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Abstract

In Physics and in Mathematics Zn
2 -gradings, n ≥ 2, do appear quite frequently. The

corresponding sign rules are determined by the ‘scalar product’ of the involved Zn
2 -degrees.

The present paper is the first of a series on Zn
2 -Supergeometry. The new theory exhibits

challenging differences with the classical one: nonzero degree even coordinates are not

nilpotent, and even (resp., odd) coordinates do not necessarily commute (resp., anticom-

mute) pairwise (the parity is the parity of the total degree). It is based on the hierarchy:

‘Z0
2-Supergeometry (classical differential Geometry) contains the germ of Z1

2-Supergeometry

(standard Supergeometry), which in turn contains the sprout of Z2
2-Supergeometry, etc.’

The Zn
2 -supergeometric viewpoint provides deeper insight and simplified solutions; interest-

ing relations with Quantum Field Theory and Quantum Mechanics are expected. In this

article, we define Zn
2 -supermanifolds and provide examples in the atlas, the ringed space

and coordinate settings. We thus show that formal series are the appropriate substitute

for nilpotency. Moreover, the category of Zn
2 -supermanifolds is closed with respect to the

tangent and cotangent functors. The fundamental theorem describing supermorphisms in

terms of coordinates is extended to the Zn
2 -context.
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1 Introduction

Classical Supersymmetry and Supergeometry are not sufficient to suit the current needs. In

Physics, Zn2 -gradings, n ≥ 2, are used to describe anyons and paraparticles. In Mathematics,

there exist good examples of Zn2 -graded Zn2 -commutative algebras (i.e. the superscript of −1

in the sign rule is the standard ‘scalar product’ of Zn2 ): quaternions and, more generally, any

Clifford algebra, the algebra of Deligne differential superforms... And there exist interesting

examples of Zn2 -supermanifolds: e.g. (completions of) tangent and cotangent bundles, n-vector

bundles...

Indeed, the tangent bundle of a classical Z1
2-supermanifoldM is a Z1

2-supermanifold T[1]M
(resp., a Z2

2-supermanifold TM) with function sheaf the differential superforms of M together

with the Bernstein-Leites (resp., with the Deligne) sign convention. Actually the tangent (and

cotangent) bundle(s) of any Zn2 -supermanifold is a (are) Zn+1
2 -supermanifold(s). Further, any

n-vector bundle canonically provides a Zn2 -supermanifold as its ‘superization’.

To be more precise, suppose that M is a supermanifold with local coordinates (x1, . . . , xp,

ξ1, . . . , ξq), where the xi are even and the ξa odd. For the tangent bundle TM, with the adapted
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local coordinates (xi, ξa, ẋj , ξ̇b), one can introduce a supermanifold structure, in principle, in two

ways: declaring ẋj to be even and ξ̇b to be odd, or reversing these parities.

For the latter, the variables ξ̇b are even, what works in principle well, but it is hard to regard

them as ‘true’ real-valued functions because they are formal variables, so equations like ξ̇b = 2

do not make much sense.

On the other hand, TM, as every vector bundle, admits an N-gradation for which ẋj and

ξ̇b are of degree 1. Thus we have a canonical bigradation by the monoid N × Z2, which can

be reduced to Z2
2 = Z2 × Z2. With respect to this bigradation, (xi, ξa, ẋj , ξ̇b) are of bidegrees

(0, 0), (0, 1), (1, 0), and (1, 1), respectively. Now, any symmetric biadditive map 〈−,−〉 : Z2
2 ×

Z2
2 → Z gives rise to a sign rule:

AB = (−1)〈(m,n),(k,l)〉BA ,

where A and B are coordinates of bidegrees (m,n) and (k, l), respectively. We get the usual

sign rule when choosing 〈(m,n), (k, l)〉 = mk, and obtain the sign rule for reversed parity

(Berntein-Leites sign rule) choosing 〈(m,n), (k, l)〉 = (m+n)(k+ l), whereas the ‘scalar product’

〈(m,n), (k, l)〉 = mk+ nl has been used by Deligne – see discussion in [DM99, Appendix to §1].

Note that the latter does not lead to a superalgebra, as the ξ̇b are even in the sense that they

commute among themselves, but anticommute with the ξa. Not excluding any sign rule forces

us to work with this bigradation and to include Deligne’s convention into the picture, which –

as mentioned – does not correspond to any supermanifold. It is therefore natural to extend the

notion of supermanifold admitting Zn2 -gradations and the corresponding sign rule

AB = (−1)
∑n
i=1mikiBA (1)

(here m = (m1, . . . ,mn) and k = (k1, . . . , kn) are the degrees of A and B, respectively), so that

the additional canonical gradings on TM or T∗M do not move us out of the corresponding

category.

Although not universally accepted at the beginning, Zn2 -Supergeometry is thus a necessary

and natural generalization. When defining the parity of a Zn2 -degree as the parity of the total

degree, nonzero degree even coordinates are not nilpotent, and even (resp., odd) coordinates

do not necessarily commute (resp., anticommute) pairwise. These circumstances lead to chal-

lenging differences with the classical theory. The reason for initial skepticism was Neklyudova’s

equivalence [Lei11]: this result states that the categories of Zn2 -graded Zn2 -commutative and

Zn2 -graded supercommutative algebras are equivalent. However, our previous work shows that

pullbacks of ‘supercommutative concepts’ to the Zn2 -commutative setting are not always as easy

as expected, and do not always operate properly: Neklyudova’s theorem does not ban studies

of Zn2 -commutative algebras! On the other hand, Zn2 -commutative algebras are sufficient, in

the sense that any sign rule, for any finite number m of coordinates, is of the form (1), for some

n ≤ 2m.

Actually Zn2 -Supergeometry focusses on the following hierarchy: classical differential Geom-

etry (Z0
2-Supergeometry) contains the germ (differential forms) of standard Supergeometry (Z1

2-

Supergeometry), which in turn contains the sprout (Deligne superforms) of Z2
2-Supergeometry...
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The Zn2 -supergeometric viewpoint provides improved insight and simplified solutions, thus em-

phasizing an effect already observed for classical Supergeometry. Tight relations with diverse

concepts in Quantum Field Theory and Quantum Mechanics, e.g. polarization of the vacuum

and Feynman integrals, can be expected. The theory of Zn2 -supermanifolds is closely related

to Clifford calculus. Clifford algebras have numerous applications in Physics: the use of Zn2 -

gradings has never been studied. Our theory should lead to a novel approach to quaternionic

functions: examples of application areas include thermodynamics, hydrodynamics, geophysics

and structural mechanics. It is further interesting to observe the parallelism of our extension

with Baez’ suggestion of a common generalization – under the name of r-Geometry – of super-

algebras and Clifford algebras with the goal to incorporate, besides bosons and fermions, also

anyons into the picture [Bae92].

Finally, the key-concept of Zn2 -Superalgebra is the Zn2 -Berezinian. This higher Berezinian

(which is tightly connected with quasi-determinants) and the corresponding (via the Liouville

formula) higher trace have recently been constructed [COP12]. It provides a new solution

(‘different’ from the Dieudonné determinant) to Cayley’s challenge to build a determinant of

quaternionic matrices. Hence, our Zn2 -Supergeometry not only includes differential but also

integral calculus, whereas Molotkov – to our knowledge the only author who understood so far

the necessity to define a (functorial) concept of Zn2 -supermanifold – mentions explicitly that he

has no insight in this respect [Mol10].

The paper is organized as follows. In Section 2, we prove that any sign rule, for any finite set

of variables, is of the type (1), for some Zn2 -grading. The necessity to consider Zn2 -superdomains,

characterized just as in [CB89] by algebras of formal power series, is explained in Section 3.

Moreover, invertibility, locality and completeness issues are addressed, and a coordinate version

of the Zn2 -supermorphism theorem is proved. In Sections 2 and 3, we use exclusively coordinate

computations, thus allowing the reader to get acquainted with the specificities and foundations

of the new theory. The latter is developed in the next sections via the atlas approach, as well as,

mainly, in the ringed space setting. The concept of Zn2 -supermanifold is introduced in Section 4.

In Section 5, we detail first examples. Section 6 contains the main proofs of the present work.

We show that most important results of classical Supergeometry extend to the Zn2 -context,

although nilpotency is lost in this generalized framework – it turns out that formal series are

the appropriate substitute. We prove that Zn2 -superfunctions project consistently to the base

and that the latter actually carries a smooth manifold structure. Continuity of the pullback

maps of morphisms between Zn2 -supermanifolds with respect to the filtration provided by the

kernel of the base projection, as well as continuity of the induced maps between stalks with

respect to the filtration implemented by the unique maximal homogeneous ideal – combined

with an appropriate polynomial approximation of Zn2 -superfunctions –, allow to show that the

fundamental theorem of supermorphisms extends to the Zn2 -setting. Complementary information

can be found in the appendix-section 7.

