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Abstract

In Physics and in Mathematics Z3-gradings, n > 2, do appear quite frequently. The
corresponding sign rules are determined by the ‘scalar product’ of the involved Z5-degrees.
The present paper is the first of a series on Z3-Supergeometry. The new theory exhibits
challenging differences with the classical one: nonzero degree even coordinates are not
nilpotent, and even (resp., odd) coordinates do not necessarily commute (resp., anticom-
mute) pairwise (the parity is the parity of the total degree). It is based on the hierarchy:
¢ Z3-Supergeometry (classical differential Geometry) contains the germ of Z3-Supergeometry
(standard Supergeometry), which in turn contains the sprout of Z3-Supergeometry, etc.’
The Z3-supergeometric viewpoint provides deeper insight and simplified solutions; interest-
ing relations with Quantum Field Theory and Quantum Mechanics are expected. In this
article, we define Z3-supermanifolds and provide examples in the atlas, the ringed space
and coordinate settings. We thus show that formal series are the appropriate substitute
for nilpotency. Moreover, the category of Zj-supermanifolds is closed with respect to the
tangent and cotangent functors. The fundamental theorem describing supermorphisms in
terms of coordinates is extended to the Zj-context.
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1 Introduction

Classical Supersymmetry and Supergeometry are not sufficient to suit the current needs. In
Physics, Z5-gradings, n > 2, are used to describe anyons and paraparticles. In Mathematics,
there exist good examples of Z-graded Z%-commutative algebras (i.e. the superscript of —1
in the sign rule is the standard ‘scalar product’ of Z%): quaternions and, more generally, any
Clifford algebra, the algebra of Deligne differential superforms... And there exist interesting
examples of Z3-supermanifolds: e.g. (completions of) tangent and cotangent bundles, n-vector
bundles...

Indeed, the tangent bundle of a classical Zi-supermanifold M is a Zi-supermanifold T[1]M
(resp., a Z3-supermanifold TM) with function sheaf the differential superforms of M together
with the Bernstein-Leites (resp., with the Deligne) sign convention. Actually the tangent (and
cotangent) bundle(s) of any Z§-supermanifold is a (are) Z5'-supermanifold(s). Further, any
n-vector bundle canonically provides a Z3-supermanifold as its ‘superization’.

To be more precise, suppose that M is a supermanifold with local coordinates (z!,..., 2P,

€., &%), where the 2% are even and the €% odd. For the tangent bundle T M, with the adapted



local coordinates (z¢,£%, @7, éb ), one can introduce a supermanifold structure, in principle, in two
ways: declaring 7 to be even and éb to be odd, or reversing these parities.

For the latter, the variables éb are even, what works in principle well, but it is hard to regard
them as ‘true’ real-valued functions because they are formal variables, so equations like £ = 2
do not make much sense.

On the other hand, TM, as every vector bundle, admits an N-gradation for which &/ and
é’b are of degree 1. Thus we have a canonical bigradation by the monoid N x Zs, which can
be reduced to Z3 = Zo x Zy. With respect to this bigradation, (z¢,£¢, :i‘j,éb) are of bidegrees
(0,0),(0,1),(1,0), and (1,1), respectively. Now, any symmetric biadditive map (—,—) : Z2 x

73 — 7 gives rise to a sign rule:
AB — (_1)<(m7n)7(k71)>BA ,

where A and B are coordinates of bidegrees (m,n) and (k,1), respectively. We get the usual
sign rule when choosing ((m,n), (k,l)) = mk, and obtain the sign rule for reversed parity
(Berntein-Leites sign rule) choosing ((m,n), (k,1)) = (m+n)(k+1), whereas the ‘scalar product’
((m,n), (k,1)) = mk + nl has been used by Deligne — see discussion in [DM99, Appendix to §1].
Note that the latter does not lead to a superalgebra, as the éb are even in the sense that they
commute among themselves, but anticommute with the £%. Not excluding any sign rule forces
us to work with this bigradation and to include Deligne’s convention into the picture, which —
as mentioned — does not correspond to any supermanifold. It is therefore natural to extend the

notion of supermanifold admitting Z%-gradations and the corresponding sign rule
AB = (—1)XZi=1miki B A (1)

(here m = (my,...,my) and k = (k1,...,k,) are the degrees of A and B, respectively), so that
the additional canonical gradings on TM or T*M do not move us out of the corresponding

category.

Although not universally accepted at the beginning, Z3-Supergeometry is thus a necessary
and natural generalization. When defining the parity of a Z3-degree as the parity of the total
degree, nonzero degree even coordinates are not nilpotent, and even (resp., odd) coordinates
do not necessarily commute (resp., anticommute) pairwise. These circumstances lead to chal-
lenging differences with the classical theory. The reason for initial skepticism was Neklyudova’s
equivalence [Leill]: this result states that the categories of Zj-graded Z%-commutative and
Zy-graded supercommutative algebras are equivalent. However, our previous work shows that
pullbacks of ‘supercommutative concepts’ to the Z%-commutative setting are not always as easy
as expected, and do not always operate properly: Neklyudova’s theorem does not ban studies
of Z5-commutative algebras! On the other hand, Zj-commutative algebras are sufficient, in
the sense that any sign rule, for any finite number m of coordinates, is of the form (1), for some

n < 2m.

Actually Z3-Supergeometry focusses on the following hierarchy: classical differential Geom-
etry (Z9-Supergeometry) contains the germ (differential forms) of standard Supergeometry (Z3-

Supergeometry), which in turn contains the sprout (Deligne superforms) of Z3-Supergeometry...



The Z5-supergeometric viewpoint provides improved insight and simplified solutions, thus em-
phasizing an effect already observed for classical Supergeometry. Tight relations with diverse
concepts in Quantum Field Theory and Quantum Mechanics, e.g. polarization of the vacuum
and Feynman integrals, can be expected. The theory of Zj-supermanifolds is closely related
to Clifford calculus. Clifford algebras have numerous applications in Physics: the use of Zj-
gradings has never been studied. Our theory should lead to a novel approach to quaternionic
functions: examples of application areas include thermodynamics, hydrodynamics, geophysics
and structural mechanics. It is further interesting to observe the parallelism of our extension
with Baez’ suggestion of a common generalization — under the name of r-Geometry — of super-
algebras and Clifford algebras with the goal to incorporate, besides bosons and fermions, also

anyons into the picture [Bae92].

Finally, the key-concept of Z7-Superalgebra is the Z3-Berezinian. This higher Berezinian
(which is tightly connected with quasi-determinants) and the corresponding (via the Liouville
formula) higher trace have recently been constructed [COP12]. It provides a new solution
(‘different’ from the Dieudonné determinant) to Cayley’s challenge to build a determinant of
quaternionic matrices. Hence, our Zj-Supergeometry not only includes differential but also
integral calculus, whereas Molotkov — to our knowledge the only author who understood so far
the necessity to define a (functorial) concept of Z3-supermanifold — mentions explicitly that he

has no insight in this respect [Mol10].

