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Abstract

Quite a number of Zy-gradings, n > 2, appear in Physics and in Mathematics. The
corresponding sign rules are given by the ‘scalar product’ of the involved Z%-degrees. The
new theory exhibits challenging differences with the classical one: nonzero degree even co-
ordinates are not nilpotent, and even (resp., odd) coordinates do not necessarily commute
(resp., anticommute) pairwise (the parity is the parity of the total degree). Formal series
are the appropriate substitute for nilpotency; the category of Z$-manifolds is closed with
respect to the tangent and cotangent functors. The ZZ-supergeometric viewpoint provides
deeper insight and simplified solutions; interesting relations with Quantum Field Theory
and Quantum Mechanics are expected. In this article, we introduce split Zy-manifolds as
intrinsic superizations of Z% \ {0}-graded vector bundles and prove that, conversely, any
Zy-manifold is noncanonically split. We thus provide a complete proof of the Z5-extension
of the so-called Batchelor-Gawedzki Theorem.
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1 Introduction

This paper is the second of a series of articles on ZZ-Supergeometry. For examples of Z5-
superalgebras and Zj-supermanifolds, for motivations, the discussion of Neklyudova’s equiv-
alence [Leill] and the necessity and sufficiency of Z3-gradings, for a detailed study of Zj-
supermanifolds and their morphisms, as well as for expected applications in Physics, we refer
the reader to [CGP14].

Let us nevertheless emphasize that Z3-Supergeometry is a necessary and sufficient general-
ization. If (—, —) denotes the standard ‘scalar product’ of Z%, the considered Z3-commutative
algebras are sufficient, in the sense that any (!) sign rule, for any (!) finite number m of

parameters £%, is of the form
g€’ = (~1)lremigher, (1)

for some Z3-degree o : {¢1,...,6™} 3 €%+ 0, € Z3, for some n < 2m. On the other hand, Z3-
commutative algebras appear naturally in standard Supergeometry. It suffices to think about
the two possible function sheaves of the tangent bundle of a classical supermanifold M, i.e.

about the sheaf Qpp, (M) (resp., Qp(M)) of differential superforms with commutation rule

ww' = (—1)(°~J+k)(°~’/+£)w'w

(resp., ww' = (—1)“¥ R0

where w and ' are a k-form and an /-form of parity @ and &', respectively. The first choice
(which corresponds to a de Rham differential of parity 1) turns the tangent bundle into a
classical supermanifold, whereas for the second (de Rham differential of parity 0) it becomes a
Z3-supermanifold. However, in the first case local coordinates (¢, £%, i ~ dat, £ ~ dé®) have
parity (0,1,1,0), so that the base of the supermanifold T'[1] M has the parity zero coordinates
(2, fa) However, it is difficult to view the ‘time derivative’ of a formal parameter as a classical
variable that may take any real value. In this sense, the category of classical supermanifolds is
not satisfactorily closed with respect to the tangent functor. This problem does not exist for

the category of Z3-supermanifolds.

The present paper on the Z3-extension of the Batchelor-Gawedzki Theorem is organized as

follows.

For the reader’s convenience, we briefly summarize in Section 2 the main results of [CGP14]
that we use in this text.

In Section 3, we recall that any classical supermanifold is noncanonically the superization
IIE = E[1]

of a vector bundle E ([1] means that parity 1 is assigned to all fiber coordinates), and that any

N-manifold of order n > 1 is noncanonically the superization

NE = @ E-li] (2)
=1



of a graded vector bundle E = @' ;| E_; concentrated in degrees —1,..., —n (again [i| means

that the degree of the fiber coordinates is 7). We then explain that the superization

NE= P E, ol

025 \{0}

of a Z% \ {0}-graded vector bundle FE leads to a Z§-supermanifold with function sheaf

AE) = [[T(e*@E)"),
k>0

where © denotes the Zj-graded symmetric tensor product (the passage to opposite degrees,
see (2), is redundant here since the degrees are considered ‘modulo 2’). Moreover, we stress
the difference between the split Z5-supermanifolds IIE and the Z3-supermanifolds obtained via
superization of n-vector bundles, see [CGP14], Example 5.4. The latter are examples of usually
not canonically split Z5-supermanifolds.

The main result of this work, the Z5-Batchelor-Gawedzki Theorem, can be found in Section
4: any smooth Zj-supermanifold is noncanonically split. The proof contains 3 steps.

1. For any Zy-supermanifold M = (M, A), we have a short exact sequence of sheaves
0-J—>A—->C*—=0, (3)

and J/J? ~ T((IIE)*), where E is a Z% \ {0}-graded vector bundle. The sheaves A(IIE)
and A = A(M) are locally isomorphic and their global difference comes from a cohomological
invariant.