Let us finally provide a non-exhaustive list of references on classical supermanifolds and

related topics that were of importance for the present text: [Lei80], [Lei11], [Var04], [Man02],

[DM99], [CCF11], [BBH91], [DSB03], [Vor12], [CR12], [BP12], [GKP09], [GKP10].
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2 Sign rules

Supergeometry is commonly understood as the theory of manifold-like objects admitting anti-

commuting variables. This corresponds to a Z2-gradation in the structure sheaf of the corre-

sponding ringed space, so that even elements are central (commute with everything) and odd

elements anticommute among themselves. In particular, they are nilpotent in step 2. This means

that the sign rules between generators of the algebra are completely determined by their par-

ity. Why not accept arbitrary commutation rules between different generators, even with fixed

parities? In principle, one can consider a general gradation by a semigroup and an arbitrary

commutation factor, i.e. work with so-called colored algebras.

More precisely, let K be a commutative unital ring, K× be the group of invertible elements

of K, and let G be a commutative semigroup. A map ε : G×G→ K× is called a commutation

factor on G if

ε(g, h)ε(h, g) = 1 , ε(g, g) = ±1 , and ε(f, g + h) = ε(f, g)ε(f, h) , (2)

for all f, g, h ∈ G. Note that these axioms imply that

ε(f + g, h) = ε(f, h)ε(g, h)

(which is sometimes unnecessarily assumed additionally). Indeed,

ε(f, h)ε(g, h) = ε(h, f)−1ε(h, g)−1 = (ε(h, g)ε(h, f))−1 = ε(h, g + f)−1 = ε(f + g, h) .

The condition ε(g, g) = ±1 also follows automatically from the rest if only K is a field.

Let A be a G-graded K-algebra A =
⊕

g∈GAg. Elements x from Ag are called G-

homogeneous of degree or weight g =: deg(x). The algebra A is said to be ε-commutative

if

ab = ε(deg(a), deg(b))ba , (3)

for all G-homogeneous elements a, b ∈ A. Homogeneous elements x with p(deg(x)) = p(g) :=

ε(g, g) = −1 are odd, the other homogeneous elements are even.

In what follows, K will be R and ε will take the form

ε(g, h) = (−1)〈g,h〉 ,

for a ‘scalar product’ 〈−,−〉 : G × G → Z. This means that we use the commutation factor

as a sign rule. In this note we confine ourselves to G = Zn2 and the standard ‘scalar product’

of Zn2 , what will lead to Zn2 -Supergeometry with nicer categorical properties than standard

Supergeometry. More precisely, we propose a generalization of differential Z1
2-Supergeometry to

the case of a Zn2 -gradation in the structure sheaf.

Indeed, we will show that any sign rule, for any finite number of coordinates, can be obtained

from the ‘scalar product’

〈(i1, . . . , in), (j1, . . . , jn)〉n = i1j1 + . . .+ injn (4)
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on Zn2 for a sufficiently big n. In other words, any algebra that is finitely generated by some

generators satisfying certain sign rules can be viewed as a Zn2 -graded associative algebra A =⊕
i∈Zn2
Ai, AiAj ⊂ Ai+j , which is Zn2 -commutative in the sense that

yiyj = (−1)〈i,j〉nyjyi ,

for all yi ∈ Ai, yj ∈ Aj . We simply refer to such algebras as Zn2 -commutative associative

algebras. Let us mention that a similar theorem was proved independently in [MGO10] for

group gradations.

Let now S be a finite set, say S = {1, . . . ,m}, and let ε : S × S → {±1} be any symmetric

function. We can understand ε as a sign rule for an associative algebra generated by elements

yi, i = 1, . . . ,m, i.e.

yiyj = ε(i, j)yjyi .

We then have the

Theorem 2.1. There is n ≤ 2m and a map σ : S → Zn2 , i 7→ σi, such that

ε(i, j) = (−1)〈σi,σj〉n . (5)

Proof. We interpret Z2m
2 as the set of functions {±1, . . . ,±m} → Z2, and denote by p(i, j) ∈

{0, 1} the parity of ε(i, j): (−1)p(i,j) = ε(i, j).

First, define σ1 ∈ Z2m
2 by σ1(1) = 1, σ1(−1) = 1 + p(1, 1) ∈ Z2, and σ1(k) = 0 for |k| > 1.

Then, for j = 2, . . . ,m, define σj(1) = p(j, 1) and σj(−1) = 0. Independently of the definition of

the remaining values of σj , Condition (5) is valid for i = 1 and all j = 1, . . . ,m, since σ1(k) = 0

for |k| > 1.

Assume inductively that we have fixed σ1, . . . , σr, with σj(k) = 0 for |k| > j, as well as the

values σj(k), for j = r + 1, . . . ,m and |k| ≤ r, so that (5) is valid for i = 1, . . . , r and all j.

Define:

σr+1(r+1) = 1 , σr+1(−r−1) = 1+
r∑
|k|=1

σr+1(k)+p(r+1, r+1) , σr+1(k) = 0 for |k| > r+1 .

Then, (5) is valid also for i = j = r + 1. Putting now σj(−r − 1) = 0 and

σj(r + 1) =
r∑
|k|=1

σj(k)σr+1(k) + p(j, r + 1)

for j = r+ 2, . . . ,m, we finish with fixed σ1, . . . , σr+1, with σj(k) = 0 for |k| > j, and the values

σj(k), for j = r+ 2, . . . ,m and |k| ≤ r+ 1, so that (5) is valid for i = 1, . . . , r+ 1 and all j. This

proves the inductive step and the theorem follows.

Let now y1, . . . , ym be ‘variables’ with Zn2 -degrees fixed by a map σ : {1, . . . ,m} → Zn2 .

We can consider R[y1, . . . , ym]σ, which is the free graded tensor algebra over reals generated by

variables y1, . . . , ym modulo the commutation relations described by σ,

yiyj = (−1)〈σi,σj〉nyjyi (6)
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[CM14]. This algebra is referred to as the free σ-commutative associative R-algebra, or, if σ is

fixed, the free Zn2 -commutative associative R-algebra in m generators. Moreover, if n is fixed,

we usually omit subscript n in 〈−,−〉n. The variable yi is even (resp., odd) if p(yi) := |σi| :=

σi(1) + . . . + σi(n) ∈ Z2 is 0 (resp., 1). We can write every element of R[y1, . . . , ym]σ uniquely

as a polynomial

f(y) =

Nf∑
|µ|=0

fµ1...µm(y1)µ1 . . . (ym)µm =

Nf∑
|µ|=0

fµy
µ , (7)

where |µ| = µ1 + . . .+ µm.

3 Zn2-superdomains and their morphisms

To develop a generalization of Supergeometry, we wish to distinguish coordinates x1, . . . , xp of

degree 0 := (0, . . . , 0) ∈ Zn2 and view them as local coordinates on a standard manifold. The

remaining coordinates ξ1, . . . , ξq have nontrivial degrees σ1, . . . , σq ∈ Zn2 \ {0} determined by a

fixed map σ : {1, . . . , q} → Zn2 \ {0}. We will call them formal variables.

3.1 Sheaf of polynomials

The first idea would be to define a σ-superdomain or Zn2 -superdomain as a ringed space U =

(U,OU,σ), where U ⊂ Rp is an open subset and the structure sheaf is given by

OU,σ(−) := C∞U (−)[ξ1, . . . , ξq]σ . (8)

Here ξ1, . . . , ξq is a sequence of variables of Zn2 -degrees σa, i.e. commuting according to

ξaξb = (−1)〈σa,σb〉nξbξa . (9)

As already mentioned above, we omit in the sequel subscript σ, since this map is fixed. Thus, on

V ⊂ U , our algebra of superfunctions would be the Zn2 -commutative associative unital R-algebra

OU (V ) = C∞U (V )[ξ1, . . . , ξq] (10)

of polynomials

f(x, ξ) =

Nf∑
|µ|=0

fµ1...µq(x) (ξ1)µ1 . . . (ξq)µq =

Nf∑
|µ|=0

fµ(x)ξµ (11)

in the variables ξa and with coefficients in the ring C∞(V ), whose multiplication is subject to

the sign rules determined by (9). Note that we omit subscripts like U , whenever we do not wish

to stress the (Hausdorff, second-countable) topological space over which the considered sheaf is

defined. Of course, those ξa which are odd, p(ξa) = 1, appear in the polynomials with exponents

≤ 1.

Morphisms O(W ) → O(V ) of Zn2 -commutative associative unital R-algebras (in particular

changes of coordinates) should preserve the grading, so have the form

x′i = ϕi(x) +
∑

deg(ξµ)=0

f iµ(x)ξµ , (12)

ξ′a =
∑

deg(ξµ)=σa

faµ(x)ξµ ,

7



where the functions fµ : V → Rp and the map ϕ : V →W are smooth, and the sums are finite.