The paper is organized as follows. In Section 2, we prove that any sign rule, for any finite set
of variables, is of the type (1), for some Z5-grading. The necessity to consider Z3-superdomains,
characterized just as in [CB89] by algebras of formal power series, is explained in Section 3.
Moreover, invertibility, locality and completeness issues are addressed, and a coordinate version
of the Zy-supermorphism theorem is proved. In Sections 2 and 3, we use exclusively coordinate
computations, thus allowing the reader to get acquainted with the specificities and foundations
of the new theory. The latter is developed in the next sections via the atlas approach, as well as,
mainly, in the ringed space setting. The concept of Z3-supermanifold is introduced in Section 4.
In Section 5, we detail first examples. Section 6 contains the main proofs of the present work.
We show that most important results of classical Supergeometry extend to the Z3-context,
although nilpotency is lost in this generalized framework — it turns out that formal series are
the appropriate substitute. We prove that Zij-superfunctions project consistently to the base
and that the latter actually carries a smooth manifold structure. Continuity of the pullback
maps of morphisms between Z5-supermanifolds with respect to the filtration provided by the
kernel of the base projection, as well as continuity of the induced maps between stalks with
respect to the filtration implemented by the unique maximal homogeneous ideal — combined
with an appropriate polynomial approximation of Zj-superfunctions —, allow to show that the
fundamental theorem of supermorphisms extends to the Z3-setting. Complementary information

can be found in the appendix-section 7.

Let us finally provide a non-exhaustive list of references on classical supermanifolds and
related topics that were of importance for the present text: [Lei80], [Leill], [Var04], [Man02],
[DM99], [CCF11], [BBHI1], [DSB03], [Vorl2], [CR12], [BP12], [GKP09], [GKP10].



2 Sign rules

Supergeometry is commonly understood as the theory of manifold-like objects admitting anti-
commuting variables. This corresponds to a Zs-gradation in the structure sheaf of the corre-
sponding ringed space, so that even elements are central (commute with everything) and odd
elements anticommute among themselves. In particular, they are nilpotent in step 2. This means
that the sign rules between generators of the algebra are completely determined by their par-
ity. Why not accept arbitrary commutation rules between different generators, even with fixed
parities? In principle, one can consider a general gradation by a semigroup and an arbitrary

commutation factor, i.e. work with so-called colored algebras.

More precisely, let K be a commutative unital ring, K> be the group of invertible elements
of K, and let G be a commutative semigroup. A map ¢ : G x G — K* is called a commutation
factor on G if

e(g,h)e(h,g) =1, e(g,9) ==+1, and e(f,g+h)=c(f,9)(f,h), (2)

for all f,g,h € G. Note that these axioms imply that

E(f +gvh) = 5(f7 h)5(97 h)

(which is sometimes unnecessarily assumed additionally). Indeed,

e(fih)elg, h) = e(h, ) elh, )™t = (e(h,g)e(h, )" =e(hyg + )~ =e(f +g,h) .
The condition (g, g) = £1 also follows automatically from the rest if only K is a field.
Let A be a G-graded K-algebra A = @QGG A9, Elements x from A9 are called G-

homogeneous of degree or weight g =: deg(xz). The algebra A is said to be e-commutative
if

ab = =(deg(a), deg(b))ba . (3)
for all G-homogeneous elements a,b € A. Homogeneous elements = with p(deg(z)) = p(g) :=

e(g,g9) = —1 are odd, the other homogeneous elements are even.

In what follows, K will be R and & will take the form
e(g,h) = (~1)\oM

for a ‘scalar product’ (—,—) : G x G — Z. This means that we use the commutation factor
as a sign rule. In this note we confine ourselves to G' = Z4 and the standard ‘scalar product’
of Zy, what will lead to Z5-Supergeometry with nicer categorical properties than standard
Supergeometry. More precisely, we propose a generalization of differential Zi-Supergeometry to

the case of a Z5-gradation in the structure sheaf.

Indeed, we will show that any sign rule, for any finite number of coordinates, can be obtained

from the ‘scalar product’

(G1seeeyin), (G- Jn))n = 11 + -+ ingin (4)



on Zy for a sufficiently big n. In other words, any algebra that is finitely generated by some
generators satisfying certain sign rules can be viewed as a Zj-graded associative algebra A =
@iezg Al ALA) C AT which is ZB-commutative in the sense that

y'yl = (—1)0nyiyt

for all y* € A%, y/ € AJ. We simply refer to such algebras as Z2-commutative associative
algebras. Let us mention that a similar theorem was proved independently in [MGO10] for

group gradations.

Let now S be a finite set, say S = {1,...,m}, and let ¢ : S x S — {£1} be any symmetric
function. We can understand € as a sign rule for an associative algebra generated by elements
yhi=1,...,m,ie.

y'y' =e(,5)y'y"

We then have the

Theorem 2.1. There isn < 2m and a map o : S — Zy, i — 0}, such that
e(i, j) = (1) . (5)

Proof. We interpret Z3™ as the set of functions {41,...,+m} — Z, and denote by p(i, j) €
{0,1} the parity of (i, j): (—1)P07) = (i, 5).

First, define o1 € Z3™ by o1(1) = 1, 01(—1) = 1 + p(1,1) € Zg, and o1(k) = 0 for |k| > 1.
Then, for j = 2,...,m, define 0;(1) = p(j,1) and o;(—1) = 0. Independently of the definition of

the remaining values of o, Condition (5) is valid for i =1 and all j =1,...,m, since o1(k) =0
for |k| > 1.
Assume inductively that we have fixed o1,..., 0., with oj(k) = 0 for |k| > j, as well as the

values o(k), for j =r+1,...,m and |k| < r, so that (5) is valid for i =1,...,r and all j.
Define:

orp1(r+1) =1, oppa(—r—1) =14+ opp1(k)+p(r+1,r+1), opyr(k) =0for |k >r+1.
|k|=1
Then, (5) is valid also for i = j = r + 1. Putting now o;(—r — 1) = 0 and

r

O’j(’l“ + 1) = Z Uj(k)ar—l—l(k) +p(j,T + 1)
k=1

for j =r+2,...,m, we finish with fixed o1, ..., 0,41, with o;(k) = 0 for |k| > j, and the values
oj(k), for j=r+2,...,mand |k| <r+1, so that (5) is valid for s = 1,...,r+1 and all j. This

proves the inductive step and the theorem follows. ]
Let now y',...,y™ be ‘variables’ with Z&3-degrees fixed by a map o : {1,...,m} — Z23.
We can consider R[y', ..., y™],, which is the free graded tensor algebra over reals generated by

variables y!, ..., y™ modulo the commutation relations described by o,
Yy = (~1)rminyly (6)



[CM14]. This algebra is referred to as the free o-commutative associative R-algebra, or, if o is
fixed, the free Z3-commutative associative R-algebra in m generators. Moreover, if n is fixed,
we usually omit subscript n in (—, —),. The variable 3’ is even (resp., odd) if p(y’) := |oy] :=
oi(1) + ...+ 04(n) € Zy is 0 (resp., 1). We can write every element of R[y!,...,y™], uniquely

as a polynomial

Ny Ny
F@W) =D furom W ™ = fuy®, (7)
[|=0 |u|=0
where |pu| = p1 4+ ... + fim.

3 Zj-superdomains and their morphisms

To develop a generalization of Supergeometry, we wish to distinguish coordinates z!, ..., 2P of
degree 0 := (0,...,0) € Z5 and view them as local coordinates on a standard manifold. The
remaining coordinates ¢!, ..., &7 have nontrivial degrees o1, ...,0, € Z% \ {0} determined by a
fixed map o : {1,...,q} — Z5 \ {0}. We will call them formal variables.

