canonical form is defined by c(T ) = 1 if and only if T = {k}, and the
complete form by c(T ) = 1 if and only if T 3 k.

References

[1] Aczél, J. (1966). Lectures on functional equations and applications. New York: Aca-
demic Press.

[2] Aczél, J., & Roberts, F.S. (1989). On the possible merging functions. Math. Social
Sciences, 17, 205–243.

[3] Aczél, J., Roberts, F.S., & Rosenbaum, Z. (1986). On scientific laws without dimen-
sional constants. Journal of Math. Analysis and Appl., 119, 389–416.

[4] Birkhoff, G. (1967). Lattice Theory (Third Edition). Providence: AMS.

[5] Cauchy, A.L. (1821). Cours d’analyse de l’Ecole Royale Polytechnique, Vol. I. Analyse
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