It is easy to see that the ideal J(V ) ⊂ O(V ) generated by the formal variables is respected

by morphisms and that the projection

pV : O(V )→ O(V )/J(V ) ' C∞(V )

is covariantly defined (we come back to this and similar points later on).

However, this approach has clear shortcomings.

First, as we allow formal variables which are even, the ideal J(V ) is not nilpotent, in general,

so superfunctions f with invertible ‘body’ pV (f) need not to be invertible in the ring O(V ).

Formal inverting of polynomials requires using formal power series.

Second, for a proper development of differential calculus, we should be able to compose

elements of degree 0, see (12), with arbitrary differentiable functions and not only polynomials.

But what is F (x+ξ2) for a differentiable F and formal even variable ξ? Since ξ is not nilpotent,

the Taylor formula (proceed as in standard Supergeometry) leads again to a formal power series.

3.2 Sheaf of formal power series

A consistent differential calculus for Zn2 -superdomains forces us to complete the structure sheaf

to formal power series in the formal variables. In this respect our definition of Zn2 -superdomains,

and the below definition of Zn2 -supermanifolds, are similar to Choquet-Bruhat’s definition of

standard Rogers-De Witt supermanifolds [CB89]. Of course, odd variables will appear only

with power 1.

In the following, we consider the n-tuples of Zn2 as ordered lexicographically.

Definition 3.1. Let n, p, q ∈ N and let σ : {1, . . . , q} → Zn2 \ {0}. Denote by qk ∈ N, k ∈
{1, . . . , 2n − 1}, the number of degrees σa that coincide with the k-th element of Zn2 \ {0} and

set q = (q1, . . . , q2n−1). A σ-superdomain or Zn2 -superdomain of dimension p|q is a ringed space

U p|q = (U,OU,σ), where U ⊂ Rp is an open subset and the structure sheaf is the sheaf

OU,σ(−) := C∞U (−)[[ξ1, . . . , ξq]]σ . (13)

Over V ⊂ U, the algebra of Zn2 -functions is the Zn2 -commutative associative unital R-algebra

OU (V ) = C∞U (V )[[ξ1, . . . , ξq]] (14)

of formal power series

f(x, ξ) =

∞∑
|µ|=0

fµ1...µq(x)(ξ1)µ1 . . . (ξq)µq =

∞∑
|µ|=0

fµ(x)ξµ (15)

in formal variables ξ1, . . . , ξq of degrees σ1, . . . , σq commuting according to (9), and with coeffi-

cients in C∞(V ).

We refer to a ringed space of Zn2 -commutative associative unital R-algebras as a Zn2 -ringed

space.
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Example 3.2. Consider the case n = 2 and p|q1|q2|q3 = 1|1|1|1, write for simplicity (x, ξ, η, ϑ)

instead of (x, ξ1, ξ2, ξ3), and choose σξ = (0, 1), ση = (1, 0), and σϑ = (1, 1). A Z2
2-function is

then of the form

f(x, ξ, η, ϑ) =
∑
r≥0

fr(x)ϑ2r +
∑
r≥0

gr(x)ϑ2r+1ξη +
∑
r≥0

hr(x)ϑ2rξ +
∑
r≥0

kr(x)ϑ2r+1η

+
∑
r≥0

`r(x)ϑ2rη +
∑
r≥0

mr(x)ϑ2r+1ξ +
∑
r≥0

nr(x)ϑ2r+1 +
∑
r≥0

pr(x)ϑ2rξη , (16)

where the sums are formal series and the functions in x are smooth. Note that the first (resp.,

second, third, fourth) two sums contain terms of Z2
2-degree (0, 0) (resp., (0, 1), (1, 0), and (1, 1)).

3.3 Locality of Zn2 -superdomains

In classical Supergeometry a (super) ringed space is called a space if all its stalks are local rings,

i.e. rings that have a unique maximal homogeneous ideal. Such ringed spaces are referred to as

locally ringed spaces. Further, a ringed space is a supermanifold if it is a space that is locally

modelled on a superdomain. Superdomains are thus ‘trivial’ locally ringed spaces. Of course,

one has to verify that the stalks of a superdomain are local rings.

To show that Zn2 -superdomains are locally Zn2 -ringed spaces, we need two lemmas.

Let R be a commutative unital ring and let (ξ1, . . . , ξq) be a finite number of Zn2 \{0}-graded

parameters, which satisfy

ξiξj = (−1)〈deg(ξ
i),deg(ξj)〉ξjξi

(the scalars R are assumed to be central). We denote by R[[ξ1, . . . , ξq]] the Zn2 -commutative

associative unital R-algebra of formal series in the ξa with coefficients in R.

Lemma 3.3. Any series 1 − v, where v =
∑
|µ|>0 vµξ

µ has no independent term, is invertible,

with inverse v−1 =
∑

k≥0 v
k.

Proof. Observe first that, for any k ∈ N,

vk =
∑
|ν|≥k

( ∑
µ1+...+µk=ν

±vµ1 · · · vµk

)
ξν ,

where the µi ∈ Nq are of course multi-indices. It follows that the coefficients of v−1 :=
∑

k≥0 v
k

are finite sums in R, so that v−1 ∈ R[[ξ1, . . . , ξq]]. It suffices now to observe that

(1− v)
∑
k≥0

vk =
∑
k≥0

vk −
∑
k≥1

vk = 1 .

Lemma 3.4. A series w ∈ R[[ξ1, . . . , ξq]] is invertible if and only if its independent term w0 is

invertible in R.
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Proof. Necessity directly follows from the definition of the multiplication in R[[ξ1, . . . , ξq]]. Con-

versely, consider w ∈ R[[ξ1, . . . , ξq]] with w0 invertible: w = w0(1− v). In view of the preceding

lemma, we then have w−1 = w−10

∑
k≥0 v

k.

We are now prepared to prove the

Proposition 3.5. Any Zn2 -superdomain (U,C∞U [[ξ1, . . . , ξq]]) is a locally Zn2 -ringed space, i.e.

for any x ∈ U , the stalk C∞U,x[[ξ1, . . . , ξq]] has a unique maximal homogeneous ideal

mx = {[f ]x : f0(x) = 0} .

Proof. Set Sx = C∞U,x[[ξ1, . . . , ξq]]. In view of Lemma 3.4, a series [f ]x ∈ Sx is invertible if and

only if [f0]x ∈ C∞U,x is invertible, i.e. if and only if f0(x) 6= 0:

Sx \ S×x = {[f ]x : f0(x) = 0} .

The latter is clearly a proper homogeneous ideal. Let Ix be any proper homogeneous ideal. If

it strictly contains Sx \ S×x , it contains an invertible element of Sx and can thus not be proper:

the homogeneous ideal mx := Sx \ S×x is maximal. If Ix is another maximal homogeneous ideal,

it does not contain any invertible element: Ix ⊂ mx ⊂ Sx – a contradiction.

Moreover, Lemma 3.4 has the following

Corollary 3.6. For any open V ⊂ U , a Zn2 -function f ∈ OU (V ) = C∞U (V )[[ξ1, . . . , ξq]] is

invertible in OU (V ) if and only if its independent term f0 is invertible in C∞U (V ).

This corollary guarantees that a number of results of classical Supergeometry still hold in

Zn2 -Supergeometry, although formal variables are no longer necessarily nilpotent.

3.4 Completeness of Zn2 -function algebras

The algebra O(V ) = C∞(V )[[ξ1, . . . , ξq]] of formal power series is the completion of the algebra

O(V ) = C∞(V )[ξ1, . . . , ξq] of polynomials. Moreover,

Proposition 3.7. The algebra O(V ) = C∞(V )[[ξ1, . . . , ξq]] of Zn2 -functions on V is Hausdorff-

complete (in the sense of Section 7.1).

Proof. Consider a Zn2 -superdomain with Zn2 -functions

f(x, ξ) =

∞∑
|µ|=0

fµ(x)ξµ ∈ O(V ) = C∞(V )[[ξ1, . . . , ξq]] .

The number k := |µ| of generators defines an N-grading in O(V ) that induces a decreasing

filtration O`(V ) = C∞(V )[[ξ1, . . . , ξq]]≥`, where subscript ≥ ` means that we consider only

series whose terms contain at least ` parameters ξa (in the following we omit V if no confusion

arises). Of course J = J1 := O1 – the kernel of the projection of Zn2 - onto base-functions – is an

ideal of O and J ` = O`: O ⊃ J ⊃ J2 ⊃ . . . The sequence O/J ← O/J2 ← O/J3 ← . . . , which
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can be identified with the sequence C∞ ← C∞[[ξ1, . . . , ξq]]≤1 ← C∞(V )[[ξ1, . . . , ξq]]≤2 ← . . . ,

is an inverse system, whose limit is

lim←−̀O/J
` = O . (17)

This means that O is Hausdorff-complete, see Section 7.1.