3.1 Sheaf of polynomials

The first idea would be to define a o-superdomain or Zj-superdomain as a ringed space i =

(U,9vu,), where U C RP is an open subset and the structure sheaf is given by

Ove(=) = CF(H)E .. %o - (8)
Here ¢!, ..., €% is a sequence of variables of Z3-degrees oy, i.e. commuting according to
g1 = (-l mingiee. (9)

As already mentioned above, we omit in the sequel subscript o, since this map is fixed. Thus, on

V' C U, our algebra of superfunctions would be the Z3j-commutative associative unital R-algebra
Ou(V) =CF(V)[E', ..., & (10)

of polynomials

Ny Ny
F@,8) =" furopg(@) (€)1 (€D = > fu(x)e (11)

|pu|=0 |+[=0
in the variables £ and with coefficients in the ring C°°(V'), whose multiplication is subject to
the sign rules determined by (9). Note that we omit subscripts like U, whenever we do not wish
to stress the (Hausdorff, second-countable) topological space over which the considered sheaf is
defined. Of course, those £ which are odd, p(£?) = 1, appear in the polynomials with exponents
<1.

Morphisms O(W) — O(V) of Zj-commutative associative unital R-algebras (in particular

changes of coordinates) should preserve the grading, so have the form

2= P+ Y fix)er, (12)
deg(§#)=0
&= ) flaer,
deg(é#)=0a

7



where the functions f, : V' — R? and the map ¢ : V' — W are smooth, and the sums are finite.

It is easy to see that the ideal J(V) C O(V) generated by the formal variables is respected
by morphisms and that the projection

py : O(V) = OV)/IJ(V) = C®(V)

is covariantly defined (we come back to this and similar points later on).

However, this approach has clear shortcomings.

First, as we allow formal variables which are even, the ideal J(V) is not nilpotent, in general,
so superfunctions f with invertible ‘body’ py (f) need not to be invertible in the ring O(V).
Formal inverting of polynomials requires using formal power series.

Second, for a proper development of differential calculus, we should be able to compose
elements of degree 0, see (12), with arbitrary differentiable functions and not only polynomials.
But what is F(x +&2) for a differentiable F' and formal even variable £? Since € is not nilpotent,

the Taylor formula (proceed as in standard Supergeometry) leads again to a formal power series.

3.2 Sheaf of formal power series

A consistent differential calculus for Zj-superdomains forces us to complete the structure sheaf
to formal power series in the formal variables. In this respect our definition of Zy-superdomains,
and the below definition of Zj-supermanifolds, are similar to Choquet-Bruhat’s definition of
standard Rogers-De Witt supermanifolds [CB89]. Of course, odd variables will appear only

with power 1.

In the following, we consider the n-tuples of Z% as ordered lexicographically.

Definition 3.1. Let n,p,q € N and let o : {1,...,q} — Z% \ {0}. Denote by ¢ € N, k €
{1,...,2™ — 1}, the number of degrees o, that coincide with the k-th element of Z3 \ {0} and
set @ =(q1,...,q2n—1). A o-superdomain or Z3-superdomain of dimension p|q is a ringed space
Urla = (U,Ou,), where U C RP is an open subset and the structure sheaf is the sheaf

Ouo(=) = CF(E, - s - (13)
Over V' C U, the algebra of Z5-functions is the Z5-commutative associative unital R-algebra
Ou(V) =Cr(vV)lg',....& (14)
of formal power series
f(-T,f) = Z f/ﬂ...,uq (33)(51)#1 - (é-q)uq = Z fu(:E)f‘u (15)
|ul=0 |ul=0

in formal variables ¢!, ..., &9 of degrees 01,...,0, commuting according to (9), and with coeffi-
cients in C*(V).

We refer to a ringed space of Zj-commutative associative unital R-algebras as a Z3-ringed

space.



Example 3.2. Consider the case n = 2 and p|q1|¢2|gz = 1|1|1|1, write for simplicity (z,§,n,?)
instead of (z, &Y, €2,€3), and choose o¢ = (0,1),0, = (1,0), and oy = (1,1). A Z3-function is
then of the form

I’ g T], Zfr 1927“ 4 Zg ,l927"+1£n + Zh 1927’5 + Zk 1927n+1

r>0 r>0 r>0 r>0
+ Z E 1927‘77 + Z m, ?927"—1—1‘5 + Z n, Q927“—‘,—1 + Epr ,1927’577 , (16)
r>0 r>0 r>0 r>0

where the sums are formal series and the functions in x are smooth. Note that the first (resp.,
second, third, fourth) two sums contain terms of Z3-degree (0, 0) (resp., (0,1), (1,0), and (1,1)).

3.3 Locality of Zj-superdomains

In classical Supergeometry a (super) ringed space is called a space if all its stalks are local rings,
i.e. rings that have a unique maximal homogeneous ideal. Such ringed spaces are referred to as
locally ringed spaces. Further, a ringed space is a supermanifold if it is a space that is locally
modelled on a superdomain. Superdomains are thus ‘trivial’ locally ringed spaces. Of course,

one has to verify that the stalks of a superdomain are local rings.
To show that Z7-superdomains are locally Z5-ringed spaces, we need two lemmas.

Let R be a commutative unital ring and let (¢!, ..., &%) be a finite number of Z3 \ {0}-graded

parameters, which satisfy

fifj _ (_1)<deg(€i)7deg($j))€j§i

(the scalars R are assumed to be central). We denote by R[[¢!,...,&9]] the Z5-commutative

associative unital R-algebra of formal series in the £* with coeflicients in R.

Lemma 3.3. Any series 1 — v, where v = Z|M|>O v, & has no independent term, is invertible,

with inverse v =", o vF.
Proof. Observe first that, for any k£ € N,
k
lv|>k \p1+...tpp=v

where the ; € NY are of course multi-indices. It follows that the coefficients of v=1 := 3>, v*

are finite sums in R, so that v=! € R[[¢},...,€9]]. Tt suffices now to observe that
E DI D
k>0 k>0 k>1
O
Lemma 3.4. A series w € R[[¢,...,&9]] is invertible if and only if its independent term wy is

mvertible in R.



Proof. Necessity directly follows from the definition of the multiplication in R[[¢!, ..., £9]]. Con-
versely, consider w € R[[¢}, ..., &9]] with wg invertible: w = wy(1 —v). In view of the preceding

lemma, we then have w™' = wy ' 3,5, vF. O
We are now prepared to prove the

Proposition 3.5. Any Z3-superdomain (U, C{F[[€Y, ..., £9]) is a locally Z5-ringed space, i.e.
for any x € U, the stalk Cgfm[[él, ..., &) has a unique mazimal homogeneous ideal

my = {[flo : fo(z) =0} .
Proof. Set S, = C’(Cfx[[fl, ...,&%]. In view of Lemma 3.4, a series [f]|, € Sy is invertible if and

only if [fol, € CFF, is invertible, i.e. if and only if fo(z) # 0:

Sz \ S5 ={[fla : folz) =0} .

The latter is clearly a proper homogeneous ideal. Let I, be any proper homogeneous ideal. If
it strictly contains S, \ S.¢, it contains an invertible element of S, and can thus not be proper:
the homogeneous ideal m, := S, \ S is maximal. If I, is another maximal homogeneous ideal,

it does not contain any invertible element: I, C m, C S, — a contradiction. O
Moreover, Lemma 3.4 has the following

Corollary 3.6. For any open V. C U, a Z3-function f € Oy(V) = CP(V)[[E}, ..., €9 is
invertible in Oy (V') if and only if its independent term fy is invertible in CP(V).

This corollary guarantees that a number of results of classical Supergeometry still hold in

Z35-Supergeometry, although formal variables are no longer necessarily nilpotent.

3.4 Completeness of Zj-function algebras

The algebra O(V) = C*(V)[[¢L,. .., €9]] of formal power series is the completion of the algebra
O(V) = C>®(V)[¢L, ..., &9 of polynomials. Moreover,

Proposition 3.7. The algebra O(V) = C®(V)[[€L,...,€9]] of Z5-functions on V is Hausdorff-
complete (in the sense of Section 7.1).

