
Faculty of Science, Technology and
Communication

Visual Modelling of and on
Tangible User Interfaces

Thesis Submitted in Partial Fulfilment of the
Requirements for the Degree of Master in

Information and Computer Sciences

Author:
Eric Tobias

Supervisor:
Prof. Dr. Pierre Kelsen

Reviewer:
Prof. Dr. Yves Le Traon

Advisors:
Dr. Eric Ras

Public Research Centre
Henri Tudor

Dr. Nuno Amalio

August 2012

Abstract

The purpose of this thesis is to investigate the use and benefit of visual
modelling languages (VMLs) in modelling on tangible user interfaces (TUIs),
and modelling TUI applications. Three main research questions are asked:

• Is it possible and practical to model an application or process using a
TUI?

• Which General-purpose VML (GPVML) performs best in modelling a
VML scenario for use on TUI?

• Is it realistic to use a GPVML to model complex TUI applications?

To answer the first research question, a Business Process Model and No-
tation, version 2 (BPMN2), ideation scenario is used with a tangible widget
toolkit prototype on a TUI table to evaluate the performance and obtain
feedback from test candidates. The study showed that it is possible to model
a process using a TUI and the test candidate feedback did not lead to the
conclusion that the modelling was cumbersome or impractical.

To find a suitable GPVML, the thesis explores and evaluates the current
state of the art in VMLs for describing general problems. After gathering
different VMLs, the thesis compares three languages using a simple sce-
nario: the visual object constraint language (VOCL), augmented constraint
diagrams (ACD), and the visual contract language (VCL). A weighted eval-
uation based on multiple quality criteria led to the conclusion that VCL is
best suited to model TUI applications, answering the second research ques-
tion.

The thesis answers the third research question by using VCL to model a
more complex and complete scenario of an ideation process, which is based
on using a BPMN2 on a TUI. This is done to assess VCL’s suitability to
more complex problems and its maturity. The study concludes that VCL is
not yet mature enough to enable its general applicability in a wide variety
of settings.

The three research questions were dressed with a hypothesis in mind:
collaborative, novice friendly modelling environments are able to reduce the
gap between stakeholders and software engineers during software projects,
leading to a reduction of unrealistic expectations and an increase in the
availability of domain knowledge. While the hypothesis is too broad to be
proven by this thesis, the research questions answered here give some insights
into how to approach it.

Acknowledgements

I’d like to thank the KISS team for having me and actively encouraging
me. Special thank to Eric Ras, Olivier Zephir, Yves Rangoni, and Valérie
Maquil. Many thanks also go to the LASSY, especially Nuno Amálio for
helping me with VCL and ceaselessly working with Christian Glodt to add
more functionality and fix problems with VCB. Thanks are also in order for
Pierre Kelsen for his support and advice which led me to start my Master
studies.

Sarah, thank you for encouraging me, being there when I need you, and
making everything worthwhile! Misha, Susi, and Hues; thank you for bright-
ening my days!

To Georges; may you find Irène waiting for you! I will never forget!

ii

Contents

Page

1 Introduction 1

1.1 Research questions . 3

1.2 Research objectives . 4

2 State of the Art 5

2.1 Modelling . 5

2.1.1 Definitions . 8

2.2 Visual Modelling Languages 9

2.2.1 VML’s many influences 10

2.3 Tangible User Interfaces . 11

3 Case Study 14

3.1 Identifying suitable languages 14

3.1.1 Collection . 16

3.2 Pre-selection . 16

3.3 VML selection . 18

3.3.1 UML & VOCL . 18

3.3.2 VCL . 19

3.3.3 Constraint Diagrams 19

3.4 Designing a scenario . 20

3.4.1 BPMN2 introduction and model 20

3.4.2 Preliminary TUI model 21

3.4.3 A simple TUI instance 22

3.5 Case study . 22

3.5.1 Measurements . 22

3.5.2 Study walkthrough . 23

3.5.3 Product . 26

3.5.3.1 UML & VOCL 26

3.5.3.2 VCL . 27

3.5.3.3 Augmented Constraint Diagrams 30

3.6 Evaluation . 33

3.6.1 Tool support . 33

iii

3.6.1.1 Availability 33
3.6.1.2 Maintenance 34
3.6.1.3 Latest version 34
3.6.1.4 Branch . 34

3.6.2 Semantics & Transformation 34
3.6.2.1 Formally defined 35
3.6.2.2 Transformability 35

3.6.3 Expressivity . 35
3.6.3.1 # X (# X) 35
3.6.3.2 # X satisfied (# Sat X) 35
3.6.3.3 # requirements partially satisfied (# Part Sat) 36
3.6.3.4 # unsatisfied requirements (# UnSat) 36
3.6.3.5 Ratio . 36

3.6.4 Usability . 36
3.6.4.1 Naming conventions 36
3.6.4.2 Naming fit 37
3.6.4.3 Documentation 37
3.6.4.4 Tutorial . 37
3.6.4.5 Hands-on tutorial 37
3.6.4.6 Primitive mutability 37
3.6.4.7 Live suggestions 38

3.6.5 Error Checking . 38
3.6.5.1 Time . 38
3.6.5.2 Syntax highlighting 38
3.6.5.3 Degree . 38
3.6.5.4 Error correction suggestion 39
3.6.5.5 Debugging possible 39

3.6.6 Verification . 39
3.6.6.1 Modularity 40
3.6.6.2 Verification scheme 40

3.6.7 Weighting scheme . 40
3.7 Results . 40
3.8 Study Conclusion . 43

4 The Visual Contract Language, an introduction 45
4.1 Syntax . 46

4.1.1 Primitives . 46
4.1.2 Structural diagrams 48
4.1.3 Behavioural diagram 49
4.1.4 Package diagram . 50
4.1.5 Assertion diagrams . 51
4.1.6 Contract diagrams . 52

4.2 Semantics . 53
4.3 Modelling in VCL, using VCB 53

iv

5 A VCL Model of a TUI for modelling with BPMN2 55

5.1 Introduction . 55

5.2 Tangible User Interfaces . 56

5.2.1 TUI technical aspects 56

5.2.2 A brief look at TWT 57

5.3 BPMN2 and its usage in this document 59

5.4 The TUI VCL metamodel . 61

5.4.1 Packages . 62

5.5 The BPMN2 VCL metamodel 66

5.5.1 Packages . 66

5.6 The Business-to-Table concept and metamodel 72

5.7 The Ideation model . 73

5.8 The Widget model . 74

5.9 The Interaction model . 75

5.10 Conclusion . 75

5.10.1 Separation of Concerns 75

5.10.2 Requirements coverage 76

5.10.3 Expressiveness . 78

5.10.4 Conclusion . 78

6 Ideation 80

6.1 Introducing the scenario . 81

6.1.1 Extending the model 81

6.2 First test scenario . 82

6.3 Second test scenario . 84

6.4 Final test scenario . 85

6.5 Analysis & Evaluation . 86

6.6 Conclusion . 87

7 Conclusion 89

7.1 Future Work . 92

Bibliography 93

A TUI metamodel VCL packages 104

A.1 The TUIPrimitives package 106

A.2 The Actions package . 106

A.3 The Attributes package . 110

A.4 The Effects package . 115

A.5 The EndPoints package . 119

A.6 The Functions package . 124

A.7 The Mappings package . 128

A.8 The Layers package . 132

A.9 The Widgets package . 134

v

A.10 The TUI package . 138

B BPMN2 metamodel VCL packages 139

B.1 The Primitives package . 143

B.2 The Extensibilities package 144

B.3 The BaseElements package 146

B.4 The Foundation package . 149

B.5 The Infrastructures package 150

B.6 The ItemDefinitions package 152

B.7 The Messages package . 153

B.8 The Artifacts package . 154

B.9 The Resources package . 157

B.10 The ResourceAssignments package 158

B.11 The Expressions package . 160

B.12 The Errors package . 161

B.13 The Collaborations package 162

B.14 The GlobalTasks package . 165

B.15 The Services package . 166

B.16 The ItemAwareElements package 168

B.17 The IOSpecifications package 168

B.18 The DataAssociations package 172

B.19 The Data package . 175

B.20 The Processes package . 176

B.21 The Lanes package . 178

B.22 The Escalations package . 179

B.23 The EventDefinitions package 181

B.24 The Events package . 183

B.25 The FlowElements package 186

B.26 The FlowElementContainers package 198

B.27 The CallableElements package 201

B.28 The Common package . 202

B.29 The LoopCharacteristics package 203

B.30 The SubProcesses package . 206

B.31 The Activities package . 210

B.32 The Gateways package . 212

B.33 The Tasks package . 218

B.34 The Participants package . 222

B.35 The Core package . 225

C BusinessToTable metamodel VCL packages 226

C.1 The Mutator package . 226

C.2 The BusinessToTable package 227

vi

D Ideation scenario VCL packages 230
D.1 The Ideation package . 230

E Widget model VCL packages 233
E.1 The Prototype package . 234
E.2 The ZoomBehaviour package 234

F List of literature resources 236

G Study scenario requirements 240
G.1 BPMN2 requirements . 240

G.1.1 Structural requirements 240
G.1.2 Behavioural requirements 241
G.1.3 Constraints . 241

G.2 Stock Management scenario requirements 241
G.2.1 Structural requirements 241
G.2.2 Behavioural requirements 241
G.2.3 Constraints . 242

G.3 Tangible User Interface requirements 242
G.3.1 Structural requirements 242
G.3.2 Behavioural requirements 242
G.3.3 Constraints . 243

H Ideation Scenario companion document 245

I Weighting evaluation criteria 253

J Widget list 254

vii

Chapter 1

Introduction

The rapid evolution in hardware meant that it was no longer a restraining
factor for software. Inevitably, this lead, over the years, to a substantial
increase in software complexity. In [1, 2], Brooks paints a gloomy picture of
Software Engineering due to its incapacity to tackle the problem of rising
complexity. The article, however, also stipulates that certain advances could
be made during the next decades that would tackle the problem. In [3], Harel
endorses Brook’s point that there is no single simple solution to the soft-
ware complexity problem, disagreeing, however, with his forlorn view of the
field and advocating modelling as a means to tackle the complexity problem.

Harel [4, 3] argues that for software modelling a visual formalism is es-
sential in helping to cope with software complexity. He states that; “[...] the
quality and expedition of [engineer’s and programmer’s] very thinking was
found to be improved’ ’. However, Harel says that not enough data for any
concrete statistical evaluation existed yet. Nevertheless, his observation is
backed by research in the domain of Problem Solving in Psychology. Newell
and Simon [5] found that the modelling of the problem space, as well as the
extraction of concepts, is relevant to the problem, are important factors for
the human problem solving behaviour. These observations can be applied
to the domain of Software Engineering as well [6]. It seems that humans are
naturally adept at using modelling and abstraction to solve problems.

Today, modelling has shown that it is suited to cope with the complex-
ity of many different domains. For example, in Physics where the Standard
Model [7] explains the undoubtedly intricate nuclear interactions affecting
the dynamics of subatomic particles. Similarly, models that explain in-
herently complex interactions can be found, for example, in Biology [8] or
Meteorology [9]. However, dealing with the complexity is not the only ben-
efit of those models. They can be used to discover hidden behaviour, for
example by model execution [3] or simply by the absence of an explanation

1

of an observed phenomenon [10], which was the case in the Standard Model
where observations on broken symmetries and mass led to the prediction of
the Higgs Boson [11].

Although there have been many improvements since Brooks’ article, the
software industry is still plagued by complexity related problems. Consid-
erable amounts of money are lost every year due to the mismanagement of
software projects according to the CHAOS report [12]. The major causes,
according to that study are the lack of complete requirements, resources,
user involvement and unrealistic expectations which made up for 46% of
impairments during a software projects in 1995. It is not unreasonable to
think that lack of user involvement leads to lack of domain knowledge, which
in turn is likely to lead to incomplete requirements. In turn, lack of exper-
tise in the software domain from the side of the stakeholder might lead to
unrealistic expectations. The gap between domains and the lack of domain
knowledge [13, 14] or Domain-Expert Users [15], seems to be one of the
culprits for the failures in software projects.

This thesis investigates modelling in a collaborative environment. The
idea is that a collaborative environment might help to close the gap by
putting stakeholders and engineers working in the same environment. Due
to the difference in domain knowledge however, stakeholders often lack the
knowledge to understand models as is. Therefore, visual modelling languages
(VML) will be used in the modelling process. A diagrammatic notation and
the visual information contained therein can be better processed and re-
called [16, 17] and is well suited as a medium to promote understanding of
the model [18].

Understanding the model, however, might not be enough to investigate
true collaborative scenarios. Furthering the ease of modelling itself and
promoting the use of “natural” interfaces may further improve the accep-
tance and usability of the collaborative approach. Tangible User Interfaces
(TUI) [19] use metaphors to naturally imply functionality and stimulate re-
sponses from users. For example, a tangible widget used to attach and move
objects on the screen can simply be physically set onto the desired object
and then moved. The combination of drop-move actions is a metaphor for
reaching, grasping, and moving the objects. The use of metaphors is impor-
tant [20, 21] as it eases the use of the interface, making it easy for users to
anticipate functionality and understand the modelling concept. This eases
working in a collaborative environment where multiple agents can commu-
nicate in natural language and realise their ideas seamlessly using a TUI.

The idea is that the joint modelling endeavour may remedy some short-
comings leading to project failures, such as unrealistic expectations [22] or

2

the lack of domain knowledge, by imposing that both parties are tightly
involved in the process which, through the use of VML and TUI, is usable
by engineers and stakeholders alike. The next section refines this idea into
a set of concrete research questions. The remainder of the thesis;

• sheds light on the state of the art in modelling, VML and TUIs in
Chapter 2,

• conducts a study existing VML and a comparison of their usability in
Chapter 3,

• introduces the Visual Contract language in Chapter 4,

• investigates the maturity and usability of VCL regarding the modelling
of complex TUI applications in Chapter 5,

• ushers a small usability study on the use of TUI driven modelling
approaches in Chapter 6,

1.1 Research questions

The research questions address some aspects of the idea dressed in the pre-
vious section. They fall into two categories. One is to investigate the use
of TUI and their suitability for the modelling process. The other category
investigates the use of general-purpose VMLs (GPVMLs) to model complex
applications.

• RQ1 Is it possible and practical to model an application or process
using a TUI?

• RQ2 Which General-purpose VML (GPVML) performs best in mod-
elling a VML scenario for use on TUI?

• RQ3 Is it realistic to use a GPVML to model complex TUI applica-
tions?

Unfortunately, both topics are tightly intertwined and evaluating one
after the other is, from a time perspective, not feasible. Therefore, the ar-
rangement of chapters has been chosen to ease the flow of information and
reading and does not respect the order of the research questions. The thesis
investigates suitability and feasibility of TUI assisted modelling by building
a TUI for Business Process Modelling Notation version 2 (BPMN2) [23].
BPMN2 uses a high level of abstraction that suits most business needs and
is therefore suited to serve as a proxy given the scenario.

The first research question, RQ1, comes in two shades. First, it assesses
the possibility of modelling using a TUI; this can be answered with a simple

3

yes or no upon formulating a strategy and making an attempt. Measuring
the practicality is harder. Chapter 6 proposes a small example scenario us-
ing BPMN2 and a small sets of TUI components. The behaviour of the test
subjects and their feedback will serve as a basis to answer all aspects of RQ1.

The second research question, RQ2 is tackled by designing and taking a
small study which is detailed in Chapter 3. The performance will be graded
and weighted to gauge performance. While the scope of the study is too
small to be representative and total subjectivity cannot be guaranteed, the
study allows for an interesting glimpse into the current major GPVML play-
ers and their abilities.

The third research question, RQ3, is rather large in scope. Chapter 5
elaborates on the modelling process using the language emerging as best
suited from the study in Chapter 3. The complex application to be used
as a basis for the case study is the scenario modelled to answer RQ1. To
increase the complexity of the rather simple ideation scenario and thereby
introduce an overall more realistic scenario, the modelling process will try
to cover several modelling layers of the application. Not only will models
of all involved domains be drafted but also their metamodels. The research
question will be answered by posing several intermediary questions.

1.2 Research objectives

• Research the state of the art in VML, TUI and BPMN2.

• Design and conduct a case study to evaluate VML given a BPMN2
scenario on TUI to answer RQ2.

• Design and model a complex GPVML scenario for use on TUI to
answer RQ3.

• Draft, conduct and evaluate a TUI modelling case study to determine
the answer to RQ1.

4

Chapter 2

State of the Art

The following sections survey the literature in the domains of modelling,
visual modelling languages (VML) and tangible user interfaces (TUI). Sec-
tion 2.1 gives a brief overview of the modelling activity in Software Engineer-
ing and detail specific angles that will be leveraged in this thesis. Section 2.2
highlights the most notable VML of the recent years as discovered during
the course of the study that will be detailed in Chapter 3. The section goes
into details about some of the terminology and domain specificities of in-
terest. Section 2.3 introduces the reader to TUI, including concepts used in
these interfaces and a brief history.

2.1 Modelling

Humans are often confronted with difficult and complex problems that they
are unable to solve on the fly. The most prominent approach in the do-
main of Problem Solving in Psychology has been formulated by Newell and
Simon [5]. In their work, the modelling of the problem space, as well as
the extraction of concepts relevant to the problem are important factors of
the human problem solving behaviour which can be applied to software as
well [6]. Hence, humans seem naturally adept at using modelling and ab-
straction to solve problems.

It is often through abstraction that models are articulated to be com-
prehensible and suited to the problem space. Today, modelling has shown
that it is suited to cope with the complexity of many different domains. The
problem of using abstractions is that they are usually specific to the author
of the model and subjective. The meaning of these abstractions needs to be
communicated properly to any reader [24].

An interesting aspect of modelling is that there is, dependent on the
subject, more than one valid model. It is also possible to model a problem

5

from different viewpoints. It is paramount that viewpoints and abstractions
be unambiguously communicated to the reader [24]. To achieve this goal,
the use of some sort of formalism seems unavoidable. The use of formalisms
has other benefits, such as, the possibility to use formal reasoning to prove
their validity or at least those of their core concepts [25, 26].

The need for certification and assurance in the safety-critical systems
industry, such as, Public Transportation [27, 28]. Formal models offer an
elegant and, if applied correctly, efficient way of establishing the required
trust by using techniques such as model checking [29, 26, 30]. It is however
necessary to plan ahead and gather evidence and collect proof throughout
the life-cycle of the software project which is not a trivial task [30]. Apply-
ing these techniques using established methodologies such as Model-driven
Software Engineering for example is therefore recommendable.

Model-Driven Engineering (MDE) is an approach to Software Engineer-
ing that focuses on the use of models to abstract complexity. In contrast
to Computer-Aided Software Engineering (CASE) [31], MDE does not fail
to cope with platform complexity and does not try to implement a “one-
size-fits-all” solution [32]. In [32], Schmidt refers to MDE as; “A promis-
ing approach to address platform complexity—and the inability of third-
generation languages to alleviate this complexity and express domain con-
cepts effectively—is to develop Model-Driven Engineering (MDE) technolo-
gies that combine [domain-specific modelling languages, transformation en-
gines and generators]”.

Some noteworthy approaches implementing the MDE methodology in-
clude the Eclipse Modelling Project [33] and the Model-Driven Architecture
(MDA) by the Object Management Group (OMG) [34, 35]. The latter pro-
poses the use of platform independent models (PIMs) to define high level
models of a system’s functionality, stable with regards to requirements, and
unaffected by technological changes as they simply do not include technical
details. The idea is to transform or map from PIM to platform specific
models (PSMs) if desired, to implement the application on a given plat-
form [34, 36]. This scheme aims at solving some of the integration problems
due to the number of different platforms that have emerged on the market.

To enable the transformation from PIMs to PSMs, MDA requires the use
of meta object facility (MOF)-based languages when specifying the PIM [34].
The MOF specification [37] also documents a four layer meta-modelling
framework. These layers, as shown in Figure 2.1 range from m0 to m3.
MOF is situated at the m3 level. The bottom most layer, m0, contains
the model instance of the modelled phenomena. The m1 layer provides a
model of the phenomenon, a means to express it in a more abstract fashion.

6

Abstracting this model, m2 models the m1 model itself, providing a mean to
its instance to use different language constructs to delimit objects, express
properties, relations, etc... On the topmost layer, in the case of MDA, MOF,
the model defines itself recursively as well as defining what model elements
are and how they relate. An example can be found in Figure 2.2.

Figure 2.1: The different modelling layers after [37]

While this model specifies different layers of abstraction, it is not a trivial
task to actually find the right level of abstraction. This process usually boils
down to a trial-and-error process which is unacceptable for an engineering
field [24]. Also, Kent mentions in [36] that there is a horizontal layering that
is untapped by the OMG. He also mentions that several initiatives have be-
gun looking into the mater such as for example Aspect Oriented Software
Development [38].

An interesting aspect of MDA is that is stipulates that model transla-
tions can be automated [35]. Kent implies that MDA, while not insisting on
the matter, intents to automate the mapping between PIM and PSM [36].
However, this automated is not limited to higher level of abstractions, au-
tomatically generating code from a PSM is a possibility [3, 32, 39]. How-
ever, the result of these translations can also be simulated instances, sample
states, or scenarios. On these, analysis can be performed to gain insights
into the correctness of the parent model [26, 3].

7

Figure 2.2: A concrete example illustrating Figure 2.1

2.1.1 Definitions

When talking about different modelling layers, it is important to be on the
same page terminology-wise. Throughout the literature, the term “model”
is well understood. An excerpt from the Merriam-Webster online dictio-
nary [40] defines model as;

• “a description or analogy used to help visualize something
(as an atom) that cannot be directly observed”

• “a system of postulates, data, and inferences presented as
a mathematical description of an entity or state of affairs;
also : a computer simulation based on such a system <cli-
mate models>”

Alas, there is among experts no consensus on a definition of “meta-
model” [41]. Therefore, in this thesis, a metamodel shall simply be consid-
ered the description of a language to build models.

8

2.2 Visual Modelling Languages

Languages serve as a tool in communication. Natural languages are what
people use on a daily basis. They are the medium that transports different
kinds of information from the author or speaker to the reader or listener.
However, two speakers might not choose the same wording or symbolism to
convey the same meaning. And even more frightening from an engineering
viewpoint is that the same message and bits of information can be inter-
preted differently by multiple receivers, each tainting the message by his
personality and experiences. Natural language is ambiguous [42].

Natural language does not provide the necessary formalism to be useful
in this context. Artificial, formally defined languages, usually do not suffer
from these shortcomings. They are important for conveying unambiguous
information [43]. According to Slonneger and Kurtz, they are build from the
same blocks as natural languages, syntax, semantics and pragmatics. The
syntax defines the grammar of a language, what arrangement of symbols is
correct. To infuse meaning into the structure of symbols, semantics imprint
these structures with a concept. Pragmatics transcend the language itself
and deals with language user perception and subjective feeling such as ease
of use or efficiency.

Modelling languages are such artificial languages. Not all modelling lan-
guages are however defined formally in full [44, 45]. While it may not be
easy to reach a complete formal definition, it is a myth that a formal def-
inition is harder to read for stakeholders and can therefore be neglected.
In [46] states that a formal specifications can be paraphrased or wrapped to
present a more palatable document to the user but that they do help users
understand. Indeed, if an unambiguous understanding of the specification
can be achieved, unrealistic expectations are less likely to emerge.

Modelling languages can be split into two categories. Domain-specific
languages (DSL) [47] and general-purpose languages (GPL).1 DSL are tai-
lored to a specific domain to solve a given set or a single problem. Their
scope is as narrow as the domain and their semantics, syntax and use of
symbols adapted to suit modelling the domain. Examples of DSLs are;

• MOF [37], a language to build metamodels,

• VHDL [48], a hardware description language for describing integrated
circuitry.

1In this context we are talking about modelling languages. Therefore the abbreviations
DSL and DSML respectively GPL and GPML are used as synonyms.

9

GPL are not tailored to a particular domain and specify a domain neutral
syntax and semantics. Some examples of GPLs are;

• UML [49], a modelling language for modelling software, especially
object-oriented, systems,

• VCL [50], a modelling language based on set theory for modelling
software systems,

Discussions in the field seem to favour the use of DSL as their specialisa-
tion is optimised to address specific aspects [26]. In [51] an empirical study
suggests that DSLs are superior to GPLs in all cognitive dimensions. This
thesis will not take any sides as it would require a substantial effort to make
a concise observation. Due to the objective of the thesis and the research
questions dressed in Section 1.1, only GPLs are considered due to them be-
ing able to address problems in multiple domains.

In Section 2.1, the argument was made that it was natural for humans to
abstract and model complex problems. Visual notations improve the ability
to understand these models [4, 3, 18] as our physiology and cognitive process
is apt at dealing and processing visual information [18]. Visual modelling
languages (VMLs) use a diagrammatic notation to capitalise on this human
ability. Their strength lies in combining purely diagrammatic information
with topological or spatial information [4, 18]. Nevertheless, VMLs should
not sacrifice formalism for the sake of visual expressiveness.

VMLs are built from the same building blocks as regular modelling lan-
guages. They feature a syntax and semantics. Moody argues in [18] that the
benefits of the visual nature of VML does not come automatically, it must
be designed into the language. He further states that semantics are valued
more than syntax when evaluating VML. That there is a need for formalism
and hence a coherent and correct syntax has been argued in section 2.1.
However, it is a misconception that visual languages are not formal [52].
This is likely linked to the myth that the use of formalism require advanced
mathematical skills [46].

2.2.1 VML’s many influences

Some of the earliest topo-visual formalisms, according to Harel [3], were de-
veloped by Euler and Venn in the 18th and 19th century respectively. With
the contribution of mathematicians such as Cantor or Dedekind, these early
concepts were formulated into what we know today as Set Theory. The latter
influenced many novel approaches in modelling such as Higraphs [3], Con-
straint Diagrams (CD) [53], or Visual Contract Language (VCL) [50]. The

10

Entity-Relationship Model [54] together with Flow Charts, a generalised
form of Flow Process Charts proposed by Frank Gilberth, found in [55],
stand, amongst others, as inspiration to the Unified Modelling Language
(UML) [49] 2.

All of these languages share the need to express constraints on their
models. While it is best to craft the ability to express constraints into the
language by using its topo-visual nature [18], UML for example uses the
Object Constraint Language (OCL) [56] to declare constraints in a notation
akin to mathematical logics. First Order Logic (FOL) does influence the
expression of constraints and invariants in many VML such as, for example,
UML and VCL. Other examples of VML can be found in Chapter 3.

2.3 Tangible User Interfaces

In [57], Shneiderman observes that interfaces seldom allow for immediate
visualisation and manipulation of data and are therefore not suited to rep-
resent the fast moving world where information is ever changing and ma-
nipulations need to be precise, simple and reversible. Furthermore, they do
not tap into the capabilities of the human visual cortex when they display
only a handful of items and interface objects. He believes that interfaces
should encourage the user to explore all possibilities by trial and error but
that interfaces are seldom capable to predict and hence deal with all possi-
bilities. In [58] goes one step further. He deplores the inability of current UI
to draw upon the human senses such as touch and propose manipulations
more natural to humans and the domain they are viewing.

Weiser’s vision of Ubiquitous Computing [59], of seamlessly integrating
the digital into the physical, making it go unnoticed is one of the core princi-
ples of Tangible User Interfaces (TUIs) [19]. They blend digital information
into a physical form [60], allowing the manipulation of the digital through
natural, haptic interaction with the object which, by its construction and
make, serves as a gateway to the information linked to it. Hence, users can
use all their senses and skills to interact with TUIs without being limited
by technical constraints.

For the TUI to be usable in a such a natural fashion, using not only the
user’s visual capacities as traditional GUI do, but to also convey informa-
tion on a haptic and topological level, the interface must apply metaphors
to imply functionality [21, 20]. The application of metaphors works by de-
signing the physical part of the interface, the tangible widgets, to imply a

2Currently at version 2.4.1 http://www.omg.org/spec/UML/2.4.1/ Accessed 13 April
2012

11

http://www.omg.org/spec/UML/2.4.1/

metaphorical context [61]. The implication of functionality relies mainly on
the shape, colour and texture. However, any physical stimulus can be used
to imply functionality such as smells or sounds. The metaphorical context
allows for the application of well known metaphors to be used, mapping
the source domain containing a familiar concept such as rotating a radial or
shaping clay, into the target domain altering the state of the digital. This
is called a metaphorical projection.

The meaning expressed by the metaphorical projection resided in the
application domain. The metaphor helps the user understand the meaning
in the application domain through the use of familiar, borrowed concepts
from the source domain in the unfamiliar, digital target domain. [20, 62].
An example would be Photohelix [63] 3. The rotative tangible widget or
handle together with the visualisation of the pictures arranged in a helix
imply that rotating the handle will result in a rotation of the helix. Users
will immediately understand the metaphor and all its implications such as
the rotation’s direction and its effect.