• It is well known that Equation (17) means that O is a complete topological algebra with

respect to the topology in O defined by the filtration J `, ` ≥ 1, viewed as a basis of

neighborhoods of 0.

• Remark that also the sequence O/J ← O/J2 ← O/J3 ← . . . can be identified with

C∞ ← C∞[[ξ1, . . . , ξq]]≤1 ← C∞(V )[[ξ1, . . . , ξq]]≤2 ← . . . It follows that

lim←−̀O/J` = O , (18)

so that O is actually the completion Ô of O with respect to the filtration implemented by

J (as well as, in view of (17), its own completion with respect to J).

3.5 Morphisms of Zn2 -superdomains

The following remark shows that morphisms of Zn2 -superdomains can be viewed as in classi-

cal differential Geometry. It will be formulated more rigorously in the case of general Zn2 -

supermanifolds.

Consider two Zn2 -superdomains of dimension p|q and p′|q′ over open subsets U ⊂ Rp and

U ′ ⊂ Rp′ , respectively. Roughly, Zn2 -morphisms between these Zn2 -superdomains correspond to

graded unital R-algebra morphisms

φ∗ : C∞(V ′)[[ξ′1, . . . , ξ′q
′
]]→ C∞(V )[[ξ1, . . . , ξq]]

and are determined by their coordinate form

x′i = ϕi(x) +
∑

σ(µ)=0

f iµ(x)ξµ , (19)

ξ′a =
∑

σ(µ)=σa

faµ(x)ξµ ,

where the sums are formal series with coefficients in smooth functions and where ϕ : V 3
(x1, . . . , xp) 7→ (x′1, . . . , x′p

′
) ∈ V ′ is a smooth map.

Example 3.8. In the case of Z2
2-superdomains of dimension 1|1|1|1 with variables (x, ξ, η, ϑ)

(resp., (y, α, β, γ)) of Z2
2-degrees ((0, 0), (0, 1), (1, 0), (1, 1)), a Z2

2-morphism can be viewed as

usual: 
y =

∑
r f

y
r (x)ϑ2r +

∑
r g

y
r (x)ϑ2r+1ξη ,

α =
∑

r f
α
r (x)ϑ2rξ +

∑
r g

α
r (x)ϑ2r+1η ,

β =
∑

r f
β
r (x)ϑ2rη +

∑
r g

β
r (x)ϑ2r+1ξ ,

γ =
∑

r f
γ
r (x)ϑ2r+1 +

∑
r g

γ
r (x)ϑ2rξη .

(20)
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To explain the above claim, we have to prove that any Zn2 -morphism has a coordinate form of

the announced type (what is almost obvious), and that, conversely, any pullbacks φ∗(x′i) (' x′i)
and φ∗(ξ′a) (' ξ′a) of the form (19) uniquely extend to a Zn2 -morphism. We will show here that

such a Zn2 -morphism does exist. Uniqueness (and other details) will be proven independently in

the more general case of Zn2 -morphisms of Zn2 -supermanifolds.

In the sequel we write φ∗(x′i) = ϕi(x) + ji(x, ξ), with ji(x, ξ) =
∑

σ(µ)=0 f
i
µ(x)ξµ ∈ J . For

any

g(x′, ξ′) =
∑
|ν|≥0

gν(x′)ξ′ν ∈ C∞(V ′)[[ξ′1, . . . , ξ′q
′
]] ,

we set

(φ∗(g))(x, ξ) =
∑
|ν|≥0

φ∗(gν(x′))(φ∗(ξ′))ν , (21)

where

φ∗(gν(x′)) = gν(φ∗(x′)) = gν(ϕ(x) + j(x, ξ)) =
∑
|α|≥0

1

α!
(∂αx′gν)(ϕ(x)) jα(x, ξ) (22)

is a formal Taylor expansion; we use here the multiindex notation: jα = (j1)α
1
. . . (jp

′
)α
p′ ∈ J |α|.

In fact the RHS of (22) is a series of series and it could lead to rearranged series with non-

converging series of C∞(V )-coefficients. However, any type of monomial in the formal variables

ξa contains a fixed number N of parameters. As the terms indexed by |α| > N contain at

least N + 1 parameters, they not contribute to the considered monomial. The coefficient of

the latter is therefore a finite sum in C∞(V ), so that the RHS of (22) is actually a series in

C∞(V )[[ξ1, . . . , ξq]]. The same argument can be used for the RHS of (21).

It is quite easily seen that the thus defined pullback map φ∗ is a unital (obvious) graded

R-algebra morphism. As for the degree of φ∗, note that ji is of degree 0, so that φ∗(gν(x′)) has

Zn2 -degree 0; Equation (21) allows now to see that φ∗ is of degree 0. To prove that φ∗ is an algebra

morphism, we first show that its restriction (22) respects multiplication. If gν , hρ ∈ C∞(V ′), we

get

φ∗(gνhρ) =
∑
α

1

α!
∂αx′(gνhρ) j

α

=
∑
α

∑
β+γ=α

1

α!

α!

β!γ!
∂βx′gν ∂

γ
x′hρ j

β+γ

=
∑
β

∑
γ

1

β!γ!
∂βx′gν ∂

γ
x′hρ j

βjγ

= φ∗(gν) φ∗(hρ) ,

where we omitted for simplicity the evaluation at ϕ(x), as well as the variables of j (remember

that ji is of degree 0). Let now g =
∑

ν gνξ
′ν and h =

∑
ρ hρξ

′ρ be two arbitrary Zn2 -functions:

gh =
∑
α

∑
ν+ρ=α

±gνhρξ′α ,

12



where the sign is due to commutation of components of ξ′. Thus

φ∗(gh) =
∑
α

φ∗

( ∑
ν+ρ=α

±gνhρ

)
(φ∗(ξ′))α

=
∑
α

∑
ν+ρ=α

φ∗(gν) φ∗(hρ) (φ∗(ξ′))ν (φ∗(ξ′))ρ ,

where the sign disappears as φ∗ is of degree 0. The conclusion follows.

As mentioned above, the precise definition of a Zn2 -morphism as a morphism of locally Zn2 -

ringed spaces will be given in Section 4, and the preceding explanation will be completed and

generalized.

4 Zn2-Supermanifolds

4.1 Definitions

A Zn2 -supermanifold is a locally Zn2 -ringed space (LZRS) that is locally modelled on a Zn2 -

superdomain. For details on the category LZRS of LZRS, we encourage the reader to have a

look at Section 7.2. In the following, the elements of Zn2 , n ∈ N, are considered as ordered

lexicographically.

Definition 4.1 (Ringed space definition). A (smooth) Zn2 -supermanifold M of dimension p|q,

p ∈ N, q = (q1, . . . , q2n−1) ∈ N2n−1, is a LZRS (M,AM ) that is locally isomorphic to a Zn2 -

superdomain C∞Rp [[ξ
1, . . . , ξq]], where q = |q| and where ξ1, . . . , ξq are formal variables of which

qk have the k-th degree in Zn2 \ {0}.

The mentioned isomorphisms are of course invertible morphisms in LZRS.

Many geometric concepts can be glued from local pieces: they can be defined via a cover

by coordinate systems, with specific coordinate transformations that satisfy the usual cocycle

condition. The same holds for Zn2 -supermanifolds. Roughly, a Zn2 -supermanifold of dimension

p|q can be viewed as a second-countable Hausdorff topological space M surrounded by ‘a cloud

of formal stuff’, which is locally (with respect to the topology of M) described by coordinate

systems (x, ξ), where x = (x1, . . . , xp) ∈ U ⊂ Rp is of degree 0 (and can be viewed as a

homeomorphism x(m) � m(x) between U an open subset of M – which is often also denoted

by U) and ξ = (ξ1, . . . , ξq) are formal variables as in Definition 4.1; further, the coordinate

transformations respect the Zn2 -degree and satisfy the cocycle condition.

The rigorous alternative definition of Zn2 -supermanifolds follows naturally from this idea. It

is similar to the atlas description of a supermanifold [Lei80].

Definition 4.2. A chart (or coordinate system) over a (second-countable Hausdorff) topological

space M is a LZRS

U = (U,C∞U [[ξ1, . . . , ξq]]), U ⊂ Rp, p, q ∈ N ,

together with a homeomorphism ψ : U → ψ(U), where ψ(U) is an open subset of M .

13



Given two charts (Uα, ψα) and (Uβ, ψβ) over M , we will denote by ψβα the homeomorphism

ψβα := ψ−1β ψα : Vβα := ψ−1α (ψα(Uα) ∩ ψβ(Uβ))→ Vαβ := ψ−1β (ψα(Uα) ∩ ψβ(Uβ)) .