Proof. Consider a Zj-superdomain with Z5-functions

qu )er e O(V) = C=(V)[[¢', ... 9]

lu|=0

The number k := |u| of generators defines an N-grading in O(V') that induces a decreasing
filtration Op(V) = C®(V)[[£},...,€]]>s, where subscript > ¢ means that we consider only
series whose terms contain at least ¢ parameters £ (in the following we omit V' if no confusion
arises). Of course J = J! := O; — the kernel of the projection of Z3- onto base-functions — is an

ideal of @ and J* = Op: © D J D J? D ... The sequence O/J < O/J? + O/J? + ..., which

10



can be identified with the sequence O < C®[[¢L, ... ]]<; «+ C®(V)[[EL,...,€9)])<2 ...,

is an inverse system, whose limit is

%HO/J =0. (17)
This means that O is Hausdorff-complete, see Section 7.1. O

e It is well known that Equation (17) means that O is a complete topological algebra with
respect to the topology in O defined by the filtration J¢, ¢ > 1, viewed as a basis of
neighborhoods of 0.

e Remark that also the sequence O/J + 9/3? + O/3% + ... can be identified with
C® «+ C®[[¢L, ..., €9]<1 + C=(V)[[EL,...,€9]])<2 < ... It follows that

im9/3 =0, (18)
l

so that O is actually the completion O of O with respect to the filtration implemented by

J (as well as, in view of (17), its own completion with respect to J).

3.5 Morphisms of Z}-superdomains

The following remark shows that morphisms of Zj-superdomains can be viewed as in classi-
cal differential Geometry. It will be formulated more rigorously in the case of general Zj-

supermanifolds.

Consider two Z-superdomains of dimension p|q and p’|q’ over open subsets U C RP and
U c Rp/, respectively. Roughly, Z5-morphisms between these Z5-superdomains correspond to

graded unital R-algebra morphisms

¢ C (V€N ..., = C=(V)[E . .., €]

and are determined by their coordinate form

2= o)+ Z THEOIS (19)

(1)=0

gla _ Z fa
(1)=0a

where the sums are formal series with coefficients in smooth functions and where ¢ : V >
(z1,...,2P) — (2,...,2"") € V' is a smooth map.

Example 3.8. In the case of Z3-superdomains of dimension 1|1]1|1 with variables (x,&,n,9)
(resp., (y,a, B,7)) of Z3-degrees ((0,0),(0,1),(1,0),(1,1)), a Z3-morphism can be viewed as

usual:

02+ 30, gi (x)9* e
e+, g (x)9*r iy

9D+ X, gr (x)92 e
1921“4—1 4 Zr g;Y(x)292r€n )

(20)

8
~— — O —

11



To explain the above claim, we have to prove that any Z5-morphism has a coordinate form of
the announced type (what is almost obvious), and that, conversely, any pullbacks ¢*(2'%) (~~ %)
and ¢*(&'*) (~ &) of the form (19) uniquely extend to a Z5-morphism. We will show here that
such a Z§-morphism does exist. Uniqueness (and other details) will be proven independently in

the more general case of Zy-morphisms of Zi-supermanifolds.

In the sequel we write ¢*(2%) = ¢'(z) + j%(x, &), with ji(z,€) = > o()=0 fi(x)e* € J. For
any

= > g@)g eV, g),

lv|>0
we set
(6" (9))(@,6) = > 6" (g (&) (7)), (21)
[v[>0
where
¢*(gv(2)) = 9o (6" (2")) = gu(p(@) + (2, ) = Y 5 (02 90)(e(x)) j*(2,8) (22)

la[>0

is a formal Taylor expansion; we use here the multiindex notation: ;& = (j1)@" ... ( jp/)o‘p, e Jlel,

In fact the RHS of (22) is a series of series and it could lead to rearranged series with non-

converging series of C*°(V')-coefficients. However, any type of monomial in the formal variables

€ contains a fixed number N of parameters. As the terms indexed by |a| > N contain at

least N 4 1 parameters, they not contribute to the considered monomial. The coefficient of

the latter is therefore a finite sum in C*°(V'), so that the RHS of (22) is actually a series in
(V[ ..., €9])]. The same argument can be used for the RHS of (21).

It is quite easily seen that the thus defined pullback map ¢* is a unital (obvious) graded
R-algebra morphism. As for the degree of ¢*, note that j° is of degree 0, so that ¢*(g,(z')) has
Zy-degree 0; Equation (21) allows now to see that ¢* is of degree 0. To prove that ¢* is an algebra
morphism, we first show that its restriction (22) respects multiplication. If g,, h, € C*(V’), we
get

* 1 1o e
¢ (gvhp) = Z o i (guhyp) j

[0}

=>. > ;!BO![;!@/QV@ hp 377

_ZZ@ ‘aﬂ,gya e 3757

= ¢"(9) ¢"(hy) ,

where we omitted for simplicity the evaluation at ¢(z), as well as the variables of j (remember
that j? is of degree 0). Let now g = > ¢,&" and h = >, hp€'P be two arbitrary Zj-functions:

gh=3" Y +ght",

a v+p=a
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where the sign is due to commutation of components of £’. Thus

o (gh) = 3 ¢* ( 3 mm) (6*(€)°

vt+p=a
=D > ¢ (9) " () ($7(€))” (67(€))"
a vtp=a

where the sign disappears as ¢* is of degree 0. The conclusion follows.

As mentioned above, the precise definition of a ZJ-morphism as a morphism of locally Z5-
ringed spaces will be given in Section 4, and the preceding explanation will be completed and

generalized.

4 Z3-Supermanifolds

4.1 Definitions

A ZB-supermanifold is a locally Z3-ringed space (LZRS) that is locally modelled on a Z5-
superdomain. For details on the category LZRS of LZRS, we encourage the reader to have a
look at Section 7.2. In the following, the elements of Z3, n € N, are considered as ordered

lexicographically.

Definition 4.1 (Ringed space definition). A (smooth) Z%-supermanifold M of dimension p|q,
peN q=(q,...,q2n1) € N>"71 is a LZRS (M, Ays) that is locally isomorphic to a Z3-
superdomain Cg3[[€1, ..., &9]], where ¢ = |q| and where &1, ... €9 are formal variables of which
qx have the k-th degree in Z7 \ {0}.

The mentioned isomorphisms are of course invertible morphisms in LZRS.

Many geometric concepts can be glued from local pieces: they can be defined via a cover
by coordinate systems, with specific coordinate transformations that satisfy the usual cocycle
condition. The same holds for Z3-supermanifolds. Roughly, a Z5-supermanifold of dimension
p|q can be viewed as a second-countable Hausdorff topological space M surrounded by ‘a cloud
of formal stuff’, which is locally (with respect to the topology of M) described by coordinate
systems (z,¢), where x = (2',...,2P) € U C RP is of degree 0 (and can be viewed as a
homeomorphism z(m) = m(z) between U an open subset of M — which is often also denoted
by U) and ¢ = (¢1,...,£9) are formal variables as in Definition 4.1; further, the coordinate

transformations respect the Z3-degree and satisfy the cocycle condition.

The rigorous alternative definition of Zy-supermanifolds follows naturally from this idea. It

is similar to the atlas description of a supermanifold [Lei80].

Definition 4.2. A chart (or coordinate system) over a (second-countable Hausdorff) topological
space M is a LZRS
U=UCrlE,....€), UCRP,pgeN,

together with a homeomorphism v : U — ¢(U), where ¢(U) is an open subset of M.

