
Reasoning at Runtime using time-distorted Contexts:
A Models@run.time based Approach

Thomas Hartmann∗, Francois Fouquet∗, Gregory Nain∗, Brice Morin‡, Jacques Klein∗ and Yves Le Traon∗
∗Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, first.last@uni.lu

‡SINTEF ICT Norway, Norway, first.last@sintef.no

Abstract—Intelligent systems continuously analyze their con-
text to autonomously take corrective actions. Building a proper
knowledge representation of the context is the key to take ade-
quate actions. This requires numerous and complex data models,
for example formalized as ontologies or meta-models. As these
systems evolve in a dynamic context, reasoning processes typically
need to analyze and compare the current context with its history.
A common approach consists in a temporal discretization, which
regularly samples the context (snapshots) at specific timestamps
to keep track of the history. Reasoning processes would then
need to mine a huge amount of data, extract a relevant view,
and finally analyze it. This would require lots of computational
power and be time-consuming, conflicting with the near real-time
response time requirements of intelligent systems. This paper
introduces a novel temporal modeling approach together with
a time-relative navigation between context concepts to overcome
this limitation. Similarly to time distortion theory, our approach
enables building time-distorted views of a context, composed
by elements coming from different times, which speeds up the
reasoning. We demonstrate the efficiency of our approach with
a smart grid load prediction reasoning engine.

Keywords—Temporal data, Time-aware context modeling,
Knowledge representation, Reactive systems, Intelligent systems

I. INTRODUCTION

An intelligent system needs to analyze both its surrounding
environment and its internal state, which together we refer
to as the context of a system, in order to continuously adapt
itself to varying conditions. Therefore, building an appropriate
context representation, which reflects the current context of a
system is of key importance. This task is not trivial [1] and
different approaches and languages are currently used to build
such context representations, e.g. ontologies [2] or DSLs [3].
Most approaches describe a context using a set of concepts
(also called classes or elements), attributes (or properties), and
the relations between them. Recently, in the domain of model-
driven engineering, the paradigm of models@run.time [4], [5]
has rapidly proved its suitability to safely represent, reason
about and dynamically adapt a running software system. Nev-
ertheless, context representations (or models), as abstractions
of real system states and environments, are only able to reflect
a snapshot of a real system at a specific timestamp. However,
context data of intelligent systems rapidly change and evolve
over time (at different paces for each element) and reasoning
processes not only need to analyze the current snapshot of their
contexts but also historical data.

The research leading to this publication is supported by the National
Research Fund Luxembourg (grant 6816126) and Creos Luxembourg S.A.
under the SnT-Creos partnership program.

Let us take a smart grid as an example. Due to changes in the
production/consumption chain over time, or to the sporadic
availability of natural resources (heavy rain or wind), the
properties of the smart grid must be continuously monitored
and adapted to regulate the electric load in order to positively
impact costs and/or eco-friendliness. For instance, predicting
the electric load for a particular region requires a good under-
standing of the past electricity production and consumption in
this region, as well as other data coming from the current
context (such as current and forecast weather). Since the
electrical grid cannot maintain an overload for more than a
few seconds or minutes [6], it is important that protection
mechanisms work in this time range. This is what we call
near real-time.
It is a common approach for such systems to regularly sample
and store the context of a system at a very high rate in order
to provide reasoning algorithms with historical data. Fig. 1
shows a context —represented as a graph (inspired by object
graphs)— sampled at three different timestamps, ti, ti+1, and
ti+2. Each graph in the figure represents the context at a given
point in time, where all context variables, independently from
their actual values, belong to the same time. Therefore, each
graph lies in a horizontal plane (in time).
This systematic, regular context sampling, however, yields to
a vast amount of data and redundancy, which is very difficult
to analyze and process efficiently. Moreover, it is usually
not sufficient to consider and reason just with data from
one timestamp, e.g. ti or ti+1. Instead, for many reasoning
processes, e.g. to investigate a potential causality between two
phenomena, it is necessary to simultaneously consider and
correlate data from different timestamps (i.e. ti and ti+1).
Reasoning processes therefore need to mine a huge amount
of data, extract a relevant view (containing context elements
from different snapshots), and analyze this view. This overall
process would require some heavy resources and/or be time-
consuming, conflicting with the near real-time response time
requirements such systems usually need to meet.
Going back to the smart grid reasoning engine example: In
order to predict the electric load for a region, a linear regression
of the average electric load values of the meters in this region,
over a certain period of time, has to be computed. Therefore,
reasoning processes would need to mine all context snapshots
in this time period, extract the relevant meters and electric load
values, and then compute a value.