Whereas in classical Differential Geometry the coordinate transformations are completely

defined by the coordinate systems, in (Zn2 -)Supergeometry, they have to be specified separately.

Definition 4.3. A coordinate transformation between two charts (Uα, ψα) and (Uβ, ψβ) over M

is an isomorphism of LZRS Ψβα = (ψβα, ψ
∗
βα) : Uα|Vβα → Uβ|Vαβ , where the source and target

are restrictions of ‘sheaves’ (note that the underlying homeomorphism is ψβα).

An atlas over M is a covering (Uα, ψα)α by charts together with a coordinate transformation

for each pair of charts, such that the usual cocycle condition ΨβγΨγα = Ψβα holds (appropriate

restrictions are understood).

Definition 4.4 (Atlas definition). A (smooth) Zn2 -supermanifold M is a second-countable Haus-

dorff topological space M together with a preferred atlas (Uα, ψα)α over it.

4.2 Rationale

Let us consider the case n = 2 , p|q1|q2|q3 = 1|1|1|1, and assume for simplicity that the underly-

ing topological space M carries a smooth manifold structure (we prove later that the underlying

topological space of any Zn2 -supermanifold carries a smooth structure). We use notation from

Examples 3.2 and 3.8; in particular (x, ξ, η, ϑ) are of degree ((0, 0), (0, 1), (1, 0), (1, 1)). A coor-

dinate transformation (x, ξ, η, ϑ) � (y, α, β, γ) is then of the form

(a)


y =

∑
r f

y
r (x)ϑ2r +

∑
r g

y
r (x)ϑ2r+1ξη

α =
∑

r f
α
r (x)ϑ2rξ +

∑
r g

α
r (x)ϑ2r+1η

β =
∑

r f
β
r (x)ϑ2rη +

∑
r g

β
r (x)ϑ2r+1ξ

γ =
∑

r f
γ
r (x)ϑ2r+1 +

∑
r g

γ
r (x)ϑ2rξη

(b)


x =

∑
r F

x
r (y)γ2r +

∑
rG

x
r (y)γ2r+1αβ

ξ =
∑

r F
ξ
r (y)γ2rα+

∑
rG

ξ
r(y)γ2r+1β

η =
∑

r F
η
r (y)γ2rβ +

∑
rG

η
r(y)γ2r+1α

ϑ =
∑

r F
ϑ
r (y)γ2r+1 +

∑
rG

ϑ
r (y)γ2rαβ

(23)

where the functions in x and y are smooth.

The substitution of (23)(a) in a local function

f(y, α, β, γ) =
∑

i,j∈{0,1}, r∈N

fijr(y)αiβjγr (24)

leads to a function g(x, ξ, η, ϑ) in the initial variables – the pullback of f . As mentioned before,

to transform

fijr

(∑
r

fyr (x)ϑ2r +
∑
r

gyr (x)ϑ2r+1ξη

)
, (25)

we detach the independent term fy0 (x) from the series j(x, ξ, η, ϑ) of all the remaining terms and

set

fijr (fy0 (x) + j(x, ξ, η, ϑ)) =
∑
n

1

n!

dn fijr
d yn

(fy0 (x)) jn(x, ξ, η, ϑ) . (26)
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It is now quite obvious that a coordinate transformation (23) in a Zn2 -supermanifold induces

a coordinate transformation y = fy0 (x), x = F x0 (y) in the base manifold. Indeed, since the

transformations (23) are inverse, we get x when substituting (23)(a) in

x =
∑
r

F xr (y)γ2r +
∑
r

Gxr (y)γ2r+1αβ ,

i.e. all the terms of the RHS that contain, after substitution, at least one parameter can-

cel, whereas the unique parameter independent term F x0 (fy0 (x)) coincides with x. Similarly,

fy0 (F x0 (y)) = y .

From the ‘atlas standpoint’, a global Z2
2-superfunction f ∈ A(i,j)

M (M) of degree (i, j) ∈ Z2
2, is

a family f(y, α, β, γ), over all coordinate systems (y, α, β, γ), of local functions of degree (i, j),

such that, when substituting (23)(a) in f(y, α, β, γ), we get the function f(x, ξ, η, ϑ) associated

to the coordinate system (x, ξ, η, ϑ) – just as a global function g ∈ C∞M (M) is a family g(y),

over the induced coordinate systems (y), such that when substituting y = fy0 (x) in g(y), we get

g(x). The degree (i, j) is compatible with the coordinate transformations as the latter respect

the degrees.

For any global Z2
2-superfunction in AM (M), i.e. any family of ‘glueable’ local functions

f(y, α, β, γ), see (24), the induced family f000(y) defines a global base function in C∞M (M).

Indeed, in view of what has been said, it is easily checked that the gluing property of the family

f(y, α, β, γ) entails that f000(f
y
0 (x)) = f000(x) .

Remark 4.5. This means that the canonical projections of the local expressions of a global

function glue to give a global base function. In particular projection commutes with restriction.

Therefore, projection is an algebra morphism.

5 Examples

Example 5.1. For n = 1, we recover classical supermanifolds. Indeed, in this case there are no

formal variables that bear powers higher than 1 and formal series are thus just polynomials.

Example 5.2. We already mentioned that the tangent bundle TM to a Z2-supermanifoldM =

(M,AM ) gives rise to a Z2
2-supermanifold. Indeed, the parities of local coordinates (xi, ξa) onM

induce canonically parities of the adapted system of coordinates (xi, ξa, ẋj , ξ̇b) on TM in which

(xi, ẋj) are even and (ξa, ξ̇b) are odd. But TM is also a vector bundle what induces an additional

N-gradation in which (ẋj , ξ̇b) are of degree 1. Using the canonical monoid homomorphism from N
to Z2, we get a Z2

2-gradation in which (xi, ξa, ẋj , ξ̇b) have the bidegrees ((0, 0), (0, 1), (1, 0), (1, 1)).

We can find an atlas whose coordinate changes respect the bidegrees; hence, we deal with

a Z2
2-supermanifold. As the changes of coordinates are linear in (ẋj , ξ̇b), the algebra of Z2

2-

superfunctions which are polynomial in the latter variables is well-defined. It can be identified

with the algebra ΩD(M) of Deligne super differential forms on M. Since it is dense in the

whole algebra of Z2
2-superfunctions on TM, the latter can be identified with the corresponding

completion

Ω̂D(M) =
∏
k≥0
∧kΩ1 .
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Proposition 5.3. The tangent bundle TM of a Z2-supermanifold M = (M,AM ), interpreted

as ringed space (M, Ω̂D(M)), is a Z2
2-supermanifold.

Example 5.4. Let now

E
τl
||

τr
""

E10

τ̄r ""

E11

OO

E01

τ̄l||
M

(27)

be a double vector bundle with the side bundles E01, E10 and the core bundle E11. This corre-

sponds to a choice of two commuting Euler vector fields ∇1,∇2 on E [GR09]. We can choose an

atlas with bihomogeneous local coordinates, say (x, ξ, η, ϑ) of bidegrees (0, 0), (0, 1), (1, 0), (1, 1),

respectively. Moreover, all coordinate changes have the form

x′ = ϕ(x) ,

ξ′ = a(x)ξ ,

η′ = b(x)η ,

ϑ′ = c(x)ϑ+ d(x)ξη ,

and thus respect the bigradation. We can now ‘superize’ assuming that these coordinates satisfy

the sign rules of the ‘scalar product’ in Z2
2. As the coordinate changes respect the bidegrees,

this is consistent and leads to a Z2
2-supermanifold ΠE. In the super case, we have to fix the

ordering, as its change may result in changing the sign (see discussion in [GR09]).

All this can be generalized to n-tuple vector bundles if we fix a lexicographic ordering in Zn2
relative to an ordering of the corresponding Euler vector fields.

Proposition 5.5. The superization of an n-vector bundle, n ≥ 1, is a Zn2 -supermanifold.

Note that certain superizations of n-tuple vector bundles have been considered also by

Voronov.

6 Morphisms of Zn2-supermanifolds

6.1 Embedding of the smooth base manifold

We already mentioned that global Zn2 -functions project consistently to the base, see Remark 4.5.

In the present section, we make this observation more precise.

Proposition 6.1. The base topological space M of any Zn2 -supermanifold M = (M,AM ) of

dimension p|q carries a smooth manifold structure of dimension p, and there exists a short

exact sequence of sheaves

0→ JM → AM
ε→ C∞M → 0 .

