

REASONING ABOUT COALITIONAL EFFECTIVITY IN MODAL EXTENSION OF ŁUKASIEWICZ LOGIC

Tomáš Kroupa¹ and Bruno Teheux²

Lukasiewicz logic

Replace the $\{0, 1\}$ -valued judgements with the **quantitative assessment of propositions** ϕ in the scale $\mathbb{L}_k = \{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\}$, $k \in \mathbb{N}$. The logical connectives are:

negation	$\neg x$	$1 - x$
strong disjunction	$x \oplus y$	$\min\{x + y, 1\}$
strong conjunction	$x \odot y$	$\max\{x + y - 1, 0\}$
implication	$x \rightarrow y$	$\min\{1 - x + y, 1\}$
lattice disjunction	$x \vee y$	$\max\{x, y\}$
lattice conjunction	$x \wedge y$	$\min\{x, y\}$

Axiomatization, completeness,
complexity, game semantics!

Many-valued effectivity functions

$N = \{1, \dots, n\}$ player set Σ_i finite strategy space of player $i \in N$
 S finite set of states $o: \prod_{i \in N} \Sigma_i \rightarrow S$ outcome function

Definition

Let $G = (N, \{\Sigma_i \mid i \in N\}, S, o)$ be a game form. The \mathbb{L}_k -**valued effectivity function** of G is the map $E_G: \mathcal{P}N \times \mathbb{L}_k^S \rightarrow \mathbb{L}_k$ defined by

$$E_G(C, f) = \max_{\sigma_C} \min_{\sigma_{\bar{C}}} f(o(\sigma_C \sigma_{\bar{C}})), \quad C \in \mathcal{P}N, f \in \mathbb{L}_k^S.$$

Example

$u_i: \prod_{j \in N} \Sigma_j \rightarrow \mathbb{L}_k$ **utility function** of player $i \in N$
 $o(\sigma_1, \dots, \sigma_n) = (u_i(\sigma_1, \dots, \sigma_n))_{i \in N} \in \mathbb{L}_k^N$
 $S = \mathbb{L}_k^N$ states

$$G = (N, \{\Sigma_i \mid i \in N\}, \mathbb{L}_k^N, o)$$

How to assess the utility of coalitions $C \subseteq N$?

Idea

Use an aggregation function $f_C: \mathbb{L}_k^N \rightarrow \mathbb{L}_k$. For example:

- $f_C^m(x_1, \dots, x_n) = \min\{x_i \mid i \in C\}$
- $f_C^a(x_1, \dots, x_n) = \frac{1}{n} \sum_{i \in N} x_i$

Interpretation: $E_G(C, f_C)$ is the minimum guaranteed utility that the coalition C is able to ensure provided that the cooperative outcomes are evaluated by f_C

Playable \mathbb{L}_k -valued effectivity functions

An \mathbb{L}_k -**valued effectivity function** is a mapping $E: \mathcal{P}N \times \mathbb{L}_k^S \rightarrow \mathbb{L}_k$.

1. **outcome monotonic:** $E(C, f) \geq E(C, g)$ for every $C \in \mathcal{P}N$ and $f, g \in \mathbb{L}_k^S$, $f \geq g$
2. **idempotizable:** $E(C, f \oplus f) = E(C, f) \oplus E(C, f)$, $E(C, f \odot f) = E(C, f) \odot E(C, f)$ for every $C \in \mathcal{P}N$ and every $f \in \mathbb{L}_k^S$
3. **N-maximal:** $\neg E(\emptyset, \neg f) \leq E(N, f)$ for every $f \in \mathbb{L}_k^S$
4. **superadditive:** $E(C, f) \wedge E(D, g) \leq E(C \cup D, f \wedge g)$ for every $C, D \in \mathcal{P}N$ with $C \cap D = \emptyset$ and every $f, g \in \mathbb{L}_k^S$
5. **regular:** $E(C, f) \leq \neg E(\bar{C}, \neg f)$ for every $C \in \mathcal{P}N$ and $f \in \mathbb{L}_k^S$
6. **coalition monotonic:** $E(C, f) \leq E(D, f)$ for every $C \subseteq D \in \mathcal{P}N$ and every $f \in \mathbb{L}_k^S$

Definition

We say that $E: \mathcal{P}N \times \mathbb{L}_k^S \rightarrow \mathbb{L}_k$ is **playable** if $E(C, 1) = 1$, $E(C, 0) = 0$, and the conditions 1.-4. are satisfied.