2. To build a sheaf morphism A(ITF) — A, we need a projection M — M, or, more precisely,
a splitting ¢ of (3). The construction of the (noncanonical) latter is the most challenging part
of the proof.

3. This embedding ¢ : C*° — A implies that

0T =T —=J/T* =0

is a short exact sequence of sheaves of C*°-modules. Although 7 and J? are not locally free,
we can obtain a splitting
®:J/T*~T(IIE)*) = J C A
and show that it extends to an ‘algebra’ morphism
O : AIE) = [[T(@*(IE)") —» A.
k>0

Let us finally provide a non-exhaustive list of references on classical supermanifolds and
related topics that were of importance for the present text: [Lei80], [Leill], [Var04], [Man02],
[DM99], [CCF11], [BBHI1], [DSB03], [Vor12], [CR12], [BP12], [GKP09], [GKP10].



2 Preliminaries

In principle, in the following we freely use notation, definitions, and the results of [CGP14].
For the convenience of the reader, we nevertheless recall some definitions and propositions in
the present section. For explanations on adic topologies, ringed spaces and their morphisms,

sheaves, as well as partitions of unity, we refer the reader to the Appendix of [CGP14].

Definition 2.1. A locally Z35-ringed space (LZRS), n € N\ {0}, is a pair (M, Aps) made of a
second-countable Hausdorff space M and a sheaf Ays of Z5-graded Zj-commutative associative

unital R-algebras, such that the stalks A,,, m € M, be local rings.

In this definition, Z%-commutative means that two sections s,t € Ay (U), U C M open, of

7ZB-degree §,t, commute according to the sign rule

ts = (1) st (4)
where (—, —) is the standard ‘scalar product’ of Z%.

Definition 2.2. Let n € N\ {0}, p € N, and q = (q1,...,q2n_1) € N*"~1. A smooth Z3-
supermanifold M of dimension p|q is a (L)ZRS M = (M, Ay) that is locally isomorphic to a
Z5-superdomain Urla, By Zy-superdomain we mean a LZRS of the type

Ua = (U, CF[IE", ... 1))

where U C R? is open, the brackets [[...]] denote formal power series, where ¢ = |q| := ), ¢;, and
where &1, ... €9 are formal variables of which g, have the k-th degree in Z \ {0}, 0 = (0, ...,0),

endowed with the lexicographical order.

Note that the sections in Oy (V) := CP(V)[[€',...,&9]], V open in U, are the formal series

S @ = S () )€
|]=0 p1tFpg>0
Here y is a multi-index p € N%, with u, € {0, 1} if £ is nilpotent, and z = (z!,...,zP) are the

coordinates in V.

Proposition 2.3. The topological base space M of a smooth Z%-supermanifold M = (M, Apr)
of dimension p|q carries a classical smooth manifold structure of dimension p, and there exists

a short exact sequence of sheaves
0= T — Ay >C5 —0. (5)

Proposition 2.4. The function sheaf Ay of a Z%-supermanifold M = (M, Ayr) is Hausdorff-
complete with respect to the Jyr-adic topology:

An =l Ay /Ty (6)
k

This property also holds for the algebras of sections A(U) and their ideals J(U), U open in M.



Let us also recall that, due to the existence of partitions of unity for Z3-supermanifolds, the

presheaves Ay /J, A’}, k > 1, are in fact sheaves.

Proposition 2.5. For any Z%-supermanifold M = (M, Ayr) and any point m € M, the unique

mazximal homogeneous ideal my, of the stalk A, is given by

My = {[fIm : (ef)(m) =0} . (7)
When taking an interest in the stalks A,, of the function sheaf of a Z5-supermanifold
(M, Aps) of dimension p|q, we can choose a centered chart (z,£) = (2, ..., 2P, &1, ..., €9) around
m and work in a Zj-superdomain UP associated with a convex open subset U C RP, in which
m ~ x = 0. In view of (7), a Taylor expansion (with remainder) around m ~ x = 0 of the

coordinate form of ¢ f shows that

w2 {[flo: f(2,6) = 0() + D fu(2)€"}
/>0

where 0(x) are terms of degree 1 at least in .

Proposition 2.6. For any m € M, the basis mE+! (k > 0) of neighborhoods of 0 in the my,-adic
topology of Ay, is given by
mp = {[flo: f@,8) = D 0PI 1 N fu(2)er) (8)
0<|ul<k >k

where notation is the same as above.