To address these issues, we propose to make context
models aware of time i.e. to allow context elements (data)
from different timestamps in the same model. We refer to such
contexts as time-distorted contexts. Fig. 2 shows such a context



ti

ti+1

ti+2

context
contex

t

tim
e

Fig. 1. Linear sampled context

ti

ti+1

ti+2

context
contex

t

tim
e

Fig. 2. Time-distorted context

representation, again represented as a graph. Here, the context
variables —again independently from their actual values—
belong to different timestamps. Such a context can no longer be
represented as a graph lying entirely in one horizontal plane (in
time). Instead, graphs representing time-distorted contexts lie
in a curved plane. They can be considered as specialized views,
dedicated for a specific reasoning task, composing navigable
contexts to reach elements from different times. In contrast to
the usage of the term view in database communities we do not
aggregate data but offer a way to efficiently traverse specific
time windows of a context.
Physics, and especially the study of laser [7], relies on a
time distortion [8] property, specifying that the current time
is different depending on the point of observation. Applied to
our case, this means that context elements can have different
values depending on the origin of the navigation context,
i.e. depending on the timestamp of the inquiring actor. We
claim that time-distorted context representations can effi-
ciently empower continuous reasoning processes and can
outperform traditional full sampling approaches by far.
The contribution of this paper is to consider temporal
information as a first-class property crosscutting any con-
text element, allowing to organize context representations
as time-distorted views dedicated for reasoning processes,
rather than a mere stack of snapshots. We argue that this
approach enables many reasoning processes to react in
near real-time (the range of milliseconds to seconds).

The remainder of this paper is as follows. Section II
introduces the background of this work. Section III describes
the concepts of our approach and section IV the details on
how we implement and integrate these into the open source
modeling framework KMF. The provided API is presented in
section V. We evaluate our general approach in section VI
on a concrete smart grid reasoning engine for electric load
prediction. After a discussion about the approach and related
work in section VII the conclusion of the paper is presented
in section VIII.

II. BACKGROUND

Over time different languages, formalisms, and concepts
to build and represent the context of intelligent systems have
been developed and used [1], [9], [10] for different purposes.
Entity-relationship models [11], as a general modeling concept
for describing entities and the relationships between them, are
widely used for building context representations. Ontologies,
RDF [12], and OWL [13] are particularly used in the domain of

the Semantic Web. These allow to describe facts in a subject-
predicate-object manner and provide means to reason about
these facts. Over the past few years, an emerging paradigm
called models@run.time [4], [5] proposes to use models both
at design and runtime in order to support intelligent systems.
At design time, following the model-driven engineering (MDE)
paradigm [14], models support the design and implementation
of the system. The same (or similar) models are then embed-
ded at runtime in order to support the reasoning processes
of intelligent systems, as models offer a simpler, safer and
cheaper [15] means to reason. Most of these approaches (RDF,
OWL, models) have in common that they describe a context
using a set of concepts (also called: classes, types, elements),
attributes (or properties), and the relations between them.
We refer to the representation of a context (set of described
elements) as a context model or simply as model and to a single
element (concept) as model element or simply as element.
The concepts of our approach are, in principle, independent
of a concrete context representation strategy. However, the
implementation of our approach and the provided API are build
on a models@run.time based context representation approach
and are integrated into an open source modeling framework,
called Kevoree Modeling Framework [16] (KMF 1). KMF is
the modeling pillar supporting the Kevoree models@run.time
platform [17]. We decided to leverage a models@run.time
based approach for several reasons: First of all, models provide
a semantically rich way to define a context. Second, models
can be used to formally define reasoning activities. Last but
not least, the models@run.time paradigm has been proved to
be suitable to represent this context during runtime [4], [5].