Theorem

An \mathbb{L}_k -valued effectivity function E is playable iff there is a game form G such that $E = E_G$.

Language of many-valued coalitional logic

Let \mathcal{L} be the language $\{\rightarrow, \neg, 1\} \cup \{[C] \mid C \in \mathcal{P}N\}$.

The set $\text{Form}_{\mathcal{L}}$ of formulas is defined inductively from the countably infinite set of propositional variables Prop by the rules:

$$\phi ::= 1 \mid p \mid \phi \rightarrow \phi \mid \neg \phi \mid [C]\phi \quad p \in \text{Prop}, C \in \mathcal{P}N$$

The formulas are essentially the same as the formulas in Pauly's Coalitional Logic, while the intended semantics is completely different: every $\phi \in \text{Form}_{\mathcal{L}}$ is evaluated in the non-boolean chain \mathbb{L}_k .

Axioms of \mathbb{L}_k -valued coalitional logic

- The axioms of Lukasiewicz \mathbb{L}_k -valued logic
- The axioms:

$$\begin{aligned} & \neg [C]0 \\ & [C]1 \\ & \neg [\emptyset] \neg p \rightarrow [N]p \\ & ([C]p \wedge [D]q) \rightarrow [C \cup D](p \wedge q) \\ & [C](p \odot p) \leftrightarrow [C]p \odot [C]p \\ & [C](p \oplus p) \leftrightarrow [C]p \oplus [C]p \end{aligned}$$

for every $C, D \in \mathcal{P}N$ with $C \cap D = \emptyset$

• Closed under: MP, Equivalence, Uniform Substitution, Monotonicity

Definition

We define the \mathbb{L}_k -**valued coalitional logic** \mathbf{C}_k to be the intersection of all the \mathbb{L}_k -valued logics satisfying the above axioms.

Generalized neighborhood semantics

An \mathbb{L}_k -**valued coalitional frame** is a pair $\mathfrak{F} = (S, E)$, where $E: S \rightarrow (\mathcal{P}N \times \mathbb{L}_k^S \rightarrow \mathbb{L}_k)$ assigns a playable effectivity function $E(s)$ to every state $s \in S$.

Definition

An \mathbb{L}_k -**valued coalitional model** is a pair $\mathcal{M} = (\mathfrak{F}, \text{Val})$, where $\mathfrak{F} = (S, E)$ is an \mathbb{L}_k -valued coalitional frame and Val is a truth valuation $S \times \text{Prop} \rightarrow \mathbb{L}_k$.

We need to extend Val to modal formulas:

$$\text{Val}(s, [C]\phi) = E(s)(C, \text{Val}(\neg, \phi)), \quad C \in \mathcal{P}N, s \in S, \phi \in \text{Form}_{\mathcal{L}}$$

Completeness

We use the technique of the **canonical model** to prove the following:

Theorem

Let $\phi \in \text{Form}_{\mathcal{L}}$ and \mathcal{M} be an \mathbb{L}_k -valued coalitional model. Then $\mathbf{C}_k \vdash \phi$ iff $\mathcal{M} \models \phi$.

Equivalent presentation of idempotizability

Let $i \leq k$. The following are equivalent:

- the truth value of formula 'coalition C can enforce a state in which ϕ holds' is $\geq \frac{i}{k}$
- coalition C can enforce a state in which the truth value of ϕ is $\geq \frac{i}{k}$

¹Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 4, 182 08 Prague, Czech Republic, E-mail: kroupa@utia.cas.cz
²University of Luxembourg, Faculté des Sciences, de la Technologie et de la Communication, 6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg, E-mail: bruno.teheux@uni.lu

The work of Tomáš Kroupa was supported by grant GA ČR P402/12/1309. The work of Bruno Teheux was supported by the internal research project F1R-MTHPUL-12RDO2 of the University of Luxembourg.