A morphism of Z§-supermanifolds or Z5-morphism is a morphism between the underlying
locally Z3-ringed spaces.
Proposition 2.7. Any Z5-morphism ¥ = (¢, ¢*) : M = (M, Ayr) = N = (N, By) is continu-
ous with respect to J and m, i.e., for any open V. .C N and any m € M, we have

Vi (In(V) € T~ (V) and y, (M) C

Theorem 2.8. Let m € M be a base point of a Z5-supermanifold M = (M, Apr) and let f €
A (U) be a Z3-function defined in a neighborhood U of m. For any fized degree of approzimation
k € N\ {0}, there exists a polynomial P = P(x,&) such that

[f]m_[P]memfn‘

In this statement the polynomial P depends on m, f, and k, and the variables (z,¢) are
(pullbacks of ) coordinates centered at m. Let us further emphasize that here and in the following,
the term ‘polynomial section’ refers to a formal series Z| >0 P, (x)&" in the parameters £* with

coefficients P, (z) € Poly (V) that are polynomial in the base variables z".
Theorem 2.9. If M = (M, Ay) is a Z5-supermanifold of dimension p|q,
Ve = (VOR[N

a 75-superdomain of dimension u|v, v = |v|, and if (s7,¢%) is an (u + v)-tuple of homoge-
neous Z3-functions in Ap;(M) that have the same Z3-degrees as the coordinates (27,€%) in
Vulv and satisfy (681, e ,53“) (M) C V, there exists a unique morphism of Z3-supermanifolds
U= (¢,9") : M — VUV, such that s = 2l and (b = }€b.



3 Split Zj-supermanifolds

The prototypical (smooth) supermanifold is the locally super ringed space (LSRS) (M, I'(AT*M))
of differential forms over a classical (smooth) manifold M. More generally, if E is a vector
bundle over M, the LSRS (M,T'(AE*)) is a supermanifold of dimension p|q, where p = dim M
and ¢ = rank E. This supermanifold (M,T'(AE*)) is usually denoted IIE or E[1] and viewed
as the total space of the vector bundle F with fiber coordinates of parity 1. We refer to a
supermanifold IIE = E[1] induced by a vector bundle as a split supermanifold. The importance
of this example relies on the fact that any smooth supermanifold is of this type [Bat79], [Bat80],
[Gaw77]. More precisely, for any smooth supermanifold M = (M, A) over a classical smooth
manifold M, there exists a vector bundle E over M, such that M is diffeomorphic to IIE. This
isomorphism is noncanonical and cannot be used in the real analytic or complex category. It is

known as the Batchelor-Gawedzki Theorem.

A similar proposition holds for N-manifolds: Any N-manifold M = (M, .A) of degree n,
n € N\ {0}, is noncanonically diffeomorphic to a split N-manifold IIE, where E = ;" | E_; is a
graded vector bundle over M concentrated in degrees —1,. .., —n, and where I1E = ;" E_;[i]

means that the fiber coordinates of E_; are viewed as having degree i [BP12].

As already mentioned, the major objective of this paper is to extend the Batchelor-Gawedzki
Theorem to Zf5-supermanifolds. We first show that any Z7 \ {0}-graded vector bundle E im-
plements a Z5-supermanifold IIE. Begin, to simplify notation, with a Z% \ {0}-graded vector
bundle E = Ey1 ® E10 ® F11 over a manifold M, and set

IIE = E1[01] @ Eyo[10] ® Eyy[11]

where the degrees in the square brackets are assigned to the fiber coordinates. In view of the form
of the coordinate transformations in the vector bundles E;;[ij], this assignment is consistent.
Denote by

(IIE)* = Ep1[01]" & Eqp[10]" & Eqq[11]*

the dual bundle — the vectors of each bundle E;;[ij]* have degree ij — and by OFIE)*, k> 2,
the Z5-graded symmetric k-tensor bundle of (IIE)*. By graded symmetric we mean here that,
if ¢’ € Eijm[ig]* and €’ € Egp[kl]*, m € M, then
6/ o e// — (_1)ik+j66// 0 6/ )
Consider now the function sheaf
AME) = [[T@*@E)) ~ [ B T(A\E; @A Ef@V'E), (9)
k>0 k>0 r+s+t=k

where A and V denote the antisymmetric and symmetric tensor products, respectively. Of course,
D(A"Eg @ A By @ VUEY,) = N'T(Egy) @ AT (Bfy) @ VT (EY)

where the RHS tensor products are over C*°. The limit A(ILE) is a sheaf of Z3-graded C°°-
modules for the standard sum and action by scalars. Moreover, A(IIE) is a sheaf of Z5-

commutative associative unital R-algebras. The multiplication ® is also the standard one: when



writing formal series > ;- ¥, instead of families (¥g, ¥y, ...), we get
Swed uw=>" Y vov. (10)
k 0 n k+l=n