KMF is an alternative to EMF [18] and specifically de-
signed to support the models@run.time paradigm in terms of
memory usage and runtime performance. Two properties of
KMF are particularly important for the implementation of our
approach: First, in KMF, each model element can be accessed
within the model by a path (from the root element of a model
to a specific element following containment [19] references),
which defines the semantic to efficiently navigate in the model.
Our contribution extends the path of model elements with
temporal data in order to provide seamless navigation, not
only in the model but as well in time. Second, in KMF each
model element can be serialized independently, using paths to
represent elements of its relationships. We use this property
in our implementation to incrementally store model element
modifications.

1http://kevoree.org/kmf



me1(t1)

t1 t2

time

validity of me1(t1): [t1, t2)
me1(t2)

validity of me1(t2): [t2, ∞)

t3

me2(t3)
validity of me2(t3): [t3, ∞)

Fig. 3. Continous validity of model elements

III. ENABLING TIME-DISTORTED CONTEXTS

Our hypothesis is that temporal knowledge is part of a
domain itself (e.g. electric load or wave propagation prediction,
medical recommender systems, financial applications) and that
defining and navigating temporal data directly within domain
contexts is far more efficient and convenient than regularly
sampling a context and independently querying each model
element with the appropriate time. Therefore, we provide a
concept to define and navigate into the time dimension of
contexts. Most importantly, we enable a context representation
to seamlessly combine elements from different points in time,
forming a time-distorted context, which is especially useful
for time related reasoning. We claim that our approach, which
weaves time directly into the context model, as opposed to a
full sampling and classic data mining approach, is compatible
with near real-time requirements. In the following we present
the concepts to enable time-distorted context models.

A. Temporal Validity for Model Elements

Instead of relying on context snapshots, we define a context
as a continuous structure. Nevertheless, each context (model)
element of this structure can evolve independently. We first
define an implicit validity for model elements. Therefore, we
associate a timestamp to each model element. They reflect
a domain-dependent notion of the time at which a model
element was captured and can be accessed on the element
itself. In other words, a timestamp defines a version vme

(t)
of a model element me at a time t. If a model element now
evolves, an additional version of the same element is created
and associated to a new timestamp (the domain time at which
the new version is captured). Timestamps can be compared
and thus form a chronological sequence. Therefore, although
timestamps are discrete values, they logically define intervals
in which a model element can be considered as valid with
regards to a timestamp. A model element is valid from the
moment it is captured until a new version is captured. New
versions are only created if necessary, i.e. if the model element
changed. Fig. 3 shows two model elements, me1 with two
versions and me2 with one version, and their corresponding
validity periods. As represented in the figure, version me1(t1)
is valid in interval [t1, t2[. Since there is no version of model
element me1, which is captured later than t2, the validity of
version me1(t2) is the open interval [t2, +∞[. Accordingly,
version me2(t3) is valid in [t3, +∞[. Since model elements
now have a temporal validity, a relationship r from a model
element me1 to me2 is no longer uniquely defined. Instead, the
timestamps of model elements have to be taken into account
for the resolution of relationships (described in III-C). The
association of each model element with a timestamp and thus

a validity, provides the foundation for a continuous context
representation. Although model elements are still sampled at
discrete timestamps, the definition of a continuous validity
for each model element allows to represent a context as a
continuous structure. This structure provides the foundation
for our time-distorted context models.

B. Navigating through Time

Based on the idea that it is necessary for intelligent systems
to consider not only the current context but also historical data
to correlate or investigate potential causalities between two
phenomena, we provide means to enable an efficient navigation
into time. Therefore, we define three basic operations for
model elements. These can be called on each model element:
The shift operation is the main possibility to navigate a model
element through time. It takes a timestamp as parameter, looks
for the model version of itself, which is valid at the required
timestamp, loads the corresponding element from storage (can
be RAM) and returns the loaded version.
The previous operation is a shortcut to retrieve the direct
predecessor (in terms of time) of the current model element.
The next method is similar to the previous operation but
retrieves the direct successor of the current model element.
These operations allow us to shift model elements indepen-
dently from each other through time. This makes it possible to
create context models, combining model elements from differ-
ent points in time. Now only the last step is missing to have
time-distorted context models for efficient runtime reasoning
processes: A concept to take the time of model elements into
account when navigating between model elements.