One of the first implementations of TUI to draw public attention was
Durell Bishop’s Marbel Answering Machine in 1992, described in [64]. It en-
coded incoming calls onto marbles which could then be replayed in any order,
removed from the users to use in any way they seemed logical, like labelling
them or placing them in storage, or used with other devices to retrieve
stored informations such as phone numbers. Since 1992, many TUI have
been implemented. Recently, developments, notably those from the MIT
Media Laboratory 4, and its Tangible Media Group 5, both of which Ishii is
involved with, have produced several prototypes. For example Urp [65, 58]
which is a system for urban planning or Illunimating Clay [66, 58], a system
for real-time computational analysis of landscape models 6.

A lot of the recent research in tangible media has been developed with
table tops in mind. A milestone which has triggered a lot of research and
implementations using tabletop TUIs has been reacTable [67], implementing
an electronic music instrument. Users set tangible widgets on the surface to
produce sounds. They can then alter the sound’s frequency and amplitude
as well as introduce control elements, thereby altering the audio 7. The

3See http://www.youtube.com/watch?v=ReO36uSr_SY for a video demonstration. Ac-
cessed 30 July 2012

4MIT Media Lab www.media.mit.edu Accessed July 27 2012
5MITMedia Lab – Tangible Media Group http://tangible.media.mit.edu/ Accessed

July 27 2012
6To see Illuminating Clay in action, visit http://zomobo.net/

mit-media-lab-tangible-media-group-illuminating-clay Accessed 26 July 2012
7Visithttp://www.youtube.com/watch?v=PGiasLiGTX4 for an example of reacTable

12

http://www.youtube.com/watch?v=ReO36uSr_SY
www.media.mit.edu
http://tangible.media.mit.edu/
http://zomobo.net/mit-media-lab-tangible-media-group-illuminating-clay
http://zomobo.net/mit-media-lab-tangible-media-group-illuminating-clay
http://www.youtube.com/watch?v=PGiasLiGTX4

work spent on the reacTable was refined and distilled into the reacTIVi-
sion framework [68]. The framework provides facilities for tracking on table
objects via fiducial markers attached to their base via a below-table infra
red camera. The table at Public Research Centre Henri Tudor which this
document uses as a reference for investigating TUI interactions as well as
designing TUI scenarios is based on reacTIVision.

Figure 2.3: The reacTable. Picture by Daniel Williams.

Tabletop TUIs have a desirable property. They, due to their size and
placement, facilitate multi-user participation, enabling this type of TUI to
be used in scenarios where collaboration is beneficial [69]. A collaborative
environment might positively affect the outcome of a modelling process if
stakeholders respectively domain experts and engineers work in the same
environment. The effects could be to reduce unrealistic expectations [22]
and improve the availability of domain knowledge. Both factors are linked
to failures in software projects [13, 14, 15].

This thesis will not be able to fully investigate the matter but be content
itself with investigating the feasibility of using TUI to model software ap-
plications or business processes and to identify suited modelling languages
as given by the research questions in Section 1.1. All of the shortcoming re-
garding the overall hypothesis will be covered in Section 7.1, Future Work.

13

Chapter 3

Case Study

This study is designed to answer the second Research Question found in
Section 1.1;

RQ2 Which GPVML performs best in modelling a VML scenario for
use on TUI?

The study is composed of four objectives. The first objective is to scav-
enge the domain of Visual Modelling Languages (VML) in order to identify
all VML that satisfy several requirements. These requirements will then be
refined to obtain a small set of mature general-purpose VML (GPVML).
Section 3.1 will describe all steps and actions taken. Section 3.4 will de-
scribe the design of a small scenario which is modelled in Section 3.5 by
the pre-selected set of VML. The results are evaluated by the measurements
detailed in Section 3.6 and presented in Section 3.7 before resuming and
concluding the findings in Section 3.8. The study has also been compiled
into a technical report which contains an exhaustive documentation of all
resources and methodologies [70].

3.1 Identifying suitable languages

Before beginning with studying suitable languages, a preliminary set of lan-
guages is collected. The criteria dressed here only serve to limit the number
of languages taken into considerations. With the sheer number of languages
and dialects produced by the scientific community in the domain of Software
Engineering it would be impossible to undertake an exhaustive comparative
study in the scope of a master’s thesis. These criteria are by no means glob-
ally classifying languages by quality nor should the criteria be interpreted
as a sign of suitability other than their relevance regarding the work in this
thesis. The following sections detail the three criteria that were used to
select languages. Only those meeting these three criteria were retained.

14

Visual Syntax The main delimiting criteria is the requirement on lan-
guages to have a visual syntax. This strong mandatory criteria is inherited
directly from the scope of the thesis. One of the reasons behind selecting and
investigating only visual languages is the tease of using Tangible User In-
terfaces (TUIs) to dress the models for future TUI applications. Languages
should be visual in order to benefit most from TUI by enabling the use of
and thereby benefiting from the power of metaphors. Non-visual languages
would either need to be translated which is a rather costly process or would
not benefit from using TUI.

One of the strong points of TUI is the ability to work cooperatively [69].
In order to benefit from collaboration in a business modelling scenario, as de-
tailed in Section 3.4, bringing the technically non-versed customer together
with business analysts and experts is important [13, 14]. Using a VML for
the collaborative scenario will ease the collaboration as metaphors and vi-
suals are easier to process [16, 17] for non-expert users. Staying close to and
integrating the customer into the design process is desired as it is thought to
prevent problems during product validation and increase the quality of the
final product [13, 14, 15, 22]. It is one of the reasons why recent Software
Engineering and Project Management methodologies such as for example
Agile, have integrated ongoing customer feedback into their core teachings
[71].

Modelling language Another criteria directly inherited from the thesis
description is the need for the language under investigation to be a modelling
language and not a programming language. Should any language fall into
both categories it will be retained. Other than not fitting inside the scope
of the thesis, it would make little sense to compare languages with different
application domains.

General-purpose language The scenario used to answer the research
questions, drafted in Section 1.1 RQ1 respectively RQ2, is based on the
Business Process Modelling Notation version 2 (BPMN2) [23]. To answer
the remaining research question, RQ3, models and metamodels for BPMN2,
the TUI and the application, mapping TUI onto BPMN2, will be drafted.
Since there is not one specific domain, a domains specific language (DSL)
would be unsuited for the modelling process, hence, one reason to choose
a general-purpose modelling language (GPML). Moreover, while this study
only uses a business scenario based on a formally defined specification, fu-
ture modelling processes might take a more liberal approach and need a
more flexible, general-purpose modelling language.

15

Choosing a GPML also offers the benefit of not being overly specialised
and catered to one particular application domain. This enables the lan-
guage to use well known metaphors and abstractions to draw upon existing
language schemata and improve language learning process [21]. As noted
by Schema Theory [72], the ability to draw upon existing schemata will im-
prove the ability to understand the new domain by reusing familiar concepts
in already existing schemata. The more specialised and tailored metaphors
that would need to be used with DSL might not have that same benefit
considering the mix of expert and non-expert users.

3.1.1 Collection

After a review of existing literature using common search engines and skim-
ming references, more than two dozen relevant resources were gathered. For
a full list, please refer to the Appendix F. These resources can be classified
into one of the four categories;

• papers and other resources describing modelling or simulation envi-
ronments such as for example AnyLogic [73] or VENSIM [74],

• studies on visual notations, their application and use, as well as on
emerging visual paradigms. A few examples of such resources are
”Analysing the Cognitive Effectiveness of the UCM Visual Nota-
tion” [75] or ”Towards Symbolic Analysis of Visual Modeling Lan-
guages” [76],

• extensions or enhancements to existing visual notations such as for
example ”The semantics of augmented constraint diagrams” [77],

• papers and other sources describing novel visual languages such as for
example UML [49] or Constraint Diagrams [78].

3.2 Pre-selection

In order to be able to make a final choice, the number of candidate languages
had to be reduced. The following paragraphs explain what resources and
thereby languages were discarded and for what reasons. Please note that
the order was chosen by what subjectively seemed to eliminate the most
resources. The elimination criteria were those elaborated above.

The first few resources to be discarded were all detailing simulation
and modelling environments that were not providing any syntax outside
of their environment. The affected items were related to AnyLogic [73],
VENSIM [74], SIMILE [79] and subTextile [80]. The latter offers a very

16

interesting approach for designing interactive systems. This could probably
be used for designing widgets but the specificity of the visual programming
language and hardware platform means that subTextile will not enable it to
model many different domains. Moreover, it focuses strongly on behaviour,
neglecting structural elements. VENSIM is a simulator that allows mod-
elling and simulating business, scientific, environmental, and social systems
with a focus on system dynamics and interactions. AnyLogic is more pow-
erful but covers the same niches. Both simulators allow to model complex
behaviour but are limited to the domain of system dynamics. By modelling
and thereby preparing the system to base simulations on, the focus of the
semantics lie more on defining agents, behaviour and interactions. Each
simulator has a pragmatic approach to define the semantics which are not
very formal or usable without the tool.

The unnamed language that was presented in [81] is designed to support
sketch based design in the field of interface design. While the language could
be ported to similar disciplines such as storyboarding or design in general,
the applicability of the language to a broader field is questionable. The
language was deemed to be domain specific and was therefore discarded.
PROGRESS [82] is a visual programming language using graph rewriting
systems. It is however not a modelling language and has therefore been
removed from the set of considered languages. The same reason holds for
SPARCL [83], a visual logic programming language based on set partition-
ing constraints, and Forms/3 [84], a first-order visual language to explore
the boundaries of the spreadsheet paradigm. The approach taken in [85] de-
scribes a novel visual programming language to draw and execute flowcharts
aims at shifting the focus from code generation to algorithmic conception
of programs. Not providing a general-purpose modelling approach, it was
dropped from the set of considered languages. Due to the domain specificity
of [86] it did not fall into the scope of this work. The Regatta approach as
described in [87] is similar in semantics to BPMN2. While the approach
could be broadened to include more domains, the specific aim of the ap-
proach is Business Process Engineering.

A last step of the preliminary sorting before tightening the criteria is
to remove all stepping-stone-papers that had been used to uncover more
languages but describe by themselves no language or language extension;
eliminating [75, 76, 88, 89, 90].

17

3.3 VML selection

For a VML to be selected it;

• must be able to model the abstract, high level view of the customer,
refine the abstract model into ever more elaborate processes until the
complete system had been modelled, modelling all structural and be-
havioural requirements,

• must be able to express constraints on those structures and behaviours,

• must allow to express associations and dependencies between struc-
tural and behavioural elements,

• must express the system’s behaviour regarding inputs and outputs.

Ideally, all of these requirements and constraints would need to be repre-
sented visually as a formal textual representation might prove a significant
entry barrier for novel users.

The paper ”Visual modeling of OWL DL ontologies using UML” [91]
introduces a visual, UML-based notation for representing OWL ontologies.
Ontologies inherently only express domain concepts and how they are re-
lated. The same limitation is faced by Object-Role Modelling [92] which
focuses on structural concepts and their relation. Hence, behaviour and
complicated constraints are not taken into consideration by these notations.
A paper on visual constraint programming [93] has similar issues. The focus
lies on constraints and the other requirements are neglected. Moreover, this
paper takes on a programming rather than a modelling approach. The re-
maining thirteen papers and resources can neatly be arranged as specifying,
describing, or studying one of the following three languages;

• Unified Modelling Language & extensions [49, 94, 95, 96],

• Visual Contract Language [50, 97, 98, 99],

• Constraint Diagrams & extensions [53, 78, 100, 101].

3.3.1 UML & VOCL

The amount of material found regarding UML is not surprising as it is a
well established standard which has a vast user base in the software industry.
The language is generic enough for the goals of this study while still offering
all the tools needed to model the structure and behaviour in the domain.
However, in order to satisfy requirements on correctness and quality, con-
straints are needed. This is not possible in pure UML and requires the use
of an extension. Two extensions that seemed to fit the job description at

18

first were the Object Constraint Language, OCL [56] and Executable Visual
Contracts (EVCs) [102]. However, EVCs seemed more limited in expressive-
ness, hence, the use of OCL was preferable. Unfortunately, OCL does not
offer a visual representation and is thought to be cumbersome [78]. To that
end a Visualisation of OCL or simply Visual OCL (VOCL) [94, 95, 96] is
used.

VOCL extends the formal declarative text language OCL with a visual
syntax akin to that used in UML. The objective of the visualisation is to
further the use of formalisms to express constraints as [94] hints that the lack
of said use is due to its mathematical and formal nature. Using UML to ex-
press structural and behavioural requirements while using VOCL to express
quality requirements and invariants is suited for modelling the scenario.

3.3.2 VCL

The Visual Constraint Language (VCL) [50, 97, 98, 99] is a recently de-
veloped language building on the Set Theory. The language is inspired by
Higraphs [4] and UML class diagrams, the latter of which was influenced by
Entity-Relationship diagrams. VCL takes a step further in that it adds as-
sertions into the structure to increase expressiveness. VCL provides a mean
to not only separate concerns using modular design but also to address the
different requirements separately, much like UML. Structural requirements
are modelled separately from behavioural requirements which enables mod-
ellers to focus on one concern at a time. Instead of using multiple diagram
types to specify behaviour as applied in UML, VCL subscribes to the Design
by Contract paradigm [103] and keeps the expression of pre- and postcon-
ditions syntactically similar to the other diagram types. Global and local
correctness requirements are addressed by so called assertion diagrams which
express invariants.

As the language was developed recently by University of Luxembourg,
research and improvements in and to the language are still ongoing. The
version of VCL and the accompanying tool have changed during the thesis
which leads to some improvements in later models in regard to expressiveness
and visual syntax. Chapter 4 will provide a more in depth look at VCL.

3.3.3 Constraint Diagrams

Transmitting knowledge through diagrammatic notation is an important
step in making a domain accessible by outsiders. To this goal, visual lan-
guages and notations have been developed for quite a while. Some pioneers
like Euler (18th century) and Venn (19th century) recognised the need for
visualisation and introduced diagrammatic notations for mathematical and

19

logical constructs. Constraint Diagrams (CDs) [100, 101] is a notation that
is very close to those early notations and provides a diagrammatic notation
for expressing constraints similar to first order predicate logic [53].

For the purpose of this study, the plain CDs as proposed by [78] are not
sufficient. The initial purpose of CDs was to serve as an alternative OCL.
However, an augmented form of CDs (ACDs), proposed in [53], extends the
language and allows the specification of structural requirements. Behaviour
is proposed to be expressed in a Design by Contract [103] like precondition-
postcondition manner.

3.4 Designing a scenario

In Section 1.1, when dressing the research questions, it was made clear that
it would be impossible due to time constraints to investigate one matter
after the other. Therefore, the Business Process Modeling Notation version
2 (BPMN2) [23] was chosen to model a scenario. BPMN2 while a domain
specific language, is not as domain specific as one might think. Its design
close to flow charts is apparent and as the notation leaves a lot of freedom
to the designer, it can be used to model very abstract business problems.

The scenario modelled here takes on a simple business process, managing
a stock portfolio. The BPMN2 model is explained in detail in Section 3.4.1.
Furthermore, a simple TUI application, Section 3.4.2, is conceived in collab-
oration with Paul Bicheler. This preliminary TUI model is used to extract
a small number of relevant tangible widgets in Section 3.4.3.

3.4.1 BPMN2 introduction and model

The BPMN was developed by the Object Management Group (OMG) and is
currently in its second version [23]. The specification introduces the notation
perfectly for the context in which it will be used;

“The primary goal of BPMN is to provide a notation that is
readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the
technical developers responsible for implementing the technology
that will perform those processes, and finally, to the business
people who will manage and monitor those processes. Thus,
BPMN creates a standardized bridge for the gap between the
business process design and process implementation [23].”

The BPMN2 scenario shown in Figure 3.1 is a simple, stock themed, fic-
tive, client-service provider model. The model is an instance of the BPMN2

20

metamodel found in [23].The focus of this exercise is not to model all aspects
of the scenario as accurately and diligently as possible as a lot of time would
need to be spent on that endeavour. Most important is the modelling of
the perceived visual model without worrying to much about the underlying
metamodel. A metamodel conform BPMN2 model will be drafted later in
Chapter 5. Said chapter will also include a more technical explanation of
the notation and notes in its usage in this document.

Figure 3.1: BPMN2 stock management scenario

Figure 3.1 shows the scenario which only holds one process from the cus-
tomer’s view. The scenario sees the customer check his portfolio and then
either take action or end the scenario. After taking an action he will have
to wait for a response before a final review of his portfolio. He can then
choose to take another action or end the scenario. This simple introductory
scenario covered a few basic aspects of BPMN2 and allowed to test some
basic TUI-based modelling approaches. The scenario was refined three times
to produce more finely grained scenarios. However, due to time constraints,
only the first scenario was modelled, hence, the remaining scenarios are not
relevant. For documentation purposes, the document detailing all scenar-
ios, ”Capital Stock Management scenario description document”, can be
found at; http://tinyurl.com/bqpqdj2.

3.4.2 Preliminary TUI model

The preliminary TUI model was drafted in cooperation with Bicheler who
is also following an internship at the Public Research Centre Henri Tudor.
All widgets conceived with said model can be found in Tables 5.1 to 5.3 in
Bicheler’s thesis [104] or in Appendix J. At the time the study was designed,
no coherent model or understanding on the building blocks of the TUI were
available as it relied on the work in progress for Bicheler’s Master’s The-
sis [104]. Therefore, all attempts to model TUI were based on efforts to
formalise the notion of TUI and the related terminology such as widgets or
zones.

21

http://tinyurl.com/bqpqdj2

In order to keep the modelling efforts comparable, a number of require-
ments were drafted in cooperation with Paul Bicheler. These requirements
spanned structural and behavioural aspects and detailed a few simple con-
straints. For example, a tangible widget must have at least one handle or
a handle may be bound. Such atomic requirement statements are of course
far removed from what a customer might specify but the simple nature of
the requirements was preferred as it meant that time was spent on the es-
sential, modelling. The requirements have been compiled into a list and can
be found in Appendix G.

3.4.3 A simple TUI instance

The preliminary TUI model was the basis for choosing a set of widgets used
to model the BPMN2 instance. Considering the BPMN2 scenario to be
modelled from Figure 3.1, only a subset of all the widgets contained in the
preliminary TUI model were needed. Table 3.1 lists all widgets in use.

3.5 Case study

During the study, tree previously identified VMLs; UML & VOCL, VCL, and
ACD were used to model the scenario defined in 3.4. Before each modelling
attempt, a few days were spent on getting acquainted with the languages,
modelling some tutorials if available and consulting some papers highlight-
ing examples.

The following sections will explain which measurements were collected in
order to be able to evaluate the chosen VMLs in Section 3.5.1. Section 3.5.2
will contain a rundown of the actual study. Section 3.5.3 wrapping up the
study, showing and commenting the models that were produced.

3.5.1 Measurements

In order to be able to compare the different VMLs, measurements are needed
that can be objectively collected and evaluated. The measurements are split
into six categories. Tool support is aimed to measure the availability and
quality of language accompanying tool. The use of a tool is usually prefer-
able as it usually offers many facilities that make modelling easier and less
error prone. Semantics & Transformation captures the degree of formalism
the VML offers. The Expressivity category captures the number of require-
ments that have been met by each language and computes a ratio. The
Usability of each VML is measured by the category with the same name.
Error Checking puts a number to the facilities each VML and its accom-
panying tools offer for rooting errors during the modelling process. Finally
Verification measures modularity and the scheme used to formally verify the

22

Name Physical Action Intent Result

Stamp [Create
component]

The actor moves the
widget onto the Tool-
box, selects a com-
ponent by activating
the widget and then
stamps one or multiple
components onto the
canvas.

The actor wants to se-
lect a component from
the Toolbox and place
it once or multiple
times onto the canvas.

The desired
number of
components is
placed on the
canvas.

Stamp [Link
components]

The actor moves the
widget onto the Tool-
box, selects a com-
ponent by activating
the widget and then
stamps one or multiple
components onto the
canvas.

The actor wants to
link existing compo-
nents with the selected
component or place it
inside existing compo-
nents by placing the
focus point onto an ex-
isting component.

The existing
components
are linked by
the new com-
ponent or the
new compo-
nent is placed
inside the new
component.

Chain The actor activates the
widget on a compo-
nent, selects a connec-
tor component by acti-
vating the widget and
then slides the widget
to a destination and
activates it to confirm
and select the kind of
endpoint component.

The actor wants to
create a new element
by creating a link and
endpoint from an ex-
isting component.

A new connec-
tor component
and linked
non-connector
endpoint com-
ponent are
created.

Table 3.1: Table of widgets used in the study

model. Table 3.2 lists all measurement categories and their sub-categories.
For details on how each category was gauged, please consult Section 3.6.

3.5.2 Study walkthrough

In order to be able to compare the modelling performance of the languages
given the scenario, a plan had to be drafted and followed. Therefore, it
seemed unwise to simply take all requirements and model them sequentially.
The following paragraphs will detail the step-wise modelling process that was
followed using each modelling language. All requirements can be found in

23

Measurement categories

Tool support

Availability
Maintained
Latest version
Branch

Semantics & Transformation
Formally defined
Transformability

Expressivity

[X] 1

[X] satisfied
requirements partially satisfied
unsatisfied requirements
Ratio

Usability

Naming conventions
Naming fit
Documentation
Tutorial
Hands-on-tutorial
Primitive mutability
Live suggestions

Error Checking

Time
Syntax highlighting
Degree
Error correction suggestion
Debugging possible

Verification
Modularity
Verification scheme

Table 3.2: Table of measurements

Appendix G. The requirements are denoted by an abbreviation that follows
the naming convention; [Domain][Kind][Running number] where Domain
is either BPMN2 (B), BPMN2 Stock Management scenario (S), or TUI
(T). The Kind denotes the nature of the requirement and can be either a
structural requirement (S), behavioural requirement (B), or a constraint (C).
Therefore, TB2 denotes the second behavioural requirement of the TUI.

Preliminaries To be able to execute the following eight steps of the sce-
nario, complete BPMN2 and TUI models needed to be drafted. Hence, all
the following requirements needed to be satisfied;

• BS1 to BS15,

1Where X is either structural requirements, behavioural requirements or constraints.

24

• BC1,

• TS1 to TS3,

• TB1 to TB4,

• TC1.

Create Start Event To create a Start Event we need a widget in Stamp
mode. We therefore must fulfil TS4 and TS6. As for widget behaviour, the
Stamp requires TB5, TB16 2 and TB17.

Create Activity To state all requirements needed to create an activity
we need to cater to both creation scenarios. The use of the Stamp is covered
by the previous task so we can simply assume we need all those requirements
too; TS4, TS6, TB5, TB16 and TB17. To use the Chain widget we also
need TS5 and more items fromTB16. In addition we need to meet several
requirements from the stock management model, depending on the type of
activity that is created.

Check portfolio In order to attribute the activity to a user said user
and his portfolio are needed; SS1, SS5 and SS6. Moreover, the related
behaviour and constraints; SB1 and SC4 are needed.

Take action Information about the customer, SS1 and about an eventual
order the customer may place, SS4, SB2 and SC1 is needed. To place an
order, requirements catering to the subject of orders, stock, are needed too;
SS2 and SS3. Due to the encapsulation of information, details about the
orders are not noted in BPMN2 and hence the differentiation between stocks
for example would only become apparent if a decision is taken based on their
difference.

Wait for response Information about the customer, SS1 and the action
he may take; SB4 is needed.

Review portfolio In order to attribute the activity to a user said user
and his portfolio are needed; SS1, SS5 and SS6. Moreover, the related
behaviour and constraints; SB3 and SC4 are needed.

Create Gateway / Create Event Analogous to Create Activity.

2For TB16, only those rows are required that list the mode in question.

25

Link components To create a connection we need a widget in either
Stamp or Chain mode. The Stamp requires that TS4 and TS6 must be
fulfilled. As for behaviour, the Stamp requires TB5, TB16 and TB17. To
use the Chain widget TS5 and more items from TB16 are needed.

3.5.3 Product

At the end of the modelling process, each language had produced multiple
models which will be shown here. The subjective experience gained during
the modelling process will be reflected during the evaluation phase detailed
in Section 3.6. The following paragraphs will comment on the modelling
process as well as include the models that were produced.

3.5.3.1 UML & VOCL

VOCL serves as a visualisation for OCL hence the reason why structure and
behaviour of all related domains are modelled in UML using the stand-alone
version of UMLet 3 downloadable at http://www.umlet.com/. Figure 3.3
shows the final result of this model after the entirety of the scenario had
been modelled. The constraints for this level are expressed in VOCL using an
Eclipse VOCL-Plugin from the TU-Berlin. The plugin was developed during
a student project and can be downloaded at http://tfs.cs.tu-berlin.

de/vocl/userguide/group1/. The constraints can be seen in Figure 3.2.

Figure 3.2: Constraints expressed in VOCL

The UML model uses different types of models to address structural and
behavioural requirements. The models uses a vague packaging approach to
separate concerns and then express their relation. The structure is expressed

3Version 11.4

26

http://www.umlet.com/
http://tfs.cs.tu-berlin.de/vocl/userguide/group1/
http://tfs.cs.tu-berlin.de/vocl/userguide/group1/

0..n

0..n

0..n

0..n

0..n

1..n

creates

0..n 0..n 0..n

Widget
id: UID
angle: Real
clearable: Boolean
visualisation: T
-setClearable(b: Boolean)
-setDP(x: int)
+activate()
+drop()
+lift()
+shake()

Handle
+bound: Boolean
+domainPresence: Real1..n

Mode
-activate()
-handleDrop()
-handleLift()
-handleShake()

Stamp
-imprint: T
+activate()
+handleDrop()

Position
-x: Real
-y: Real
setX(x: Real)
setY(y: Real)
getX(): Real
getY(): Real

1

 1

Chain

+activate()
+handleDrop()

TUI model

BPMN2 model

Diagram Collaboration
0..1

Process

0..1

Event
type: T

ActivityGateway
type: T

Connection

Swimlane

Artefact

0..n2..n

1..n

0..n 0..n

1..n

Start

Intermediate
mode: T

End

Task

Process

Message Flow

Sequence Flow

Association

PoolLane
1..n

contains

Group

Annotation

Data Object

 1

0..n
source
target

 1

0..n
source
target

1

0..n

source
target1

0..n

source
target 1

0..n source
target

1

0..n source

1

0..n

target

1

0..n

target

 1

0..n
target

1

0..ntarget

1

0..n

target

Associated

[create]

lift / setDP(0)

[destroy]
activate [over control area] / switchMode(Mode)

dropped [over model entity] / Drop(Position)

acivate [over model entity] / changeImprint

Stamp

Stamp
shake

lift / setDP(0)

dropped [emtpy canvas space] / paint

[Stamp]

[Chain]

shake

Widget Behaviour

Domain model

Customer
goodStanding: Boolean
+checkPortfolio(): Portfolio
+placeOrder(type: Enum, amount: int)
-sellStock(amount: int)
-buyStock(amnount:int)

StockBrokerage

Portfolio

Stock

 1..n

holds

0..n

1

holds

owns

manages

Customer

Check Portfolio

Customer Behaviour

0..n 0..n
expressed by

0..n

0..n

expressed by

Order
amount: int

Place Order

Sell Stock

Buy Stock

«extends»
{if portfolio not empty}

«extends»

seller subject

amount

buyer

amount

subject
Common Stock

Preferred Share

ConvertiblePreferredShare
+conversionRate
+earliestConversionDate

Wait for completion

Review Portfolio

dropped [onto component & Imprint.type = Connector] /
imprint.source=component & dynamicPaint

Seek target

shake / erase(Imprint) & Imprint.Destroy

dropped [onto component] /
imprint.target=component

defines behaviour

acivate [over model entity] / showConnectors

Chain

Chain
shake

lift / setDP(0)

acivate [over empty canvas] / showConnectors

Behaviour

Structure

Figure 3.3: UML model for the scenario

using Class Diagrams. User behaviour is modelled using an Use Case Dia-
gram. The system behaviour is visualised using a Statechart. VOCL uses
a visual representation close to that used in Class Diagrams to express the
underlying OCL constraint.

3.5.3.2 VCL

The scenario modelled in VCL made use of the Visual Contract Builder
(VCB), a tool for modelling VCL using an Eclipse plugin from the Univer-
sity of Luxembourg. The tool is available for download at http://vcl.

gforge.uni.lu/. VCB uses a packaging mechanism which allows for the
separation of concerns while modelling. VCL Structural Diagrams in the
final stages for the TUI, BPMN2 and scenario can be found in Figure 3.4,
3.5, or 3.6 respectively.