13



Given two charts (Ua, o) and (Ug,1Pg) over M, we will denote by 13, the homeomorphism

Vo = V5 Yo : Vaa = Vs VaUa) N95(Up)) = Vag =¥ (Ya(Ua) Ns(Up)) -

Whereas in classical Differential Geometry the coordinate transformations are completely

defined by the coordinate systems, in (Z3-)Supergeometry, they have to be specified separately.

Definition 4.3. A coordinate transformation between two charts (Ua, Yo ) and (Ug, 1g) over M
is an isomorphism of LZRS Wg, = (wﬁa,wga) : Ualv,, — Uplv, s, where the source and target
are restrictions of ‘sheaves’ (note that the underlying homeomorphism is vg,).

An atlas over M is a covering (Uy, 1o )a by charts together with a coordinate transformation
for each pair of charts, such that the usual cocycle condition Wg ¥, = Vg, holds (appropriate

restrictions are understood).

Definition 4.4 (Atlas definition). A (smooth) Z% -supermanifold M is a second-countable Haus-
dorff topological space M together with a preferred atlas (Uy, 1 )q oOver it.

4.2 Rationale

Let us consider the case n = 2, p|q1|g2|gs = 1|1|1|1, and assume for simplicity that the underly-
ing topological space M carries a smooth manifold structure (we prove later that the underlying
topological space of any Zh-supermanifold carries a smooth structure). We use notation from
Examples 3.2 and 3.8; in particular (z,£,n, ) are of degree ((0,0), (0,1), (1,0),(1,1)). A coor-

dinate transformation (z,&,n,9) = (y, «, 3,7) is then of the form

y =2, [H @) + 32, gi(a)9*+1en v =3, Fr iy + 3, Giy)y*ap

(@1 @ S @ T, @i ] 6=, FnTat S, Gilyn s

B= 3, I @)+ 3, g7 ()97 ¢ n= 3, 8+, Gl a

v =2 @)+ 2, gl (2)9%7en 0=, By + 3, Gy as
(23)

where the functions in x and y are smooth.
The substitution of (23)(a) in a local function

fa )= D> fur@)a'sy" (24)

i,j€{0,1}, reN

leads to a function g(z,&,n,?) in the initial variables — the pullback of f. As mentioned before,

fijr (Z FY ()9 + Zg 1927’—&-15,,7) 7 (25)

we detach the independent term f(z) from the series j(z, &, 7, 9) of all the remaining terms and

to transform

set n
1 d fm

7’L'

14



It is now quite obvious that a coordinate transformation (23) in a Z-supermanifold induces
a coordinate transformation y = f¥(z), x = F§(y) in the base manifold. Indeed, since the

transformations (23) are inverse, we get = when substituting (23)(a) in
=Y Fryy" +> Giyryas,
s T

i.e. all the terms of the RHS that contain, after substitution, at least one parameter can-
cel, whereas the unique parameter independent term FJ(f§(z)) coincides with z. Similarly,
fFEy) =y.

From the ‘atlas standpoint’, a global Z3-superfunction f € Ag&’j )(M ) of degree (i,) € Z3, is
a family f(y,«,,7), over all coordinate systems (y, «, 3,7), of local functions of degree (i, 7),
such that, when substituting (23)(a) in f(y, a, 8,7), we get the function f(z,&,n, ) associated
to the coordinate system (x,&,n,¥) — just as a global function g € C{(M) is a family g(y),
over the induced coordinate systems (y), such that when substituting y = f¥(x) in g(y), we get
g(z). The degree (i,j) is compatible with the coordinate transformations as the latter respect

the degrees.

For any global Z2-superfunction in Ay (M), i.e. any family of ‘glueable’ local functions
f(y,a, B,7), see (24), the induced family fyoo(y) defines a global base function in C{7(M).
Indeed, in view of what has been said, it is easily checked that the gluing property of the family
f(y, a, B,7) entails that fooo(f§ () = fooo(x) .

Remark 4.5. This means that the canonical projections of the local expressions of a global
function glue to give a global base function. In particular projection commutes with restriction.

Therefore, projection is an algebra morphism.

5 Examples

Example 5.1. For n = 1, we recover classical supermanifolds. Indeed, in this case there are no

formal variables that bear powers higher than 1 and formal series are thus just polynomials.

Example 5.2. We already mentioned that the tangent bundle TM to a Zs-supermanifold M =
(M, Aypy) gives rise to a Z3-supermanifold. Indeed, the parities of local coordinates (z%, (%) on M
induce canonically parities of the adapted system of coordinates (z¢, &%, 47, fb) on TM in which
(', 47) are even and (£%, %) are odd. But TM is also a vector bundle what induces an additional
N-gradation in which (i7, %) are of degree 1. Using the canonical monoid homomorphism from N
to Zsg, we get a Z3-gradation in which (z,£%, 7, £%) have the bidegrees ((0,0), (0,1), (1,0), (1,1)).
We can find an atlas whose coordinate changes respect the bidegrees; hence, we deal with
a Z3-supermanifold. As the changes of coordinates are linear in (i7,£P), the algebra of Z3-
superfunctions which are polynomial in the latter variables is well-defined. It can be identified
with the algebra Qp(M) of Deligne super differential forms on M. Since it is dense in the
whole algebra of Z%—superfunctions on TM, the latter can be identified with the corresponding
completion
ﬁD(M) = H AFQL .

k>0
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Proposition 5.3. The tangent bundle TM of a Zo-supermanifold M = (M, Ayr), interpreted
as ringed space (M,Qp(M)), is a Z3-supermanifold.

Example 5.4. Let now
E (27)

2N
E10 Ell EOl
DN 4
M

be a double vector bundle with the side bundles Ey;, E19 and the core bundle Fq1. This corre-
sponds to a choice of two commuting Euler vector fields V1, V3 on E [GR09]. We can choose an
atlas with bihomogeneous local coordinates, say (z, &, n, ) of bidegrees (0,0), (0,1), (1,0), (1, 1),

respectively. Moreover, all coordinate changes have the form

o = o),
"= a(2)g,
no= ba)n,
Vo= c(x)d+d(x)én,

and thus respect the bigradation. We can now ‘superize’ assuming that these coordinates satisfy
the sign rules of the ‘scalar product’ in Z3. As the coordinate changes respect the bidegrees,
this is consistent and leads to a Z3-supermanifold IIE. In the super case, we have to fix the

ordering, as its change may result in changing the sign (see discussion in [GR09]).

All this can be generalized to n-tuple vector bundles if we fix a lexicographic ordering in Z3

relative to an ordering of the corresponding Euler vector fields.
Proposition 5.5. The superization of an n-vector bundle, n > 1, is a Zy-supermanifold.

Note that certain superizations of n-tuple vector bundles have been considered also by

Voronov.

6 Morphisms of Zj-supermanifolds

6.1 Embedding of the smooth base manifold

We already mentioned that global Z7-functions project consistently to the base, see Remark 4.5.

In the present section, we make this observation more precise.