Remark 3.1. To understand how the Zj-commutativity of two vectors v € I'(E};) and w €
I'(E},) is encoded in the RHS of (9), consider the following simplified situation. If V' and W are

real vector spaces, we have

ANV OW)~AV@AW and A" (VeW)~ P NV eNW. (11)

i+j=n
For n = 2, the isomorphism identifies
w+w) AN +u)=vAv oA FwAY +wAwW =v AV oA =V Aw+w AW
with
WAY)R1+vew —vVew+1® (wAw'),

so that the anticommutation of elements v € V& W and w € V @& W seems to be lost. However,
when defining the algebra structure on the RHS, we pull back the algebra structure from the
LHS, i.e. we set

(vew) WVeouw)vAwAv AW =—vAV AwAw ~—(vAV)® (wAW) .

Let us now come back to the sheaf A(IIE). If we work over a common local trivialization
domain U C M of Ey, Fi9, and Fy1, and denote the base coordinates by x and the fiber

coordinates by &, n, and 9, respectively (£, n, and ¢ are then also the base vectors of the fibers
of Ej,, Efy, and EY;), a function in A(IIE)(U) reads

D F@)Et et
where the series is over all
<o <lp, 1 <...<7s, k1 <...<ky,
0 <r <rank(Ep1), 0<s <rank(Ey), 0<t<o0,
flx) e C=U) .

Therefore, the sheaf A(IIE) is locally canonically isomorphic to Cg3[[£, 1, ¥]], where p = dim M.
Eventually, we associated in a natural way a Z2-supermanifold (M, A(IIE)), see (9), to a Z3\ {0}-
graded vector bundle E over M. This assignment (9) extends straightforwardly to Z% \ {0}-

graded vector bundles.

Definition 3.2. We refer to a Zj-supermanifold (M, A(ILE)), which is implemented by a Zf \
{0}-graded vector bundle E over a manifold M, as a split Z%-supermanifold.

Remark 3.3. Split Z3-supermanifolds and superized n-vector bundles, see Section 5 in [CGP14],

are different concepts.



Indeed, let n = 2 and let £ be a double vector bundle with side vector bundles Ey; — M
and F19 — M, and core vector bundle £y — M. Then & is noncanonically isomorphic to the
double vector bundle E := Ey; & F19 ® E11. The space of decompositions is a nonempty affine
space modelled on I'(Ej; ® Ef; ® Eq1). As for the double vector bundle structure on E, recall
that the pullback of Eyg® E11 — M (resp., Eg1 ® E11 — M) over Eg; — M (resp., E1g — M) is
a vector bundle structure over Ep; (resp., E19) on the manifold E. These two bundle structures
are compatible and F is actually a double vector bundle. However, the vector bundle structure
E = Ey1 & Eyg® E11 — M is not part of the double vector bundle F. The construction of a
Z3-supermanifold via superization of £ ~ E uses (of course) the double vector bundle structure
of E [CGP14]. On the other hand, to build the split Z3-supermanifold associated to E, we only
needed the vector bundle structure on £ = Eg1 ® E10 D F11 — M.

Remark 3.4. Superized n-vector bundles are examples of (usually) not canonically split Z5-

supermanifolds.

To better understand this claim, think about superization, not intrinsically as above, but,
as usual, as the assignment of a degree to each coordinate, provided the coordinate transforma-
tions respect this grading and the cocycle condition remains valid for the new noncommuting
coordinates (see Remark 3.5).

Moreover, look at double vector bundles from the ‘locally trivial fiber bundle’ standpoint,
see [Vorl2]. A double vector bundle can actually be viewed as a (locally trivial) fiber bundle
E — M whose standard fiber is a Z3 \ {0}-graded real vector space Vg1 @ Vip @ Vi1 and whose

coordinate transformations have the form
B = gh(z)n” (12)
)

where the coefficients are smooth in the base coordinates. The Z%—superization of a double vec-
tor bundle is a Z3-supermanifold of dimension dim M|(dim Vo1, dim V3o, dim V;1), see [CGP14],
Sections 4.2 and 5.

On the other hand, a Z3 \ {0}-graded vector bundle is a (locally trivial) vector bundle
E = Ey1 © B9 ® E11 — M. Tt follows that its standard fiber is a Z3 \ {0}-graded real vector

space Vo1 @ Vip @ Vi1 and that its coordinate transformations have the form

aa = g/(x)fal )
BY = gb (x)n®
,.YC o hg/ (5(,‘)196, .

The superization of a Z3 \ {0}-graded vector bundle is a split Z2-supermanifold of dimension
dim M’(dlm V()l, dim Vl(), dim Vn).
Remark 3.4 follows.