The behaviour in VLC is modelled using Behavioural diagrams. Figure

27

http://vcl.gforge.uni.lu/
http://vcl.gforge.uni.lu/

Figure 3.4: VCL Structure Diagram of the TUI model

Figure 3.5: VCL Structure Diagram of the BPMN2 model

3.7 and 3.8 show these diagrams for the TUI and the scenario. The behaviour
is expressed by refining the atomic behaviour such as the Stamp’s Activate
operation as shown in Figure 3.9. Update operations, those possibly pro-
ducing state changes, are represented by contracts while query operations,
those not modifying any states, are represented using assertions.

28

Figure 3.6: VCL Structure Diagram of the scenario

Figure 3.7: VCL Behaviour Diagram of the TUI model

Constraints, such as expressed by the invariants represented by the
hexagonal boxes on the structural diagrams, are modelled using assertion
diagrams. Figure 3.10 for example shows the invariant that expressed the
implicit constraint of BPMN2 models that Process Diagrams cannot hold
Swimlanes which can only be used in Collaboration Diagrams.

29

Figure 3.8: VCL Behaviour Diagram of the scenario

Figure 3.9: VCL Contract for the Stamp’s local Activate operation.

3.5.3.3 Augmented Constraint Diagrams

Initially, a tool was used to attempt to model the scenario using Con-
straint Diagrams. The tool was the result of a joint project by the Uni-
versities of Kent and Brighton in the scope of a project to; ”[...]inves-
tigat[e] reasoning systems and tool for various visual constraint nota-
tions based on Venn and Euler diagrams”. The tool as well as more
information on the project, including the previous citation, can be found
at http://www.cs.kent.ac.uk/projects/rwd/.

The tool worked fine for small problem instances but with the model
growing beyond even a handful of contours, the tool proved unusable due to
an exponential increase in computing time to make even the simplest mod-
ifications. The problem persisting in all compatibility modes, it rendered
the tool useless. Together with the fact that the tool had no support for the
augmented language dialect, a more archaic form of modelling was adopted;
drawing by hand. The hand drawing were later replaced by models created
in Microsoft Visio 2010 with custom stencils.

The problem with drafting models by hand or with simple drawing tool

30

http://www.cs.kent.ac.uk/projects/rwd/

Figure 3.10: VCL Assertion of the ProcessCantSwim invariant

is that there is no mean to verify the model. This posed an obstacle that
was rather hard to overcome as ACD experts are hard to find in a short
time. Another issue was the tidiness of the model. In order to avoid mul-
tiple lines crossing and a loss in readability, some concepts were simplified.
Figure 3.11 shows the BPMN2 and TUI model using the ACD notation. Fig-
ure 3.12 shows the modelling attempts to bring the TUI and BPMN2 models
together to define how to use TUI instances to model BPMN2 instances. It
also shows how behaviour is expressed using the augmented Constraint Di-
agrams language.

Both diagrams use the notation defined by [53]. The rectangle labelled
Diagram in the centre of Figure 3.11 for example denotes the type Diagram
which can hold either a Collaboration or a Process. This is expressed by
the sets placed inside the type. The disjointness is implicit by the sets not
overlapping. The fact that a Diagram can only hold either a Collaboration
or a Process is noted by the spider that has one foot in each set. The type
being shaded means that the type is not defined for anything not belonging
to one of the named sets therein.

31

Figure 3.11: BPMN2 and TUI model using augmented Constraint Diagrams

Figure 3.12: Behaviour and extension of concepts using augmented Con-
straint Diagrams

The behaviour, as shown in Figure 3.12 is given by the precondition,
noted on top in the rectangle, and the postcondition, noted under the divid-

32

ing line. What is unclear is how ”if-clause” preconditions are formulated.
The model assumes that only the behaviour whose precondition holds is
executed and should multiple definitions exist for the same behaviour, that
all are verified and those with satisfied preconditions are executed.

3.6 Evaluation

With the study completed, only its evaluation remained to be able to reach
a final verdict. In this section, the measurement criteria briefly described in
Sub-section 3.5.1 are explained in depth. Each of these measures is rated
on a scale, shown in Figure 3.13, and coloured for the reader’s convenience.
Furthermore, a weighting scheme will be defined. It has been drafted by
sending a questionnaire asking business experts and people working in the
Software Engineering domain on a five point Likert scale [105] how they
would rate each criterion.

Figure 3.13: Coloured measurement scale

3.6.1 Tool support

Automation of model transformation is only one of many advantages that
tool support has. Without tool support there is a strong possibility that
other key points like error checking are not possible or at least more cum-
bersome. Also, the lack of an adequate tool usually means an increase in
development time and having to make compromises when it comes to rep-
resenting the model in a visual format or an increase in effort required to
deliver the same result. In order to evaluate the suitability of a tool, the
following points are observed and evaluated.

3.6.1.1 Availability

This criterion gauges whether tool support is available.

33

3.6.1.2 Maintenance

This criterion gauges whether an existing tool is supported by a team and
maintained. A tool for which no information has been released for at least
a year is considered to be no longer supported.

3.6.1.3 Latest version

This criterion simply collects data about the version of the tool for docu-
mentation purposes.

3.6.1.4 Branch

This criterion states branch that spawned the tool. This might be an inter-
esting factor to judge the continuity plans for the tool and future versions,
improvements and overall support.

3.6.2 Semantics & Transformation

In order to be able to transform a model into another model, say for gener-
ating a data model, the former would need to be expressed in a formal way
to allow for a meaningful and coherent mapping or transformation. A lack
of formalism could lead to problems with reproducibility and reuse of the
language and transformation or mapping schemes.

34

3.6.2.1 Formally defined

This data point tells us if the model is formally defined or not.

3.6.2.2 Transformability

This data point measures whether models produced by the language are
easily transformable as such and if the transformation is complete.

3.6.3 Expressivity

The expressivity criteria try to capture data points which measure the per-
formance of the VMLs to be able to compare their ability to correctly model
the scenario. They measure these criteria by category; structural require-
ments, behavioural requirements, or constraints. Therefore, each of the
following sections is measured thrice with the exception of the ratio which
is not observed but computed.

3.6.3.1 # X (# X)

This data point measures the number of requirements for category X. Note
that the absence of colour indicates that this measure takes a simple integer
value.

3.6.3.2 # X satisfied (# Sat X)

This data point measures the number of requirements of each category that
have been satisfied.

35

3.6.3.3 # requirements partially satisfied (# Part Sat)

This data point measures the number of partially fulfilled requirements.

3.6.3.4 # unsatisfied requirements (# UnSat)

This data point measures the number of unsatisfied requirements.

3.6.3.5 Ratio

This data point computes the ratio of satisfied requirements to the total

number of requirements by Ratio =

X∑
#Sat X

X∑
#X

3.6.4 Usability

It is quite difficult to measure but important to know how easy it is to learn
and use a new language. This is of course a highly subjective measure. Still,
an objective approach can be tried using absolutes where possible in order
to compare the languages with regard to usability.

3.6.4.1 Naming conventions

This measure states whether naming conventions are used and if to what
degree. The adherence to naming conventions is important as it enables
novel users to get used to the language and not confused by terminology.

36

3.6.4.2 Naming fit

This measure captures whether names are well chosen and not misleading.
Using easily comprehensible and meaningful names for concepts reinforces
the effect of metaphors and abstractions.

3.6.4.3 Documentation

This measurement captures whether the language is documented and if then
to what degree.

3.6.4.4 Tutorial

This data point captures if there is a tutorial and how extensive it is. Only
disjoint examples which cover different scenarios are considered.

3.6.4.5 Hands-on tutorial

This data point captures if there is a hands-on tutorial and how extensive
it is. Only disjoint examples which cover different scenarios are considered.

3.6.4.6 Primitive mutability

This measure notes if the use of language primitives depends on the context
it is used in or if it is static.

37

3.6.4.7 Live suggestions

This criterion aims to capture the interactivity that the tool offers which
might help users pilot the tool.

3.6.5 Error Checking

This criterion aims to evaluate the different levels of error checking the
language might offer in conjunction with any tool there might be for the
language.

3.6.5.1 Time

This data point notes at which kind of error checking is performed. Note
that the first two options are only observable if the language is backed by a
tool.

3.6.5.2 Syntax highlighting

This measure captures if an existing tool uses syntax highlighting to provide
feedback to the user about syntactical errors.

3.6.5.3 Degree

This data point states to what degree a tool offers error checking facilities.

38

3.6.5.4 Error correction suggestion

Tool support offers the means to suggest correct values to the user in case he
should have made an error. This data point captures if such a functionality
is offered by the tool.

3.6.5.5 Debugging possible

This measure captures if an existing tool offers, and to what degree, to debug
models.

3.6.6 Verification

This criterion aims to evaluate the possibility to validate the model against
the requirements after it has been completed. For most languages this step
will have to be made manually by the clients. The reason is simple, if the
requirements were formal enough to be checked against a model than they
could be used to produce said model in the first place. Nevertheless, the
language can offer some tools to statically or dynamically verify the sound-
ness of the model.

The basic option would be the verification by a static tool akin to the
verification scheme of an XML document. The next best step would be the
real time error checking that should guarantee the soundness of the final
model. More advanced techniques then allow for instantiation of the model
which makes it easier to visually see quirks and kinks in the model that are
not in line with the requirements. The current pinnacle of functionality that
can be provided is an interactive model explorer that does not only generate
random model instances but allows the user to explore and build instances
freely.

39

3.6.6.1 Modularity

This measure aims to capture the modularity of the language. Is there a clear
way to implement separation of concerns through use of for example packages
or simply using different files which need to be imported? Modularity is a
desirable quality as it gives a clear option to separate concerns.

3.6.6.2 Verification scheme

This measure states which scheme the language or related tools offer to
verify the model.

3.6.7 Weighting scheme

In an attempt to judge if the subjectively picked evaluation criteria were
adequate for the task and to inject more objectivity into the study, a ques-
tionnaire was devised. A sample of the questionnaire can be found in Ap-
pendix I. The returned questionnaires were evaluated by attributing one
vote per item per intensity on the Likert scale [105]. ”Not important at all”
was worth one point whereas ”Very important” was worth five points. The
sum of votes for each category were then divided by the total number of
votes, giving a normalised average per category. The result can be seen in
Table 3.14.

The distribution of returned questionnaires was heavily skewed in favour
of Software Engineers with only one fifth of all questionnaires stemming from
business experts. This was not by design but only returned questionnaires
could be evaluated. Furthermore, the response was quite poor with only 6
questionnaires being sent back in total.

3.7 Results

All results were compiled by the coloured scale as defined by Figure 3.13. In
order to facilitate the computation of the final results, an Excel table was
used. Table 3.15 shows the findings of the study. For a list of requirements

40

Figure 3.14: Table of votes and normalised weights

that were considered for the expressivity criterion, consult Appendix G. As
can be seen in the table, the language with the highest score is the Visual
Constraint Language. The following paragraphs will comment on the results
and highlight interesting findings.

Taking a close look at the ”Tool support” criteria, one major differ-
ence between all tools can be identified, the degree of maintenance. While
all languages have at least one tool, only the one offered for VCL is be-
ing maintained. All other tools were the results of projects that have since
concluded and are, hence, no longer maintained. With VCB, the tool for
VCL, also hailing from the academic sector, it might share the same fate if
the language fails to reach the critical mass to persist beyond the current
project. Please note that for the language duo UML&VOCL, only tools for
VOCL were evaluated as UML offers a myriad tools in various forms and
more than enough were adequate for the task. This is a major benefit if one
uses an accepted standard.

The ”Expressivity” criteria offer little room for interpretation. All re-
quirements that had been dressed have completely been satisfied. However,
with tools offering no support regarding error correction or highlighting for
VOCL and ACD, the result could include mistakes. Therefore, those lan-
guages are given the benefit of the doubt, which means allocating full points.
With the VCB tool offering live error checking, less mistakes have probably
been made in VCL although a final verification by an expert would still be
advisable.

41

Figure 3.15: Table summarising the results

”Semantics & Transformation” was straight forward to evaluate. With
UML under criticism for not being thoroughly formal [45] it also did not
reach the full score for transformability. While some diagram types can
without much effort be transformed, this cannot be said of all of them.
While the core Constraint Diagrams can be translated into OCL and then
further, the augmented version lacks that possibility.

While UML is very well documented and offers a huge amount of tutori-
als spanning all its aspects, VOCL is lacking in those disciplines. While only
very few tutorials exist, the documentation is usable but not complete. The
naming conventions and fit on the other hand leave nothing to be desired.
The augmented version of the Constraint Diagrams are well documented and
offer a couple of tutorials. However, the language uses some rather mathe-
matical or domain specific terminology which might complicate matters for

42

non-experts in the field. The same holds true for VCL. While the language
is well documented, the VCB could offer more stand-alone documentation
even though the build-in suggestion system makes up for it to some degree.

”Error Checking” criteria are highly dependent on the use of an auto-
mated process or tool. With the tool for the augmented Constraint Diagrams
failing to work properly and the initial models having been drafted by hand,
there were no error checking facilities. Only very few UML tools offer error
checking and so does the VOCL tool. The conversion to OCL allows for
the use of some error finding methodology and the tool itself restricts the
syntactical constructs that can be visually expressed thereby somehow forc-
ing the user to not make mistakes. VCB offers real rime error checking and
details about the nature of the error for most of the diagram types. None of
the languages or their tools can instantiate models which would have helped
in the validation and verification process.

VOCL benefits from UMLs packaging facilities to separate concerns and
express models in a modular fashion. VCL also applies a packaging scheme.
While it is possible to extend diagrams in the augmented Constraint Di-
agrams, thereby separating concerns, it seems more cumbersome than the
packaging mechanisms offered by the other two languages. Without any
possibility to instantiate the models, all models produced by the languages
will have to be verified manually.

3.8 Study Conclusion

The author would like to not that while this study follows a quantitative-
experimental approach, all choices were subjective and although the author
tried to make choices as objective as possible, it is by the limited scope
and time not possible to conduct a proper objective study on the matter at
hand. Noteworthy flaws and kinks are the picking of measurements which
is a highly subjective activity and the lack of experts to validate all models
or draft the models in the first place. Readers are invited to determine the
validity of the study for themselves. The following conclusion is only to be
viewed in regard of the shortcomings of the study and should not be seen
as a general statement or ranking of the VML under study.

After an initial broad selection of all related material, only a good two
dozen resources were deemed relevant. The thirteen resources that remained
after further selection could be grouped in three camps, one routing for the
Visual Object Constraint Language (VOCL), one for Constraint Diagrams
and one for the Visual Constraint Language (VCL). VOCL required the use
of UML and Constraint Diagrams, not expressive enough on their own, were

43

used in an extended version, Augmented Constraint Diagrams (ACD). VCL
was used as is. After selecting adequate tools for the modelling process,
the different advantages and disadvantages of the languages and their tools
became clear.

With all tools except for the Visual Constraint Builder (VCB), VCL’s
tool, being either unusable or not up to speed with that modern tools offer
in regard of usability and support, VCL was the clear winner in that regard.
UML in conjunction with VOCL proved adequate to model the BPMN2
Stock Management scenario. The use of VOCL however was rather cumber-
some and error prone. Modelling using the ACD easily and quickly advanced
which was due to the fact that it was done by hand. Unfortunately this also
meant no support or error checking. With the language not being broadly
established and having no expert at hand it has yet to be determined if
the produced model is correct. With VCL, the modelling process proved
to be very modular with the language separating structure, behaviour and
constraints clearly even from a modelling point of view.

Having gathered all measurements and weighted the scores for each eval-
uation criteria, the ACD took third place mainly due to the lack of tool
support and hence error checking capabilities. The effects on productivity
were not measured although the drafting of models by hand on paper could
prove to be problematic in a collaborative industrial or business environ-
ment. Second place was claimed by the tandem of UML and VOCL. While
UML performed admirably, there is a reason why it is so successful after all,
VOCL was not able to propel the team forward. Answering RQ2 1.1, the
GPVML that performs best in modelling a VML scenario for use on TUI;
is VCL. It offers a well defined language that could offer a better naming
scheme but offers very little to be desired after the brief study. The VCB
tool did help enormously in cementing VCL’s gold medal but without con-
tinued support for the tool the edge that VCL currently holds over the other
languages might quickly become dull.

44

Chapter 4

The Visual Contract
Language, an introduction

The Visual Constraint Language (VCL) [50, 97, 98, 99, 106] is a novel visual
modelling language. Section 3.3.2 introduced some of the basics which will
be further elaborated on in the following paragraphs. VCL is used for the
formal specification of requirements in software systems. The structural and
behavioural requirements as well as contracts on the behaviour and invari-
ants are all expressed in VCL using its own formal syntax. Its visual syntax
is inspired by Higraphs [4], UML class diagrams [49] and Entity-Relationship
diagrams [54]. VCL’s formal semantics are a result of the work of VCL’s
inceptor, Nuno Amálio, on ZOO [107, 108], a semantic domain for the object-
oriented paradigm expressed in the Z specification langauge [109, 110]. A Z
specification can be generated for a VCL model for the purpose of verifica-
tion and validation. A Z specification generated for a VCL model is given
in [106].

VCL embraces many of the concepts thought to be desirable for varying
aspects of Software Engineering. VCL is a modular language, implementing
the principle of Separation of Concerns [111], thought to increase readabil-
ity by reducing complexity which in turn also eases maintainability. VCL’s
approach on modularity also allows for addressing vertically distributed con-
cerns frequently found in complex systems [106]. Modularity in VLC is
achieved by using a packaging scheme at the structural and behavioural
level and by using contracts and constraints on a local level. By using con-
tracts and constraints to express local concerns and specify the behaviour
of components, VCL subscribes to the Design by Contract [103] principle.

This chapter elaborates on VCL. The reader is referred to [97, 106] and
the tutorials available on the VCL web-site 1 for further information.

1http://vcl.gforge.uni.lu/tutorials.html

45

http://vcl.gforge.uni.lu/tutorials.html

4.1 Syntax

VCL uses several primitives and diagram types. The following sections intro-
duces VCL primitives in Section 4.1.1, Structural diagrams in Section 4.1.2,
Behavioural diagrams in Section 4.1.3, Package diagrams in Section 4.1.4
and lastly, Assertion and Contract diagrams in Section 4.1.5. The follow-
ing paragraphs were compiled from [106], adding newly added syntactical
elements that are missing in the report.

4.1.1 Primitives

Diagrams are built using primitives. While all the primitives have a core
meaning, they vary slightly depending on the diagram they are used in. The
following paragraphs will go through all primitives used in this document.
For a complete view of all primitives, consult [106].

Packages A VCL model is organised around packages, which are rep-
resented visually as clouds. Packages can be of two kinds, containers or
ensembles. A container package merely groups concepts and their local be-
haviour. Like containers, ensemble packages also group concepts and their
local behaviour, but in addition they can define their own global behaviour,
which typically, involves a coordination of its concepts. In package diagrams,
insideness is used to express that all concepts defined in the contained pack-
ages are grouped, and exposed through one single package. This is useful
to structure concepts. Figure 4.1 shows a container package. An ensemble
package containing a container package is shown in Figure 4.2.

Figure 4.1: A simple VCL container
package

Figure 4.2: An ensemble package con-
taining another package

Blobs Blobs, a name coined by Harel in [4], are rounded shapes used to
denote sets and subsets. The notation stems from Euler and is similar to

46

that used in Set Theory. However, alike to Harel’s Higraphs, overlaps are
not permitted as the topological information carries formal meaning. Fig-
ure 4.3 shows the blob String, UUID and Accessor with the latter two being
disjoint subsets of String. Note that the insideness relation must be acyclic
which is enforced locally by the topology but must be respected globally as
well.

Figure 4.4 shows a blob defined by its contents, denoted by the© symbol.
A Bool is exclusively defined by the objects, see 4.1.1, True and False.
Figure 4.5 shows a reference blob used to refer to a remotely defined blob
by the symbol ↑. In this case to String defined in the package P . See the
previous paragraph for information on packages.

Figure 4.3: VLC blobs
illustrating insideness

Figure 4.4: A blob de-
fined by its contents

Figure 4.5: A blob refer-
encing a remote blob

Objects Objects are rectangular shapes that are used to denote elements
of a set. They are commonly used for constants. Apart from their name,
they carry the label of the set they belong to. Figure 4.6 shows the constant
xPath, an element from the set of URI as defined in the P package.

Figure 4.6: An object

Edges Edges connect packages, blobs, and objects. Property edges as
shown in Figure 4.7 visualise properties possessed by all members of the set
connected to the edge’s source. The head denotes what “type” of property
they have and the label indicates the name. Figure 4.8 shows a relational
edge. They define a new set of tuples. The relational set might be con-
strained by cardinalities other than the regular one-on-one mapping. Only
blobs denoting sets can be connected by relational edges. Origin edges,
shown in Figure 4.9 reduce the scope of attached assertions or contracts to

47

be local to the blob of origin.

Figure 4.7: A
property edge

Figure 4.8: A
relational edge

Figure 4.9: An
origin edge

Package edges, as in Figure 4.10 expand visibility to primitives defined
in external packages. Merge edges, shown in Figure 4.11 are used to merge
blobs from different package blobs, wearing the name of the to be merged
blobs as label. Figure 4.12 depicts an override edge, overriding the definition
of the blob with the name indicated on the label in the target packet with
the definition from the origin packet.

Figure 4.10:
Package use

Figure 4.11:
Merging blobs

Figure 4.12:
Overriding
blobs

Assertions As shown in Figure 4.13, assertions, formerly called constraints,
are depicted by a hexagonal labelled shape. They observe the state of the
system without modifying it. They can be used to describe constraints that
must always be true, and query operations that have no restriction on their
return value.

Figure 4.13: An assertion Figure 4.14: A contract

Contracts Contracts are double-lined, labelled hexagonal shapes as shown
in Figure 4.14. They modify the system state according to the pre- and
postconditions they define.

4.1.2 Structural diagrams

Structural diagrams (SDs), an example is shown in Figure 4.15, include
blobs, objects, assertions as well as the edges linking those elements. Each

48

package of a VCL model has one SD, defining the package’s state space. In
SD, blobs may incorporate other blobs or objects, the first expressing the
insideness property and the latter, together with the© symbol on the blob,
the definition of a concept by the sum of its values marked by the objects.
Blobs can either be value blobs, a set of immutable values, or they can be
domain blobs, characterised by the bolded border, that affect the state of
the system as they are created and change state.

Figure 4.15: A VCL structure diagram

Figure 4.15 shows a structural diagram of a BPMN2 concept, namely
DataAssociations. The concept will be elaborated on in Appendix B.18.
The DataAssociations value blob defines two subsets through the topolog-
ical layout. The property edge assignment models that a DataAssocia-

tions can have multiple Assignments which are predefined values given by
a mapping expressed using Expressions, imported from the EX package.
The targetRef relational edge creates a many-to-one mapping. The new
set contains tuples of the type (DataAssociations, ItemAwareElements).
The SD displays a constraint on ReferenceIntegrity.

4.1.3 Behavioural diagram

Behavioural diagrams (BDs) define a finite set of operations. These can
be either local, if connected by an origin edge to a blob, or global if un-
connected. Only global operations can be referred to in a global context.
Furthermore, operations are either updating a set expressed through the
double-lined border or observing a state. Local update operations come in
three shapes;

49

• they can create new set elements, denote by a leading N,

• they can remove elements from a set, denoted by a leading D,

• they can update elements of a set, denoted by a leading U.

Global operations can do neither of the above as they cannot act upon
the local context of a set. They have to call upon local operations to do so.
Figure 4.16 shows the BD of the TUI metamodel concept of layers. Here,
the global operation AddWidget calls upon the Add update operation of the
TangibleLayer to add a Widget.

Figure 4.16: A VCL behaviour diagram

4.1.4 Package diagram

Package diagrams (PDs) feature only packages and edges. A PD can either
incorporate other packages inside its cloud-like shape or import them. The
latter can be seen in Figure 4.18. The imported packages are the target of a
package use edge. Packages can receive an alias which is noted in the package
blob. Importing packages exposes all elements contained in those packages
for use in the global context of the current state. Enclosing packets within
the contour of another package blob, as shown in Figure 4.17, expresses that
all concepts from the enclosed package are incorporated into the state space
of the enclosing package. If concepts are defined in multiple packets, each
only partially modelling the concept, merging the concepts is necessary. A
merger edge connects the packages where blobs need to be merged, labelled
by the name of the blobs to merge. All properties and relations of the
separate blobs are merged and exposed as one concept through the enclosing
packet.

50

Figure 4.17: A package diagram illus-
trating merges and incorporations

Figure 4.18: A package diagram illus-
trating imports

4.1.5 Assertion diagrams

Assertion diagrams (ADs) observe the system state, expressing constraints,
invariants, or operations. The upper compartment of the AD, as shown in
Figure 4.19, is used to declare variables locally or through imports. Variables
suffixed with ? or ! denote inputs and outputs respectively. The import
and passing of variables sometimes requires them to be renamed. This is
done by rename lists on constraint labels in the declaration compartment.
For example, renaming w! to w? would be written as [w!/w?].

Figure 4.19: A VCL assertion dia-
gram specifying an operation

Figure 4.20: A VCL assertion dia-
gram specifying constraints

The lower compartment is used to define the predicate of the assertion
built from blobs, objects, relational and modifier edges as shown in Fig-
ure 4.20. Modifier edges are a variant of property edges. They can take on
operators to apply operators found in Set Theory such as domain restric-
tions, C, and domain range, B. Shaded blobs denote the empty set, which
can be used to say that, as seen in Figure 4.20, the set expressed through
the contained predicate is empty. Hence, a simple shaded blob denotes the

51

empty set. Predicates use a notation borrowed from First Order Logic.
Special operators such as the cardinality operator, #, can be used to form
further predicates.

4.1.6 Contract diagrams

Contract diagrams (CDs) specify operations that alter the system state.
They describe what preconditions must hold before the operation is executed
in the lower left-hand compartment and what postconditions hold immedi-
ately after the operation has executed in the lower right-hand compartment.
As was the case in ADs, CDs also contain a declaration compartment. The
use of the latter one is analogous to that in ADs. Figure 4.21 shows an
example of a CD. In addition to predicates, which were explained in the
previous section, CDs make use of action units which indicate the object or
set to change as a result of the operation.

Figure 4.21: A VCL contract diagram specifying an operation

52

4.2 Semantics

VCL’s semantics is defined using a translational approach [112] by translat-
ing VCL diagrams into the Z specification language. This gives VCL a solid
grounding in Set Theory and predicate logic. As mentioned in [97, 106],
further translations are planned.

4.3 Modelling in VCL, using VCB

Modelling in VCL has a few restrictions not enforced by the nature of the
visual syntax and the editors. Most of them are minor inconveniences in-
troduced by bugs. Bugs are fixed regularly and the team welcomes bug
reports. This is to be expected of a language still being actively researched
and developed. For example, during the modelling process, value could not
be used as a label. Using a prefix such as an underscore solves the problem
while still leaving the labels human-readable and easily identifiable.

Compared to VML like UML, VCL has very few built-in types. As of the
time of writing, only naturals and integers are built-in by the NatBlob re-
spectively IntBlob. Future versions will likely introduce more built-in types
such as Booleans. Due to the limited number of types readily available,
modelling in VCL usually requires the creation of a package to declare addi-
tional primitives for use in the system. Types are defined by creating value
blobs as, usually, values are predefined and limited. For types with a large
number of possibilities, such as strings, no specific values are defined. For
types with a small amount of values or types for which their content is not
clear by their name, values are added by adding objects into the contour of
the blob. Figure 4.22 illustrates both examples.

Figure 4.22: Declaration of additional types in VCL

53

Modelling VCL is easiest done using the Visual Contract Builder (VCB),
a free Eclipse plug-in 2. As of the time of writing, the tool requires Eclipse
in at least version 3.6 3. The VCB download page also offer installation
advice and two tutorials that introduce the basics of VCL. All reports and
papers regarding VCL and cited here are also available on the site and offer
a possibility to get acquainted with VCL beyond what is needed for reading
this document.

VCB offers the possibility to create VCL packages, holding all diagrams
defined by the package. The facilities are intuitive to use and offer a famil-
iar look and feel as VCB has been built using the GMF framework 4. VCB
enables modelling of VCL through editors offering a palette with visual
components as well as a context sensitive pop-up menu for available com-
ponents. The context sensitive menu offers only syntactically valid model
components. Modelling, especially in the learning phase, greatly benefits
from the context-sensitive assistance of VCB. Another helpful aspect is the
automated verification and validation that VCB offers. As the semantics of
VCL are formally defined in Z, Z theorem provers are able to formally verify
and validate VCL diagrams.

The VCB editors are built using a metamodel of the VCL notation. A
partial metamodel is currently available in Alloy and UML 5. In addition to
the Z theorem prover, a VCB type checker will verify the well-formedness
of VCL diagrams. Only well-formed diagrams will be translated into ZOO
and hence checked by the theorem prover.

