

Reasoning About Coalitional Effectivity in Modal Extension of Łukasiewicz Logic

Tomáš Kroupa¹ Bruno Teheux²

¹Institute of Information Theory and Automation of the ASCR, Czech Republic

²Mathematics Research Unit, University of Luxembourg

Strategic game forms

$$G = \langle N, \{\Sigma_i \mid i \in N\}, S, o \rangle$$

$N = \{1, \dots, n\}$ is a set of *players*

Σ_i is the *strategy set* of player $i \in N$

S is a set of *outcome states*

$o : \prod_{i \in N} \Sigma_i \rightarrow S : \sigma \mapsto o(\sigma)$ is an *outcome function*

Measuring the power of coalitions

$$G = \langle N, \{\Sigma_i \mid i \in N\}, S, o \rangle$$

For a *coalition* $C \in \mathcal{P}N$:

\bar{C} stands for $N \setminus C$

σ_C stands for a tuple of strategies for players in C

Definition. The *effectivity function* $E_G^\flat : \mathcal{P}N \rightarrow \mathcal{P}PS$ *associated with* G is defined by

$$X \in E_G^\flat(C) \quad \text{if} \quad \exists \sigma_C \forall \sigma_{\bar{C}} \ o(\sigma_C \sigma_{\bar{C}}) \in X$$

Towards a quantitative notion of effectiveness

$$G = \langle N, \{\Sigma_i \mid i \in N\}, S, o \rangle$$

N = set of countries in EU

Σ_i = set of economic policies that country i can adopt

$o(\sigma) = (r_i)_{i \in N}$ where r_i = rate of employment of country i if strategy vector σ is applied

The limitation of E_G^b

An outcome state $(r_i)_{i \in N}$ is composed of **quantitative** information

while

E_G^b qualifies the power of a coalition in a **$\{0, 1\}$ -way**

Towards a quantitative notion of effectiveness

$$G = \langle N, \{\Sigma_i \mid i \in N\}, S, o \rangle$$

N = set of countries in EU

Σ_i = set of economic policies that country i can adopt

$o(\sigma) = (r_i)_{i \in N}$ where r_i = rate of employment of country i if strategy vector σ is applied

Effectivity of C on...

$$f_C : (r_i)_{i \in N} \mapsto \min_{i \in C} r_i$$

$$\text{mean} : (r_i)_{i \in N} \mapsto \sum_{i \in N} \frac{1}{|N|} r_i$$

We define generalized effectivity functions

$$G = \langle N, \{\Sigma_i \mid i \in N\}, S, o \rangle$$

$\mathcal{L}_k := \{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\}$ is the scale

Definition. The \mathcal{L}_k -valued effectivity function of G

$$E_G : \mathcal{P}N \times \mathcal{L}_k^S \rightarrow \mathcal{L}_k$$

is defined by

$$E_G(C, f) = \max_{\sigma_C} \min_{\sigma_{\bar{C}}} f(o(\sigma_C \sigma_{\bar{C}}))$$

\mathcal{L}_k -valued effectivity function in the EU example

$$E_G(C, f) = \max_{\sigma_C} \min_{\sigma_{\bar{C}}} f(o(\sigma_C \sigma_{\bar{C}}))$$

$f((r_i)_{i \in N})$	$E_G(C, f)$
$\min_{i \in C} r_i$	the minimum rate of employment for countries in C that coalition C can enforce ‘employment sovereignty of C ’
$\text{mean}_{i \in N} r_i$	the mean country level rate of employment in EU that coalition C can enforce ‘global employment policy efficiency of C ’

The poster session

1. Examples illustrating the relevance of \mathcal{L}_k -valued effectivity function
2. Axiomatization of functions $E : \mathcal{P}N \times \mathcal{L}_k^S \rightarrow \mathcal{L}_k$ that are *playable*, i.e., for which there is a G such that $E = E_G$

★ \mathcal{L}_k -valued version of superadditivity ★

3. A modal language to talk about \mathcal{L}_k -valued effectivity functions (based on Łukasiewicz logic)
4. A \mathcal{L}_n -valued neighborhood semantic and a completeness result for the smallest \mathcal{L}_k -valued coalitional logic