16



Proof. Let V ⊂ Rp be open, let f ∈ O(V ) = C∞(V )[[ξ1, . . . , ξq]], let x ∈ V and k ∈ R. In view

of Corollary 3.6, the Zn2 -function f − k is not invertible, in any neighborhood of x in V , if and

only if its independent term f0− k is not invertible, in any neighborhood of x, i.e. if and only if

k = f0(x). Hence, for any V ⊂ Rp, any f ∈ O(V ) and any x ∈ V , there exists a unique k ∈ R,

such that f − k is not invertible, in any neighborhood of x in V . Since AM is locally isomorphic

to ORp , the same property holds in AM . For any open U ⊂ M , for any f ∈ A(U) and any

m ∈ U , the unique k ∈ R such that f −k is not invertible, in any neighborhood of m, is denoted

by εU (f)(m). If m runs through U , we obtain a function εU (f) : U → R, and if f runs through

A(U), we get a map εU : A(U)→ F(U), where F(U) = im εU is the algebra of these functions.

Actually εU is a surjective algebra morphism and the short sequence of algebras

0→ J (U)→ A(U)→ F(U)→ 0 ,

where J (U) = ker εU , is exact. In fact JM : U → J (U) is a subsheaf of AM . On the other

hand, it is clear that the presheaf FM is locally isomorphic to C∞Rp and is thus locally a sheaf.

Hence, FM generates a sheaf FM which is locally isomorphic to C∞Rp and thus implements a

p-dimensional differential manifold structure on M such that C∞M ' FM . Since the sequence of

sheaves

0→ JM → AM
ε→ C∞M → 0

is exact, we have AM/JM ' C∞M . For details on sheaves, we refer the interested reader to

Section 7.3. See also [Var04].

6.2 Continuity of morphisms

In the ‘ringed space definition’ of Zn2 -supermanifolds the requirement that (M,AM ) be local is

actually redundant – in view of the local model. The unique maximal homogeneous ideal of Am,

m ∈M , will be denoted by mm.

The key-fact about morphisms of Zn2 -supermanifolds is a generalization of Section 3.5, see

below. This result can be proved due to the continuity of morphisms with respect to the

topologies induced by the ideals J (U) ⊂ A(U) and mm ⊂ Am.

In this section, we prove these continuities.

Definition 6.2. A morphism of Zn2 -supermanifolds or Zn2 -morphism is a morphism of the un-

derlying locally Zn2 -ringed spaces.

This means that the category ZSMan of Zn2 -supermanifolds is a full subcategory of the category

LZRS, see Section 7.2.

We first show that Zn2 -morphisms commute with the projections ε onto the bases:

Proposition 6.3. Let

Ψ = (ψ,ψ∗) :M = (M,AM )→ N = (N,BN )

be a morphism of Zn2 -supermanifolds, let V ⊂ N be an open subset, and U = ψ−1(V ). Then,

εU ◦ ψ∗V = ψ∗V ◦ εV , (28)
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where the LHS pullback of Zn2 -functions is given by the second component of Ψ and where the

RHS pullback of classical functions is equal to − ◦ ψ|U and thus given by the first component of

Ψ.

Proof. Let t ∈ B(V ) and m ∈ U . If we set s = ψ∗V (t) ∈ A(U), we have to show that

εU (s)(m) = εV (t)(ψ(m)) .

The RHS of this equation is, by definition, the unique k ∈ R such that t− k is not invertible, in

any neighborhood of ψ(m). It suffices thus to prove that the LHS has this property. Suppose that

t− εU (s)(m) is invertible in some neighborhood of ψ(m). Then, since ψ∗V is a unital R-algebra

morphism,

ψ∗V (t− εU (s)(m)) = ψ∗V (t)− εU (s)(m) ψ∗V (1) = s− εU (s)(m)

is invertible in some neighborhood of m – a contradiction.

Corollary 6.4. For any Zn2 -supermanifold M = (M,AM ) and any point m ∈ M , the unique

maximal homogeneous ideal mm of Am is given by

mm = {[f ]m : (εf)(m) = 0} . (29)

Proof. If

Φ = (φ, φ∗) : (U,AM |U )
∼→ (V,C∞Rp |V [[ξ1, . . . , ξq]])

denotes an isomorphism in LZRS, with m ∈ U , we have mm = φ∗mmx, where x = φ(m). It now

suffices to apply Proposition 6.3.

As mentioned above, we need not assume that (M,AM ) is local. Then Φ is only an iso-

morphism in ZRS and we cannot ask that φ∗m respects maximal ideals. However, since φ∗m is an

isomorphism of graded unital R-algebras, φ∗mmx is the unique maximal homogeneous ideal of

Am.

The next result is the announced J - and m-continuity theorem for Zn2 -morphisms. It shows

in particular that Zn2 -morphisms automatically respect maximal ideals, so that this requirement

is actually redundant in the definition of Zn2 -morphisms.

Corollary 6.5. Any Zn2 -morphism Ψ = (ψ,ψ∗) :M = (M,AM )→ N = (N,BN ) is continuous

with respect to J and m, i.e., for any open V ⊂ N and any m ∈M , we have

ψ∗V (JN (V )) ⊂ JM (ψ−1(V )) and ψ∗m
(
mψ(m)

)
⊂ mm .

Proof. This result is a direct consequence of the definition J = ker ε, Equation (29), and Propo-

sition 6.3.

Corollary 6.6. The base map ψ : M → N of any Zn2 -morphism Ψ : (M,AM ) → (N,BN ) is

smooth.
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Proof. Let m ∈ M , let (V, y = (y1, . . . , yu)) be a classical chart of N around ψ(m), and set

U = ψ−1(V ). For any g ∈ C∞(V ), there is t ∈ B(V ) (just restrict V ), such that

g ◦ ψ = ψ∗ (εV (t)) = εU (ψ∗(t)) ∈ C∞(U) .

In particular, for g = yj , we get ψj = yj ◦ ψ ∈ C∞(U) , so that ψ ∈ C∞(U,N) and, since U is

a neighborhood of an arbitrary point m ∈M , ψ ∈ C∞(M,N).

6.3 Completeness of the Zn2 -function sheaf and the Zn2 -function algebras

In standard Supergeometry, the decreasing filtration A ⊃ J ⊃ J 2 ⊃ . . . of the structure sheaf

A of a supermanifold M = (M,A) by the sheafs of ideals J k [Var04], induces embeddings

M ↪→M2 ↪→M3 ↪→ . . . ↪→M ,

where Mk = (M,A/J k) is the superspace characterized by the sheaf A/J k [Man02] (see also

Section 7.3).

Let now M = (M,A) be a Zn2 -supermanifold. The decreasing filtration A ⊃ J ⊃ J 2 ⊃ . . .

gives rise to an inverse system

A/J ← A/J 2 ← A/J 3 ← . . .

of sheaves of algebras (we prove at the end of this subsection that the quotient presheaves A/J k

are actually sheaves). Since a limit is a universal cone, there is a sheaf morphism lim←−kA/J
k ← A.

Moreover, as a limit in a category of sheaves is just the corresponding limit in the category of

presheaves (which is computed objectwise), we get, for any Zn2 -superchart domain Uα,(
lim←−
k

A/J k
)

(Uα) = lim←−
k

A(Uα)/J k(Uα) ' A(Uα) ,

see Equation (17). It follows that

lim←−
k

A/J k ' A

in the category of sheaves, so that the structure sheaf A is complete with respect to the filtration

implemented by J . Since isomorphic sheaves have isomorphic sections, we thus obtain, for any

U ⊂M ,

lim←−
k

A(U)/J k(U) ' A(U) ,

i.e. all function algebras A(U), U ⊂ M, are Hausdorff-complete with respect to the filtration

induced by J (U), see Section 7.1.

Proposition 6.7. The Zn2 -function sheaf AM (resp., the Zn2 -function algebra AM (U), U ⊂
M) of a Zn2 -supermanifold (M,AM ) is Hausdorff-complete with respect to the JM -adic (resp.,

JM (U)-adic) topology.
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Proof. It suffices to show that the presheaves A/J k, k ≥ 1, are in fact sheaves.

Let s, t ∈ A(U)/J k(U), U ⊂ M , coincide on an open cover (Vα)α of U . Then s|Vα =

t|Vα + jkVα , with jkVα ∈ J
k(Vα). The latter thus coincide on the intersections Vα ∩ Vβ. Their

gluing provides jk ∈ J k(U) and s|Vα = t|Vα + jk|Vα . Since A is a separated presheaf (even a

sheaf), we get s = t+ jk in A(U) and s = t in A(U)/J k(U).

As for the second sheaf property, consider a family sα ∈ A(Vα)/J k(Vα) such that sα = sβ

on Vα ∩ Vβ. Let πα be a partition of unity of M that is subordinated to Vα (see Section

7.4). Any product παsα of sα by πα ∈ A0(U) (suppπα ⊂ Vα) is well-defined in A(U)/J k(U)

(supp(παsα) ⊂ Vα). Then s =
∑

α παsα ∈ A(U)/J k(U) and s|Vα = sα.

6.4 Fundamental theorem of Zn2 -morphisms

In this section we prove an extension of the main statement of Section 3.5.