2http://vcl.gforge.uni.lu/download.html
3http://www.eclipse.org/
4http://www.eclipse.org/modeling/gmp/
5http://vcl.gforge.uni.lu/metamodels/

54

http://vcl.gforge.uni.lu/download.html
http://www.eclipse.org/
http://www.eclipse.org/modeling/gmp/
http://vcl.gforge.uni.lu/metamodels/

Chapter 5

A VCL Model of a TUI for
modelling with BPMN2

5.1 Introduction

This chapter gives all technical and contextual details regarding Tangible
User Interfaces (TUIs) and the Business Process Modeling Notation ver-
sion 2 (BPMN2).Those will be detailed in Sections 5.2 and 5.3 respectively.
Furthermore, the chapter will briefly introduce the metamodels of TUI and
BPMN2 while deferring to Appendices A resp. B, for the VCL implementa-
tion of those metamodels.

Section 5.6 introduces the Business-to-Table concept, and its metamodel,
which is thought to be part of the application that will allow to mode the
ideation process using BPMN2 on a tabletop device. Thereafter, the models
of the ideation scenario, Section 5.7, widgets, Section 5.8, and interactions,
Section 5.9 will be discussed, as well as their modelling processes. All of the
models mentioned above are drafts modelled using VCL and VCB. They
can be found in, except for the interaction model, Appendices C, D, and E
respectively.

This chapter answers the third research question by proposing the fol-
lowing intermediary questions:

RQ3 Is it realistic to use a GPVML to model complex TUI applica-
tions?

• RQ3a Can concerns be separated in a meaningful way?

• RQ3b Can all requirements be modelled?

• RQ3c Is the expressiveness of VCL sufficient?

55

Separation of Concerns (SoC) in Software Engineering is not only a good
practice but also thought to help reduce complexity, increase comprehensive-
ness, facilitate reuse and ease maintainability[113, 111]. Separating concerns
into modules or packages seems to be a practice in modelling too and it is
not farfetched to think it will deliver the same or at least comparable ad-
vantages as mentioned in [114]. The answer to RQ3a will show if the SoC
principle can be followed using VCL.

RQ3b is aimed as gauging the success of the modelling attempt. Should
some requirements not be able to be modelled using VCL it could hint at
some shortcomings or a lack in semantics. Identifying and documenting
these will be essential to reach a conclusion to RQ3. RQ3c is somewhat
related to RQ3b. If some pieces of the puzzle cannot be modelled it is
likely due to the unavailability of some descriptive constructs. However, the
answer to RQ3c will also allow capturing requirements unrelated to semantic
shortcomings as well as some heavy semantic constructs that are hard to use.
This research question is aimed at gathering some suggestions for the team
working on VCL and to illustrate some future work and perspectives.

5.2 Tangible User Interfaces

This section details the TUI that is currently available at the Public Re-
search Centre Henri Tudor in order to be able to understand the limitations
of and requirements on the metamodel. Technical details that are omitted
for the most part as they are not relevant in this context. All technical
details are however included In Paul Bicheler’s Master’s Thesis [104]. His
thesis also contains all details about the TUI Widget Toolkit (TWT) which
serves as a source of requirements for the TUI metamodel.

5.2.1 TUI technical aspects

The table consists of a plexiglass-topped wooden box as seen in Figure 5.1
with a beamer projecting an image from below via a slanted mirror. Infrared
light dispersers light the area below the acrylic glass surface so that the light
reflected from the surface can be captured by an infrared camera. This pro-
cess allows the reduction of noise considering the fiducial markers are black
and white as can be seen in Figure 5.3. The user can move tangible widgets
on the surface, unaware of what is going on below. This is important as
it makes some of the TUI workings ubiquitous. In the scenario, tangible
widgets or simply widgets, are composed of Sifteo cubes [115], a prototype
of the Siftables MIT project [116], and a fiducial marker. The cubes without
the considerably larger marker can be seen in Figure 5.2.

56

Figure 5.1: The TUI ta-
ble.

Figure 5.2: Two Sifteo
cubes on the table.

Figure 5.3: A fiducial
marker.

5.2.2 A brief look at TWT

Paul Bicheler’s thesis [104] on the toolkit for table-based tangible widgets
serves as a requirement document to discuss the TUI metamodel in Sec-
tion 5.4 and dressed in Appendix A. However, due to concurrent time frames
of both theses, the latest version that has been considered for the metamodel
did not include selector endpoints, function safety or system interactions.
Also, at the moment the models were drafted, the application context held
all layers. The following paragraphs will highlight some of the important as-
pects of the specification. However, the reader is invited to refer to Bicheler’s
Master’s Thesis [104] for an exhaustive explanation on TWT.

Widget structure A widget’s structure spans all digital and physical
components of the widget. The topmost physical component is the handle.
It is composed of other physical components giving the actual physical parts
shape, feel and functionality by the means of actuators and sensors. Visual
components are the digital representation of widget states. They can be
directly bound to handles where they are visualised by the application to
stipulate information or state changes by user interactions through the han-
dle on the endpoints. They are a grouping term for widget components or
zones, the latter of which is described in the paragraph about the application
context below. Physical and digital properties are described by attributes.

Widget behaviour A widget’s behaviour is given by a number of func-
tions which contain a mapping of attributes from actions to optional effects
and finally resolve in at least one endpoint. The creation of the function
and the mapping of the attributes are made by toolkit users as is the goal of
the toolkit. A widget has a default behaviour which is expressed through a
default function with default function elements, default action and default

57

endpoint, to guarantee that every widget has a behaviour in addition to any
behaviour the toolkit user might specify.

Actions are user input that is perceived by the system. Actions do
not have input attributes as they always start a function. Their output
attributes may be mapped to effects which can, depending on the attributes
and current state, change the state and either proceed to another effect or
an endpoint, depending on how the designer has mapped the attributes.

Mappings The mapping of the attributes of all function elements are dic-
tated by the mappings associated with the function. A mapping specifies
for each source attribute of a source function element a target attribute
of a target function element. Actions or events can be continuous meaning
that the system can update attributes and the effects respectively endpoints.
The latter observe their input attributes and react once the new value of
the attribute meats a precondition and is therefore relevant to the receiving
function element. The toolkit specifies no constraints on the mapping of
attributes other than type constraints which are not considered here. How-
ever, only attributes from action to effect, effect to effect, action to endpoint
and effect to endpoint should be mapped. Furthermore, the source attribute
should belong to the function element from the mapFrom relation and, sym-
metrically, target attributes should be properties of function elements from
the mapTo relation.

Identity The identity of a widget gives its functionality. The identity, in a
way, is the bundled functions that the widgets have, the sum of its behaviour.
This abstraction makes it easier to design and talk about widgets. For
example, a widget with the Stamp identity has a number of functions that
give it the functionality to take on a given imprint and then create it on
the canvas by dropping the handle onto the surface. This requires multiple
functions related to dropping and lifting the handle, activating the widget
and shaking it. Yet users who are working with the system can simply refer
to it by its identity and it becomes clear what the associated behaviour is.

Endpoint The concept of endpoints is used to group zones and widget
components as they can both be the target of user interaction. Zones are
exposed through the application context and will be addressed in a later
paragraph. Widget components can be the target of interactions in that
they can be tasked to display or forward feedback to the user. To map user
interactions to endpoints, they figure in functions as a required final element,
wrapping up the function and, depending on the endpoints concrete type,
finalise the user manipulation.

58

Binding The binding is a symmetric relation from one endpoint to an-
other. Bindings are used for example to attach a visual component to a
zone. A binding effectively merges both endpoints such that they become a
new endpoint.

Selection A handle can select an endpoint. A selection is a less strict
binding but still symmetric. Selections are used to temporarily select one
or multiple components in order to act on those components or forward an
action to them. For example, in order to delete an unbound entity present
on the table, it must first be selected.

Application context The application context as described by Bicheler
is split into zones and layers. It is thought that the application context is
the interface between the widgets and the functionality they offer and the
application they are used in. The application should make a distinction
between two layers;

• the tangible layer is the uppermost layer. It effectively contains the
widgets and exposes all of them to the application,

• the canvas layer containing all zones provided by the application. It
contains the data representing virtual objects which are cast into zones
and exposed for the widgets on the tangible layer to interact with.

Zones are areas of interest that are exposed by the application context for
interaction with widgets. They are polygons wrapping data and commonly
their visual component. For example, a zone might correspond to a box
or an arrow. Interactions with zones will take effect on the entirety of the
zone. Therefore it is essential for the application to manage zones correctly
in regard to user intent and interest. Widgets interface with the application
solely through the exposed zones.

5.3 BPMN2 and its usage in this document

The Business Process Model and Notation, Version 2 (BPMN2) as defined
by the Object Management Group [23] in 2011 is the second iteration of the,
newly renamed, Business Process Modeling Notation which was originally
published back in 2008. The language specified through the metamodel
given by the specification document enables the drafting of high level busi-
ness process models. The notation is mainly graphical and similar to that
used in flowcharts. The metamodel describes all abstract concepts needed
to build BPMN2 models.

The aim of BPMN2 is to provide an easy to use language that is in-
tuitive for business practitioners to use yet provides a semantically sound

59

environment to work with, bridging the gap between the semi-formal imple-
mentation of business processes and architectures and the definition of high
level and abstract business concepts. BPMN2 makes use of widely known
components and naming conventions, therefore enticing a sense of familiar-
ity.

BPMN2 elements exposed to the modeller comprise, for example, flow
object, flows, swim lanes and artifacts. Flow objects are the main com-
ponents of the model, activities, events and gateways. Those are inter-
connected using mainly sequence or messages flows. To organise different
processes and structure different elements, pools and lanes are used. Most
of these elements can be enriched with artifacts like annotations at the mod-
eller’s leisure. This small set of model elements, paired with their mutability
in semantics, is what makes the language easy to grasp and use.

The BPMN2 specification document [23] was published by the Object
Management Group in January 2011. The document spans, apart from the
elements mentioned above, all other relevant aspects of the notation. It
defines not only its metamodel but also conformance, symbolism, exchange
formats and mapping to other languages such as WS-BPEL 1.

Element Chapter Reason

Conversations Multiple Lack of application from
practitioners

Choreographies Chapter 11 Lack of application from
practitioners

BPMN Notation and Dia-
grams

Chapter 12 Low to no impact on the
modelling activity

BPMN Execution Seman-
tics

Chapter 13 Low to no impact on the
modelling activity

XML Schemata Multiple Low to no impact on the
modelling activity

Visual requirements Multiple No impact on the mod-
elling activity

Visual constraints Multiple No impact on the mod-
elling activity

Table 5.1: Limitations and reduction of the scope given by [23]

However, the specification document is very large with over five hundred
pages. To model all of it would surpass the time constraints of a master’s
thesis by far. Therefore, only parts of the document could be considered and

1Web Services Business Process Execution Language also referred to as WSBPEL

60

from those, again, only parts modelled. Firstly, only the chapters relevant
to the modelling activity have been considered, namely chapters seven to
thirteen. This first slice of the specification was subsequently broken down
further by relevance and use. Not modelled were the elements in the Ta-
ble 5.1 for the reasons given. However, most of those elements were still
studied before being discarded to make an informed choice. Section 5.5 will
discuss the important aspects of the BPMN2 VCL metamodel dressed in
Appendix B.

5.4 The TUI VCL metamodel

This section briefly describes the packages that make the TUI metamodel,
discussing the modelling choices regarding the specification, the TWT frame-
work introduced in [104] and briefly presented in Section 5.2.2. The meta-
model has been designed using VCL. All VCL diagrams can be found in
Appendix A. The metamodel has been split into separate packages, each
addressing one specific concern. The appendix also includes a list of all
VCL packages and their diagrams in Table A.1. Figure 5.4 shows the TUI’s

package diagram, giving the reader an idea about the structure of the meta-
model.

Figure 5.4: The TUI’s package diagram

61

5.4.1 Packages

The following paragraphs detail all VCL packages for the TUI metamodel
using a bottom-up approach.

TUIPrimitives The TUIPrimitives package defines all basic types found
in the specification document that are not built-in in VCL. This package is
used by most packages defining the TUI metamodel. To illustrate structural
diagrams in VCL, the SD of this package as well as a detailed explanation
is given below. These can also be found in Appendix A.1 for further details.

Figure 5.5: The TUIPrimitives’ structure diagram

The SD found in Figure 5.5 specifies a boolean primitive, Bool which can
take the values True and False. It also specifies Strings and Accessors,
a subset of Strings as shown by the insideness on the SD. Strings in turn
are a subset of Element.

Actions The Actions package deals with widget triggers, user input that
is forwarded by the system and processed by one or more Functions. Ac-

tions model part of the widget’s behaviour. To illustrate the use of the
remaining VCL elements, sample explanations and diagrams are given be-
low. For the complete explanation, see Appendix A.2.

The Action’s PD shows the import edges towards four different pack-
ages and their alias definitions. For example, the Effects package is im-
ported and aliased as EFF for use within the Action package.

An Action evaluates a Condition. An Action may have Attributes,
one of which must be an id. Actions can trigger Effects or immediately
produce a response in an EndPoint. Actions also include a reference to one
or several Mappings, mapping their Attributes to either Effects or End-

Points. The Action specifies a local invariant, EndPointRequired which is

62

Figure 5.6: The Actions’ package diagram

Figure 5.7: The Actions’ structure diagram

given in Figure 5.9 and explained below.

Action’s BD, Figure 5.8, shows two globally accessible operations, Cre-
ateDefaultAction and AddMapping as well as a constructor, Default for
Action. The double-lined border shows that those operations modify and
don’t only query.

The local EndPointRequired invariant, Figure 5.9, expresses that an
Action maps to either an Effect or an EndPoint. An analogous invariant
on Effect verifies that there is indeed one EndPoint. The invariant forms
a logical proposition that, in order to return true, must satisfy that there
is either a tuple in the trigger relation or in the endsIn relation. This is
expressed by comparing both relations to the empty set and negating that
comparison.

The AddMapping operation, Figure 5.10, specifies the adding of a new

63

Figure 5.8: The Actions’ behaviour diagram

Figure 5.9: The EndPointRequired assertion expressing a local invariant on
the Action’s makeup

mapping by extending the set of tuples from Action to Mapping by one
entry. To express this in VCL, the CD defines the new mapping relation to
be the union of the old relation and the new tuple.

Attributes The Attributes package models the concept of Attributes
as detailed in the specification of the widget structure. Attributes are used
to describe physical and digital properties of a Widget. Attributes are key-
value pairs. They are essential in the Action-Effect-Endpoint Mapping of
the Function and as such, all FunctionElements have Attributes which
are mapped from one element to the next. See Appendix A.3 for further
details.

Effects The Effects package covers all concerns regarding Effects, which
are an essential part of the widget behaviour. They specify what conse-
quence a user or system action has. See Appendix A.4 for further details.

EndPoints The EndPoints package models part of the widget structure.
Concrete EndPoints go unnoticed by users as they are only used by the

64

Figure 5.10: The Action’s AddMapping operation

system to denote points of interaction and localise the Effects of Actions.
See Appendix A.1 for further details.

Functions The Functions package models parts of the widget behaviour.
Functions detail how user or system input, Actions, are linked to optional
Effects and localised to EndPoints. A TWT user can specify concrete
behaviour by mapping Attributes from one FunctionElement to the next.
The behaviour is shown by a few token operations. Modelling the complete
behaviour would have required a substantial amount of time and not added
to the evidence needed to answer the research questions. Therefore, only a
small part of the behaviour was specified. It is however sufficient to draw
conclusions as the remainder of the behaviour would follow along the same
principles, using the same primitives and syntax. See Appendix A.6 for
further details.

Mappings The Mappings package laces Attribute together, specifying
the input and output pipes for the propagation of Attribute values during
a Function. See Appendix A.7 for further details.

Layers The Layers package models part of the application context as
described by TWT. The behaviour is implicitly read from the specification.
See Appendix A.8 for further details.

Widgets The Widgets package models the Widget and Identity con-
cepts of the widget structure. Widgets carry behaviour as defined by their
Identities. Widgets allow the user to transparently interact with TUI.
See Appendix A.9 for further details.

TUI The TUI package is an ensemble and groups all concerns modelled by
the other packages of the TUI metamodel in order to expose one top level

65

package, containing all concerns of the TUI domain specified by Bicheler.
See Appendix A.10 for further details.

5.5 The BPMN2 VCL metamodel

This section discusses modelling choices and difficulties during the modelling
of the BPMN2 specification [23] using VCL. All VCL packages can be found
in Appendix B. As the specification is huge, some parts, mostly those not rel-
evant to the modelling attempt, have been disregarded. Table 5.1, presented
earlier, shows every concept that was discarded for the modelling. During
the modelling, the specification was sometimes ambiguous and needed to be
interpreted. These interpretations are made clear where necessary in the
paragraphs below or the detailed description of the VCL packages in the
appendix. In addition to the cuts from Table 5.1, all notions tying concerns
from the table to modelled concerns have been cut, for example the concept
of Correlations . Moreover, any recommendations, statements including
“should” and “may” have been disregarded.

Due to the reduction of scope in regard to the original BPMN2 specifica-
tion, the biggest change it the packaging scheme. While most packages have
been retained as is, it was hard to identify clear cut packages in the first
place. All efforts have been made to clearly separate concerns. Appendix B
contains Table B.1 which shows all VCL packages and the corresponding di-
agrams. Figure 5.11 shows the Core’s package diagram, giving the reader
an idea about the structure of the BPMN2 metamodel by providing a view
of the BPMN2’s topmost package.

5.5.1 Packages

The following paragraphs detail all VCL packages for the BPMN2 meta-
model using a bottom-up approach. However, due to the high coupling, a
pure bottom-up approach was not possible

Primitives The Primitives container package defines all primitive sets
used in the BPMN2 specification such as for example String or Bool. There
is a no corresponding package in the BPMN2 specification as most of those
primitives are built-in types. See Appendix B.1 for further details.

Extensibilities The Extensibilities VCL package includes all con-
cepts necessary to allow for an extension of BPMN2 without sacrificing
conformity. It aims at making BPMN2 an extensible language by adding
the concept of extensibilities at a metamodel level, allowing any extended
BPMN2 model to still be compliant with the specification of the core BPMN2.
See Appendix B.2 for further details.

66

Figure 5.11: The Core’s package diagram

BaseElements BaseElement is the topmost abstract class in BPMN2 for
most model elements. The BaseElements package defines all subsets of
BaseElement. In order to not violate the separation of concerns, the VCL
package introduces the concept of BaseElementContainer. For further de-
tails, see Appendix B.3.

Foundation The Foundation VCL ensemble package groups all concerns
from the BaseElements and Extensibilities VCL packages. It is mod-
elled after the BPMN2 core structure which contains, amongst others, a
BPMN2 Foundation package. See Appendix B.4 to consult all VCL dia-
grams.

Infrastructures The Infrastructures VCL package introduces two con-
cepts, Definitions and Import. The first concept is the topmost concrete
object for all BPMN2 elements, defining their namespace and scope. Import
is used to import foreign BPMN2 or non-BPMN2 elements into the current
BPMN2 model space. See Appendix B.5 for further details.

67

ItemDefinitions The concept of ItemDefinitions is used to separate
the structural definitions from model elements that are exchanged during a
Process, thereby decoupling definition from use. See Appendix B.6 for all
VCL diagrams.

Messages The Messages VCL package implements the concept of infor-
mation exchange between Participants. While constraints apply to the
sending and receiving of Messages all those constraints are expressed on the
corresponding FlowElements. A Messages references an ItemDefinitions,
defining its payload and a textual description to make it easily identifiable.
See Appendix B.7 for all VCL diagrams.

Artifacts This Artifacts VCL package defines all concept revolving around
annotating and conceptually grouping diagram elements without influencing
the model itself. The package contains the definition of the Artifact con-
cept, grouping the specific artefacts like TextAnnotations, Associations
and Groups. See Appendix B.8 for further details.

Resources The Resources package implements the concept of resources
as commonly used in business contexts. A named Resources is defined by
the many ResourcesParameters it may have. The parameters are typed by
and named by ItemDefinitions. See Appendix B.9 for all VCL diagrams.

ResourceAssignments The Resourceassignments VCL package mod-
els the concept of ResourceRoles, ResourceParameterBindings and Re-

sourceAssignmentExpressions. See Appendix B.10 for further details.

Expressions The Expressions VCL package offers facilities to specify
Expressions in both, natural and a formal language. See Appendix B.11
for further details.

Errors Errors are raised when BPMN2 operations or Activities do not
behave as expected. See Appendix B.12 for further details.

Collaborations Collaborations are the top level concept for modelling
BPMN2 interactions in the VCL model. The Collaborations VCL package
groups all concepts surrounding Collaborations. Business interactions be-
tween different business agents, called Participants are visualised as pools,
a concept borrowed from flowcharts. These Participants can include Pro-

cesses and interact by the means of Messages routed using MessageFlows.
See Appendix B.13 for further details.

68

GlobalTasks The GlobalTasks VCL package models all concepts sur-
rounding globally available Tasks. BPMN2 GlobalTasks are a specialised
subset of Tasks. See Appendix B.14 for further details.

Services The Services VCL package groups all concepts revolving around
Services , Interfaces, and Operations. Interfaces define a set of sup-
ported Operations, providing services on given EndPoints. For further
details, see Appendix B.15.

ItemAwareElements The ItemAwareElements package defines what is,
by the specification, BPMN2’s concept of variables. See Appendix B.16 for
further details.

IOSpecifications The IOSpecifications package models the BPMN2
InputOutputSpecification concept which aggregates all forms of DataIn-
put and DataOutput, alone or in groups by InputSets respectively Output-

Sets. The IOSpecification is referenced by Activities and CallableEle-

ments to define their inputs and outputs. The InputOutputBinding is used
when working with Services to bind an InputSet respectively an Output-

Set to an Operation. See Appendix B.17 for further details.

DataAssociations The DataAssociations VCL package includes all con-
cepts for relating data from one ItemAwareElement to the next. A DataAs-

sociation is either a DataInputAssociation or a DataOutPutAssocia-

tion. See Appendix B.18 for further details.

Data The Data VCL package groups all concerns from the ItemAwa-

reElements , IOSpecifications and DataAssociations VCL packages.
There is no corresponding BPMN2 package although a Data is hinted at
on multiple occasions, especially in the chapter on items and data. See
Appendix B.19 for all VCL diagrams.

Processes The BPMN2 concept of Process is modelled in the Processes
VCL package. The Process concept describes a sequence of FlowElements,
Activities, Events and Gateways that are connected through Sequence-

Flows to define the execution semantics of a Process. See Appendix B.20
for further details.

Lanes TheLanes VCL package models the concept of BPMN2 lanes, the
sub-divisions of pools. LaneSets are partitioning a Process to show indi-
vidual roles within it. LaneSets can also be contained within Lanes, which
have to be contained within LaneSets. This nesting allows to model com-
plex business structures. See Appendix B.21 for further details.

69

Escalations An Escalation in a business situation is an exceptional sit-
uation during Process execution that the Process forwards to a higher
instance to be handled. See Appendix B.22 for further details.

EventDefinitions The EventDefinitions VCL package defines all con-
cepts surrounding the trigger of CatchEvents or outcomes of ThrowEvents.
To account for the different causes, EventDefinitions contains individual
subsets modelling each cause. See Appendix B.23 for further details.

Events The Events VCL package illustrates the concepts of Events in
BPMN2. Events actively influence the flow of a Process. They either
spring from a Process in the case of ThrowEvents or impact the current
Process in the case of a CatchEvent. The StartEvent is the entry point
of a Process and is a specialised CatchEvent. IntermediateCatchEvents

and IntermediateThrowEvents can, as their name suggests, happen as the
Process flow is executed. IntermediateThrowEvents serves to produce
Events and resume normal process flow. BoundaryEvents are a specialisa-
tion of CatchEvents. They are always attached to an Activity and visu-
alised by an event marker on the boundary of an event. They are used to
catch abnormal interior flow, that is, erroneous behaviour, and offer a mean
to deal with the consequences of the exception flow. EndEvents terminate
the process flow. See Appendix B.24 for further details.

FlowElements The FlowElements VCL package groups all concepts from
business process flows. All of these concepts can appear in Process flows.
FlowElements is the overarching concept, encompassing more concrete con-
cepts such as FlowNodes, SequenceFlows, DataObjects and DataStor-

eReferences. SequenceFlows are used to instil an order in the arrangement
of other FlowElements. They map a source FlowNode to a target FlowNode.
FlowNode is used as a concept to defining all elements that can be the source
and target of SequenceFlows. See Appendix B.25 for further details.

FlowElementContainers The FlowElementContainers VCL package
introduces a superset of container elements on BPMN2 diagrams. FlowEle-
mentsContainer is defined though two subsets, Process and SubProcess.
These elements, by the flowElements relational edge, contain FlowEle-

ments. Moreover, Lanes can also be contained in FlowElementsContainers.
See Appendix B.26 for all VCL diagrams.

CallableElements A CallableElement is a superset for all Activities
that are not defined within a Process and can be reused by being referenced
from within a Process or by a CallActivity. See Appendix B.27 for further
details.

70

Common The Common VCL ensemble package logically group other pack-
ages. Common includes all packages that specify concepts used across any
diagram types in BPMN2. It groups the following packages by enclosing
them;

• the ItemDefinitions VCL package,

• the Messages VCL package,

• the Artifacts VCL package,

• the Resources VCL package,

• the ResourceAssignments VCL package,

• the Expressions VCL package,

• the Errors VCL package,

• the FlowElements VCL package,

• the FlowElementContainers VCL package,

• the CallableElements VCL package.

See Appendix B.28 for all VCL diagrams.

LoopCharacteristics Activities can be executed multiple times in a
row, necessitating the concept of loops. The LoopCharacteristics VCL
package models this concept. See Appendix B.29 for further details.

SubProcesses SubProcesses are Activities that model the internal
process flow just as Processes do. The concept is modelled in the SubPro-

cesses VCL package. SubProcess has two subsets, Transaction, mod-
elling atomic Activities that specify a protocol to guarantee atomicity,
and AdHocSubProcess which defines not one but multiple Activities for
which the execution is dependent on the Activity’s Performer although
an ordering might impose some constraints on the order of execution. See
Appendix B.30 for further details.

Activities Work in BPMN2 diagrams is represented by Activities which
are part of Processes. Abnormal execution of an Activity is handled by
Events attached to its boundary. See Appendix B.31 for further details.

Gateways The Gateways VCL package groups the concept of Sequence-
Flow control elements. A Gateway is defined in VCL by its subsets; Inclu-
siveGateway, ExclusiveGateway, ComplexGateway, EventBasedGateway,
and ParallelGateway. Gateways specifies a GatewayDirection.

71

An ExclusiveGateway and InclusiveGateway implement the concept
of a branching point if the GatewayDirection is Diverging or of a merger
if the GatewayDirection is Converging. A ParallelGateway is used to
merge parallel SequenceFlows or to create them. ComplexGateways are
used to model more complex flow decisions than are offered by the Exclu-

siveGateway. An EventBasedGateway is used as a branching point with
the decision about the branching relying on an Event. See Appendix B.32
for further details.

Tasks Tasks are atomic Activities that users or the business application
uses to handle work. As all Activities, they are contained within a Pro-

cess’ flow. A Task is defined by its seven subsets: BusinessRuleTask, Man-
ualTask, ReceiveTask, SendTask, ServiceTask, ScriptTask, and User-

Task. See Appendix B.33 for further details.

Participants The Participants VCL package includes all concepts re-
volving around interacting business entities, called Participants. They
take on specific roles with whom they then engage in Processes. Other
than the Participant, the package also defines a PartnerEntity and a
PartnerRole. Both behave similar and the only difference is that a Part-

nerEntity is used to specify a general role such as a company whereas
the PartnerRole is used for more specific Participant behaviour such as
that of a buyer or seller. The Participant also specifies a Participant-

Multiplicity which needs to be specified if the scenario requires multiple
Participant instances. Consult Appendix B.34 for further details.

Core The Core VCL ensemble package is an analogy to the BPMN2 core
package, grouping all BPMN2 concepts in one package. More details can be
found in Appendix B.35.

5.6 The Business-to-Table concept and metamodel

The Business-to-Table (BtT) metamodel is charged with mapping the user
actions from the TUI onto the BPMN2 model. To this end, the model
hooks into the ApplicationLayer of the TUI who has access to all Zones
exposed to users. It will also define a set of BPMN2 metamodel elements it
will directly be referring to as most of the elements are transparent for the
users. This concept effectively builds a bridge, mapping TUI interactions
with Zones onto BPMN2 model changes. The Business-To-Table concept
only partially models the final application that will enable BPMN2 to be
modelled on a TUI. The representation of the visuals of the model has been
abstracted as it would have meant to design a bigger model which wouldn’t
have been more appropriate to answer the research question. Speaking in

72

the Model-View-Controler (MVC) design pattern, the “View” has not been
modelled.