C. Time-relative Navigation

Navigating temporal data is a complex task, since a rela-
tionship r from an element me1 to an element me2 is no longer
uniquely defined. Instead —depending on the timestamps t1
and t2 of me1 and me2, and depending on the set of versions
of me1 and me2— a relationship r from me1 to me2 can
link different versions of me2. This means which version
of me2 is related to me1 by r depends on the timestamp
t of me1. Processing this time-relative navigation manually,
e.g. to correlate or investigate potential causalities between
two phenomena, is complicated and error-prone. We therefore
provide a concept to automatically resolve relationships, taking
the time aspect into account, while navigating the context
model. This time related resolution is completely transparent
and hidden behind methods to navigate in the context model.
Hereby, a context time can be defined (the curve in fig. 2)
and each model element is then resolved accordingly to this
definition while traversing the model. For example, the context
time can be defined as the current time of a model element
minus one day. When navigating from model element me1 at
timestamp ti to element me2, the version of me2, which is valid
at timestamp ti − 1 day is resolved. In case that at timestamp
ti, object me2 does not exist, the prior existing version of me2

is returned. Considering model elements in the context of a
specific time interval creates a navigable time dimension for
model elements. This time relative data resolution is one of
the novel concepts of this contribution. Unlike in previous
approaches (e.g. relationships in MOF [19] or predicates in
RDF [12]), the navigation function is not constant but yields



timestamp path tracekey value

Fig. 4. Key/value structure for time-relative storage

different results depending on the navigation context (i.e. the
current observation date). This distortion in terms of navigable
relations finally enables what we call a time-distorted context.

IV. INTEGRATION INTO KMF

In this section we describe how we integrate our time-
distorted modeling approach into the open source modeling
framework KMF. We rely on two properties to integrate the
time dimension as a crosscutting concern into model elements:
i) each model element must be uniquely identifiable, and
ii) it must be possible to get a serialized representation of
all attributes and relationships of each model element, with
no relativity to a time. To ensure the first property, KMF
defines a path for each model element, starting from the root
element of a model to the element following the containment
relationships, as a unique identifier. Since the containment
graph is actually a tree (each element, except the root, has
to be contained exactly once), the path is a unique full
qualified identifier. For the second property, KMF serializes
models and model elements into traces. A trace defines a
sequence of atomic actions to construct a model element,
using the path concept (including relationship information).
Each model element can be transformed into a trace and vice
versa [20], [21]. As stated in III-A we inject a timestamp
into all model elements. We do that by extending the KMF
generator to automatically generate a timestamp attribute for
all model elements. As a consequence, a model element, or
more precisely a version of a model element, is now no
longer simply defined by its path alone, but by a combination
of its path and timestamp. Using the path together with a
timestamp as key and the trace as value allows us to store
and retrieve model elements within their time dimension in
a simple key/value manner. The resolution (and storage) of a
model element is therefore always relative to the context time.
This is shown in fig. 4.

This context data organization allows us to use technologies
eligible for big data to efficiently store and load context data.
The data can be stored using different back ends, e.g. key/value
stores, relational databases, or simply in memory (as a cache).
In our implementation we use Google LevelDB2 since it has
proven to be suitable for handling big context data and, most
importantly, it is very fast for our purpose (see VI). The storage
implementation itself, however, is not part of our contribution.
We intend to provide an efficient layer for runtime reasoning
processes, on top of already existing storage technologies.