Since possible problems with the cocycle condition after superization are not satisfactorily

explained in the literature, let us emphasize that



Remark 3.5. The Z3-superization of n-vector bundles is compatible with the cocycle condition.

Consider the case n = 3 and assume for simplicity that there exists exactly one formal

parameter in each nonzero Z3-degree:

€111, €110, §1015 €100, €011, o010, 001 - (13)

In the coordinate transformations of a 3-vector bundle the variables &100,£010, 001 (resp.,

€110, £101, €011) transform as &, 7 (resp., 9¥) in (12) above, whereas for £111, we have

&1 = f(@)&a1 + g(x)&10éoo1 + h(x)E1018010 + k(2)E1008011 + £(2)E10080108001 5 (14)

see [Vorl2].

The point is that, if the cocycle condition holds for the commuting vector bundle coordinates,
it must also hold for the supercommuting superized variables (of course, for superized variables
we have to fix an order, e.g. the reversed lexicographical order (13)). In the case of classical
supercommutative variables with commutation rules given by the total degrees, this requirement

is satisfied only if one introduces the following sign in the superized coordinate transformation
(14):

& = f(@)& + g(x)&r10€o01 — h(z)&101€010 + k(2)E1008011 + () E100€010E001 -

Indeed, let for instance
111 = &1 — 1018010 (15)
and

£111 = —2&1016010, €101 = 3€1008001, €010 = €010 5 (16)

where these minus signs appear. Consider now the same transformations without the minus

signs and with commuting variables. If the latter satisfy the cocycle condition, i.e. if

&1 = 261018010 + 3&100&0108001

then the superized variable £}, is given by

111 = —2&1016010 + 3&10080108001 - (17)

It is now easily checked that the transformations (15), (16) and (17), with minus signs and
supercommutative variables, satisfy as well the cocycle condition. This is the crucial point in
the proof of Theorem 7.1 in [GR09]. The necessity to introduce the minus signs is due to
the anticommutation of the classical supervariables £p10 and £po1. In our Z3-graded case, these
variables are Zj-commutative, i.e. they commute. This explains why no sign changes are needed

in the Z3-case.

4 Batchelor-Gawedzki theorem

Even in the case of classical supermanifolds, only a small number of complete proofs of the
Batchelor-Gawedzki Theorem can be found in the literature. Below, we give a proof for Z5-
supermanifolds that is based on a Cech cohomology argument [Man02]. For sheaf-theoretic

issues, we refer the reader to [CGP14], Section 7.3 and Proof of Proposition 6.7.



4.1 Cohomological invariant
Let M = (M, Ajr) be a Zy-supermanifold, n > 1, let € : Ay — C37, T = kere, and let
Ay>JIu>TgD ...

be the decreasing filtration of the structure sheaf by sheaves of Z3-graded ideals. To simplify
notation, we omit in the sequel subscript M. The quotients J**! /T k+2 k> 0, are locally free

sheaves of modules over C* ~ A4/7. In particular,
S:=7J/TJ°

is a locally free sheaf of Z§ \ {0}-graded C*°-modules (see e.g. [CGP14], Example 3.2), or,
equivalently, a family of 2" — 1 locally free sheaves of C°°-modules. Hence, there exists a
Zy \ {0}-graded vector bundle E — M such that

S~T((IIE)") .
For instance, in the case n = 2, we get
S~ F(Eol[()l]* D Elo[lo]* D Ell[ll]*) .

As above, denote by © the Z7-graded symmetric tensor product of Z5-graded C*°-modules and
of Z5-graded vector bundles. Then

F(Gk-‘rl(HE)*) ~ ®k+18 ~ jk+1/jk+2 (18)
(indeed, the sheaf morphism, which is well-defined on sections by

®k+1j/j2 5 [81] 0...0 [5k+1] — [81 . '3k+1] c jk-i—l/jk-‘rQ ’
is locally an isomorphism). Our goal is to show that

AME) = [] T @E)") = [] o*'s~A (19)
k>—1 k>—1
as sheaf of Zj-commutative associative unital R-algebras. This Zj-isomorphism implies indeed
the

Theorem 4.1 (Batchelor-Gawedzki Theorem for Z5-Supermanifolds). Any smooth Z3-super-

manifold is (noncanonically) isomorphic to a split Zy-supermanifold.

It is clear that locally the two considered sheaves (see (19)) coincide. To prove that they
are isomorphic, we will build a morphism [],~_, OFIS — A of sheaves of Z5-commutative
associative unital R-algebras. The idea is to extend a morphism § — A, or J/J% — J. The
latter will be obtained as a splitting of the sequence 0 — J2 — J — J/J? — 0. One of
the problems to solve is to show that this sequence can be viewed as a sequence of sheaves of

C*-modules. Therefore, we need an embedding C*° — A.