As by the TWT [104], Actions will produce Effects. These Effects

will be creating, deleting, or manipulating model entities. The Effects will
target Zones. Applications “listening” Zone will generate a packet wrap-
ping the user interaction. These packets will be queued and processed, their
manipulation in regard to the model decoded and categorised. User manip-
ulations will affect only a limited number of model entities but those need
to take care to properly change all related entities as well that may be indi-
rectly affected.

The metamodel has been drafted using VCL. All VCL diagrams can be
found in Appendix C. The metamodel has been split into two packages,
each addressing one specific concern. Table C.1 lists all packages and the
included VCL diagrams from the appendix.

Mutator The Mutator package is used to define all objects of BPMN2
which can be directly manipulated by user interaction. These elements are
exposed as Subjects and are being addressed by the resolved user manip-
ulations, the Happenings. This design decouples the definition of what can
be manipulated from how it can be manipulated. For additional details and
VCL diagrams, consult Appendix C.1.

BusinessToTable The BusinessToTable package models a bridge from
user manipulations forwarded by Zones, defined by the TUI metamodel, to
elements of the BPMN2 metamodel grouped as Subjects from the Muta-

tor package. This package models the use of Packets to propagate the
user interactions, their mapping to a specific Happening, and how those im-
pact Subjects. Further details as well as all VCL diagrams are given in
Appendix C.2.

5.7 The Ideation model

This section briefly describes the package that expressed the ideation model
as described in Section 6 and displayed in Figure 6.1. The model has been
designed using VCL. All VCL diagrams can be found in Appendix D. The
appendix includes a list of all VCL packages and their diagrams in Table D.1.
The model is an instance of the BPMN2 metamodel dressed earlier in Sec-
tion 5.5. As VCL does not feature primitives to express this, the model does
not enforce any checking on the correctness of the model instance.

73

Ideation The Ideation includes the complete model of the ideation sce-
nario. The scenario is split amongst three lanes contained in one main pool.
The modelling focuses on the Ideator lane which includes a process mod-
elling the submission of an idea into a system to handle, propagate, and
help refine the idea using peer reviews. Upon starting the process the user
will be able to either submit an idea or participate in the elaboration of en
existing idea. The process then handles the different activities to deal with
the tasks at hand before, by looping onto itself, propose the initial choice
again or termination of the process. See Appendix D.1 for further details
regarding the implementation in VCL.

5.8 The Widget model

This section describes the widget model, the set of widgets used in the fi-
nal prototype designed by Bicheler [104] for use in the ideation scenario as
described in Chapter 6. The model defines four widgets for, zooming, stamp-
ing elements onto the canvas, annotating model elements, and linking these
elements. All VCL diagrams can be found in Appendix E. The appendix
includes a list of all VCL packages and their diagrams in Table E.1. The
model is an instance of the TUI metamodel dressed earlier in Section A. As
VCL does not feature primitives to express this, the model does not enforce
any checking on the correctness of the model instance.

Due to the late date of the last prototype and the available document,
the prototype model is only partially implemented. The problems required
some drastic changes to the TUI metamodel which was needed to be able
to specify this model.

Prototype The Prototype package models the four different widgets
catering to the functionality listed above. The Zoom, AnnoMarker, Link,
and Stamp widgets are held by the WidgetLayer, modelling the layer speci-
fied by the TUI metamodel that holds and manages all widgets. The model
also specifies all visuals and handles attributed to the individual widgets.
See Appendix E.1 for further details regarding the implementation in VCL.

The four different behaviour packages, ZoomBehaviour , StampBehaviour ,
LinkBehaviour , and AnnotationBehaviour were designed to separate the
concerns regarding the identities of the widgets, expressing their behaviour,
from the concept of widgets and handles modelled by the Prototype pack-
age. Due to problems listed above, only the ZoomBehaviour package was im-
plemented. The package defines the ZoomBahaviour concept and the three
functions that specify the behaviour; DropBind, LiftUnbind, and Rotate-

Zoom. See Appendix E.2 for further details regarding the implementation in

74

VCL.

5.9 The Interaction model

Unfortunately, due to the need to rework some of the previous models with
last minute changes, the interaction model was not implemented.

5.10 Conclusion

This chapter answers the third research question through answering three
related sub-questions;

RQ3 Is it realistic to use a GPVML to model complex applications?

• RQ3a Can concerns be separated in a meaningful way? — Yes

• RQ3b Can all requirements be modelled? — No

• RQ3c Is the expressiveness of VCL sufficient? — No

The following sections address each of the three sub-questions raised
above and then gather all these answers and formulate an answer to the
main research question.

5.10.1 Separation of Concerns

VCL uses a packaging scheme that divides concepts into packages. The Vi-
sual Contract Builder (VCB), VCL’s tool, assists the packaging scheme by
providing ready to use VCL package. However, all packages lie on the same
level. For example, the concepts of TUI and BPMN2 are clearly distinct.
Yet all TUI and BPMN2 packages reside on the same level in the tool. As it
does not change the actual separation of concerns, it has no impact on the
models but merely on the ease and comfort of modelling.

Nevertheless, the packaging scheme allows to separate concerns neatly
while the diagrams contained in each package enable the modeller to sepa-
rate the structure from the behaviour and the constraints. The distinction
between local and global scopes makes it possible to expose operations from
a package while keeping others hidden, enabling the modeller to use encap-
sulation and all its benefits.

While some improvements can be made on how the tool presents pack-
ages, the overall packaging scheme allows for a meaningful separation of con-
cerns and the encapsulation of local operations. Therefore, research question
RQ3a can be answered with a definite “yes”.

75

5.10.2 Requirements coverage

During the modelling of the different metamodels and models it has become
clear that not all requirements could be modelled. The TUI metamodel was
designed encountering only one invariant that could not be formulated. It
was only when dealing with the more complex BMPN2 specifications that
more difficulties arose. The remaining metamodel and models were again
drafted without any problems due to the low number of constraints. This
leads to the observation that the other specifications may have been incom-
plete or under-specified. This confirms the necessity and validity of using the
specification a well established and specified notation during the modelling
process. All shortcomings of VCL in regards to the coverage of requirements
that were discovered during the modelling process are summarized in the fol-
lowing two paragraphs. These take only the parts of VCL into account that
are offered by the VCB.

Lack of quantifiers During the formulation of invariants for the BPMN2
metamodel, many of the invariants failed to correctly express the constraints.
This is due to them being expressed in natural language using absolutes
such as “no”, “all”, or “each”. In first order logic, these translate to uni-
versal or existential quantifiers. These do unfortunately not exist in VCL
and, therefore, expressing these invariants is more complicated. An exam-
ple of how universal invariants can be expressed using VCL can be found
in the FlowElementContainers’ ExecutedImmediately invariant found in
Section B.26 of Appendix B. For the reader’s convenience, the invariant is
reproduced in Figure 5.12.

The invariant formulates a predicate expressed that the flowElements

set containing tuples of the kind (FlowElementsContainer, FlowElement)
must be empty. The range of the set is restricted to executable Processes

and given a range of non-immediate SequenceFlows. This invariant ex-
pressed that there cannot be such a tuple less the invariant fail to hold.
Similarly, not shading the predicate, expresses that such as set must exist.
This strategy works sufficiently well for absolutes on sets.

Unfortunately, the same strategy cannot be applied when specific set
elements need to be picked and matched. For example, the FlowElements’

MessageFlowsSpanPools invariant fails to meet its purpose. What the in-
variant should have expressed is that no two Participants or FlowNodes

connected by a MessageFlow can reside in the same Collaboration. The
invariant is in need of selecting two distinct elements from a set. However,
in VCL, assertions do not allow to define variables less quantify. Hence, the
impossibility to express the invariant.

76

Figure 5.12: The ExecutedImmediately invariant expressing constraints on
Processes execution

Transitive Closure The TUI metamodel specification mentions the need
of a Function to start with an Action, possibly passing by one or many Ef-

fects, before finishing in an EndPoint. This is only partially modelled in
the structural diagram of the Function package found in Section A.6 of
Appendix A. Actions specify the mapping of Attributes to Effects and
those need to express the mapping towards, once the possible Effect loop
finishes, an EndPoint. The EndPointRequired invariant fails to express this
constraint. It only models that an Effect maps to either an EndPoint or
another Effect. A model instance could be produced where the Function

contains an arbitrary EndPoint not linked to the Effect, with the latter
only mapping to itself. While this would satisfy the metamodel, it would be
a counter example, showing the requirements have not been met.

Therefore, what is required is the ability to express a transitive closure in
order to formulate an invariant on Action that either must directly map to
an EndPoint or that by the transitive closure of the mapping towards Effect
is mapped to an EndPoint. This would satisfy the requirements of the TUI
specification. As not all requirements could be modelled, research question
RQ3b can be answered with a definitive “no”. However, it is noteworthy

77

that the team is aware of some of the deficiencies and working on finding
a way to implement them. At this point, quantification is one of the next
points on the agenda.

5.10.3 Expressiveness

The modelling process was thought to model in a short time interval the
modelling process of a bigger project to judge whether VCL does provide all
the tools necessary to get the job done. As stated in the previous section,
the language is lacking some syntax to suit the needs. Semantically the con-
cepts used by VCL are sometimes a bit cumbersome. The use of sets is well
suited to formally express ideas but is, unfortunately, not how people are
used to view things. However, this should not be viewed as a drawback. The
semantics are, subjectively, easier to understand than formal mathematical
statements.

Nevertheless, some features are missing. VCL does not provide a facility
describing properties of both, models and metamodels. It is not possible
to model, for example, that a package defines a model that is an instance
of a metamodel. Given the modelling scenario at hand, the requirement to
model both, models and metamodels, and that VCL is not providing said
facilities, RQ3c cannot be affirmed.

As was the case previously, the VCL team is aware of this particular
lack in expressiveness and is looking into adding the concept. Some features
were added since the start of the thesis, addressing the lack of expressiveness
regarding the set cardinality, the # operator, and the retrieval of optional
properties by the unary (�) operator. Unfortunately, the unary operator
only works on optional properties, those marked by an ? cardinality. A
selector operator would be required to select a property in a non-local scope.
However, VCL does not offer said selection operator. Moreover, the use of
the recently introduced cardinality operator is restricted to a few places and
could benefit from opening up the places where it can be used. An example
would be the SubProcess’ OneStartEvent invariant, which would need to
restrict the domain with a predicate on the cardinality.

5.10.4 Conclusion

Modelling a complex application requires a lot of effort and, if the modelling
is done formally, a mature language offering syntax and semantics able to
address all needs is required. With only one out of three sub-questions
having been affirmed, VCL does not offer all the tools necessary to model
the scenario at hand. Yet, the study in Chapter 3 showed that VCL was
subjectively to be the best of the available GPVML. Looking at the other

78

languages that were examined, it is unlikely that any would have outper-
formed VCL. This seemingly leads to the conclusion that no GPVML is,
as of the time of writing, mature enough to be used in modelling complex
applications. However, research question RQ3 asks;

RQ3 Is it realistic to use a GPVML to model complex applications?

The modelling that had been done during the thesis showed that it was
indeed realistic to model complex applications using GPVML if realistic is
to be interpreted in the light of feasible. Nevertheless, the goal of using a
formal VML would have been to formally define the application. This was
not possible due to the problems stated in the previous sections.

However, with VCL still being in development, it is not farfetched to
assume that investigations such as this serve to highlight deficiencies which
are then addressed by the team. Moreover, the parts of VCL that are used
by the VCB are only a subset of VCL. Quantification for example does exist
in VCL, it just hasn’t been formulated for VCB yet. If the shortcomings
that VCL has are fixed in the future, it could very well be one of the first
formal GPVML that can be used to model complex applications.

79

Chapter 6

Ideation

This study is designed to answer the first research question found in Sec-
tion 1.1;

RQ1 Is it possible and practical to model an application or process
using a TUI?

To find an answer, a scenario was created using ideation, a research topic
of the Public Research Centre Henri Tudor. The goal of the project is to
investigate and formulate a business process for submitting ideas, sharing
them, asking for them to be peer-reviewed, and participate in help devising
other co-worker’s ideas. This chapter details a small part of the ideation
process as most of it is confidential. The ideation process is modelled using
the Business Process Model Notation 2 (BMPN2) on a Tangible User In-
terface (TUI). The TUI used for the evaluation is the tabletop based TUI
presented in Section 5.2.1. A VCL model of the ideation scenario can be
found in Appendix D.

The scenario was split into small steps and resumed in a companion
document that was distributed to a set of participants. Three sessions were
held together with Bicheler, supervisors from the Public Research Centre
Henri Tudor, and the test candidates. The feedback from the participants
was recorded in order to evaluate the test performance. Section 6.1 will
introduce the scenarios for the test sessions as well as the technical aspects
of the study. Sections 6.2, 6.3, and 6.4 will detail the circumstances in which
each of the three tests was run and give the feedback gathered from the test
candidates. Section 6.5 will present an analysis and evaluation of the results
from the test sessions. Finally, Section 6.6 wraps up the study, resumes all
findings and gives an answer to the research question.

80

6.1 Introducing the scenario

In the course of this scenario the participants of the tests will use widgets.
Widgets are tools (Zoom, Stamp, Chain, Link Components and Annotation
Marker) composed of one or more physical handles and appropriate graph-
ical representation on the table surface. Physical handles are small devices
in the shape of, in this case, Sifteo cubes, that help the user to manipulate
the business model on a tabletop TUI. The Zoom widget was to be used
like a radial. Stamp and Chain widgets are used as they were designed for
the case study. Their description can be found in Table 3.1, The linking
of components is done by using a Link widget with two physical handles
that are attached to the components connecting to the head and tail of the
arrow. Annotations were added using a multi-handle widget. One handle
selected the component to be annotated while a second handle, a Wacom
Intuos4 PTK-540-WL Wireless Tablet was used to capture the writing of
the test candidates.

The testers participated in three test sessions. All session were played
with two candidates each. Each session featured the same basic ideation
scenario. A companion document details the scenarios step by step and ex-
plains what widget to use and how to use it to fulfil a step. A simplified
version of said document detailing all tasks of the first test can be found in
Appendix H.

Figure 6.1 shows the final BPMN2 model to be achieved after all steps
have been fulfilled. The corresponding VCL model and all related diagrams
can be consulted in Appendix D. In each step, the participants will be asked
to add one or more model entities, building the final model from scratch.
In addition to the model components, a separate area known as toolbox is
present on the surface. This toolbox is partitioned into two sub-areas: one
contains rectangles with the name of widgets, the other contains BPMN2
model entities. The palette with model entities is intentional. However, the
toolbox containing widgets is a workaround to create widgets which, ideally,
should have been created before with fixed functionality. This was not pos-
sible due to the Tangible Widget Toolkit (TWT) still being in development.

6.1.1 Extending the model

The second test scenario was build upon the first scenario. It can be seen in
Figure 6.2. Components were added to the model that were impossible to
model with the current set of widgets. The goal was to observe how the par-
ticipants reacted and how they interacted with the TUI, using what widgets,
to attempt to solve the problem. Moreover, their feedback regarding that

81

Figure 6.1: The ideation scenario in BPMN2

situation was used to validate the conception of more widgets. The scenario
also served to confirm results obtained from the first, crude prototype used
in the first test.

6.2 First test scenario

The first test session was played with a very early design of the widgets and
no real prototype. The session was played using paper mock-ups for model
elements as well as visual feedback from the widgets. The Sifteo cubes were
used to give the users a feel for how the widgets are going to feel later on.
The feedback gathered from the first session is gathered below:

• Need of feedback
Firstly, the candidates mentioned the importance of dynamic feedback
for the placement of components. Secondly, the need of feedback re-

82

Figure 6.2: The ideation scenario extension

garding user choice as to increase usability. User selections should be
displayed or confirmed in some way.

• Rearrangement of components
The candidates felt that it was important and unavoidable to provide
functionality to rearrange model components.

• Use of templates
The candidates expressed the wish for facilities that would propose
templates or commonly used “bulk” components to speed up the mod-
elling process.

• Table orientation
The candidates recognised that the environment is supposed to be col-
laborative and spotted the problem of table orientation. The problem
is solved by a specialised widget to change table orientation.

• Labelling

83

The question was raised on how components are labelled as in this test
scenario, labelling of components was not included.

• Reaction time
The candidates expressed the need for a highly responsive system.

6.3 Second test scenario

The second test session was held with widgets realised with an early proto-
type of TWT. Therefore, the Chain widget was not implemented. Figure 6.3
shows the modelling process. The prototype widgets are crude, mainly due
to the table’s camera resolution which does not allow for the size of the
fiducial markers to be small enough to become ubiquitous. Still, the par-
ticipants were eager to explore the system, discovering the functionality of
most widgets by themselves. The feedback of the second session is resumed
below:

• Need of feedback
The system still being an early prototype, no system feedback was
given. This piece of user feedback strengthened the user’s stance on it
being a necessity to have feedback. User selections should be displayed
or confirmed in some way.

• Use of templates
In addition to the feedback given in the first session, participants also
expressed that the user should be able to express what components to
use as templates.

• Labelling
Labelling proved useful although better feedback needs to be provided
as to what component is chosen to be labelled.

• Handle size
The testers noticed the handle being represented by two disjoint, phys-
ical objects, the marker and the cube, and noted that the mismatch
in size was a bit irritating.

• Persistence
The users expressed the wish to save and carry the model.

• Model mutability
The participants expressed the wish to use domain models outside of
their domain, providing the ability to overlay information from differ-
ent domains.

84

Figure 6.3: Modelling during the second test

6.4 Final test scenario

The third and final test session was held using the final prototype developed
by Bicheler in the scope of his Master’s Thesis [104]. In addition to the wid-
gets proposed for the second test phase, the Sword widget was implemented.
The widget allowed to remove model components by applying the metaphor
of slashing or cutting. Furthermore, the prototype provided visual feedback
to the users, using the Sifteo’s screen to show the identity of each widget.
The addition of the Sword widget made it possible to fully play the extended
test scenario shown in Figure 6.2. The final feedback is listed below:

• Need of feedback
The implemented feedback provided useful. However, testers were
observed to produce sound along with their interactions which leads
to the conclusion that audible feedback is anticipated and therefore
wanted.

• Editing labels
Spelling mistakes made by the testers and their wish to correct them
led to the assumption that a label edit functionality is needed.

• Rearranging elements
Testers expressed the wish to rearrange model elements.

• Fluidity
Due to the hardware limitations of the tabletop TUI, the fluidity of

85

the modelling process was hampered. The test group saw this as in-
convenience.

• Canvas space
Test participants expressed the need for a bigger modelling surface.

6.5 Analysis & Evaluation

During all tests, none of the users ever felt discouraged or significantly ham-
pered by the interface. All of them acknowledged that the hardware limi-
tations were possible to overcome with future implementations of the table,
that there was room for improvement. Therefore, none deemed the interface
unusable. Judging their interactions with the interface, the other tester on
the table and the observers, it has become clear that they were having fun
exploring and using the interface. While this was not the goal, it shows that
the participants felt at ease and not stressed even though one test scenario
was held with a tight time frame in mind.

Most of the feedback was anticipated. The need for haptic, visual or
auditory feedback from the system was partially addressed with the com-
pletion of the prototype. Having feedback did indeed improve usability and
participants, now that they were able to clearly identify the widgets and
their states. The user making audible explosion like noise upon deletion
of a model component shows that the system would benefit from audible
feedback as some users seem to expect it.

The testers discovered by themselves that the scenarios were intended to
be modelled cooperatively. They naturally shared tasks and each took on a
“role”, catering to a group of widgets exclusively. There was a lot of discus-
sion and information was shared efficiently, never being misunderstood or
misinterpreted. It seems that either the scenario was to simple or that the
TUI helped a lot to avoid misconceptions. Of course, the small test group
did also play a role to avoid confusion.

From discussions during and after the test sessions, the user reacted pos-
itively to the presentation of more widgets. When informed about future
widgets like the Lasso, which allows grouping several zones by encircling
them with a handle, all test subjects reacted positively and were able to
suggest uses for the widgets. This confirms that the metaphors that were
chosen for the widgets designed in collaboration with Bicheler. All widgets,
including those not used in the test scenarios that were conceived can be
found in Tabled 5.1 to 5.3 of Bicheler’s thesis or in Appendix J.

86

The users expressed ideas and concepts that were not captured by the
test scenario. This leads to two observations. Firstly, as the tester’s famil-
iarity with the TUI grows, they are better able to comprehend the metaphor
and apply it to new domains. Secondly, user behaviour in TUI can be rather
unpredictable. This has been anticipated and the need for an automated
verification of the modelled elements against a metamodel in order to pro-
vide feedback about the diagram validity is a necessity. Unfortunately, at
this time, integrating such provers that, ideally, operate in real time is a
rather impossible task. Mainly because validation in real time is not given
and secondly because metamodels are not always available, at least not in
a way that would enable provers to use them.

In post-session talks, the testers were taken with the possibilities the
TUI provided. During the discussion it became clear that they did indeed
see potential in the use of TUI. They expressed the wish to use previously
modelled domain-specific models as a basis to model other domains on top.
For example, a business model could be enhanced by modelling the distribu-
tion of resources, overlaying two models. Also, the possibility to use widgets
to carry models from table to table or record the modelling process for it to
be replayed and better analyse critical design decisions were discussed.

During the evaluation talks at the end of each session, especially the
last ones, it became apparent that the features requested by users for TUI
could benefit from other novel approaches. For example, the combination of
different models, overlaying one onto the other can be realised with current
file systems. However, TUI could benefit from a Snippet System [117, 118].
The system proposes to add pieces of files and from the pieces form a whole
rather than have one file. The benefit is that content is not duplicated but
referenced. Hence, models can be refined by specialists in non-collaborative
scenario and still be up to date when resuming collaborative modelling at-
tempts without the need for versioning systems.

6.6 Conclusion

In order to answer the first research question, a study was designed and
executed with a small sample group. The question captures feasibility and
practicability of a TUI modelling approach. After the study, the feasibility
has been demonstrated and that part of the question can be answered with
a definitive “yes”. The practicality is harder to judge. Observing the test
groups, it was clear that they were working collaboratively, exchanging ideas
quickly and, without an extended learning phase, were able to model the
scenarios. Without any drawbacks other than those imposed by the hard-
ware or the prototype software, it is safe to say that it is not impractical.

87

While this does not answer the research question, it does not lead to a neg-
ative conclusion, indicating that further studies are necessary.

The interface allows for a collaborative modelling activity without the
testers feeling as if they faced a bigger overhead or lost time in regard to
traditional single-user modelling. Time-wise, the focussed, non-collaborative
modelling attempt may be faster, however, no measures were collected in
that regard. Nevertheless, the additional information conveyed in a collab-
orative scenario are thought to outweigh the possible time loss. Moreover,
spoken information can be captured and processed to provide a sort of doc-
umentation that tracks the models evolution and design decisions. This is
hardly possible in a non-collaborative environment. Therefore, the question
about the modelling activity’s practicality cannot definitively be answered
as no hard measures are available. However, judging from the tests and the
test group’s responses, the question about the practicality could be “yes”
but further studies will be needed to find a definitive answer.

The results encourage the research in the use of TUI for modelling activ-
ities. With the evolution of the interface, a larger study should be drafted to
gather insights about modelling in larger groups of up to five people. Also,
clear measurements regarding time and performance should be collected and
compared to results obtained from modelling in a non-collaborative TUI en-
vironment as well as a standard editor-based single-user modelling environ-
ment. Ideally, future tests could also involve the proposition of novel TUI
based applications and their acceptance. The tester’s have expressed the
wish for technologies such as the Snippet System, hence, further investiga-
tions could prove fruitful.

88

Chapter 7

Conclusion

This thesis studies VMLs and their applicability to TUIs and modelling
TUI applications. Chapter 2 gives some background, exploring current re-
search in all fields related to the thesis; modelling, visual modelling languages
(VML), and tangible user interfaces (TUI). Chapter 3 elaborates on the de-
sign of a study and its measurements to explore the state of the art in VML.
The results of the study point to the Visual Contract Language (VCL), de-
tailed in Chapter 4, being the best suited VML to use in the modelling of
a complex application based on TUI conducted in Chapter 5. And finally,
the premise that TUI can be used to model applications and processes is
investigated in Chapter 6.

The investigations conducted in these chapters serve to answer the re-
search questions drafted in the introduction:

• RQ1 Is it possible and practical to model an application or process
using a TUI?

• RQ2 Which General-purpose VML (GPVML) performs best in mod-
elling a VML scenario for use on TUI? — VCL

• RQ3 Is it realistic to use a GPVML to model complex TUI applica-
tions?

The thesis starts by tackling research question RQ2. Chapter 3 conducts
a study to identify available VMLs, which are subject to selection criteria
designed to select suitable VMLs. Three languages, Augmented Constraint
Diagrams (ACDs), VCL, and UML in unison with the Visual Object Con-
straint Language (VOCL) came out on top. The languages are compared
using a TUI scenario.

The measurements collected during the study include; tool support, se-
mantics and language transformations, expressiveness, usability, error check-

89

ing capabilities, and model verification facilities. These measures were
weighted by responses from a small questionnaire and tallied to present
the results. These showed that VCL was able to get the highest score,
mostly because the language is still being actively supported and offers a
rich modelling tool, the Visual Contract Builder (VCB). The results of the
study are published in a technical report at the University of Luxembourg’s
LASSY [70]. They have also been submitted and accepted as an extended
abstract to the 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) [119].

Having determined what VML to use, Chapter 4 gives a brief introduc-
tion to VCL. It is then used in a more elaborate scenario to answer research
question RQ1. The scenario used in Chapter 5 is a result of the collabora-
tive work and synergies from Bicheler’s Master’s Thesis [104]. His thesis lays
the foundations for a TUI Widget Toolkit (TWT) used in conjunction with
BPMN2 to define a BPMN2 business process, ideation, in a TUI setting.
The complexity of the modelling endeavour stems from the need to model
metamodels, models, as well as all constraints for each individual application
element. This scenario proposed three narrower research questions:

• RQ3a Can concerns be separated in a meaningful way? — Yes

• RQ3b Can all requirements be modelled? — No

• RQ3c Is the expressiveness of VCL sufficient? — No

The only question that could be satisfied was RQ3a due to VCL and
VCB providing sufficient and neat packaging and encapsulation schemes.
Due to, among others, the lack of support for quantifiers in VCB, they are,
however, present in the core definition of VCL, not all requirements could be
modelled. Therefore, RQ3b could not be affirmed. The same holds true for
RQ3c as VCL currently lacks the necessary functionality to express meta-
model instantiation.

These results are however not to be taken at face value. The Model
Driven Engineering field and community are far from well established. There
is still a lot of research going on and there does, as Chapter 2 suggests, no
perfect solution. Looking at the development of VCL and VCB, a clear
trend forward can be seen. VCL has already shown that it is capable
of tackling challenges from the modelling and formal methods communi-
ties [120, 121, 122, 123]. Those studies were conducted by people working
on VCL and VCB which meant that they could immediately expand and
improve VCL as problems crept up. Despite all progress and development,
the language and its tool are still not at a level of maturity to enable its
general applicability in a wide variety of settings as has been shown in this

90

thesis. However, with the willingness to invest into the language and the
tool that has been shown by the team, they will continue to improve and
become more mature in the future. The question as to when VCL will be
mature enough to enable its general applicability; will have to go unan-
swered. A good approximation, although only jokingly, would be along the
lines of what Mellor always said [124]; three years.

Chapter 6 details the scenario used in the modelling process used to
gauge the performance of VCL in regard to the previously mentioned re-
search question. However, the chapter does not content with just giving
the scenario. It was designed in collaboration with Bicheler to serve two
purposes, serve as a basis to develop a TWT prototype for his thesis, and
provide the basis for a study on investigating the feasibility and practicality
of using TUI to model an application or process, which is covering RQ1.
The study concludes that is definitely feasible to model using TUI but did
not collect any hard measures regarding the practicality.

The introduction formulated the hypothesis that formal collaborative
modelling environments, using visual notations to ease the modelling pro-
cess for non-experts, may prove useful to remedy some of the deficiencies in
the software industry. Unfortunately, it could neither be verified nor falsified
during the thesis. However, some interesting findings have been made. The
findings from Chapter 6 lends credibility to the parts of the hypothesis that
stipulate modelling novices would benefit from visuals and the metaphors
provided by the TUI. The chapter also showed that the benefits of the collab-
orative environment can be translated into the modelling process. However,
as no hard measures were taken, a larger study is needed to settle the matter
and get a definitive, quantitative measure.

With the current state of the art in modelling, it does however seem
that visual modelling languages are not yet providing enough functionality
or ease of use to provide all tools necessary to model a vast range of complex
problems. VCL, however, has shown to be able to solve some complex mod-
elling challenges listed previously; a study could be conducted that investi-
gates the modelling of such a scenario on a TUI, bringing domain experts
and engineers together. Such a study, if repeated and conducted properly,
could lend more credibility to the hypothesis and serve as a proof of concept.