Proposition 6.1. The base topological space M of any Z%-supermanifold M = (M, Ayr) of
dimension p|q carries a smooth manifold structure of dimension p, and there exists a short
exact sequence of sheaves

0= T — Ay =05 — 0.
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Proof. Let V.C RP be open, let f € O(V) = C®(V)[[¢},...,&9], let z € V and k € R. In view
of Corollary 3.6, the Z5-function f — k is not invertible, in any neighborhood of x in V, if and
only if its independent term fy — k is not invertible, in any neighborhood of z, i.e. if and only if
k = fo(x). Hence, for any V C RP, any f € O(V) and any = € V, there exists a unique k € R,
such that f — & is not invertible, in any neighborhood of  in V. Since A, is locally isomorphic
to Oge, the same property holds in Ap;. For any open U C M, for any f € A(U) and any
m € U, the unique k € R such that f — k& is not invertible, in any neighborhood of m, is denoted
by ey (f)(m). If m runs through U, we obtain a function ey (f) : U — R, and if f runs through
A(U), we get a map ey : A(U) — F(U), where F(U) = imey is the algebra of these functions.

Actually e is a surjective algebra morphism and the short sequence of algebras
0—-JU)— AU)— FU) =0,

where J(U) = kerey, is exact. In fact Jas : U — J(U) is a subsheaf of Ay;. On the other
hand, it is clear that the presheaf F); is locally isomorphic to CRp and is thus locally a sheaf.
Hence, Fjs generates a sheaf §ps which is locally isomorphic to Cg; and thus implements a
p-dimensional differential manifold structure on M such that C§; ~ §as. Since the sequence of
sheaves

0= T — Ay >C5 =0

is exact, we have Ay;/Jym ~ Cfy. For details on sheaves, we refer the interested reader to
Section 7.3. See also [Var04]. O

6.2 Continuity of morphisms

In the ‘ringed space definition’ of Z§-supermanifolds the requirement that (M, .Apr) be local is
actually redundant — in view of the local model. The unique maximal homogeneous ideal of A,,,
m € M, will be denoted by m,,.

The key-fact about morphisms of Z5-supermanifolds is a generalization of Section 3.5, see
below. This result can be proved due to the continuity of morphisms with respect to the
topologies induced by the ideals J(U) C A(U) and m,,, C A,,.

In this section, we prove these continuities.

Definition 6.2. A morphism of Z3-supermanifolds or Zy-morphism is a morphism of the un-

derlying locally Zj-ringed spaces.

This means that the category ZSMan of Z3-supermanifolds is a full subcategory of the category
LZRS, see Section 7.2.

We first show that Z5-morphisms commute with the projections € onto the bases:

Proposition 6.3. Let
U= (6,9%) : M = (M, Ay) = N = (N, By)
be a morphism of Zy-supermanifolds, let V.C N be an open subset, and U = Y= (V). Then,
evoy =yyoey, (28)
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where the LHS pullback of Z5-functions is given by the second component of ¥ and where the
RHS pullback of classical functions is equal to — o |y and thus given by the first component of
U,

Proof. Let t € B(V) and m € U. If we set s = 9y,(t) € A(U), we have to show that

ev(s)(m) = ev(t)(¥(m)) .

The RHS of this equation is, by definition, the unique k € R such that ¢ — k is not invertible, in
any neighborhood of ¥(m). It suffices thus to prove that the LHS has this property. Suppose that
t — ey (s)(m) is invertible in some neighborhood of 1)(m). Then, since 1§, is a unital R-algebra
morphism,

Uy (t—eu(s)(m)) = ¢y (t) —eu(s)(m) Yy (1) = s —ev(s)(m)

is invertible in some neighborhood of m — a contradiction. O

Corollary 6.4. For any Z5-supermanifold M = (M, Ayr) and any point m € M, the unique

mazximal homogeneous ideal m,, of A, is given by

M = {[f]m : (ef)(m) = 0} . (29)

Proof. If
® = (6,¢) : (U, Aulv) = (V.CRIVIE, - . 1))
denotes an isomorphism in LZRS, with m € U, we have m,, = ¢} m,, where x = ¢(m). It now

suffices to apply Proposition 6.3. 0

As mentioned above, we need not assume that (M, Ays) is local. Then @ is only an iso-
morphism in ZRS and we cannot ask that ¢, respects maximal ideals. However, since ¢}, is an
isomorphism of graded unital R-algebras, ¢} m; is the unique maximal homogeneous ideal of
A,

The next result is the announced J- and m-continuity theorem for Zj-morphisms. It shows
in particular that Z3-morphisms automatically respect maximal ideals, so that this requirement

is actually redundant in the definition of Z5-morphisms.

Corollary 6.5. Any ZY-morphism ¥V = (¢, ¢*) : M = (M, Apyr) = N = (N, By) is continuous
with respect to J and m, i.e., for any open V. C N and any m € M, we have

Uy (In(V)) € Tu (@™ (V) and 4y, (myn)) € mi

Proof. This result is a direct consequence of the definition J = ker e, Equation (29), and Propo-
sition 6.3. [

Corollary 6.6. The base map ¢ : M — N of any Z3-morphism V : (M, Ap) — (N,By) is

smooth.
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Proof. Let m € M, let (V,y = (y',...,y%)) be a classical chart of N around % (m), and set
U =¢~1(V). For any g € C®(V), there is t € B(V) (just restrict V), such that

go =" (ev(t)) =ev (¥7(t)) € C(U) .

In particular, for g = y/, we get ¢/ = y/ o¢p € C°(U) , so that 1 € C*°(U, N) and, since U is
a neighborhood of an arbitrary point m € M, ¢ € C*°(M,N). O

6.3 Completeness of the Zj-function sheaf and the Zj-function algebras

In standard Supergeometry, the decreasing filtration A D J D J? O ... of the structure sheaf
A of a supermanifold M = (M, A) by the sheafs of ideals J* [Var04], induces embeddings

Mo M as Mo L M,

where M* = (M, A/J¥) is the superspace characterized by the sheaf A/J* [Man02] (see also
Section 7.3).
Let now M = (M, A) be a Zj-supermanifold. The decreasing filtration A > J D J 25 ...

gives rise to an inverse system
AT — AJT? — A T3 ...

of sheaves of algebras (we prove at the end of this subsection that the quotient presheaves A/J*
are actually sheaves). Since a limit is a universal cone, there is a sheaf morphism @k A/TF — A.
Moreover, as a limit in a category of sheaves is just the corresponding limit in the category of

presheaves (which is computed objectwise), we get, for any Z§-superchart domain U,

<@ A/j'“> (Ua) = lim A(Ua)/T*(Ua) =~ A(Us) ,
k k

see Equation (17). It follows that

li%nA/j’“ ~ A

in the category of sheaves, so that the structure sheaf A is complete with respect to the filtration
implemented by J. Since isomorphic sheaves have isomorphic sections, we thus obtain, for any
UcM,

lim A(U)/TH(U) ~ A(U)

k
i.e. all function algebras A(U), U C M, are Hausdorff-complete with respect to the filtration
induced by J(U), see Section 7.1.

Proposition 6.7. The Zy-function sheaf Apr (resp., the Zy-function algebra Ay (U), U C
M) of a Z%-supermanifold (M, Anr) is Hausdorff-complete with respect to the Jar-adic (resp.,
Ju (U)-adic) topology.
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Proof. Tt suffices to show that the presheaves A/J%, k > 1, are in fact sheaves.

Let s,t € A(U)/J*U), U € M, coincide on an open cover (Vy)o of U. Then s|y, =
tlv, + jt. . with j§ € J¥(Va). The latter thus coincide on the intersections Vo N Vj. Their
gluing provides j* € J*(U) and s|y;, = t|y, + j5*|v,. Since A is a separated presheaf (even a
sheaf), we get s =t + j* in A(U) and s =t in A(U)/T*(U).