Since data captured in context models usually evolve at a
very high pace (e.g. milliseconds or seconds), and our approach
foresees to not only store the current version of model elements
but also historical ones, context models can quickly become
very large. In such cases, context models may no longer fit
completely into memory, or at least it is no longer practical

2https://code.google.com/p/leveldb/

to do so. Therefore, based on our storage concept and the
uniqueness of KMF paths in a model, we implement a lazy
loading3 mechanism to enable efficient loading of big context
models. We use proxies3, containing only path and timestamp,
to reduce the overall memory usage. Attributes and referenced
elements are only loaded when they are read or written. To
enable this we extend KMF so that, while the context model
is traversed, relationships are dynamically resolved. First, it
must be determined which version of a related model element
must be retrieved. This depends on the timestamp of the
model element version (and the context time) from which
the navigation starts (discussed in III-C). Second, the actual
model element version must be loaded from storage. Our
implementation allows to manage context models of arbitrary
sizes efficiently and it hides the complexity of resolving —and
navigating— temporal data behind an API.

V. API

Modeling approaches use meta-model definitions (i.e. con-
cept descriptions) to generate domain specific APIs. The
following section illustrates our API on a simplified smart
grid meta-model definition. The model consists of a smart
meter with an attribute for electric load and a relationship
to reachable surrounding meters. In addition to a classical
modeling API, our time-distorted context extension provides
functions for creating, deleting, storing, loading, and shifting
versions of model elements. Applications can use this API
to create new model elements, specify their timestamps, store
them, change their attributes and relationships, and store new
versions (with different timestamps). In addition, the API can
be used to specify the context time on which elements should
be resolved while traversing the model. One can imagine the
definition of the context time as the curve shown in fig. 2.
Listing 1 shows Java code that uses a Context ctx (abstraction
to manipulate model elements) to perform these actions.

// creating and manipulating model elements
m1 = ctx.createSmartMeter("m1","2014/3/1");
m1.setElectricLoad(125.6);
m1.addReachables(ctx.load("m2"));
m1_2 = m1.shift("2014/3/2");
m1_2.setElectricLoad(193.7);
// definition of the context time
ctx.timeDef("m1","2014/3/1");
ctx.timeDef("m2","2014/3/2");
r_m1 = ctx.load("m1");
assert(r_m1.getElectricLoad()==125.6);
r_m2 = r_m1.getReachables().get(0);
assert(r_m2.getTime()=="2014/3/2")

Listing 1. Usage of the time-distorted modeling API

The API provides a seamless way to create, manipulate, and
navigate in time-distorted context representations.

VI. EVALUATION

To quantify the advantages of our approach, we evaluate it
on a smart grid reasoning engine to predict the electric load in a
region based on current load and historical data. This problem
is taken from our cooperation with Creos Luxembourg S.A.
and led to the research behind this approach.

3http://wiki.eclipse.org/CDO



TABLE I. BENCHMARK USING FULL SAMPLING

Scenario Reasoning Insert
Small Deep Prediction (SDP) 1075.6 ms

267 sSmall Wide Prediction (SWP) 1088.4 ms
Large Deep Prediction (LDP) 180109.0 ms
Large Wide Prediction (LWP) 181596.1 ms

TABLE II. BENCHMARK USING TIME-DISTORTED CONTEXTS

Scenario Reasoning Insert
Small Deep Prediction (SDP) 1.8 ms

16 sSmall Wide Prediction (SWP) 0.8 ms
Large Deep Prediction (LDP) 187.0 ms
Large Wide Prediction (LWP) 157.6 ms

Smart grids are infrastructures characterized by the intro-
duction of reactive entities modernizing the electricity distri-
bution grid. Smart meters, entities installed at customer sites
to continuously measure consumption data and propagate it
through network communication links, are one of the main
building blocks of smart grids. Based on the electrical con-
sumption smart meters can determine the electrical load. The
load is regularly sampled, which leads to big context models.
The idea for this reasoning engine is to predict if the load in
a certain region will likely exceed or surpass a critical value.
Our experimental validation focuses on two key indicators: (1)
performance of the reasoning process and (2) insertion time.