10



4.2 Projection of M onto M

Let M = (M, A) be a Z3-supermanifold of dimension p|q and let 0 = J — A = C> — 0 be
the corresponding basic short exact sequence (SES). We will embed (noncanonically) C* into
A, i.e. construct a morphism ¢ : C* — A of sheaves of Zj-commutative associative unital
R-algebras, such that € o ¢ = id. In the case of N-manifolds this embedding is canonical, what

makes the proof of the corresponding Batchelor-Gawedzki theorem much simpler.

We build ¢ as the limit of an N-indexed sequence of morphisms ¢y : C*° — A/J**! of

sheaves of Zj-commutative associative unital R-algebras:

oo
¥
Pk A:@kA/Jk Phk+1
Tk Tk+1
A/ TR+ A Tkt
Jr k41

The sequence ¢ will be obtained by induction on k, starting from ¢ = id: we assume that we
already got ;11 as an extension of p; for 0 < i < k — 1, and we aim at extending ¢y : C*° —
A/ T to

Ope1: O = A/ T2

The word ‘extension’ is used here in the sense that

Jh k1 © Pkt1 = Pk - (20)

For any open subset 2 C M, we build extensions g1 : C%°(Q) = A(Q)/T*+2(Q) of ¢i.q, via
a consistent construction of extensions of the ¢y ;7 by local (in the sense of presheaf morphisms)

degree zero unital R-algebra morphisms
P s CF(U) = AU)/TH2U) = C(U)[[E - . €N <k (21)

over a cover U of () by Zy-superchart domains U. Here subscript < k+ 1 means that we confine
ourselves to ‘series’ whose terms contain at most k£ + 1 formal parameters. Further, ‘consistent’

means that, if U,V are two domains of the cover, we must have

Cr+1,UlUnV = Qrs1,v]ony - (22)

(Indeed, if fo € C°°(Q), the sections ¢r+1.0(falv) € AU)/T*2(U), U € U, define a unique
section pr11.0(fa) € A(Q)/TF2(Q), if their restrictions to the intersections UNV coincide, i.e.
if

er+10(folv) = kv (falv) (23)
onUNV.)

11



Lemma 4.2. Ouer any Z3-chart domain U, there exists an extension op1uy @ C(U) —
O(U)<py1 :=CU)[[EL, ..., &Y <ks1 of pru as local degree 0 unital R-algebra morphism.

Proof. We look for an extension ¢p41, of the local degree 0 unital R-algebra morphism ¢y, 7 :
C>®(U) = O(U)<r C O(U) (where the latter is built step by step as an extension of ¢g = id).
Denote by = = (x!,...,2P) the base coordinates in U. The ‘pullbacks’

pru@) =2+ > filz)gh € OU)

1<|u|<k

uniquely define a local degree 0 unital R-algebra morphism %y, ;; : C*°(U) — O(U), see Theorem
2.9. Since the algebra structure in O(U)<y, is given by the multiplication of O(U) truncated at
order k, it is easily seen that the restriction @y, /[<x : C*°(U) — O(U)<, is still a local degree 0
unital R-algebra morphism. For the same reason, the morphisms ¢y, ;7 and @y, ;;|<k coincide on
polynomial functions P(z) € C*°(U). We will actually prove that these morphisms coincide on

all functions f(z) € C*°(U). Then @y, /|<k+1 is the searched extension wri1,1.

Let now zp € U and denote by

e = {[gle : g(wo) =0} and  m, = {[h]s, : (h)(z0) = O}

the unique maximal homogeneous ideal of C7° and O, respectively. The morphism py, (s
(resp., Prul<k, wr,v) is alocal (in the sense of presheaf morphism) degree zero unital R-algebra
morphism (resp., are local degree zero R-linear maps) C*°(U) — O(U) and thus defines an
algebra morphism (resp., linear maps) @y, ., (vesp., P o |<k> Pr,z,) between CgF and O,. The
fr>1.

maps Py, ., |<x and g 4, send mﬁo into m’,,

Indeed, if [g],, € m’ , then

o’

[@k,U(g)]wo = Pk.ao [g]ro € mgfo ’

SO

@k,zo‘ék[g]zo - [@k,U(g)ISk]mo € mi’fg )

in view of Propositions 2.7 and 2.6.