91

7.1 Future Work

The previous section already stated the need for studies collecting hard
measurements. These studies would need to be conducted on a medium
to large scale to provide enough data and objective test samples to lead to
useful and valid conclusions. The studies could investigate, for example:

• the effects of cooperative modelling processes on reducing stakeholders’
unrealistic expectations,

• the availability of domain knowledge in a cooperative modelling envi-
ronment,

• the improvement of accessibility of the modelling process using visual
modelling languages,

• the effects of metaphors to understand visual modelling languages,

• the ease of forming logical predicates using metaphors and visual mod-
elling languages,

• the use of VCL and VCB in a cooperative, TUI modelling environment.

This thesis leads to the discovery of interesting TUI uses. For example,
during the ideation scenario, testers mentioned that they would want to
use models that they had just drafted and interleave them with models of
different domains, using one in the context of the other. A concrete exam-
ple would be to use a company’s business model to model the distribution
and affection of different resources. One could imagine that changes in one
model could imply changes in the other model, either automated, account-
ing for any change in a predefined manner, or notifying an administrator of
a change in the underlying model.

Moreover, a timeline functionality can be used to track model evolution
on TUI, enabling new individuals to engage in the collaborative modelling
process to quickly catch up with the process. Additionally, the TUI en-
vironment can be enriched with audio information or gesture recognition,
captured and processed by the TUI for knowledge elicitation and inference
with the goal of building richer and more comprehensible models.

92

Bibliography

[1] Frederick P. Brooks, Jr. No Silver Bullet – Essence and Accidents of
Software Engineering. Computer, 20(4):10–19, April 1987.

[2] Frederick P. Brooks, Jr. The mythical man-month (anniversary ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[3] David Harel. Biting the silver bullet: Toward a brighter future for
system development. Computer, 25(1):8–20, January 1992.

[4] David Harel. On visual formalisms. Commun. ACM, 31(5):514–530,
May 1988.

[5] Allen Newell. Human Problem Solving. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1972.

[6] Allen Newell and Herbert A. Simon. Computer Simulation of Human
Thinking. Science, 134(3495):2011–2017, December 1961.

[7] Robert Oerter. The Theory of Almost Everything : The Standard
Model, the Unsung Triumph of Modern Physics. Pi Press, July 2005.

[8] David J. Barnes and Dominique Chu. Introduction to Modeling for
Biosciences. Springer Publishing Company, Incorporated, 1st edition,
2010.

[9] A. Henderson-Sellers and P. J. Robinson. Contemporary climatology.
Longman Scientific & Technical, Harlow, Essex, 1986.

[10] Marleen H.F. McCardle-Keurentjes, Etinne A.J.A. Rouwette, and
Jac A.M. Vennix. Effectiveness of group model building in discov-
ering hidden profiles in strategic decision-making. In Proceedings of
the 26th International Conference of the System Dynamics Society,
pages 1–13, Albany, NY, USA, 2008. System Dynamics Society.

[11] Peter W. Higgs. Broken symmetries and the masses of gauge bosons.
Physical Review Letters, 13:508–509, October 1964.

93

[12] The Standish Group. CHAOS Report. Technical report, The Standish
Group, 1995.

[13] Diane Crawford. Forum: software project failure lessons learned. Com-
mun. ACM, 42(11):21–24, November 1999.

[14] The Standish Group. CHAOS Summary 2009. Technical report, The
Standish Group, 2009.

[15] Maria F. Costabile, Daniela Fogli, Catherine Letondal, Piero Mus-
sio, and Antonio Piccinno. Domain-Expert Users and their Needs of
Software Development. In UAHCI Conference, pages 232–236, Crete,
June 2003.

[16] P Goolkasian. Pictures, words, and sounds: from which format are we
best able to reason? The Journal of General Psychology, 127(4):439–
459, October 2000.

[17] Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes)
worth ten thousand words. Cognitive Science, 11(1):65–100, 1987.

[18] D Moody. The Physics of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. Software En-
gineering, IEEE Transactions on, 35(6):756–779, 2009.

[19] Orit Shaer and Eva Hornecker. Tangible user interfaces: Past, present,
and future directions. Foundations and trends in Human Computer
Interaction, 3(1–2):1–137, 2009.

[20] Valérie Maquil, Eric Ras, and Olivier Zephir. Understanding the char-
acteristics of metaphors in tangible user interfaces. In Workshop Pro-
ceedings of Mensch & Computer, Chemnitz, Germany, 2011.

[21] F Boers. Metaphor awareness and vocabulary retention. Applied Lin-
guistics, 21(4):553–571, December 2000.

[22] Roy Schmidt, Kalle Lyytinen, Mark Keil, and Paul Cule. Identify-
ing software project risks: An international delphi study. Journal of
Management Information Systems, 17(4):5–36, March 2001.

[23] Object Management Group. Business Process Model and Notation.
Specification, Version 2.0, Object Management Group, 2011.

[24] Robert Baillargeon, Robert France, Steffen Zschaler, Bernhard
Rumpe, Steven Völkel, and Geri Georg. Workshop on modeling in
software engineering at icse 2009. SIGSOFT Software Engineering
Notes, 34(4):34–37, July 2009.

94

[25] Steve Easterbrook and John Callahan. Formal methods for verifica-
tion and validation of partial specifications: A case study. Journal of
Systems and Software, 40(3):199–210, March 1998.

[26] Daniel Jackson and Martin Rinard. Software analysis: a roadmap. In
Proceedings of the Conference on The Future of Software Engineering,
ICSE ’00, pages 133–145, New York, NY, USA, 2000. ACM.

[27] Alessandro Cimatti, Fausto Giunchiglia, Giorgio Mongardi, Dario Ro-
mano, Fernando Torielli, and Paolo Traverso. Model checking safety
critical software with spin: An application to a railway interlocking
system. In Proceedings of the 17th International Conference on Com-
puter Safety, Reliability and Security, SAFECOMP ’98, pages 284–
295, London, UK, UK, 1998. Springer-Verlag.

[28] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Software
model checking takes off. Communications of the ACM, 53(2):58–64,
February 2010.

[29] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[30] Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, and Lionel
Briand. Using model-driven engineering for managing safety evidence:
Challenges, vision and experience. Software Certification, Interna-
tional Workshop on, 0:7–12, 2011.

[31] M. Chen, J. F. Nunamaker, Jr., and E. S. Weber. Computer-aided
software engineering: present status and future directions. SIGMIS
Database, 20(1):7–13, April 1989.

[32] Douglas C. Schmidt. Model-driven engineering. IEEE Computer,
39(2), February 2006.

[33] The Eclipse Foundation. Eclipse modelling project. http://www.

eclipse.org/modeling/. [Online; accessed 17th July, 2012].

[34] Object Management Group. MDA Specifications. http://www.omg.

org/mda/specs.htm, 2001. [Online; accessed 12th April, 2012].

[35] John D. Poole. Model-driven architecture: Vision, standards and
emerging technologies. In In In ECOOP 2001, Workshop on Meta-
modeling and Adaptive Object Models, 2001.

[36] Stuart Kent. Model driven engineering. In Proceedings of the Third
International Conference on Integrated Formal Methods, IFM ’02,
pages 286–298, London, UK, UK, 2002. Springer-Verlag.

95

http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm

[37] Object Management Group. Meta-Object Facility (MOF) 1.4 Speci-
fication. http://www.omg.org/spec/MOF/1.4/, April 2002. [Online;
accessed April, 2012].

[38] AOSD Steering Committee. Aspect-Oriented Software Development
Community & Conference. http://www.aosd.net/. [Online; accessed
24th July, 2012].

[39] Ronaldo Rodrigues Ferreira. Automatic code generation and solution
estimate for object-oriented embedded software. In Companion to
the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications, OOPSLA Companion ’08, pages
909–910, New York, NY, USA, 2008. ACM.

[40] Dictionary and Thesaurus Merriam-Webster Online. http://www.

merriam-webster.com. [Online; accessed July, 2012].

[41] Gonzalo Gnova. What is a metamodel: the OMG’s metamodeling
infrastructure. Doctorate Seminar, 2009.

[42] Emily Finn. The advantage of ambiguity. http://web.mit.edu/

newsoffice/2012/ambiguity-in-language-0119.html, 2012. [On-
line; accessed 24th July, 2012].

[43] Kenneth Slonneger and Barry Kurtz. Formal Syntax and Semantics
of Programming Languages: A Laboratory Based Approach. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1995.

[44] James Martin and Carma McClure. Diagramming techniques for an-
alysts and programmers. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1985.

[45] D. Milicev. On the Semantics of Associations and Association Ends in
UML. Software Engineering, IEEE Transactions on, 33(4):238 –251,
april 2007.

[46] Anthony Hall. Seven myths of formal methods. IEEE Software,
7(5):11–19, September 1990.

[47] Martin Fowler. Domain-Specific Languages. Addison-Wesley Profes-
sional, 2010.

[48] IEEE P1076 / VHDL Analysis and Standardization Group (VASG).
VASG: VHDL Analysis and Standardization Group. http://www.

eda.org/twiki/bin/view.cgi/P1076/WebHome. [Online; accessed
25th July, 2012].

96

http://www.omg.org/spec/MOF/1.4/
http://www.aosd.net/
http://www.merriam-webster.com
http://www.merriam-webster.com
http://web.mit.edu/newsoffice/2012/ambiguity-in-language-0119.html
http://web.mit.edu/newsoffice/2012/ambiguity-in-language-0119.html
http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome
http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome

[49] Object Management Group. Object Management Group - UML.
http://www.uml.org/. [Online; accessed 16th March, 2012].

[50] Nuno Amálio and Pierre Kelsen. VCL, a visual language for modelling
software systems formally. In Proceedings of the 6th international con-
ference on Diagrammatic representation and inference, Diagrams’10,
pages 282–284, Berlin, Heidelberg, 2010. Springer-Verlag.

[51] Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria J. V. Pereira,
Matej Črepinšek, Daniela da Cruz, and Pedro R. Henriques. Compar-
ing General-Purpose and Domain-Specific Languages: An Empirical
Study. Computer Science and Information Systems, 7(2):247–264,
May 2010.

[52] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics
of ”semantics”? Computer, 37(10):64 – 72, oct. 2004.

[53] John Howse, Steve Schuman, Gem Stapleton, and Ian Oliver. Dia-
grammatic Formal Specification of a Configuration Control Platform.
Electronic Notes in Theoretical Computer Science, 259:87–104, De-
cember 2009.

[54] Peter Pin-Shan Chen. The entity-relationship model – toward a unified
view of data. ACM Transactions on Database Systems, 1(1):9–36,
March 1976.

[55] American Society of Mechanical Engineers. ASME transactions. Num-
ber 43. The Society, 1922.

[56] Object Management Group. Object Constraint Language. OMG, 2006.

[57] Ben Shneiderman and Pattie Maes. Direct manipulation vs. interface
agents. interactions, 4(6):42–61, November 1997.

[58] Hiroshi Ishii. The tangible user interface and its evolution. Commu-
nications of the ACM, 51(6):32–36, June 2008.

[59] Mark Weiser. The computer for the 21st century. SIGMOBILE Mobile
Computing and Communications Review, 3(3):3–11, July 1999.

[60] Hiroshi Ishii and Brygg Ullmer. Tangible bits: towards seamless inter-
faces between people, bits and atoms. In Proceedings of the SIGCHI
conference on Human factors in computing systems, CHI ’97, pages
234–241, New York, NY, USA, 1997. ACM.

[61] Kenneth P. Fishkin. A taxonomy for and analysis of tangible inter-
faces. Personal Ubiquitous Computing, 8(5):347–358, September 2004.

97

http://www.uml.org/

[62] George Lakoff and Mark Johnson. Metaphors We Live By. University
Of Chicago Press, 2nd edition, April 2003.

[63] Otmar Hilliges, Dominikus Baur, and Andreas Butz. A.: Photohe-
lix: browsing, sorting and sharing digital photo collections. In In:
TABLETOP 2007: Second Annual IEEE International Workshop on
Horizontal Interactive Human-Computer Systems, pages 87–94, 2007.

[64] Crampton Smith. The hand that rocks the cradle. Informatica Di-
dactica, 1995.

[65] John Underkoffler and Hiroshi Ishii. Urp: a luminous-tangible work-
bench for urban planning and design. In Proceedings of the SIGCHI
conference on Human factors in computing systems: the CHI is the
limit, CHI ’99, pages 386–393, New York, NY, USA, 1999. ACM.

[66] Ben Piper, Carlo Ratti, and Hiroshi Ishii. Illuminating clay: a 3-d
tangible interface for landscape analysis. In Proceedings of the SIGCHI
conference on Human factors in computing systems: Changing our
world, changing ourselves, CHI ’02, pages 355–362, New York, NY,
USA, 2002. ACM.

[67] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrun-
ner. The reactable: exploring the synergy between live music per-
formance and tabletop tangible interfaces. In Proceedings of the 1st

international conference on Tangible and embedded interaction, TEI
’07, pages 139–146, New York, NY, USA, 2007. ACM.

[68] Martin Kaltenbrunner and Ross Bencina. reactivision: a computer-
vision framework for table-based tangible interaction. In Proceedings
of the 1st international conference on Tangible and embedded inter-
action, TEI ’07, pages 69–74, New York, NY, USA, 2007. ACM.

[69] Eva Hornecker and Jacob Buur. Getting a grip on tangible interaction:
a framework on physical space and social interaction. In Proceedings
of the SIGCHI conference on Human Factors in computing systems,
CHI ’06, pages 437–446, New York, NY, USA, 2006. ACM.

[70] Eric Tobias, Eric Ras, and Nuno Amálio. VML Usability for Modelling
TUI Scenarios - A Comparative Study. Technical Report TR-LASSY-
12-06, University of Luxembourg, LASSY, 2012.

[71] John Hunt. Agile methods and the agile manifesto. In Agile Software
Construction, pages 9–30. Springer London, 2006.

[72] Sharon Alayne Widmayer. Schema theory: An introduction. http:

//tinyurl.com/98lx3yv, 2005. [Online; accessed April, 2012].

98

http://tinyurl.com/98lx3yv
http://tinyurl.com/98lx3yv

[73] XJ Technologies Company. Simulation Software Tool - AnyLogic.
http://www.xjtek.com/. [Online; accessed 5th March, 2012].

[74] Inc. Ventana Systems. Vensim. http://www.vensim.com/. [Online;
accessed 5th March, 2012].

[75] Nicolas Genon, Daniel Amyot, and P. Heymans. Analysing the Cogni-
tive Effectiveness of the UCM Visual Notation. System Analysis and
Modeling: About Models, 6598/2011:221–240, 2011.

[76] D Varro. Towards Symbolic Analysis of Visual Modeling Lan-
guages. Electronic Notes in Theoretical Computer Science, 72(3):51–
64, February 2003.

[77] Andrew Fish, Jean Flower, and John Howse. The semantics of aug-
mented constraint diagrams. Journal of Visual Languages & Com-
puting, 16(6):541–573, December 2005.

[78] Joseph Yossi Gil, John Howse, and Stuart Kent. Constraint Diagrams:
A Step Beyond UML. In Technology of Object-Oriented Languages
and Systems (TOOLS USA’99), Santa Barbara, California , USA,
1999.

[79] Robert Muetzelfeldt and Jon Massheder. The Simile visual modelling
environment. European Journal of Agronomy, 18(3-4):345–358, Jan-
uary 2003.

[80] S. Sadi and P. Maes. subTextile: Reduced event-oriented programming
system for sensate actuated materials. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2007), pages
171–174, September 2007.

[81] James Lin, Michael Thomsen, and J.A. Landay. A visual language
for sketching large and complex interactive designs. In Proceedings
of the SIGCHI conference on Human factors in computing systems:
Changing our world, changing ourselves, number 4, pages 307–314,
New York, New York, USA, 2002. ACM.

[82] A. Schurr, A Winter, and A. Zundorf. Visual programming with graph
rewriting systems. In Visual Languages, Proceedings., 11th IEEE
International Symposium on, pages 326–333, Darmstadt , Germany,
1995. IEEE.

[83] L. Spratt and A. Ambler. A visual logic programming language based
on sets and partitioning constraints. In Visual Languages, 1993.,
Proceedings 1993 IEEE Symposium on, pages 204–208. IEEE, 1993.

99

http://www.xjtek.com/
http://www.vensim.com/

[84] Margaret Burnett, John Atwood, R. Walpole Djang, J. Reichwein,
H. Gottfried, and S. Yang. Forms/3: A first-order visual language
to explore the boundaries of the spreadsheet paradigm. Journal of
Functional Programming, 11(2):155–206, 2001.

[85] D. Lucanin and Ivan Fabek. A visual programming language for draw-
ing and executing flowcharts. In MIPRO, 2011 Proceedings of the 34th

International Convention, pages 1679–1684. IEEE, 2011.

[86] Jonathan Sprinkle and Gabor Karsai. A domain-specific visual lan-
guage for domain model evolution. Journal of Visual Languages &
Computing, 15(3-4):291–307, June 2004.

[87] KD Swenson. A visual language to describe collaborative work. In Vi-
sual Languages, 1993., Proceedings 1993 IEEE Symposium on, pages
298–303, Bergen, 1993. IEEE.

[88] Roswitha Bardohl, Hartmut Ehrig, J. De Lara, and G. Taentzer. Inte-
grating meta-modelling aspects with graph transformation for efficient
visual language definition and model manipulation. Fundamental Ap-
proaches to Software Engineering, pages 214–228, 2004.

[89] I. Burnett, M.J. Baker, C. Bohus, P. Carlson, S. Yang, and P. Van Zee.
Scaling Up Visual Programming Languages. Computer, 28(3):45–54,
March 1995.

[90] Akos Schmidt and D. Varró. CheckVML: A tool for model check-
ing visual modeling languages. UML 2003 - The Unified Modeling
Language. Modeling Languages and Applications, 2863:92–95, 2003.

[91] Sara Brockmans, Raphael Volz, and Andreas Eberhart. Visual mod-
eling of OWL DL ontologies using UML. In The Semantic WebISWC
2004, pages 198–213. Springer, 2004.

[92] Terry Halpin. Object-role modeling: an overview. http://www.orm.

net/pdf/ORMwhitePaper.pdf, 1998. [Online; accessed March, 2012].

[93] Emmanuel Chailloux and Philippe Codognet. Toward visual con-
straint programming. Visual Languages, 1997. Proceedings. 1997
IEEE Symposium on, pages 420–421, 1997.

[94] C. Kiesner, G. Taentzer, and J. Winkelmann. Visual OCL: A Vi-
sual Notation of the Object Constraint Language. Technical Report
2002/23, Technical University of Berlin, 2002.

[95] Institut für Softwaretechnik und Theoretische Informatik. Visual
OCL. http://tfs.cs.tu-berlin.de/vocl/. [Online; accessed 6th

March, 2012].

100

http://www.orm.net/pdf/ORMwhitePaper.pdf
http://www.orm.net/pdf/ORMwhitePaper.pdf
http://tfs.cs.tu-berlin.de/vocl/

[96] Paolo Bottoni, Manuel Koch, Francesco Parisi-presicce, and Gabriele
Taentzer. A Visualization of OCL using Collaborations. UML 2001 -
The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, 2185:257–271, September 2001.

[97] N. Amalio and Pierre Kelsen. Modular design by contract visually
and formally using VCL. In Visual Languages and Human-Centric
Computing (VL/HCC), 2010 IEEE Symposium on, pages 227–234.
IEEE, September 2010.

[98] Nuno Amáio, Pierre Kelsen, Qin Ma, and Christian Glodt. Using VCL
as an aspect-oriented approach to requirements modelling. Transac-
tions on Aspect-Oriented Software Development, 7:151–199, 2010.

[99] Nuno Amálio, Christian Glodt, and Pierre Kelsen. Building VCL
Models and Automatically Generating Z Specifications from Them.
FM 2011: Formal Methods, 6664:149–153, 2011.

[100] Stuart Kent. Constraint diagrams: visualizing invariants in object-
oriented models. In OOPSLA ’97 Proceedings of the 12th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, volume 32. ACM, 1997.

[101] G. Stapleton. A Decidable Constraint Diagram Reasoning System.
Journal of Logic and Computation, 15(6):975–1008, December 2005.

[102] Executable Visual Contracts. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05), pages 63–
70. IEEE, 2005.

[103] Bertrand Meyer. Applying ”Design by Contract”. Computer,
25(10):40–51, October 1992.

[104] Paul Bicheler. A toolkit for table-based tangible widgets. Master’s
thesis, University of Luxembourg, 2012.

[105] R. Likert. A technique for the measurement of attitudes. Archives of
Psychology, 22(140):1–55, 1932.

[106] Nuno Amálio and Pierre Kelsen. The visual contract language: ab-
stract modelling of software systems visually, formally and modularly.
Technical Report TR-LASSY-10-03, University of Luxembourg, 2010.

[107] Nuno Amálio, Fiona Polack, and Susan Stepney. An object-oriented
structuring for Z based on views. In Proceedings of the 4th interna-
tional conference on Formal Specification and Development in Z and
B, ZB’05, pages 262–278, Berlin, Heidelberg, 2005. Springer-Verlag.

101

[108] Nuno Amálio. Generative frameworks for rigorous model-driven de-
velopment. PhD thesis, University of Kent, 2007.

[109] J. M. Spivey. The Z notation: a reference manual. Prentice Hall
International Ltd., Hertfordshire, UK, 1992.

[110] Jim Woodcock and Jim Davies. Using Z: specification, refinement,
and proof. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[111] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton,
Jr. N degrees of separation: multi-dimensional separation of concerns.
In Proceedings of the 21st international conference on Software engi-
neering, ICSE ’99, pages 107–119, New York, NY, USA, 1999. ACM.

[112] Anneke Kleppe. Software Language Engineering. In The Field of
Software Language Engineering, pages 1–7. Springer-Verlag, Berlin,
Heidelberg, 2009.

[113] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, December 1972.

[114] Vinay Kulkarni and Sreedhar Reddy. Separation of concerns in model-
driven development. IEEE Software, 20(5):64–69, September 2003.

[115] Sifteo Inc. Sifteo - Intelligent Play. https://www.sifteo.com/. [On-
line; accessed 2nd August, 2012].

[116] David Merrill, Jeevan Kalanithi, and Pattie Maes. Siftables: towards
sensor network user interfaces. In Proceedings of the 1st international
conference on Tangible and embedded interaction, TEI ’07, pages 75–
78, New York, NY, USA, 2007. ACM.

[117] Laurent Kirsch, Jean Botev, and Steffen Rothkugel. An extensible
tool set for creating and connecting reusable learning resources. In
Proceedings of World Conference on Educational Multimedia, Hyper-
media and Telecommunications 2012, pages 1434–1442. AACE, June
2012.

[118] Laurent Kirsch, Jean Botev, and Steffen Rothkugel. The snippet sys-
tem - reusing and connecting documents. In Proceedings of the 7th In-
ternational Conference on Digital Information Management, ICDIM
2012. IEEE, 2012. To appear.

[119] Eric Tobias, Eric Ras, and Nuno Amálio. Suitability of Visual Mod-
elling Languages for Modelling Tangible User Interface Applications.
In Visual Languages and Human-Centric Computing (VL/HCC),
2012 IEEE Symposium on. IEEE, 2012. To appear.

102

https://www.sifteo.com/

[120] Nuno Amálio, Qin Ma, Christian Glodt, and Pierre Kelsen. VCL
specification of the car-crash crisis management system. Technical
Report TR-LASSY-09-03, University of Luxembourg, LASSY, 2009.

[121] Jérôme Leemans and Nuno Amálio. A VCL Model of a Cardiac
Pacemaker. Technical Report TR-LASSY-12-04, University of Lux-
embourg, LASSY, 2012.

[122] Jérôme Leemans and Nuno Amálio. Modelling a Cardiac Pacemaker
Visually and Formally. In Visual Languages and Human-Centric
Computing (VL/HCC), 2012 IEEE Symposium on. IEEE, 2012. To
appear.

[123] Nuno Amálio. The VCL Model of bCMS. Technical Report TR-
LASSY-12-09, University of Luxembourg, 2012.

[124] Stephen Mellor. Models. Models. Models. So What? In Model Driven
Engineering Languages and Systems, volume 5795 of Lecture Notes in
Computer Science, pages 1–1. Springer Berlin / Heidelberg, 2009.

103

Appendix A

TUI metamodel VCL
packages

The following sections present all Visual Contract Language (VCL) pack-
ages needed to build the TUI metamodel based on the work of Paul Bicheler
in the scope of his Mater’s Thesis [104]. The specification document con-
sidered for the modelling is an early version of his thesis. As explained in
Section 5.2.2, due to concurrency in the elaboration of the theses, function
safety, selector endpoints as well as system interactions were not modelled.
The packages will detail all diagrams. Each section will provide an overview
of the package and complement the general description given in Section 5.4.

For an introduction on VCL, please consider reading Section 4. In
this appendix, the following notation is used; Structural Diagrams (SD),
Behavioural Diagrams (BD), Package Diagrams (PD), Assertion Diagrams
(AD), Contract Diagrams (CD). Table A.1 lists all VCL packages and the
corresponding figures for each VCL package.

Table A.1: TUI metamodel VCL packages and figures

Package name Figures

Pimitives A.1
PD A.1
SD A.2

Actions A.2

PD A.3
SD A.4
BD A.5
EndPointRequired AD A.6
Action Default CD A.7
CreateDefaultAction CD A.8
AddMapping CD A.9

Continued on next page

104

Table A.1 – Continued from previous page

Package name Figures

Attributes A.3

PD A.10
SD A.11
BD A.12
IsUnique AD A.13
Attribute NewID CD A.14
Attribute New CD A.15
Attribute Update CD A.16
Attribute Delete AD A.17
CreateIDAttribute CD A.18
CreateDefaultAttribute CD A.19

Effects A.4

PD A.20
SD A.21
BD A.22
EndPointRequired AD A.23
Effect Default AD A.24
CreateDefaultEffect CD A.47
AddMapping CD A.26

EndPoints A.5

PD A.27
SD A.28
BD A.29
HandleIsRoot AD A.30
EndPoint Default CD A.31
CreateDefaultEndPoint CD A.32
Zone Default CD A.33
Zone Delete AD A.34
WidgetComponent Default CD A.35

Functions A.6

PD A.36
SD A.37
BD A.38
Function Default CD A.39
CreateDefaultFunction CD A.40
AddActionToEffect CD A.41
AddActionToEndPoint CD A.42
AddAction CD A.43

Mappings A.7

PD A.44
SD A.45
BD A.46
Mapping New CD A.49
CreateNewMapping CD A.48

Continued on next page

105

Table A.1 – Continued from previous page

Package name Figures

Layers A.8

PD A.50
SD A.51
BD A.52
AddZone CD A.53
RemoveZone CD A.54
AddWidget CD A.55

Widgets A.9

PD A.56
SD A.57
BD A.58
Widget Default CD A.59
Identity Default CD A.60
AddAction CD A.61

TUI A.10 PD A.62

A.1 The TUIPrimitives package

This package specifies a boolean primitive, Bool which can take the values
True and False. It also specifies Strings and Accessors, a subset of
Strings as shown by the insideness on the SD. Strings in turn are a subset
of Element. As by the specification, Attributes can take anything as value.
As such, Element encompasses all other types and is not defined to be limited
to those subsets of types. In the final application, Element should be merged
with the root type of all system primitives.

Figure A.1: The TUIPrimitives’ package diagram

A.2 The Actions package

An Action evaluates a Condition. Please note that the Condition was not
modelled beyond the concept as it was unclear for a long time what form the
Conditions would take and if there were concrete pre- and postconditions
or not. An Action may have Attributes, one of which must be an id.
Actions can trigger Effects or immediately produce a response in an End-

Point. Actions also include a reference to one or several Mappings, mapping

106

Figure A.2: The TUIPrimitives’ structure diagram

their Attributes to either Effects or EndPoints. The EndPointRequired

invariant partially models the requirement that a Function needs to have
an EndPoint. While this is theoretically covered by the cardinalities in the
Function package, the local cardinalities would not oblige the Action to
be mapped to either an Effect or an EndPoint. The package contains two
global operations, one for creating a default Action and one for adding a
Mapping. To create a default Action, the global operation calls upon the
Default constructor of the Action.

Figure A.3: The Actions’ package diagram

107

Figure A.4: The Actions’ structure diagram

Figure A.5: The Actions’ behaviour diagram

108

Figure A.6: The EndPointRequired assertion expressing a local invariant
on the Action’s makeup

Figure A.7: The Action’s Default operation

109

Figure A.8: The Mapping’s CreateDefaultAction operation

Figure A.9: The Action’s AddMapping operation

A.3 The Attributes package

The Attributes VCL package models the Attribute as a key- value pair,
binding an Accessor to an Element. The diagram also defines a constant,
a special Accessor that is used for identifiers. The BD diagram holds the
behaviour of Attributes as described and implied by the specification. The
requirement that all Attributes must have a unique ID is enforced through
the CreateIDAttribute operation which all model elements do use by de-
fault to get an identifier. The operation uses the IsUnique assertion to verify
that the new identifier is not yet present in the system. The CreateDefault-
Attribute global operation is used to construct a default Attribute to be
used in the mapping of a default Function.