Experimental results: We implemented the reasoning
engine case study leveraging our approach on top of the
KMF framework, presented in IV. It has been implemented
twice, once with a classical systematic sampling strategy, and
once using a time-distorted context model. The full sam-
pling approach is implemented using the same data storage
(Google LevelDB) as our time-distorted context representation
approach. Our context model definition consists of one con-
cept, a smart meter, one attribute for the electrical load, and
a reachable relationship, which connects smart meters. The
context model under study contains 100 smart meters with
10000 values history each, resulting in one million elements
to store and analyze. This amount of data corresponds to
roughly 140 days history. The experimental validation consists
of an electrical load prediction for a specific point of the
grid. We define two kinds of predictions both based on a
linear regression: 1) deep uses a deep history (in time) of the
meter, 2) wide uses history and in addition the electric load
of surrounding meters. These two strategies are each executed
with two different ranges: 1) small using ten hours of history
(30 time units), 2) large uses a history of two months (4800
time units). Using the two strategies and two ranges for each,
we create four different test series (SDP, SWP, LDP, LWP) that
represent typical use cases for our case study. The experiments
were carried out on a MacBook Pro i5 2.4 Ghz, 16 GB RAM.
The results using full sampling are presented in table I, the
results leveraging time-distorted contexts in table II. As shown
in the tables, our time-distorted context strategy leads to a
reduction of the reasoning time by factors of: 598 for SDP,
1361 for SWP, 963 for LDP, and 1152 for LWP, compared to
the classic full sampling strategy. The insert time (for storing
the context values) has also been significantly improved by a
factor of 17. The two reasoning strategies (full sampling and
time-distorted models) predict the same electric load values for

all tests. Our evaluation shows a reasoning time in the order of
magnitude of minutes for regular sampling and milliseconds
for time-distorted contexts, to analyze a particular section of
the grid. Moreover, according to our smart grid case study,
this electric load prediction has to be continuously performed
on several hundred grid points. Thus, our solution reduces the
computation time from hours to a few seconds, compatible
with the near real-time requirements of smart grid overload
capacity. The huge gains compared to full sampling can be
explained by the fact that time-distorted contexts allow to
directly navigate across the time dimension without costly
mining the necessary data from different context models.

VII. DISCUSSION AND RELATED WORK

The lack of a temporal dimension in data modeling has
been discussed in detail, especially in the area of databases. In
an early work Clifford et al. [22] provide a formal semantic
for historical databases. Rose and Segev [23] suggest to extend
the entity-relationship data model into a temporal, object-
oriented one, incorporating temporal structures and constraints
in the data model itself rather than at the application level.
They also propose a temporal query language for the model.
Ariav [24] suggests a temporally-oriented data model as a
restricted superset of the relational model. He adds a temporal
aspect to the tabular notion of data and provides a framework
and a SQL-like query language for storing and retrieving data,
taking their temporal context into account. Works of Mahmood
et al. [25] and Segev and Shoshani [26] take a similar direction
and seek to extend the relational model with temporal aspects.
In an earlier work Segev and Shoshani [27] examine semantics
of temporal data and corresponding operators independently
from a data model. In a more recent work, Shih et al. [28]
describe how including time in a context model helps trig-
gering and handling exceptions in system processes. Selig
et al. [29] describe an interesting mathematical approach to
examine time-dependent association between variables. In the
Bigtable [30] implementation, Google incorporates time at its
core by allowing each cell in a Bigtable to contain multiple
versions of the same data, associated to different timestamps.
All this work addresses mainly efficient storage and querying
of time related data but largely ignores handling of time in the
application domain itself. However, considering time in reason-
ing processes, like correlating causalities between phenomena,
is complex and time-consuming, conflicting with the strict
response time requirements intelligent systems usually face.
The need to represent and reason about temporal knowledge
has also been discussed in RDF [12], OWL [13] and the
Semantic Web. Motik [31] suggests a logic-based approach
for representing validity time in RDF and OWL. He also
proposes to extend SPARQL to temporal RDF graphs and
presents a query evaluation algorithm. We suggest to add a
time dimension directly into the knowledge representation of
a domain itself, i.e. into the core of context models. Therefore,
we not only efficiently store and query historical data (what
is done in other works before), but we propose a way to use
time-distorted data sets specifically for intelligent reasoning.
Also, we do not extend a specific data model (e.g. the re-
lational data model) with temporal structures but use model-
driven engineering techniques to integrate a time dimension
as crosscutting property of any model element. We do not
rely on a complex query language for retrieving temporal data.
Instead, our approach aims at providing a natural, query-less