Since the target of ¢y, iy is truncated and thus not a ‘Zj-superdomain’, some care is required.
Note first that, if [g],, € Mg, then e(¢r,ug)(z0) = g(wo) = 0, so that Y 4[g]z, € m},. Moreover,
if [91]agy- - [90)ze € My, then

[oru(91) - - 20 (90)]eo = [0, (910 - - - [Pk (90)]w0 = Psao[91)a0 - - - Phsao [Ge]zg € My

so that

Phao ([91)z0 - - - [9e)20) = Phiwol91 - - - Gelao = (P (91) - - - L (90)) |<kmg € ML, -

Consider finally f(z) € C*°(U) and zg € U, as well as the ‘series’

kU (f) = Pru(f)l<k € OWU)<k -
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Let ¢ > k. Theorem 2.8 implies that there is a polynomial P(z) such that [f]s, — [Pls, € mi,.
It follows that

lenur (F) = B (H)l<kle = Phao ([flao = [Pleo) = Phaol <k ([flao — [Play) € W, -

Hence, all the coefficients of g 7(f) —P 7 (f)|<k vanish at z¢, see Proposition 2.6, for all zg € U,
and all functions f(z) € C*°(U). O

To finalize the construction of the sheaf morphism ¢ : C°° — A, it now suffices to solve the
consistency problem. Let U and V' be Zj-chart domains and let 11,7 and 41,17 be extensions

of ¢ 7 and ¢y, v, respectively, which exist according to the preceding lemma. The difference

Wi1,0v (f) = errr,ulvnv (f) — ertrvivnv(f) € OUNV)<pqr (24)
feC>®UnNV), defines a derivation
Wek+1,UV CUNV)=0UNV)—gs -

Indeed, since pr1,0 = P ul<it1 = OrU + Prul=k+1, we have

wir,uv (f) = erulvav (f) + Crul=kr1lvav (f) — ervivav (f) = Brvl=krilonv (f) ,

where the restrictions to UNV are valued in O(UNV')|<g41, i.e., after coordinate transformation
we omit the terms of order > k + 1. Note now that in a coordinate transformation the order
cannot decrease, so that the second and fourth terms of the RHS contain only terms of order
k 4+ 1. The same holds for the difference of the first and third terms. Indeed, since the ¢y 17
have already been constructed consistently, they coincide on intersections up to order k: the
remaining terms are of order k + 1.

As for the derivation property, start from

err1,ulunv(f9) = err1vionv(f9) + werov(fg) -
The left hand side equals

unv (f)-ertr,ulonv(9) = ertvlonv (f) - ek vionv (9)+ fwrrov(9) +wirov(f)-g -

(25)
Indeed, the products are products in O(U NV) truncated at order k + 1, i.e. we omit the terms
of order > k + 2. Since

Prk+1,U

PEk+1,V Umv(f) ’ <Pk+1,V|UmV(9) = ¢k+1,v|UnV(f9) >

we finally get
Wr1,0v (f9) = wrprov(f) -9+ - wrerr,ov(g) - (26)

In view of (18), the map wy;1 v is a derivation

Wity CXUNV) = (I UNV) /(T2 UNV)? ~T(U NV, (0 IIE))),
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i.e. it is a vector field valued in symmetric (k + 1)-tensors:
wrrov EDU NV, TM @ (0 HTTE)*)) .

This Cech 1-cochain wry1 is obviously a 1-cocycle. However, as well-known, the existence of
a partition of unity in M implies that H*=1(M,E) = 0, for any locally free sheaf £ over M.
Hence, there exists a O-cochain 7,1, i.e. a family ngy1 ¢y € T(U, TM ® (0FH(ITE)*)?), or, still,

a family of derivations
ey 2 C(U) = DU, (@FTHILE)")?) = (THH0)°/(TF2(U))° = O (U) =

such that

Crr1,ulunv — Prt1,vvny = Wer,ov = Mkt1,v lvnv — Tk ,uluny -
It is now easily checked that, since the multiplication in O(U)<g41 is the truncation of the
standard multiplication in O(U), the sum ¢}, ;= Yrp1,0 + k1,0 2 CFU) = OU)<k41
is a local degree 0 unital R-algebra morphism, which satisfies the consistency condition and

extends ¢y, 7. This proves the existence of the searched morphism ¢ : € — A of sheaves of

Z5-commutative associative unital R-algebras.

More precisely, we constructed sheaf morphism
p:C* > A,

which splits the SES
0—-J —A-—"—C"=0

of Z3-commutative associative unital R-algebras, i.e. which satisfies € o ¢ = id. Indeed, for
any open subset V' C M and any f € C°°(V), we have, on an open cover by Z5-chart domains
UcVv,

(evevHlu = eveu(flv) = (idv flu -

Hence, the

Theorem 4.3. For any ZY-supermanifold (M, Anr), the short exact sequence
0= T = Ay >C5 =0

of sheaves of Zi-commutative associative unital R-algebras is noncanonically split.