As for the second sheaf property, consider a family s, € A(V,)/J*(Va) such that s, = s
on Vo N Vg. Let m, be a partition of unity of M that is subordinated to V,, (see Section
7.4). Any product s, Of 5o by 7o € AY(U) (suppma C Vo) is well-defined in A(U)/J*(U)
(supp(masa) C Vo). Then s =" masa € AU)/T*(U) and s|y, = sa. O

6.4 Fundamental theorem of Zj-morphisms

In this section we prove an extension of the main statement of Section 3.5.

6.4.1 Statement

Let
U= (¢, %) : M= (M, Ay) = V¥ = (V,C¥[[n',...,n*]])

be a Z%-morphism valued in a Zj-superdomain. Denote by y = (y!,...,y%) the coordinates of

V and by 7, € Z% \ {0} the degree of n°. Then the functions
s’ = ¢y’ and (" = i
(for all j and b) satisfy
s € AY (M), ¢* € ATy(M) and (es',...,es") (M) C V. (30)
Actually the pullbacks (s7,¢?) (all j and b) of the coordinate functions (y7,n°) completely
determine the Z3-morphism. More precisely:

Theorem 6.8 (Fundamental theorem of Z§-morphisms). If M = (M, Ap) is a Z5-supermani-
fold, VIV a Z5-superdomain as above, and if (s7,¢%) is an (u + v)-tuple of Z3-functions in
An (M) that satisfy the conditions (30), there exists a unique morphism of Z4-supermanifolds
U = (¢,¢") : M = VUV, such that s = Viy and ¢b = w?/nb.

The proof requires some preparatory work.

6.4.2 Polynomial approximation of Zj-functions

We first describe the m,,-adic topology of A,,, m € M.

When taking an interest in the stalks A,, of the function sheaf of a Z5-supermanifold
(M, Apr) of dimension p|q, we can choose a centered chart (x,£) around m and work in a
Z35-superdomain UPlY associated with a convex open subset U C RP, in which m ~ z = 0. Since
My, = {[f]m : e(f)(m) = 0}, a Taylor expansion (with remainder) around m ~ x = 0 of the

coordinate form of £(f) shows that

My~ {[flo: f(2,8) =0(x) + > fula)€"},

[|>0
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where 0(x) are terms of degree at least 1 in .

Lemma 6.9. For any m € M, the basis of neighborhoods of 0 in the my,-adic topology of A,

s given by

m = {[flo: S ) = Y 0, L Y f@E) k20, (31)

0<|pl<k |ul>k

where notation is the same as above.

Proof. The inclusion C is obvious. For D, note that all the terms whose number |u| of generators
k+1.

m

is < k belong to m as for the series over |u| > k, write it in the form

Z gil o flk Z f,u,(x> gu_eil_”'_eik ,

|| >k

where e, is the canonical basis of R? and where the sum is over all combinations (with repetitions)

k+1

o and so is the sum itself. [

of k of the ¢ elements £%. Each term of this finite sum is in m

Roughly speaking, since v}, is an algebra morphism, the data w;k,yj = s/ and w;nb = ¢
uniquely determine the pullback 7, P of any section P € Poly (V)[[n',...,n"]] with polynomial
coefficients. Hence the quest for an appropriate polynomial approximation of an arbitrary sec-
tion. Let us emphasize that here and in the following, the term ‘polynomial section’ refers to
a formal series 3, |~ Fu(2)&" in the parameters {* with coefficients P, (z) € Poly (V') that are

polynomial in the base variables z°.

Theorem 6.10 (Polynomial approximation). Let m € M be a base point of a Z3-supermanifold
(M, Apr) and let f € A(U) be a Z5-function defined in a neighborhood U of m. For any fized
degree of approxzimation k € N\ {0}, there exists a polynomial P = P(x,§) such that

[flm — [Plm € m}, .

In this statement the polynomial P depends on m, f, and k, and the variables (z,¢) are

(pullbacks of) coordinates centered at m.

Proof. When writing f = f(z,§) = ZI#IZO fu(x)&" and using a Taylor expansion of the f,(x)
at m ~x =0, we get

F@,8) =" Pu@)e" + > 0u(z*)¢r,

4[>0 |20
where the first sum of the RHS is the searched polynomial P = P(z,£) and where the (germ of

the) second sum belongs to m¥,. O

6.4.3 Proof of the Morphism Theorem

1. Uniqueness: if the searched Z5-morphism ¥ = (1, ¢*) exists, it is necessarily unique. Indeed,
let Uy = (¢1,97) and Wy = (¢)9,7)3) be two ZJ-morphisms defined by the same (s7, ).

Note first that 1)1 = t)5: if we denote the coordinates of VP14 by (y7,n%), commutation of the
pullback maps with the projections to the base entails that, for all j,

Pl =yl onhy = iyl = es! = ey’ =y othy = ).
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As for the comparison of ¢} and 15, we first show (rigorously) that they coincide on polyno-
mial sections (using continuity of the pullbacks of sections with respect to the J-adic topology),
then we show that they coincide on arbitrary section (using the polynomial approximation and
continuity of the pullbacks of germs with respect to the m-adic topology).

Let W C V be open, set O(W) := C®(W)[[n',...,n%]], ¥ := ¢1 = g and U := o~ (W),
and take

Z fulyn* € O(W) .
4[>0

The sequence
n

DD W Fuly) (W) € A(U)

k=0|p|=k
is Cauchy, see 7.1. Indeed,
Ui Y fuynt € THU)
=k

in view of the J-continuity of . Since A(U) is Hausdorff-complete with respect to the J(U)-
topology, the considered sequence has a unique limit

D Wi (fuly) Wi € AU) .

/>0
It is easily seen that this limit is given by ¢} f € A(U): the difference of the latter and the n-th
term of the sequence equals

WY fulymt e THU)

|u[>n
If the function f =: P has polynomial coefficients f,(y) =: p.(y), we get

PP = 0 (0u() ()" =D puiy) (W) = puls)CH,
||>0 ||>0 |u|>0

so that ¢} and 93 coincide on polynomial functions P € O(W).

Consider now an arbitrary function f € O(W), any point mg € U, as well as a Zy-superchart
(Uqa, @) around myg. For every m € U,, we have ¢(m) =: n € W. In view of the polynomial
approximation theorem 6.10, there is, for any k, a polynomial P such that ¢} ([f]n, — [P]n) €
mF+1 Hence,

W1 f = 3 flm = 01 flm — W5 Pl — (5 flin + (5 Pl € mif

Since k is arbitrary, it follows from Lemma 6.9 that any coefficient of ¥} f — 3 f vanishes at m.
As m is arbitrary in U,, we see that (¢Yff —¥3f)|v, = 0, i.e. that ¢]f — 13 f vanishes on an
open cover of U: ¢ f =3 f for any f, so ¢] = 5. This completes the proof of uniqueness.

2. Existence: The base map 1 is defined by 1 := (es!,... ,es%) € C°®°(M,V). As for the
pullback ¥*, let W C V be open. To construct the graded unital R-algebra morphism
by 1 OW) = A(p™H(W))

we cover the open subset ¥~ 1(W) C M by Zg-superchart domains U,. In view of uniqueness,
we can take ¢~ (W) = U, and build ¢, : O(W) — A(U,). This construction is the same as
the one described in Section 3.5 and similar to the proof that holds in the super-case [Var04].
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7 Appendix

7.1 Completeness
7.1.1 Completion of an Abelian group
Let G be an Abelian group together with a decreasing filtration by Abelian subgroups
G=GyD>G1 DGO ...
The sequence
G/Gy={0} + G/G1 + G/Gy + ...,

where the morphism fi_1 % : G/Gi, — G/Gj—1 associates to any coset g + G, g € G, the coset
g+ Gk_1, is an inverse system in the category AbGr of Abelian groups. The limit

G = %nG/Gk € AbGr

is the completion of G with respect to the considered decreasing filtration. The completion G
is in fact a complete topological group. Indeed, the cosets g + G, g € G, k € N, are a basis
of a topology of G called topology associated to the filtration Gy. This topology turns G into a

topological group and G into a complete topological group.