and seamless navigation into the time dimension of model
elements, allowing a composition of different time-related val-
ues to build a dedicated context model for reasoning purposes
(inspired by temporal logic [32]). Like version control systems,
e.g. Git4, our approach stores incremental changes (over time)
rather than snapshots of a complete system.
Our approach is especially useful if model elements evolve
at different paces. If all elements of a context evolve at the
same pace the main advantage is the navigation concept as
well as the lazy loading mechanism. In future work we want
to improve and optimize our implementation. Especially the
insertion of new model element versions between two existing
versions has to be improved. In addition, we want to investigate
how to distribute storage across multiple machines and how
this affects the performance of our approach.

VIII. CONCLUSION

Considering time as a crosscutting concern of data mod-
eling has been discussed since more than two decades. How-
ever, recent data modeling approaches mostly still rely on a
discrete time representation, which can hardly consider model
elements (e.g. context variables) coming from different points
in time. In this paper, we presented a novel approach which
considers time as a first-class property crosscutting any model
element, allowing to organize context representations as time-
distorted views dedicated for reasoning processes, rather than
a mere stack of snapshots. By introducing a temporal validity
independently for each model element we allowed model ele-
ments to evolve independently and at different paces, making
the full sampling of a context model unnecessary. Instead
of introducing a dedicated querying language we provided
operations to move model elements independently through
time, enabling the creation of context models, which combine
model elements from different timestamps. Finally, we added
a time-relative navigation, which makes an efficient navigation
between model elements, coming from different timestamps,
possible. This allows us to assemble a time-distorted context
model for a specific reasoning purpose and seamlessly and
efficiently navigate along this time distortion without manual
and costly mining of the necessary data from different context
models. Our approach has been implemented and integrated
into the open source modeling framework KMF and evaluated
on a smart grid reasoning engine for electric load prediction.
We showed that our approach supports reasoning processes,
outperforms a full context sampling by far, and is compatible
with most of near real-time requirements.

REFERENCES

[1] M. Perttunen, J. Riekki, and O. Lassila, “Context representation and
reasoning in pervasive computing: a review,” Int. Journal of Multimedia
and Ubiquitous Engineering, pp. 1–28, 2009.

[2] C.-H. Liu, K.-L. Chang, J.-Y. Chen, and S.-C. Hung, “Ontology-
based context representation and reasoning using owl and swrl,” in
Communication Networks and Services Research Conf. (CNSR), 2010
8th Annu., 2010, pp. 215–220.

[3] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Modeling context
information in pervasive computing systems,” in Proc. 1st Int. Conf.
Pervasive Computing, ser. Pervasive ’02, 2002, pp. 167–180.

[4] G. Blair, N. Bencomo, and R. France, “Models@ run.time,” Computer,
vol. 42, no. 10, pp. 22–27, 2009.

[5] B. Morin, O. Barais, J. Jezequel, F. Fleurey, and A. Solberg, “Models@
run.time to support dynamic adaptation,” Computer, vol. 42, 2009.

4http://git-scm.com/

[6] J. C. Cepeda, D. Ramirez, and D. Colome, “Probabilistic-based over-
load estimation for real-time smart grid vulnerability assessment,” in
Transmission and Distribution: Latin America Conf. and Expo. (T D-
LA), 2012 6th IEEE/PES, 2012, pp. 1–8.

[7] H. W. Tom, G. Aumiller, and C. Brito-Cruz, “Time-resolved study of
laser-induced disorder of si surfaces,” Physical review letters, vol. 60,
no. 14, p. 1438, 1988.

[8] P. Hubral, “Time migration-some ray theoretical aspects*,” Geophysical
Prospecting, 1977.