4.3 Algebra morphisms

Let us recall that a SES 0 — W — V — U — 0 of smooth vector bundles over a same smooth
manifold M (and vector bundle maps that cover identity) is always split — essentially because
there exist smooth partitions of unity in M. Indeed, we can endow V with a Riemannian metric
(we glue local metrics by means of a partition of unity). This (global) metric induces a metric
on each fibre V,,, and V;, splits as V;, = W, @ W,-, with self-explaining notation. We thus get
a global splitting V = W @ W+ as the metric is smooth. Of course, W+ ~ U, as both bundles
are isomorphic to the quotient bundle V/W.

14



It follows that a SES of locally free sheaves of C'j7-modules, where M is a smooth manifold,

is always split.

Of course, due to the embedding ¢ : C*° — A, any A-module inherits a C*°-module struc-

ture. As aforementioned, we need a splitting of the SES
0TJ> =T >8=J/T* =0
of sheaves of C}p-modules. Since J 2 and J are not locally free, we consider the SESs
0 T2 TF 5 7178 2 8 =7/7% >0,

k > 2, of locally free sheaves of C°°-modules and denote by @ a splitting: pi o & = ids. Since
the category of sheaves of C*°-modules is Abelian and since in any Abelian category the inverse

limit functor is left exact, we get the exact sequence of sheaves of C*°-modules
li li
0 — lim 72/ 7% 2% Jiy 7/ gk PR S = 7/ 72

or, still,
07T 7T 5 8=7J/T° =0,
where exactness at the last spot is obvious. When setting ® = lim ®;, we get ®: S - J C A

such that
po® = (limpyg) o (lim @) = lim(pg 0 Py) = ids .

Note that we actually deal with sheaves of Z3-graded C*°-modules and corresponding sheaf
morphisms. Therefore, the splitting is in fact a family of degree zero C'*°-linear maps Py :
SU)—JU)c AU),U C M (that commute with restrictions).

We now extend ® to a morphism A(IIE) = [[,5,®FS — A of sheaves of Z}-commutative
associative unital R-algebras. Since such a morphi_sm is made of a family of degree 0 unital
R-algebra morphisms between algebras of sections (that commute with restrictions), we deal in
the sequel mainly with section spaces, but no notational difference will be made between the
sheaves and their spaces of sections. As announced, we will show that the degree zero C*°-linear
map & : S - J C A extends to the needed degree 0 unital R-algebra morphism — also denoted
by ®. Indeed, define ® first for each degree k > 0. For k =0, i.e. on C*°, set & := ¢ : O — A,
where ¢ is the above-constructed degree preserving unital algebra morphism. For k =1, i.e. on
S, the map ® is the inducing map ® : S - J C A. On ©*22S, we set, for any 91, ..., ¢ € S,

D1 ... O ) = D(ehr) .. D) € TF C A

This extension is well-defined since the RHS is Zj-commutative and C'°°-multilinear. Indeed,

the multiplication in A has these properties; in particular, if f € C* and s',s" € A, we have

o (fs) = ((f) S ) = (f) - (s 8" = f(s ")

Eventually, for > 7% ¥y € A(IIE) = [} OFS, we set
oD W)= (T
k=0 k=0
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where the RHS is a Cauchy sequence of partial sums in .4 with respect to the filtration induced

by J. Since A is Hausdorff-complete, this RHS sequence has a unique limit Y ;2 ®(¥y) € A.
This map ® : A(IIE) — A respects the degrees and the units, and is an R-algebra morphism.

Indeed, note first that if > s}, — ¢ and >, s]/ — s” are two Cauchy sequences in A, then

n n
O s O s =", (27)
k=0 £=0
since
n n n n
Zsk sy) — ’.s":(Zsﬁf—s')-Zs’g/—i—s’-(ng—s”)GJ"H.
e:o k=0 =0 =0

Further, we have

o) Vo> U= Y W ev)=> > (V) (). (28)
k=0 /=0

n=0 k+~=n n=0k+~l=n

It follows that, for any r, in

r

@(i\p @qu” > (V) - D(WY) +
k=0

n=0 k+{=n

r r

Do D B(WL) - R(U)) — (W) D (YY) +

n=0 k+{=n k=0 =0

> o) Z(I)\IJ IO ARIGPR AR
k=0 k=0 =0

the first difference (see (28)) and the third difference (see (27)) belong to J" 1. As for the second
difference, observe that its second term contains all the products of the first, but also additional
terms, which however belong all to J"t!. As N,J* = {0}, it follows that

o0 o0 (o] o0
(Y VoY )=o) W)-2(d V).
k=0 =0 k=0 =0
Actually the just constructed sheaf morphism is locally an isomorphism, what completes the

proof of the theorem.
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