110

Figure A.10: The Attributes’ package diagram

Figure A.11: The Attributes’ structure diagram

111

Figure A.12: The Attributes’ behaviour diagram

Figure A.13: The IsUnique assertion expressing constraints on the unique-
ness of UUIDs

112

Figure A.14: The Attribute’s NewID operation

Figure A.15: The Attribute’s New operation

113

Figure A.16: The Attribute’s Update operation

Figure A.17: The Attribute’s Delete operation

114

Figure A.18: The Attribute’s CreateIDAttribute operation

Figure A.19: The Attribute’s CreateDefaultAttribute operation

A.4 The Effects package

Effects may have several Attributes in addition to one id Attribute.
Effects evaluate conditions before executing and propagate their result by
a Mapping of their Attributes to either another Effect or to an End-

Point. The EndPointRequired invariant, a variant of the Action’s identi-

115

cally named method, enforces that an Effect propagates to either an Effect

or an EndPoint but not both. This could not be expressed by the cardinal-
ities alone. The package contains two global operations, one for creating a
default Effect and one for adding a Mapping. To create a default Effect,
the global operation calls upon the Default constructor of the Effect.

Figure A.20: The Effects’ package diagram

Figure A.21: The Effects’ structure diagram

116

Figure A.22: The Effects’ behaviour diagram

Figure A.23: The EndPointRequired assertion expressing a local invariant
on the Effect’s makeup

117

Figure A.24: The Effect’s Default operation

Figure A.25: The Effect’s CreateDefaultEffect operation

118

Figure A.26: The Effect’s AddMapping operation

A.5 The EndPoints package

EndPoints are part of the widget structure. They are containers for Zones

and WidgetComponents to enable binding and selection. The different com-
ponents are described in 5.2.2. The requirement that all Endpoints must
have at least Attribute is fulfilled by using a cardinality on a parameter
edge. As identifiers are generated by default, they have to be present unless
removed. This would ideally be covered by an invariant but unfortunately,
quantifiers which would enable the expressions of that constraint are not yet
implemented in VCL. The constraint that a Handle cannot be composed of
other Handles is checked by the handleIsRoot invariant.

Figure A.27: The EndPoints’ package diagram

119

Figure A.28: The EndPoints’ structure diagram

120

Figure A.29: The EndPoints’ behaviour diagram

Figure A.30: The HandleIsRoot assertion expressing constraints on the
composition of WidgetComponents

121

Figure A.31: The EndPoint’s Default operation

Figure A.32: The Mapping’s CreateDefaultEndPoint operation

122

Figure A.33: The Zone’s Default operation

Figure A.34: The Zone’s Delete operation

123

Figure A.35: The WidgetComponent’s Default operation

A.6 The Functions package

A Function expresses the widget’s need for a triggering Action, any number
of optional Effects and a mandatory EndPoint. In addition to specifying
the Function’s structure, several contracts are defined in the Function

package. The CreateDefaultFunction operation satisfies the requirement
that there should be possible to have a default Function. Moreover, the
package defines the concept of FunctionElement, a superset for Actions,
Effects and EndPoints. A few token operations have been modelled.

The AddAction global operation is called upon by a Widget’s identi-
cally named global operation. This is due to TWT specifying that the user
works at Widget level. AddAction uses non-determinism to execute either
AddActionToEffect or AddActionToEndPoint. These operations add all
required tuples, as well as constructing the Mapping of Attributes. Ide-
ally, additional invariants should be introduced, guaranteeing that all Ac-
tions eventually end in an EndPoint. However, with the possible looping of
Effects it is currently not possible to formulate such an invariant. An op-
erator to formulate transitive closures would be one option to realise such an
invariant. More on this matter can be read in the conclusion in Section 5.10.

124

Figure A.36: The Functions’ package diagram

Figure A.37: The Functions’ structure diagram

125

Figure A.38: The Functions’ behaviour diagram

Figure A.39: The Function’s Default operation

126

Figure A.40: The Function’s CreateDefault operation

Figure A.41: The Function’s AddActionToEffect operation

127

Figure A.42: The Function’s AddActionToEndPoint operation

Figure A.43: The Function’s AddAction operation

A.7 The Mappings package

The Mapping package defines how FunctionElements’ input and output
Attributes are laced together. The implicit constraint of only mapping

128

Attributes from and to FunctionElements having them is satisfied on the
CreateNewMapping operation . The requirement that both parametrised
Attributes must stem from different FunctionElements is modelled as
two preconditions. While this is also specified at Widget level, it is best to
express conditions on every concern they apply. Note that the specification
did not specify a separation of Attributes into input and output which
would have given room to a more correct model.

Figure A.44: The Mappings’ package diagram

Figure A.45: The Mappings’ structure diagram

129

Figure A.46: The Mappings’ behaviour diagram

Figure A.47: The Mapping’s CreateDefaultEffect operation

130

Figure A.48: The Mapping’s CreateNewMapping operation

Figure A.49: The Mapping’s New operation

131

A.8 The Layers package

The Layers package defines two Layers, the TangibleLayer holding all
Widgets and the ApplicationLayer exposing all Zones defined by the ap-
plication. The behaviour is implicitly read from the specification. As the
goal of TWT is to create tangible widgets, there must be a way to add Wid-

gets. Furthermore, for them to interact with an application, there must be
a way for it to add Zones. The consequences of a Widget’s removal from
the TangibleLayer depend on the sensor capabilities of the physical table
and the behaviour remains, therefore, unspecified at a metamodel level. The
specification document states that the lifecycle of a Zone ends when it is re-
moved from the ApplicationLayer. This is enforced by the RemoveZone

operation which will ensure the deletion of the Zone.

Figure A.50: The Layers’ package diagram

Figure A.51: The Layers’ structure diagram

132

Figure A.52: The Layers’ behaviour diagram

Figure A.53: The Layers’ AddZone operation

Figure A.54: The Layers’ RemoveZone operation

133

Figure A.55: The Layers’ AddWidget operation

A.9 The Widgets package

The Widgets package contains all principles specified by Bicheler; a Wid-

get has some Attributes and one identifier expressed through the has and
id parameter edges respectively. Furthermore, it states that a Widget’s

Identity is given by the referenced Functions. Lastly, the SD shows that
a Widget is composed of at least one WidgetComponent imported from the
EndPoints package.

The requirement to offer a default Widget with a default Function,
allowing for some default behaviour is enforced by the respective default
operations. The Widget package also offers the global AddAction operation.
This operation is part of the behaviour specification to create Functions

and Mappings. As mentioned previously, the behaviour is only partially
implemented to show the feasibility and not get caught up with repetitive
and time intensive modelling tasks.

134

Figure A.56: The Widgets’ package diagram

Figure A.57: The Widgets’ structure diagram

135

Figure A.58: The Widgets’ behaviour diagram

Figure A.59: The Widget’s Default operation

136

Figure A.60: The Identity’s Default operation

Figure A.61: The Widget’s AddAction operation

137

A.10 The TUI package

The TUI package merges all previously defined concepts together. The pack-
age consists only of a PD A.62, exposing an ensemble package for the TUI
that creates a global state space for all TUI concepts.

Figure A.62: The TUI’s package diagram

138

Appendix B

BPMN2 metamodel VCL
packages

The following sections present all Visual Contract Language (VCL) pack-
ages needed to build the Business Processes Model and Notation, version
2 (BPMN2) metamodel as given by its specification document [23]. The
packages will detail all diagrams. Each section will provide an overview of
the package and complement the general description given in Section 5.5.

For an introduction on VCL, please consider reading Section 4. In
this appendix, the following notation is used; Structural Diagrams (SD),
Behavioural Diagrams (BD), Package Diagrams (PD), Assertion Diagrams
(AD), Contract Diagrams (CD). Table B.1 lists all VCL packages and the
corresponding figures for each VCL package.

Table B.1: BPMN2 metamodel VCL packages and figures

Package name Figures

Pimitives B.1
PD B.1
SD B.2

Extensibilities B.2

PD B.3
SD B.4
BD B.5
Extension Default CD B.6

BaseElements B.3

PD B.7
SD B.8
BD B.9
Documentation Default CD B.10

Foundation B.4 PD B.11

Continued on next page

139

Table B.1 – Continued from previous page

Package name Figures

Infrastructures B.5

PD B.12
SD B.13
BD B.14
Definitions Default CD B.15

ItemDefinitions B.6

PD B.16
SD B.17
BD B.18
ItemDefinition Default CD B.19

Messages B.7
PD B.20
SD B.21

Artifacts B.8

PD B.22
SD B.23
BD B.24
Association Default CD B.25
TextAnnotation Default CD B.26

Resources B.9
PD B.27
SD B.28

ResourceAssignments B.10
PD B.29
SD B.30
ResourceRole BindingOnReference AD B.31

Expressions B.11
PD B.32
SD B.33

Errors B.12
PD B.34
SD B.35

Collaborations B.13

PD B.36
SD B.37
BD B.38
GetCollaborationGivenParticipant AD B.41
MessageFlowSourceConstraints AD B.39
MessageFlowTargetConstraints AD B.40

GlobalTasks B.14
PD B.42
SD B.43

Services B.15
PD B.44
SD B.45

ItemAwareElements B.16
PD B.46
SD B.47

IOSpecifications B.17

PD B.48
SD B.49
InputSetReferenceIntegrity AD B.52
OutputSetReferenceIntegrity AD B.53

Continued on next page

140

Table B.1 – Continued from previous page

Package name Figures

DataInput Default CD B.50
DataOutput Default CD B.51

DataAssociations B.18

PD B.54
SD B.55
SingleSource AD B.56
AssignmentNotNull AD B.57
DefinitionsMatch AD B.58
ReferenceIntegrity AD B.59

Data B.19
PD B.60
SD B.61
InputCollectionTypeMatches AD B.62

Processes B.20

PD B.63
SD B.64
BD B.65
Process Default CD B.66

Lanes B.21
PD B.67
SD B.68

Escalations B.22
PD B.69
SD B.70

EventDefinitions B.23

PD B.71
SD B.72
BD B.73
GetValidSubProcessStarts AD B.74

Events B.24

PD B.75
SD B.76
ConsistencyRequirement AD B.78
InterruptingBehaviour AD B.77

FlowElements B.25

PD B.79
SD B.80
BD B.81
SourceBoundaryEventConstraints AD B.83
SourceIntermediateEventConstraints AD B.84
SourceStartEndEventConstraints AD B.82
TargetBoundaryEventConstraints AD B.86
TargetIntermediateEventConstraints AD B.87
TargetStartEndEventConstraints AD B.85
EventSubProcessUnconnected AD B.88
GetCollaborationGivenFlowNode AD B.89
MessageFlowsSpanPools AD B.90
SequenceFlowAttributeConstraints AD B.93
SequenceFlowSourceConstraints AD B.91

Continued on next page

141

Table B.1 – Continued from previous page

Package name Figures

SequenceFlowTargetConstraints AD B.92

FlowElementContainers B.26

PD B.94
SD B.95
BD B.96
ExecutedImmediately AD B.97
GetProcessGivenFlowElement AD B.98

CallableElements B.27
PD B.99
SD B.100

Common B.28 PD B.101

LoopCharacteristics B.29
PD B.102
SD B.103
MILCharacteristics Instantiation AD B.104

SubProcesses B.30

PD B.105
SD B.106
OneStartEvent AD B.107
AdHocSubProcessRestrictions AD B.109
Transaction SpecificMethods AD B.108

Activities B.31

PD B.110
SD B.111
BD B.112
Activity FrameConditions AD B.113
IOConstraints AD B.114
Activity Default CD B.115

Gateways B.32

PD B.116
SD B.117
BD B.118
ConvergingGatewaysBundle AD B.120
DivergingGatewaysDiffuse AD B.121
EventBasedGatewayConstraints AD B.119
MixedGatewayConstraints AD B.122
EventBasedGateway Default CD B.123

Tasks B.33

PD B.124
SD B.125
BD B.126
ServiceTaskMessageConstraint AD B.127
BusinessRuleTask Default CD B.128
ReceiveTask Default CD B.131
SendTask Default CD B.130
ServiceTask Default CD B.129
UserTask Default CD B.132

Continued on next page

142

Table B.1 – Continued from previous page

Package name Figures

Participants B.34

PD B.133
SD B.134
BD B.135
GetParticipantGivenProcess AD B.136

Core B.35 PD B.137

B.1 The Primitives package

The Primitives package includes primitives from MOF not defined as prim-
itives in VCL such as String or Bool, and explicitly defines sets that are
implicit in the PBMN2 specification such as ItemKind or GatewayDirec-

tion. Element is the topmost enclosing set. It is no definition set and as
such is not restricted to include only the modelled enclosed sets. This design
choice has been made in order to use Element as an analogy to the MOFEle-

ment that is sometimes used by the BPMN2 specification to not restrict the
specification to much and allow for future extensions.

Due to VCL requiring set names to be unique, some concepts had to be
renamed and therefore do not figure as such in the specification. An exam-
ple is GatewayDirection and AssociationDirection which only appear as
Direction in the BPMN2 document. The package also contains concepts
that are not included as such in BPMN2, for example, UID. While the spec-
ification mentions and requires the uniqueness of identifiers at some points,
it does not mention how it is enforced. As VCL lacks universal quantifiers,
a design decision was taken to simply include UID as a primitive.

Figure B.1: Primitives’ package diagram

143

Figure B.2: Primitives’ structural diagram

B.2 The Extensibilities package

The package defines Extension, an ExtensionDefinition and its attributes
by giving their ExtensionAttributeDefinition and ExtensionAttribute-

Value. The Extension’s Default constructor satisfies the requirement for
default values.

144

Figure B.3: The Extensibilities’ package diagram

Figure B.4: The Extensibilities’ structure diagram

Figure B.5: The Extensibilities’ behaviour diagram

145

Figure B.6: The Extension’s Default operation, setting default values

B.3 The BaseElements package

The BaseElements package contains BaseElements, the topmost abstract
class in BPMN2 for most model elements. In VCL, this is expressed by
BaseElement encompassing all elements and marking it with a © symbol
next to its name, meaning that BaseElement is defined through its compo-
nents, not ever existing outside of a scope also defined by one of its subsets.
While this does not convey the same semantics as the UML2’s abstract class,
it is as close as modelling in VCL can get.

The specification also introduces the concept of Documentation and
some ambiguity. On figure 8.5 on page 55 in the specification document,
the end point cardinality for the composition relation between BaseEle-

ments and Documentation is set to *. The textual description on page 56
on the Document class however mentions,

“All BPMN elements that inherit from the BaseElements will
have the capability, through the Documentation element, to
have one (1) or more text descriptions of that element.”

This contradicts the class diagram. While it is always a good practice to
have a documentation, forcing all elements to have an accompanying descrip-
tion is cumbersome and might not be in the best interest of the language
regarding ease of use. Therefore, the cardinality has been maintained at
*. Furthermore, the specification document shows BaseElement aggregate
Documentation, one of its child elements. This violates the paradigm of

146

separation of concerns. Therefore, another superposing element, BaseEle-
mentContainer was introduced in the VCL diagram. It includes Documen-

tation as well as BaseElement.

Relationship is intended to allow BPMN2 Elements, or MOFElements

to be more specific, to relate to non-BPMN2 elements. RootElement is
a concept that allows BPMN2 elements that are defined in the scope of
Definitions to persist beyond the life-cycle of their parent elements. In
addition to defining all those concepts, the BaseElements VCL package also
defines a local Default operation for Documentation, setting the default
value as required by the specification.

Figure B.7: The BaseElements’ package diagram

147

Figure B.8: The BaseElements’ structure diagram

Figure B.9: The BaseElements’ behaviour diagram

148

Figure B.10: The Documentation’s Default operation, setting default val-
ues

B.4 The Foundation package

The Foundation VCL ensemble package groups all concerns from the BaseEle-
ments and Extensibilities VCL packages.

Figure B.11: The Foundation’s package diagram

149

B.5 The Infrastructures package

The Infrastructures package contains two elements, Definitions and
Import. Other than defining the namespace, Definitions also sets the ex-
pressions and type language for contained elements. In order to assure an
independent life-cycle, Definitions hold a list to all rooted RootElements.
On the VCL SD for Definition, rather than referencing RootElement, and
Relationship for that matter, the SD refers to the concepts directly. This
is due to the high coupling of concepts in BPMN2 and VCL not accept-
ing circular imports. Therefore, the concepts are merged in the Core VCL
package.

Moreover, Definitions holds a reference to the Import making exter-
nal elements available and a reference, by name only, to the exporter, and
exporter version, which is exporting the BPMN2 file. The implementation
deviates slightly from the specification as that it does not mention the BPM-
NDI which has been omitted to simplify the modelling. The package also
defines a Default operation local to Definition setting default values as
required by the specification.

Figure B.12: Infrastructures’ package diagram

150

Figure B.13: Infrastructures’ structural diagram

Figure B.14: Infrastructures’ behaviour diagram

Figure B.15: The Definitions’ Default operation, setting default values

151

B.6 The ItemDefinitions package

The concept of ItemDefinitions is used to separate the structural defini-
tions from model elements that are exchanged during a Process, thereby
decoupling definition from use. The structural definition may be imported
in which case an Import is held in reference. By the ItemKind, items are
separated into either Physical or Information items. The actual structure,
which might also represent a collection, is given by a referenced structure
Element. The specification mentions default values which are set by the
IdemDefinition’s Default operation.

Figure B.16: The ItemDefinitions’ package diagram

Figure B.17: The ItemDefinitions’ structural diagram

152

Figure B.18: The ItemDefinitions’ behaviour diagram

Figure B.19: The ItemDefinition’s Default operation

B.7 The Messages package

The Messages VCL package implements the concept of information ex-
change between Participants. While constraints apply to the sending and
receiving of Messages all those constraints are expressed on the correspond-
ing FlowElements. A Messages references an ItemDefinitions, defining
its payload and a textual description to make it easily identifiable.

Figure B.20: The Messages’ package diagram

153

Figure B.21: The Messages’ structural diagram

B.8 The Artifacts package

Subsetting in VCL is expressed through insideness, hence TextAnnotation,
Association, and Group are contained within the Artifact blob. All Ar-
tifact subsets must satisfy the constraints on sequence flow connections
as defined by the specification document. These constraints are detailed by
assertions and invariants in the SequenceFlow VCL package.

An Association has two uses. It either binds an Artifact to a Flow-

Elements or it marks Activities used for compensation. An Association

has a direction as defined by the Primitives’ AssociationDirection ac-
cessed by a reference, requiring the import of said package. Furthermore,
with the Association being a link, it evidently needs to reference a source
and a target. This is done by the appropriately named relational edges
which end in a referenced BaseElements. To satisfy the call for default val-
ues, Association features a Default operation.

Group offers a visual way of representing Categories. They visually
enclose FlowNodes and thereby group them. Groups do not interfere in the
flow of the model. Groups are tied to a CategoryValue which, by its value,
identifies the Group. A user defined named Category can have multiple Cat-
egoryValues associated to it, aggregating different Groups into once larger
concept.

154

TextAnnotation implements the concept of textual user annotation. It
does not influence the flow of the Process. The TextAnnotation can be
connected by an Association to any BaseElements. The body of the Tex-

tAnnotation, its text is specified to be a String. The requirement for the
text to be MIMECompliant is satisfied by typing. The TextAnnotation’s

Default operation, satisfies the need for default values.

Figure B.22: The Artifact’s package diagram

Figure B.23: The Artifact’s structural diagram

155

Figure B.24: The Artifact’s behaviour diagram

Figure B.25: The Association’s Default operation

Figure B.26: The TextAnnotation’ Default operation

156

B.9 The Resources package

The Resources package implements the concept of resources as commonly
used in business contexts. A named Resources is defined by the optional Re-
sourcesParameters it may have. The parameters are typed by and named
by ItemDefinitions.

Figure B.27: The Resources’ package diagram

Figure B.28: The Resources’ structural diagram

157

B.10 The ResourceAssignments package

A ResourceRole includes recursive subsets which refine the concept by,
in the order of insideness, Performer, HumanPerformer and lastly Poten-

tialOwner. These roles are used for Resources assigned to Activities.
ResourceRole either references a Resource directly or uses a Resource-

AssignmentExpression to be address a Resource. This expression should
return elements of type Resource only. However, the necessary facility
to express the return type is only given for FormalExpression. It is un-
known if the intention of the specification was to imply the use of a For-

malExpression or if the reference to the underspecified Expression was
an oversight. Hence, the requirement has not been modelled. ResourcePa-
rameterBindings are used to bind Resources referenced by the Resource-

Role’s resourceRef property to an actual ResourceParameter, a subset
of all parameters as defined by the Resource that are used in the scope of
its assignment.

Figure B.29: The ResourceAssignments’ package diagram

158

Figure B.30: The ResourceAssignments’ structural diagram

Figure B.31: The BindingOnReference assertion expressing constraints on
the ResourceRole

159

B.11 The Expressions package

Expressions are used to specify natural language constructs. The Formal-

Expressions concept is a subset of Expressions, catering only to formal
language constructs. The FormalExpressions references an ItemDefini-

tions, defining the return type. The langauge property overrides the Def-

inition’s expressionLanguage property allowing for a local specification
and alternation of the language in use. The requirement for the language
property to be given as a URI is fulfilled by typing. The body property spec-
ifies the contents of the FormalExpressions by referencing an Element,
enabling the expression of mixed language constructs. The statement by
the specification that this property is not relevant when a XML Schema is
used for interchange is not modelled as it is deemed to be a choice external
to the model.

Figure B.32: The Expressions’ package diagram

Figure B.33: The Expressions’ structural diagram

160

B.12 The Errors package

The Error’s structure is specified by an ItemDefinition and has a name

as well as an errorCode. The specification mentions constraints on the
errorCode, stating that for certain Event subsets, an errorCode must or
may be specified. However, the class diagram of the specification document
on page 81, does shows that the Error has the non-optional errorCode

property. This is expressed in VCL as well and therefore, an errorCode

must be supplied for all Errors. This satisfies the requirement but may,
due to the ambiguity of the specification document, not model the intent
correctly.

Figure B.34: The Errors’ package diagram

Figure B.35: The Errors’ structural diagram

161

B.13 The Collaborations package

The Collaborations VCL package groups all concepts surrounding Col-

laborations. Other than a name, a Collaborations includes;

• an artifact reference listing all Artifacts contained within the Col-
laborations,

• a participants reference listing all contained Participants,

• a list of all Participants contained in another Collaborations trough
the use of a ParticipantAssociation,

• a messageFlows reference listing all contained MessageFlows,

• a boolean property isClosed specifying that, unless false, only Mes-

sageFlows can carry Messages between Participants.

Figure B.36: The Collaborations’ package diagram

This package also introduces the concept of InteractionNode which is
defined as a general concept for Participants, Events and Tasks, provid-
ing a single element to serve as source and target of MessageFlows. In the
VCL SD this is expressed through insideness and InteractionNode being
marked as definition of its subsets. ParticipantsAssociation is a concept
is mainly used for scenarios not covered in the scope of this document. Its
sole use is therefore to specify a mapping between two Participants con-
tained in different BPMN2 diagrams.

MessageFlows are used to symbolise the flow of Messages between In-

teractionNodes. MessageFlows are given a name and, optionally, refer to
the exchanged Message. The invariant on MessageFlows, MessageFlowsS-
panPools is expressed in the FlowElements package in Section B.25.

162

The specification document imposes certain requirements regarding Mes-

sageFlows and the InteractionNodes that may be their source, respec-
tively target. The MessageFlowSourceConstraints and MessageFlowTar-

getConstraints invariants satisfy these requirements by stating that, En-
dEvents and IntermediateThrowEvents throwing a Message cannot be
the target of Messages themselves. In an inverse argument, StartEvents
and IntermediateCatchEvents catching a Message cannot be the source
of Messages.

Figure B.37: The Collaborations’ structural diagram

Figure B.38: The Collaborations’ behaviour diagram

163

Figure B.39: The MessageFlowSourceConstraints assertion expressing
constraints on the MessageFlow

Figure B.40: The MessageFlowTargetConstraints assertion expressing
constraints on the MessageFlow

164

Figure B.41: The Collaborations’ GetCollaborationGivenParticipant

operation

B.14 The GlobalTasks package

The BPMN2 specification mentions that GlobalTask types are only a subset
of the Task’s types. This is expressed through insideness in VCL. There-
fore, GlobalUserTask, GlobalBusinessRuleTask, GlobalManualTask and
GlobalScriptTask are defined. The resources property provides a link to
all Resources the GlobalTask is linked to. The idea behind GlobalTask

is to provide a Task that is accessible and reusable across Collaborations

and that symbolises a synchronised execution of a given GlobalTask.

Figure B.42: The GlobalTasks’ package diagram

165

Figure B.43: The GlobalTasks’ structural diagram

B.15 The Services package

Operations are distinguished by their name. The implementationRef prop-
erty refers to a concrete implementation technology used to express the In-

terface. Most of the specification of Services is outside of the scope of
the specification document and, hence, the scope of this document as well.
Service’s EndPoints specify the address at which a Service can be ac-
cessed. Operations specify, likeInterfaces, an implementationRef and a
name. Moreover, they specify what Messages can be received and produced
by a Service as well as detailing any Errors may be returned.

166

Figure B.44: The Services’ package diagram

Figure B.45: The Services’ structural diagram

167

B.16 The ItemAwareElements package

The itemSubjectRef property provides a reference to the variable’s struc-
ture. Every variable has a state modelled by the DataState. There are
seven subsets which define ItemAwareElement. This is shown by insideness
in VCL. DataObjects represent data that is contained within a Process’ or
SubProcess’ flow. To reuse DataObjects, DataObjectReferences can be
used. To model non-volatile data, DataStores are used. They allow data
to be retrieved and stored beyond the scope of the Process or SubPro-

cess. They can be referenced using DataStoreReferences. Properties

enrich Processes, Activities, or Events by providing a mean to attribute
additional, visualised data to those BPMN2 FlowElements. Data that is
produced and communicated during an Activity or Process execution is
modelled by DataInput and DataOutput respectively.

Figure B.46: The ItemAwareElements’ package diagram

B.17 The IOSpecifications package

The invariants InputSetReferenceIntegrity and OutputSetReferenceIn-

tegrity satisfy the constraints that, during execution, an Activity cannot
refer to input, respectively output, that has not previously been included in
the dataInputRefs and dataOutputRefs respectively. For simplicity rea-
sons, only one of the symmetric requirements on input and output will be
detailed. In VCL, this can be expressed using subsetting as both relations,
dataInputRefs and whileExecutingInputRefs, form tuples of InputSet

and DataInput elements. The same applies to restrictions on the definition
of optional DataInputs.

168

Figure B.47: The ItemAwareElements’ structural diagram

Figure B.48: The IOSpecifications’ package diagram

169

Figure B.49: The IOSpecifications’ structural diagram

Figure B.50: The Datainput’s Default operation

170

Figure B.51: The DataOutput’s Default operation

Figure B.52: The InputSetReferenceIntegrity assertion expressing con-
straints on the DataInput

Figure B.53: The OutputSetReferenceIntegrity assertion expressing con-
straints on the DataOutput

171

B.18 The DataAssociations package

DataInputAssociations and DataOutputAssociations, respectively their
union, being proper subsets of DataAssociations is expressed in VCL
through insideness and the parent set being marked as defined through its
subsets. A transformation may be specified which uses a FormalExpres-

sion to transform the data types. The specification puts constraints on the
data types. The ReferenceIntegrity invariant addresses all these require-
ments by requiring that three nested invariants be satisfied. The Single-

Source invariant expresses that, should there be no transformation defined
for a DataAssociation, then it cannot have more than one source reference.

Furthermore, to assure the integrity of the data being referenced, ei-
ther DefinitionsMatch or AssignmentNotNull must be satisfied. The
first invariant expresses that definitions of the referenced source and target
ItemAwareElements match. This is unfortunately not possible to express as
VCL offers no quantifiers. Should types not match than it is required that,
through the AssignmentNotNull invariant, the assignment not be null. An
Assignment is a concept that uses an Expression to map data from one
type to another. The specification does by no means specify that the Ex-

pression must actually perform an Assignment that would translate the
data into an acceptable type. It is deemed the responsibility of the model
defining the actual types and expressions to satisfy that constraint.