If G has additional structure, e.g. is a not necessarily commutative ring (resp., a module
over a ring), and if the decreasing filtration of subgroups is compatible, i.e. Gy -Gy C Ggiy
(resp., Gy, is a submodule), then the completion is itself a ring (resp., a module). If the filtration
of a ring G is implemented by an ideal I, i.e. if G = I¥ := I---I, the associated topology is

also referred to as the I-adic topology.

7.1.2 Hausdorff-completeness
Let k be a commutative unital ring and let
M=DMy>M DMyD...

be a decreasing filtration of a k-module M by k-submodules M. The sequence of k-modules

0 — MMy, — M 5 lim M /M

k

is exact. Indeed, the map p associates to m € M the sequence (m + Mj,m + Ms,...) €
@k M /My; its kernel is ker p = N My, what explains exactness.

Definition 7.1. The module M is complete (resp., Hausdorff, Hausdorff-complete) with respect

to the considered filtration M}, if and only if p is surjective (resp., p is injective, p is bijective).

We will consider sequences of partial sums in M, ie. sequences of the type > ), my,
mi € M, n €N.

23



Definition 7.2. A sequence ) ,_,my of partial sums in M is a Cauchy sequence if my, € My,
for all k.

Indeed, in the topology with basis m + My, m € M, k € N, the sequence » ;_.my € M,

converges to 0 if r, s — oo.

Proposition 7.3. If M is Hausdorff (resp., complete, Hausdorff-complete), any sequence (resp.,

any Cauchy sequence) has at most one (resp., at least one, a unique) limit.

Proof. If M is Hausdorff, any sequence (m(n)), has at most one limit. Assume that (m(n)),
converges to m’ and m”. Then, for all k&, m’ —m” = (m' —m(n)) — (m” —m(n)) € My, so that
m' =m".

Further, if M is complete, any Cauchy sequence Y, mg, mi € My, n € N, has a limit.
Indeed, the sequence ;. my + Myi1, n € N, is an element of the limit lglk M /Mj, (the map

n+1
St 1ny2 sends 3200 my, 4+ Mo to

n+1 n
ka + My =~ ka + My )
k=0 k=0

Hence, it is an image by p, i.e. there is m € M such that >} my + M1 = m + My, for
all n. In other words, m — Y ;_omy € My1, or, still, the Cauchy sequence of partial sums
converges to m.

Eventually, if M is Hausdorff-complete, any Cauchy sequence of partial sums has a unique
limit. O
7.2 Category of locally Zj-ringed spaces

Definition 7.4. A locally Z%-ringed space (LZRS) is a pair (M, .Apr) made of a topological space
M (Hausdorff and second-countable) and a sheaf Aj; of Zj-commutative associative unital R-
algebras, such that the stalks A,,, m € M, are local.

Morphisms of LZRS are maps that respect all data, i.e. they are made of a continuous base

map and a sheaf morphism that respects the maximal ideals:

Definition 7.5. A morphism of LZRS is a map ® between two LZRS (M, Ays) and (N, By),

made of
1. a continuous map ¢ : M — N,

2. a family, indexed by the open subsets V' C N, of graded unital R-algebra morphisms

oy Bn(V) = Ay (071(V))
called pullback maps,

e which commute with the restriction maps of the sheaves Aj; and By,
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e and are such that the naturally induced graded unital R-algebra morphisms
O * Bym) = Am
m € M, respect the maximal ideals, i.e. satisfy
0 (M) C My (32)

Locally Z4-ringed spaces form a category LZRS with obvious identity morphisms and com-

position.

7.3 Extension and gluing of sheaves
7.3.1 Extension of a sheaf on a basis

It is a matter of common knowledge that a sheaf over a topological space is completely defined
by its definition on a basis of the topology: if B is a basis of a topological space M, there is a
1:1 correspondence Sh(M) — Sh(B) between the category of sheaves on M and the category
of sheaves on B.

Sheaves on B, or B-sheaves, are defined exactly as sheaves on M, except that only open
subsets in B are considered. For instance, for the assignment F : U — F(U), U € B, the gluing
condition reads: For any U € B, any cover (U;);, U; € B, of U, and any family (f;):, fi € F(U;),
such that f;|y = fjlv, for any V € B, V. C U; NUj, there is a unique f € F(U), such that
flu, = fi. Similarly, a morphism of B-sheaves is defined exactly as a morphism of sheaves.

The functor Sh(M) — Sh(B) is just the forgetful functor. Conversely, any B-sheaf F and any
B-sheaf morphism ¢ : F — G uniquely extend to a sheaf F and a sheaf morphism @ : F — G,

respectively. For instance, the extension F is (up to isomorphism) given, for any open W C M,
by

FW) ={(fa)a: fa € F(Ua),Us € B,Uy C W and folv = folv,V € B,V C U, N Us} .

7.3.2 Gluing of sheaves

Sheaves can be glued.

More precisely, if (U;); is an open cover of a topological space M, if F; is a sheaf on U,
and if ¢j; : E\UmUj — ﬂ\UmUj is a sheaf isomorphism such that the usual cocycle condition
Vkj Pji = Pk holds, then there is a unique sheaf 7 on M, such that F|y, ~ F;.

Actually the sheaf isomorphisms 1; : Fly, — F; satisty ¢j; ¥ilvinv; = ¥j|v,nu;. Uniqueness
means that if there is another sheaf 7' on M with sheaf isomorphisms ¢} : F'|y, — F; that
satisfy the same property, then there exists a unique sheaf isomorphism ¢ : F — F’ such that
Vi elu, = i

The glued sheaf F is defined, for U C M, by

FU) =A{(fi)i € H]:z'(U NU:) : e filvnuinu;) = filunvinu, -
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7.4 Partition of unity

The present section should be read after Section 6.2.

Proposition 7.6. For any Z5-supermanifold M = (M, Apr) and any open cover (U;); of M,
there is a partition of unity of M subordinated to (U;);.

More precisely, there exists a locally finite cover (V}); of M, which is subordinated to (U;)s,
and a family (s;); € A%, (M), such that the projections v; := £(s;) € C$3(M) are nonnegative,
the support supp(s;) is compact in Vj}, and Z]- sj = 1. The support of a Zj-function s € Ay (U),

U C M, is defined as usual as the complementary of the open subset of identical zeros of s in U.

Proof. Let (Vj,7;); be a partition of unity of the classical smooth manifold M that is subor-
dinated to (U;);: supp(vy;) is compact in V; and Zj v; = 1. We may of course assume that
the V; are Zj-superchart domains: on Vj, the Zj-supermanifold (M, Aps) is isomorphic to a
Z3-superdomain. If ® = (¢, ¢*) is this isomorphism, set f; = ¢*(vj0 ¢~ 1) € AQ,(V;). It is clear
that e(f;) = ~; and easily seen that supp(f;) = supp(v;) C V;. Extend now f; by 0, so that
fi € A3, (M), and set f = >_; [;- This sum is well-defined in A%, (M), due to local finiteness
of (Vj);, and e(f) = >_;e(f;) = >2;v; = 1. The latter implies that f|y, is invertible for all k.
When gluing these local inverses, we get a global inverse f~1 € A%, (M). It now suffices to set
sj=F1f5 € A (M), =
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