[9] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” Int. J. Ad Hoc Ubiquitous Comput., vol. 2, no. 4, 2007.

[10] T. Strang and C. L. Popien, “A context modeling survey,” in UbiComp
1st Int. Workshop on Advanced Context Modelling, Reasoning and
Management, 2004, pp. 31–41.

[11] P. P. shan Chen, “The entity-relationship model: Toward a unified view
of data,” ACM Trans. Database Syst., vol. 1, pp. 9–36, 1976.

[12] O. Lassila and R. R. Swick, “Resource Description Framework (RDF)
Model and Syntax Specification,” W3C, W3C Recommendation, 1999.

[13] W. W. W. C. W3C, OWL 2 Web Ontology Language. Structural
Specification and Functional-Style Syntax, Std., 2009.

[14] S. Kent, “Model driven engineering,” in IFM, 2002.
[15] J. Rothenberg, L. E. Widman, K. A. Loparo, and N. R. Nielsen, “The

nature of modeling,” in Artificial Intelligence, Simulation and Modeling,
1989, pp. 75–92.

[16] F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and
J. Jézéquel, “An eclipse modelling framework alternative to meet the
models@runtime requirements.” in MoDELS, 2012.

[17] F. Fouquet, E. Daubert, N. Plouzeau, O. Barais, J. Bourcier, and J.-M.
Jézéquel, “Dissemination of reconfiguration policies on mesh networks,
DAIS 2012.”

[18] F. Budinsky, D. Steinberg, and R. Ellersick, Eclipse Modeling Frame-
work : A Developer’s Guide, 2003.

[19] OMG, OMG Meta Object Facility (MOF) Core Specification, Version
2.4.1, Object Management Group Std., Rev. 2.4.1, 2011.

[20] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in Proc.
30th Int. Conf. Software Engineering, 2008, pp. 511–520.

[21] J. Klein, J. Kienzle, B. Morin, and J.-M. Jézéquel, “Aspect model
unweaving,” in In 12th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2009), L. 5795, Ed.,
Denver, Colorado, USA, 2009, pp. p 514–530.

[22] J. Clifford and D. S. Warren, “Formal semantics for time in databases.”
in XP2 Workshop, 1981.

[23] E. Rose and A. Segev, “Toodm - a temporal object-oriented data model
with temporal constraints.” in ER, T. J. Teorey, Ed., 1991.

[24] G. Ariav, “A temporally oriented data model,” ACM Trans. Database
Syst., vol. 11, no. 4, pp. 499–527, 1986.

[25] N. Mahmood, A. Burney, and K. Ahsan, “A logical temporal relational
data model,” CoRR, 2010.

[26] A. Segev and A. Shoshani, “The representation of a temporal data model
in the relational environment.” in SSDBM, 1988.

[27] ——, “Logical modeling of temporal data,” in Proc. ACM SIGMOD
Int. Conf. on Management of Data, ser. SIGMOD ’87, 1987.

[28] C.-H. Shih, N. Wakabayashi, S. Yamamura, and C.-Y. Chen, “A context
model with a time-dependent multi-layer exception handling policy,”
IJICIC, vol. 7, no. 5A, pp. 2225–2234, 2011.

[29] J. P. Selig, K. J. Preacher, and T. D. Little, “Modeling time-dependent
association in longitudinal data: A lag as moderator approach,” Multi-
variate Behavioral Research, vol. 47, no. 5, pp. 697–716, 2012.

[30] F. Chang, J. Dean, S. Ghemawat, W.-C. Hsieh, D.-A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R.-E. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proc. 7th USENIX Symp. OSDI
- Volume 7, ser. OSDI ’06, 2006, pp. 15–15.

[31] B. Motik, “Representing and querying validity time in rdf and owl:
A logic-based approach,” in Proc. 9th Int. Semantic Web Conf. The
Semantic Web - Volume Part I, ser. ISWC’10, 2010, pp. 550–565.

[32] A. Pnueli, “The temporal logic of programs,” in Foundations of Com-
puter Science, 1977., 18th Annu. Symp., 1977, pp. 46–57.