6.4.1 Statement

Let

Ψ = (ψ,ψ∗) :M = (M,AM )→ V u|v = (V,C∞V [[η1, . . . , ηv]])

be a Zn2 -morphism valued in a Zn2 -superdomain. Denote by y = (y1, . . . , yu) the coordinates of

V and by τb ∈ Zn2 \ {0} the degree of ηb. Then the functions

sj := ψ∗V y
j and ζb := ψ∗V η

b

(for all j and b) satisfy

sj ∈ A0
M (M) , ζb ∈ AτbM (M) and

(
εs1, . . . , εsu

)
(M) ⊂ V . (30)

Actually the pullbacks (sj , ζb) (all j and b) of the coordinate functions (yj , ηb) completely

determine the Zn2 -morphism. More precisely:

Theorem 6.8 (Fundamental theorem of Zn2 -morphisms). If M = (M,AM ) is a Zn2 -supermani-

fold, V u|v a Zn2 -superdomain as above, and if (sj , ζb) is an (u + v)-tuple of Zn2 -functions in

AM (M) that satisfy the conditions (30), there exists a unique morphism of Zn2 -supermanifolds

Ψ = (ψ,ψ∗) :M→ Vu|v, such that sj = ψ∗V y
j and ζb = ψ∗V η

b.

The proof requires some preparatory work.

6.4.2 Polynomial approximation of Zn2 -functions

We first describe the mm-adic topology of Am, m ∈M .

When taking an interest in the stalks Am of the function sheaf of a Zn2 -supermanifold

(M,AM ) of dimension p|q, we can choose a centered chart (x, ξ) around m and work in a

Zn2 -superdomain Up|q associated with a convex open subset U ⊂ Rp, in which m ' x = 0. Since

mm = {[f ]m : ε(f)(m) = 0}, a Taylor expansion (with remainder) around m ' x = 0 of the

coordinate form of ε(f) shows that

mm ' {[f ]0 : f(x, ξ) = 0(x) +
∑
|µ|>0

fµ(x)ξµ} ,
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where 0(x) are terms of degree at least 1 in x.

Lemma 6.9. For any m ∈ M , the basis of neighborhoods of 0 in the mm-adic topology of Am
is given by

mk+1
m = {[f ]0 : f(x, ξ) =

∑
0≤|µ|≤k

0µ(xk−|µ|+1)ξµ +
∑
|µ|>k

fµ(x)ξµ} (k ≥ 0) , (31)

where notation is the same as above.

Proof. The inclusion ⊂ is obvious. For ⊃, note that all the terms whose number |µ| of generators

is ≤ k belong to mk+1
m ; as for the series over |µ| > k, write it in the form∑

ξi1 . . . ξik
∑
|µ|>k

fµ(x) ξµ−ei1−...−eik ,

where ea is the canonical basis of Rq and where the sum is over all combinations (with repetitions)

of k of the q elements ξa. Each term of this finite sum is in mk+1
m and so is the sum itself.

Roughly speaking, since ψ∗V is an algebra morphism, the data ψ∗V y
j = sj and ψ∗V η

b = ζb

uniquely determine the pullback ψ∗V P of any section P ∈ PolV (V )[[η1, . . . , ηv]] with polynomial

coefficients. Hence the quest for an appropriate polynomial approximation of an arbitrary sec-

tion. Let us emphasize that here and in the following, the term ‘polynomial section’ refers to

a formal series
∑
|µ|≥0 Pµ(x)ξµ in the parameters ξa with coefficients Pµ(x) ∈ PolV (V ) that are

polynomial in the base variables xi.

Theorem 6.10 (Polynomial approximation). Let m ∈M be a base point of a Zn2 -supermanifold

(M,AM ) and let f ∈ A(U) be a Zn2 -function defined in a neighborhood U of m. For any fixed

degree of approximation k ∈ N \ {0}, there exists a polynomial P = P (x, ξ) such that

[f ]m − [P ]m ∈ mk
m .

In this statement the polynomial P depends on m, f , and k, and the variables (x, ξ) are

(pullbacks of) coordinates centered at m.

Proof. When writing f = f(x, ξ) =
∑
|µ|≥0 fµ(x)ξµ and using a Taylor expansion of the fµ(x)

at m ' x = 0, we get

f(x, ξ) =
∑
|µ|≥0

Pµ(x)ξµ +
∑
|µ|≥0

0µ(xk)ξµ,

where the first sum of the RHS is the searched polynomial P = P (x, ξ) and where the (germ of

the) second sum belongs to mk
m.

6.4.3 Proof of the Morphism Theorem

1. Uniqueness: if the searched Zn2 -morphism Ψ = (ψ,ψ∗) exists, it is necessarily unique. Indeed,

let Ψ1 = (ψ1, ψ
∗
1) and Ψ2 = (ψ2, ψ

∗
2) be two Zn2 -morphisms defined by the same (sj , ζb).

Note first that ψ1 = ψ2: if we denote the coordinates of Vp|q by (yj , ηb), commutation of the

pullback maps with the projections to the base entails that, for all j,

ψj1 = yj ◦ ψ1 = εψ∗1y
j = εsj = εψ∗2y

j = yj ◦ ψ2 = ψj2.
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As for the comparison of ψ∗1 and ψ∗2, we first show (rigorously) that they coincide on polyno-

mial sections (using continuity of the pullbacks of sections with respect to the J -adic topology),

then we show that they coincide on arbitrary section (using the polynomial approximation and

continuity of the pullbacks of germs with respect to the m-adic topology).

Let W ⊂ V be open, set O(W ) := C∞(W )[[η1, . . . , ηv]], ψ := ψ1 = ψ2 and U := ψ−1(W ),

and take

f(y, η) =
∑
|µ|≥0

fµ(y)η µ ∈ O(W ) .

The sequence
n∑
k=0

∑
|µ|=k

ψ∗i (fµ(y)) (ψ∗i η)µ ∈ A(U)

is Cauchy, see 7.1. Indeed,

ψ∗i
∑
|µ|=k

fµ(y)η µ ∈ J k(U) ,

in view of the J -continuity of ψ∗i . Since A(U) is Hausdorff-complete with respect to the J (U)-

topology, the considered sequence has a unique limit∑
|µ|≥0

ψ∗i (fµ(y)) (ψ∗i η)µ ∈ A(U) .

It is easily seen that this limit is given by ψ∗i f ∈ A(U): the difference of the latter and the n-th

term of the sequence equals

ψ∗i
∑
|µ|>n

fµ(y)η µ ∈ J n+1(U) .

If the function f =: P has polynomial coefficients fµ(y) =: pµ(y), we get

ψ∗i P =
∑
|µ|≥0

ψ∗i (pµ(y)) (ψ∗i η)µ =
∑
|µ|≥0

pµ(ψ∗i y) (ψ∗i η)µ =
∑
|µ|≥0

pµ(s)ζ µ ,

so that ψ∗1 and ψ∗2 coincide on polynomial functions P ∈ O(W ).

Consider now an arbitrary function f ∈ O(W ), any point m0 ∈ U , as well as a Zn2 -superchart

(Uα,Φα) around m0. For every m ∈ Uα, we have ψ(m) =: n ∈ W . In view of the polynomial

approximation theorem 6.10, there is, for any k, a polynomial P such that ψ∗i ([f ]n − [P ]n) ∈
mk+1
m . Hence,

[ψ∗1f − ψ∗2f ]m = [ψ∗1f ]m − [ψ∗1P ]m − [ψ∗2f ]m + [ψ∗2P ]m ∈ mk+1
m .

Since k is arbitrary, it follows from Lemma 6.9 that any coefficient of ψ∗1f −ψ∗2f vanishes at m.

As m is arbitrary in Uα, we see that (ψ∗1f − ψ∗2f) |Uα = 0, i.e. that ψ∗1f − ψ∗2f vanishes on an

open cover of U : ψ∗1f = ψ∗2f for any f , so ψ∗1 = ψ∗2. This completes the proof of uniqueness.

2. Existence: The base map ψ is defined by ψ := (εs1, . . . , εsu) ∈ C∞(M,V ). As for the

pullback ψ∗, let W ⊂ V be open. To construct the graded unital R-algebra morphism

ψ∗W : O(W )→ A
(
ψ−1(W )

)
,

we cover the open subset ψ−1(W ) ⊂ M by Zn2 -superchart domains Uα. In view of uniqueness,

we can take ψ−1(W ) = Uα and build ψ∗W : O(W ) → A(Uα). This construction is the same as

the one described in Section 3.5 and similar to the proof that holds in the super-case [Var04].
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7 Appendix

7.1 Completeness

7.1.1 Completion of an Abelian group

Let G be an Abelian group together with a decreasing filtration by Abelian subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ . . .

The sequence

G/G0 = {0} ← G/G1 ← G/G2 ← . . . ,

where the morphism fk−1,k : G/Gk → G/Gk−1 associates to any coset g +Gk, g ∈ G, the coset

g +Gk−1 , is an inverse system in the category AbGr of Abelian groups. The limit

Ĝ := lim←−
k

G/Gk ∈ AbGr

is the completion of G with respect to the considered decreasing filtration. The completion Ĝ

is in fact a complete topological group. Indeed, the cosets g + Gk, g ∈ G, k ∈ N, are a basis

of a topology of G called topology associated to the filtration Gk. This topology turns G into a

topological group and Ĝ into a complete topological group.

If G has additional structure, e.g. is a not necessarily commutative ring (resp., a module

over a ring), and if the decreasing filtration of subgroups is compatible, i.e. Gk · G` ⊂ Gk+`

(resp., Gk is a submodule), then the completion is itself a ring (resp., a module). If the filtration

of a ring G is implemented by an ideal I, i.e. if Gk = Ik := I · · · I, the associated topology is

also referred to as the I-adic topology.

7.1.2 Hausdorff-completeness

Let κ be a commutative unital ring and let

M = M0 ⊃M1 ⊃M2 ⊃ . . .

be a decreasing filtration of a κ-module M by κ-submodules Mk. The sequence of κ-modules

0→ ∩kMk
i−→M

p−→ lim←−
k

M/Mk

is exact. Indeed, the map p associates to m ∈ M the sequence (m + M1,m + M2, . . .) ∈
lim←−kM/Mk; its kernel is ker p = ∩kMk, what explains exactness.

Definition 7.1. The module M is complete (resp., Hausdorff, Hausdorff-complete) with respect

to the considered filtration Mk if and only if p is surjective (resp., p is injective, p is bijective).

We will consider sequences of partial sums in M , i.e. sequences of the type
∑n

k=0mk,

mk ∈M , n ∈ N.
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Definition 7.2. A sequence
∑n

k=0mk of partial sums in M is a Cauchy sequence if mk ∈ Mk,

for all k.

Indeed, in the topology with basis m + Mk, m ∈ M , k ∈ N, the sequence
∑s

k=rmk ∈ Mr

converges to 0 if r, s→∞.

Proposition 7.3. If M is Hausdorff (resp., complete, Hausdorff-complete), any sequence (resp.,

any Cauchy sequence) has at most one (resp., at least one, a unique) limit.

Proof. If M is Hausdorff, any sequence (m(n))n has at most one limit. Assume that (m(n))n

converges to m′ and m′′. Then, for all k, m′ −m′′ = (m′ −m(n))− (m′′ −m(n)) ∈Mk, so that

m′ = m′′.

Further, if M is complete, any Cauchy sequence
∑n

k=0mk, mk ∈ Mk, n ∈ N, has a limit.

Indeed, the sequence
∑n

k=0mk +Mn+1, n ∈ N, is an element of the limit lim←−kM/Mk (the map

fn+1,n+2 sends
∑n+1

k=0 mk +Mn+2 to

n+1∑
k=0

mk +Mn+1 '
n∑
k=0

mk +Mn+1 .)

Hence, it is an image by p, i.e. there is m ∈ M such that
∑n

k=0mk + Mn+1 = m + Mn+1, for

all n. In other words, m −
∑n

k=0mk ∈ Mn+1, or, still, the Cauchy sequence of partial sums

converges to m.

Eventually, if M is Hausdorff-complete, any Cauchy sequence of partial sums has a unique

limit.

7.2 Category of locally Zn2 -ringed spaces

Definition 7.4. A locally Zn2 -ringed space (LZRS) is a pair (M,AM ) made of a topological space

M (Hausdorff and second-countable) and a sheaf AM of Zn2 -commutative associative unital R-

algebras, such that the stalks Am, m ∈M , are local.

Morphisms of LZRS are maps that respect all data, i.e. they are made of a continuous base

map and a sheaf morphism that respects the maximal ideals:

Definition 7.5. A morphism of LZRS is a map Φ between two LZRS (M,AM ) and (N,BN ),

made of

1. a continuous map φ : M → N ,

2. a family, indexed by the open subsets V ⊂ N , of graded unital R-algebra morphisms

φ∗V : BN (V )→ AM
(
φ−1(V )

)
,

called pullback maps,

• which commute with the restriction maps of the sheaves AM and BN ,
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• and are such that the naturally induced graded unital R-algebra morphisms

φ∗m : Bφ(m) → Am ,

m ∈M , respect the maximal ideals, i.e. satisfy

φ∗m(mφ(m)) ⊂ mm . (32)

Locally Zn2 -ringed spaces form a category LZRS with obvious identity morphisms and com-

position.

7.3 Extension and gluing of sheaves

7.3.1 Extension of a sheaf on a basis

It is a matter of common knowledge that a sheaf over a topological space is completely defined

by its definition on a basis of the topology: if B is a basis of a topological space M , there is a

1:1 correspondence Sh(M)
∼−→ Sh(B) between the category of sheaves on M and the category

of sheaves on B.

Sheaves on B, or B-sheaves, are defined exactly as sheaves on M , except that only open

subsets in B are considered. For instance, for the assignment F : U 7→ F(U), U ∈ B, the gluing

condition reads: For any U ∈ B, any cover (Ui)i, Ui ∈ B, of U , and any family (fi)i, fi ∈ F(Ui),

such that fi|V = fj |V , for any V ∈ B, V ⊂ Ui ∩ Uj , there is a unique f ∈ F(U), such that

f |Ui = fi. Similarly, a morphism of B-sheaves is defined exactly as a morphism of sheaves.

The functor Sh(M)→ Sh(B) is just the forgetful functor. Conversely, any B-sheaf F and any

B-sheaf morphism ϕ : F → G uniquely extend to a sheaf F and a sheaf morphism ϕ : F → G,

respectively. For instance, the extension F is (up to isomorphism) given, for any open W ⊂M ,

by

F(W ) = {(fa)a : fa ∈ F(Ua), Ua ∈ B,Ua ⊂W and fa|V = fb|V , V ∈ B, V ⊂ Ua ∩ Ub} .

7.3.2 Gluing of sheaves

Sheaves can be glued.

More precisely, if (Ui)i is an open cover of a topological space M , if Fi is a sheaf on Ui,

and if ϕji : Fi|Ui∩Uj → Fj |Ui∩Uj is a sheaf isomorphism such that the usual cocycle condition

ϕkj ϕji = ϕki holds, then there is a unique sheaf F on M , such that F|Ui ' Fi.
Actually the sheaf isomorphisms ψi : F|Ui → Fi satisfy ϕji ψi|Ui∩Uj = ψj |Ui∩Uj . Uniqueness

means that if there is another sheaf F ′ on M with sheaf isomorphisms ψ′i : F ′|Ui → Fi that

satisfy the same property, then there exists a unique sheaf isomorphism ϕ : F → F ′ such that

ψ′i ϕ|Ui = ψi.

The glued sheaf F is defined, for U ⊂M , by

F(U) = {(fi)i ∈
∏
i

Fi(U ∩ Ui) : ϕji(fi|U∩Ui∩Uj ) = fj |U∩Ui∩Uj} .
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7.4 Partition of unity

The present section should be read after Section 6.2.

Proposition 7.6. For any Zn2 -supermanifold M = (M,AM ) and any open cover (Ui)i of M ,

there is a partition of unity of M subordinated to (Ui)i.

More precisely, there exists a locally finite cover (Vj)j of M , which is subordinated to (Ui)i,

and a family (sj)j ∈ A0
M (M), such that the projections γj := ε(sj) ∈ C∞M (M) are nonnegative,

the support supp(sj) is compact in Vj , and
∑

j sj = 1. The support of a Zn2 -function s ∈ AM (U),

U ⊂M , is defined as usual as the complementary of the open subset of identical zeros of s in U .

Proof. Let (Vj , γj)j be a partition of unity of the classical smooth manifold M that is subor-

dinated to (Ui)i: supp(γj) is compact in Vj and
∑

j γj = 1. We may of course assume that

the Vj are Zn2 -superchart domains: on Vj , the Zn2 -supermanifold (M,AM ) is isomorphic to a

Zn2 -superdomain. If Φ = (φ, φ∗) is this isomorphism, set fj = φ∗(γj ◦ φ−1) ∈ A0
M (Vj). It is clear

that ε(fj) = γj and easily seen that supp(fj) = supp(γj) ⊂ Vj . Extend now fj by 0, so that

fj ∈ A0
M (M), and set f =

∑
j fj . This sum is well-defined in A0

M (M), due to local finiteness

of (Vj)j , and ε(f) =
∑

j ε(fj) =
∑

j γj = 1. The latter implies that f |Vk is invertible for all k.

When gluing these local inverses, we get a global inverse f−1 ∈ A0
M (M). It now suffices to set

sj = f−1fj ∈ A0
M (M).
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