Figure B.54: The DataAssociations’ package diagram

172

Figure B.55: The DataAssociations’ structural diagram

Figure B.56: The SingleSource assertion expressing a constraint on data
sources

173

Figure B.57: The AssignmentNotBull assertion expressing that there must
be an Assignment

Figure B.58: The DefinitionsMatch assertion on matching ItemDefini-

tions

174

Figure B.59: The ReferenceIntegrity assertion expressing a constraint on
data source and targets

B.19 The Data package

The Data VCL package groups all concerns from the ItemAwareElements ,
IOSpecifications and DataAssociations VCL packages. There is no
corresponding BPMN2 package although a Data is hinted at on multiple
occasions, especially in the chapter on items and data. The Data package
expresses an invariant on the matching of the isCollection property of a
DataInput and its referenced ItemDefinition’s isCollection property.

Figure B.60: The Data’s package diagram

175

Figure B.61: The Data’s structure diagram

Figure B.62: The Data’s assertion expressing constraints on the DataInput

B.20 The Processes package

Single Processes can be defined for a shepherding Collaboration when
their flow is contained within a pool or Lane. The Process’ visibility is
given by its ProcessType. It may not be specified, Public, in which case it
can be used within a Collaboration, exposing internal elements, or Pri-

vate in which case it can only be used within an organisation’s pool, not
exposing any internals to the public.

Processes can be closed, not allowing any Messages to be received or
send beyond the scope of the Process. This package also defines Mon-

itoring and Auditing facilities which can be referenced by Processes.
A Process may define any number of Artifacts that it contains and be
bound to a ResourceRole, responsible for the Process. It can also define
any number of Properties. The execution semantics for a Process are
beyond the scope of this model. However, a constraint guaranteeing that, if
a Process is executable, all SequenceFlows are executed atomically. This
constraint is modelled by the ExecutedImmediately invariant expressed in
the FlowElementContainers package in Section B.26.

176

Figure B.63: The Processes’ package diagram

Figure B.64: The Processes’ structure diagram

177

Figure B.65: The Processes’ behaviour diagram

Figure B.66: The Process’ Default operation

B.21 The Lanes package

LaneSets partition Processes to show roles. They can contain individual
Lanes. Lanes in turn contain FlowElements and a reference to all Lane-
Sets they contain. The partitionElement property and the corresponding
reference property model a restriction mentioned by the specification. If
added, Lanes can only contain FlowElements of the type of the BaseEle-

ment given as partitionElement. As this requirement would be modelled
as an invariant in VCL and be in need for universal quantification, it has
not been modelled.

178

Figure B.67: The Lanes’ package diagram

Figure B.68: The Lanes’ structural diagram

B.22 The Escalations package

The Escalations VCL package is part of the Event VCL package as by
the specification document and thereby is also a part of the Common VCL

179

package. Much like Error, Escalation packs an ItemDefinitions, a name

and escalationCode. The constraints regarding the code as given by the
specification document are expressed on three target Events. The specifica-
tion mentions the result of the Events being a determining factor. Yet there
is no concept modelling the result of an Event. This requirement will have
to be modelled at a lower level unless the assumption is made that it should
be modelled independent from the result which would be correct. However,
it would impose a requirement that is not given by the specification.

Figure B.69: The Escalations’ package diagram

Figure B.70: The Escalations’ structural diagram

180

B.23 The EventDefinitions package

The union of all subsets of EventDefinitions forms a proper subset, ex-
pressed through the© symbol on the EventDefinitions blob. ErrorEvent-
Definition, EscalationEventDefinition, MessageEventDefinition and
SignalEventDefinition each pack a reference to the object they are carry-
ing. A CompensateEventDefinition designates an Activity that is used
to cancel respectively undo changes induced by the throwing Process or
SubProcess. ConditionalEventDefinitions specify an Expression that
must evaluate to True in order for the Event to take place. Cancella-

tionEventDefinitions are used on Transaction SubProcesses usually
in conjunction with a CompensationEventDefinition to stop its execution
and handle the cancellation.

Figure B.71: The EventDefinitions’ package diagram

LinkEventDefinitions are always used in pairs and are used to visu-
ally simplify the model by logically linking, using a name, two Events on
the same Process level. They effectively function as ”Go To Events. Sig-
nalEventDefinitions reference a Signal, also defined in this package. The
Signal carries a payload as defined by an ItemDefinition. A TimerEvent-

Definition specifies, through multiple Expressions, a date, duration and
cycle, allowing for timed Events to be handled. As the specification lacks
detail, TerminateEventDefinition has not been modelled. Moreover, due
to the lack of quantifiers and related problems realising constraints, instead
of implementing the requirements only partially, no invariants were mod-
elled for this package. The specification defines two special types of Events
that have either no EventDefinition or multiple ones. While these are con-

181

cepts that have a visual representation, they are implicit by the reference of
EventDefinitions to the Event. As such, they are not modelled as they
only have a semantic meaning.

The BD exposes one global operation which is used be the SubPro-

cess’ OneStartEvent invariant to retrieve the subset of all EventDefini-
tions that are allowed to figure on its StartEvent. The GetValidSubPro-

cessStarts operation expressed the union of all allowed EventDefinitions

and returns them as the ValidStarts set.

Figure B.72: The EventDefinitions’ structural diagram

Figure B.73: The EventDefinitions’ behavioural diagram

182

Figure B.74: The GetValidSubProcessStarts assertion

B.24 The Events package

ThrowEvents and CatchEvents are subsets of Event as expressed by the
insideness on the VCL structure diagram. Each Event can have several
Properties. Every Event defines a reference to an EventDefinition. This
is what defines the kind of activity the Eventwill produce or react to. While
the reference holds the top level EventDefinition, the Event also holds a
reference to the particular EventDefinition that will trigger it. By this
scheme, triggering or halting events can be exchanged for other, identically
typed, events without too much of a hassle. Each Event is also tied to ei-
ther a DataInputAssociation respectively a DataOutputAssociation and
either DataInput or DataOutput depending on the concrete Event subset.
The data associations are used to assign Data from the Event to a Data

element and vice versa. Moreover, the Event also hold references to the
actual sets of data objects.

The StartEvent is the entry point of a Process and is a specialised
CatchEvent. While the specification is much more extensive on explaining
the different Events as well as introducing some additional semantic ele-
ments such as tokens, this document will not consider those concepts as
they are semantic constructs and not modelled and considered beyond the
scope of this document. The Boolean property of the StartEvent is used
in some types of SubProcesseses to restart the SubProcess every time its
StartEvent is triggered or allow for multiple, parallel instances to run. The
EndEvent serves as an end point to Processes, halting all SequenceFlows.
StartEvents have a trigger and EndEvents a result as given by the refer-
enced EventDefinition.

IntermediateCatchEvents and IntermediateThrowEvents can, as their
name suggests, happen as the Process flow is executed. IntermediateThrow-
Events serves to produce Events and resume normal process flow. The type
of Event that is produced depends on the referenced EventDefinition.
IntermediateCatchEvents halt the process flow and wait for the trigger,

183

as given by the referenced EventDefinition to be caught before allowing
the process flow to resume. ImplicitThrowEvent are a specialised form of
ThrowEvents in that they have no visual representation. They are mainly
used on multi-instance Activities to not introduce additional graphical
overhead.

BoundaryEvents have a boolean property cancelActivity which indi-
cates whether the BoundaryEvent will cause the Activity to halt when
it is triggered. This property is subject to an invariant, Interrupting-

Behaviour, specifying that all BoundaryEvenets that cancel the Activity

they are attached to must reference an ErrorEventDefinition. Another
global invariant, ConsistencyRequirement, states that Processes without
a StartEvent cannot have an EndEvent. The requirements on Data transfer
and behaviour during Events have not been implemented.

Figure B.75: The Events’ package diagram

184

Figure B.76: The Events’ structural diagram

Figure B.77: The InterruptingBahaviour assertion expressing constraints
on BoundaryEvents

185

Figure B.78: The ConsistencyRequirement assertion

B.25 The FlowElements package

The FlowElements VCL package groups all concepts from business process
flows. All of these concepts can appear in Process flows. FlowElements

is the overarching concept, encompassing more concrete concepts such as
FlowNodes, SequenceFlows, DataObjects and DataStoreReferences. The
specification document is ambiguous when it comes to DataStoreRefer-

ence being a FlowElement. While it is displayed on the FlowElement’s

class diagram on page 87, the introduction to the section mentions DataAs-
sociations, not DataStoreReference. It was chosen to model the latter.
All FlowElements have a name, a reference to the CategoryValue that the
FlowElements has been assigned as well as references to Auditing and Mon-

itoring defined by the containing Processes.

SequenceFlows are used to instil an order in the arrangement of other
FlowElements. They map a source FlowNode to a target FlowNode. A Se-

quenceFlow may specify a conditional Expressions who has to evaluate to
True in order for the SequenceFlow to be a valid path. They are common
on SequenceFlows hailing from Gateways to represent branching business
decisions. The isImmediate property indicates whether the SequenceFlow

is atomic, that is, if any Activities are allowed to occur between its source
and its target. Through insideness, Activities, Gateways and Events are
FlowNodes. The relations incoming and outgoing represent the inverse re-
lations to incoming and outgoing.

186

The FlowElement package contains several invariants as well as a query
operation. The GetCollaborationGivenFlowNode is used for what its name
suggests. It is needed in the MessageFlowsSpanPools invariant. The EventSub-
ProcessUnconnected invariant satisfies the requirement that SubProcesses
triggered by Events cannot be the target or source of SequenceFlows. The
SeuqenceFlowAttributeConstraints invariant satisfies the constraint that
a StartEvent cannot have an outgoing SequenceFlow that is laden with a
conditional Expression.

The SequenceFlowSourceConstraints and SequenceFlowTargetCon-

straints invariants each have three nested invariants, modelling the re-
quirements on source and target Events for SequenceFlows. Due to the
redundancy of many requirements on IntermediateEvents, their respec-
tive invariants have only partially be modelled. The invariants satisfy the
requirement that no StartEvent may be the target of a SequenceFlow and
that no EndEvent can be the source of a SequenceFlow. Furthermore, no
BoundaryEvent can be the target of a SequenceFlow. The invariants also
satisfy that a BoundaryEvent being used as compensation must have an out-
going SequenceFlow. And lastly, the invariants satisfy the requirement for
IntermediateThrowEvents and IntermediateCatchEvents not to be the
end or start of a flow, in other words, to have both, incoming and outgoing
SequenceFlows. As there are many intermediate events, not all constraints
have been implemented. Those modelled serve as a proof of concept and
the remaining constraints have been omitted due to the redundancy of the
modelling task and in the interest of conserving space and time.

The MessageFlowsSpanPools invariant unfortunately fails to satisfy the
requirement that MessageFlows must connect two separate pools respec-
tively InteractionNodes contained therein. This is due to the lack of
quantifiers in VCL. In the absence of quantifiers, MessageFlowsSpanPools
specifies a pair of different FlowNodes and Participants as input as well as
a single MessageFlow object. For the invariant to work, these would need to
be specified using existential quantifiers. The assertion has been modelled
in order to be able to better understand and judge the shortcoming of VCL.
These input objects are used in a chain of assertions to retrieve the Collab-

orations they would be contained in. The predicate compartment of the
invariant then states that should those input FlowNodes and Participants
be referred in an exchanged of Messages, that they need to be contained in
different Collaborations which model the concept of pools, satisfying the
requirement.

187

Figure B.79: The FlowElements’ package diagram

188

Figure B.80: The FlowElements’ structural diagram

189

Figure B.81: The FlowElements’ behaviour diagram

Figure B.82: The SourceStartEndEventConstraints assertion expressing
constraints on sequence flow sources

190

Figure B.83: The SourceBoundaryEventConstraints assertion expressing
constraints on sequence flow sources

Figure B.84: The SourceIntermediateEventConstraints assertion ex-
pressing constraints on sequence flow sources

191

Figure B.85: The TargetStartEndEventConstraints assertion expressing
constraints on sequence flow targets

192

Figure B.86: The TargetBoundaryEventConstraints assertion expressing
constraints on sequence flow targets

Figure B.87: The TargetIntermediateEventConstraints assertion ex-
pressing constraints on sequence flow targets

193

Figure B.88: The EventSubProcessUnconnected assertion expressing con-
straints on SubProcess connectivity

194

Figure B.89: The FlowElements’ GetCollaborationGivenFlowNode oper-
ation

195

Figure B.90: The MessageFlowsSpanPools assertion expressing constraints
on the MessageFlow

196

Figure B.91: The SequenceFlowSourceConstraints assertion expressing
constraints on sequence flow sources

Figure B.92: The SequenceFlowTargetConstaints assertion expressing
constraints on sequence flow targets

197

Figure B.93: The SequenceFlowAttributeConstraints assertion express-
ing constraints on sequence flow attributes

B.26 The FlowElementContainers package

The FlowElementContainers VCL package introduces a superset of con-
tainer elements on BPMN2 diagrams. FlowElementsContainer is defined
though two subsets, Process and SubProcess. These elements, by the
flowElements relational edge, contain FlowElements. Moreover, Lanes
can also be contained in FlowElementsContainers. A constraint is mod-
elled by the ExecutedImmediately invariant expresses that if a Process is
executable, all SequenceFlows are executed atomically. The global Get-
ProcessGivenFlowElement operation returns the Process given an input
FlowElement.

198

Figure B.94: The FlowElementContainers’ package diagram

Figure B.95: The FlowElementContainers’ structural diagram

Figure B.96: The FlowElementContainers’ behavioural diagram

199

Figure B.97: The ExecutedImmediately invariant expressing constraints on
Processes execution

Figure B.98: The Process’ GetProcessGivenFlowElement operation

200

B.27 The CallableElements package

CallableElement is defined through its two subsets, Process and Glob-

alTask. Referenced Interfaces can define the Operations defined by the
named CallableElement. Binding of input respectively output is defined
through an InputOutputSpecification. An InputOutputBinding binds
inputs and outputs for use in Operations.

Figure B.99: The CallableElements’’ package diagram

Figure B.100: The CallableElements’’ structural diagram

201

B.28 The Common package

The Common VCL ensemble package logically group other packages. Common
includes all packages that specify concepts used across any diagram types
in BPMN2. It groups all foreign packages contained in its package.

Figure B.101: The Common’s package diagram

202

B.29 The LoopCharacteristics package

LoopCharacteristics are defined by two concrete subsets, StandardLoopChar-
acteristic and MILCharacteristic. The first introduces the standard
loop concept, looping on a boolean condition, usually a counter. The meta-
model does not contain runtime attributes as mentioned by the specifica-
tion. The MILCharacteristic models complexer looping behaviour. “MIL”
is short for “multi-instance loop”. Activities defining a MILCharacter-

istic can run in parallel, not requiring a sequential execution of loops.
The loops are engaged either by an Expression or by a provided ItemAwa-

reElement. Referenced DataInputs and DataOutputs are used to provide
individual hooks for each instance to receive and produce Data.

Events occurring or received during an Activity currently executing in
a multi-instance loop display complex behaviour. This is handled by the
MultiInstanceBehaviour property which specify that None, One, All, or
any number of Events are handled during the loop. The latter requires the
consultation of a ComplexBehaviourDefinition.

The MILCharacteristic’s Instantiation invariant satisfies the con-
straint that if a MILCharacteristic specifies a loopCardinality, then it
must not specify an ItemAwareElement that is to regulate the number of
loops and vice versa. The constraint is loosely interpreted as the specifica-
tion mentions that “either-or” which has been modelled as a local invariant,
Instantiation, stating that either the loopCardinality refers to an empty
set or loopDataInputRef, but not both.

Figure B.102: The LoopCharacteristics’ package diagram

203

Figure B.103: The LoopCharacteristics’ structural diagram

204

Figure B.104: The Instantiation assertion expressing invariants on the
MILCharacteristic

205

B.30 The SubProcesses package

SubProcesses are commonly used to model Activities that need to be
specified but should be hidden visually to not overcomplicate diagrams. As
such, SubProcess has two subsets, one of which is Transaction, modelling
atomic Activities that specify a protocol to guarantee atomicity. This
constraint is expressed using the local invariant SpecificMethods. The
specification introduces some ambiguity as that the class diagram proposes
the method parameter be modelled as a string while the table of attributes
specifies that it be of a “TransactionMethod” type. It has to be chosen to
stick with the diagram and apply a constraint rather than introduce a new
type.

The second subset of SubProcess is the AdHocSubProcess which de-
fines not one but multiple Activities for which the execution is depen-
dent on the Activity’s Performer although an ordering might impose
some constraints on the order of execution. A global invariant, AdHocSub-
ProcessRestrictions satisfies the requirement that an AdHocSubProcess

must contain an Activity but no StartEvent or EndEvent. The OneS-

tartEvent global invariant ensures that a SubProcess can only have one
StartEvent if it is indeed marked as being triggeredByEvent. This unique
StartEvent is further constrained to be of a very specific EventDefinition
as given by the custom set formed by a call to the EventDefinitions’

GetValidSubProcessStarts global operation.

Figure B.105: The SubProcesses’ package diagram

206

Figure B.106: The SubProcesses’ structural diagram

207

Figure B.107: The OneStartEvent assertion expressing invariants on the
SubProcess

Figure B.108: The SpecificMethods assertion expressing invariants on the
Transaction

208

Figure B.109: The AdHocSubProcessRestrictions assertion expressing in-
variants on the AdHocSubProcess

209

B.31 The Activities package

They are defined by its subsets, CallActivity, SubProcess and Task. The
VCL Activities package models this notion. Activities can handle Data
by the DataAssociations and InputOutputSpecifications they can refer.
As mentioned before, an Activity can loop as defined by its LoopCharac-

teristic. Moreover, it can be used as compensation, handling an Event

with a CompensationEventDefinition. Activities also contain references
to all IntermediateEvenets that are attached to its boundary.

A CallActivity allows an Activity to access globally defined Pro-

cesses or Globaltasks from within the scope of the Activity. This makes
those elements reusable. The package defines two constraints. The global
IOConstraints satisfies the specification’s requirement that the CallAc-

tivity’s ioSpecification must exactly match that of the referenced Cal-

lElement. The local FrameConditions invariant specifies that the startQuan-
tity and CompletionQuantity must always be at least 1 as is specified by
the BPMN2 documentation. Similarly, the Activity’s Default operation
sets the default values for these properties.

Figure B.110: The Activities’ package diagram

210

Figure B.111: The Activities’ structural diagram

Figure B.112: The Activities’ behaviour diagram

Figure B.113: The FrameConditions assertion expressing invariants on the
Activity

211

Figure B.114: The IOConstraints assertion expressing invariants on the
CallActivity

Figure B.115: The Activity’s Default operation

B.32 The Gateways package

The Gateways VCL package groups the concept of SequenceFlow control
elements. A Gateway is defined in VCL by its subsets: InclusiveGate-

way, ExclusiveGateway, ComplexGateway, EventBasedGateway, and Par-

allelGateway. In addition to the properties and relations inherited from
FlowElements, Gateway specifies a GatewayDirection.

212

Figure B.116: The Gateways’ package diagram

An ExclusiveGateway can have a default SequenceFlow which will be
the path to follow should the Expressions on all other SequenceFlows fail
to hold. While semantics are not covered by this document, it is worth men-
tioning that only the first path whose Expressions evaluates to true will be
followed. Ideally, by design although no constraint exists, only one path’s
Expression should evaluate to true. An InclusiveGateway functions much
like an ExclusiveGateway with the exception that all Expressions are eval-
uated and each outgoing SequenceFlow whose Expressions evaluated to
true will be followed. The InclusiveGateway also makes use of a default

SequenceFlow. The Converging behaviour may or may not synchronise
incoming SequenceFlows.

A ParallelGateway is used to merge parallel SequenceFlows or to cre-
ate them, independent of any Expressions. ComplexGateways are used
to model more complex flow decisions than are offered by the Exclusive-

Gateway. The ComplexGateway may carry an activationCondition in
the form or an Expression. The activationCount holds at runtime the
number of active incoming SequenceFlows. The ComplexGateway has an
internal state, expressed by the property waitingForStart which is True if
the Gateway is idle and false if it is waiting to be reset.

213

Figure B.117: The Gateways’ structural diagram

An EventBasedGateway is used as a branching point with the decision
about the branching relying on an Event. In order to make a decision,
no outgoing SequenceFlow may include an Expression as modelled by the
EventBasedGatewayConstraints invariant. The outgoing SequenceFlows

will link to Events which will then, if triggered, take care of routing the
flow onwards. The EventBasedGateway has two properties,instantiate
and eventGatewayType. Both are used to enrich the EventBasedGate-

way and offer more uses. When the instantiate property is set to True,
the Gateway is used as a starting point, conditionally starting one or more
Processes depending on which Events are triggered. Should the event-

GatewayType be set to Parallel the Gateway will still be active and allow
for further events to be triggered, allowing multiple parallel flows stemming
from one Event. A constraint on the type and instantiation properties is
also satisfied by the previously mentioned invariant.

Figure B.118: The Gateways’ behaviour diagram

214

The package specifies several invariants on the SequenceFlow towards
and from Gateways. The ConvergingGatewaysBundle invariant satisfies
the specification’s requirements that Gateway’s with a GatewayType of Con-
verging must have multiple incoming SequenceFlows but no more than one
outgoing flow. In VCL, this is accomplished by using the cardinality opera-
tor and using it to verify that in the set of tuples from Gateways, restricted to
the ones with the correct property, to SequenceFlow there is more than one,
respectively at most one element. Similar invariants exist for diverging and
mixed Gateways, the DivergingGatewaysDiffuse and MixedGatewayCon-

straints invariants. The EventBasedGateway’s Default operation sets a
default value as required by the specification.

Figure B.119: The EventBasedGatewayConstraints assertion expressing
constraints on the gateway

215

Figure B.120: The ConvergingGatewaysBundle assertion expressing con-
straints on the gateway

Figure B.121: The DivergingGatewaysDiffuse assertion expressing con-
straints on the gateway

216

Figure B.122: The MixedGatewayConstraints assertion expressing con-
straints on the gateway

Figure B.123: The EventBasedGateway’s Default operation

217

B.33 The Tasks package

All of the Task’s subsets as depicted on the SD but ManualTask and
ScriptTask specify a technology used to complete the task. They have a
Default operation included in the VCL Tasks package which models these
concepts. ReceiveTask and SendTask include references to the Message

being send respectively received as well as the Operation invoked or invok-
ing the Task. The ServiceTaskMessageConstraints invariant satisfies the
requirements that the DataOutput, if present. must match the ItemDefi-

nition of the Message the ServiceTask will send. The ReceiveTask has a
similar constraint which has not been modelled due to redundancy.

Figure B.124: The Tasks’ package diagram

218

Figure B.125: The Tasks’ structural diagram

Figure B.126: The Tasks’ behaviour diagram

219

Figure B.127: The ServiceTaskMessageConstraint assertion expressing
invariants on the ServiceTask’s messaging facilities

Figure B.128: The BusinessRuleTask’s Default operation

220

Figure B.129: The ServiceTask’s Default operation

Figure B.130: The SendTask’s Default operation

Figure B.131: The ReceiveTask’s Default operation

221

Figure B.132: The UserTask’s Default operation

B.34 The Participants package

The Participants’ name can be substituted for the name of the Partner-

Entity or PartnerRole or combined with them. The Participant holds
a reference to its Process, enabling the formulation of the GetPartici-

pantGivenProcess assertion which retrieves a single Participant from the
tuples given by the relation and a inputted Process. The Participant also
holds also references to its PartnerRole and PartnerEntity. A Partici-

pant can be implemented remotely in which case an endPointRefs relation
holds the EndPoint at which the implementation can be accessed.

The ParticipantMultiplicity has two properties, minimum and maxi-

mum, both represented by IntBlobs in VCL, specifying the multiplicity. These
bounds specify a range which the actual number of Participants may vary
in. The specification mentions a runtime attribute numParticpants. It is
not modelled by the specification’s diagrams and has therefore not been
modelled here as well.

Figure B.133: The Participants’ package diagram

222

Figure B.134: The Participants’ structural diagram

Figure B.135: The Participants’ behaviour diagram

223

Figure B.136: The Tasks’ GetParticipantGivenProcess operation

224

B.35 The Core package

The Core VCL ensemble package is an analogy to the BPMN2 core pack-
age. It groups all BPMN2 concepts from the metamodels. Due to nesting,
concepts are already grouped in packages such as Foundation and Common .
Several packages need to merge concepts such as Infrastructures and
Foundation which merger RootElement and BaseElement. Merging is a
must as the two merged concepts are defined in both packages. Ideally, they
would have only been defined in the Foundation package but this would
have meant circular imports which are not allowed in VCL but can be done
in UML which is what the BPMN2 diagrams are specified in.

Figure B.137: The Core’s package diagram

225

Appendix C

BusinessToTable metamodel
VCL packages

The following sections present all Visual Contract Language (VCL) pack-
ages needed to build the Business-to-Table (BtT) metamodel as given by
its specification document [23]. The packages will detail all diagrams. Each
section will provide an overview of the package and complement the general
description given in Section 5.5.

For an introduction on VCL, please consider reading Section 4. In
this appendix, the following notation is used; Structural Diagrams (SD),
Behavioural Diagrams (BD), Package Diagrams (PD), Assertion Diagrams
(AD), Contract Diagrams (CD). Table B.1 lists all VCL packages and the
corresponding figures for each VCL package.

Table C.1: BTT metamodel VCL packages and figures

Package name Figures

Mutator C.1
PD C.1
SD C.2

BusinessToTable C.2
PD C.3
SD C.4

C.1 The Mutator package

The Mutator package imports all BPMN2 metamodel packages containing
elements that are immediately visualised and thereby can be actively ma-
nipulated by the users. These elements are: Lanes, Collaborations, Glob-

226

alTasks, FlowElements, Artifacts, Messages, FlowElementcontainers,
MessageFlows, and Participants. The union of these sets forms the Sub-

ject.

A Subject has Attributes identified by their name name and value.
Additionally, a Subject can hold References and in turn the target of a
Reference.

Figure C.1: The Mutator’s package diagram

C.2 The BusinessToTable package

The BusinessToTable package imports the TUI package in order to access
the Zones. The package introduces the Packet concept, a message that is
sent by the Zone, eventually stored in a PackageStore, before being anal-
ysed by an Interpreter. The latter then triggers one or more Happenings

which are defined by the subsets: Create, Destroy, ChangePos, or Tex-

tInput. These are all the interactions that the prototype, as designed by
Bicheler in the scope of his Master’s Thesis [104], requires. More Happen-

ings can be added if needed. Happenings impact a Subject as defined in
the Mutator package.

227

Figure C.2: The Mutator’s structure diagram

Figure C.3: The BusinesssToTable’s package diagram

228

Figure C.4: The BusinesstoTable’s structure diagram

229

Appendix D

Ideation scenario VCL
packages

The following sections present all Visual Contract Language (VCL) packages
needed to build the ideation model as specified for the ideation scenario used
in Chapter 6. The following section will provide an overview of the package
and complement the general description given in Section 5.7.

For an introduction on VCL, please consider reading Section 4. In
this appendix, the following notation is used; Structural Diagrams (SD),
Behavioural Diagrams (BD), Package Diagrams (PD), Assertion Diagrams
(AD), Contract Diagrams (CD). Table D.1 lists all VCL packages and the
corresponding figures for each VCL package.

Table D.1: Ideation model VCL packages and figures

Package name Figures

Ideation D.1
PD D.1
SD D.2

D.1 The Ideation package

The Ideation package contains the formal VCL model of the BPMN2 sce-
nario shown in Figure 6.1. The SD displays the concept of Ideation-

Scenario containing one pool, IdeationLane which contains three lanes;
BackOffice, FrontOffice, and Ideator. Each of those packs a name and
an id. The Ideator lane includes a process composed of several BPMN2
flow nodes. Each of those has an id and all activities have a name. All

230

flow nodes are connected through sequence flows such as SourceFlow or
CallFlow. These always hold references to sources and targets of the flow.
As the flow nodes also hold references to the sequence flows, this induces a
large number of relations which makes the model a bit hard to read.

The IssueOpinion, UseCommFeature, and Contribute activities hold
a loopCharacteristics modelled by the MultiInstanceMarker. This de-
fines properties to keep track of the number of instances and their states
by counters. The MultiInstanceMarker instantiates the LoopCharacter-

istics package’s MILCharacteristic. However, there is a discrepancy
between the models in that the BPMN2 metamodel does not include the
runtime attributes depicted on the model. While the specification mentions
these attributes, none of the diagrams included them. Hence, either they
should have been included on the diagrams in the specification or a runtime
attribute concept should have been defined which would have allowed to
define any number of runtime attributes on the model level.

Figure D.1: The Ideation’s package diagram

231

Figure D.2: The Ideation’s structure diagram

232

Appendix E

Widget model VCL packages

The following sections present all Visual Contract Language (VCL) pack-
ages needed to build the widget model as given by the prototype widgets
designed using TWT in the scope of Bicheler’s Master’s Thesis [104]. The
following packages will detail all implemented diagrams. Each section will
provide an overview of the package and complement the general description
given in Section 5.8.

For an introduction on VCL, please consider reading Section 4. In
this appendix, the following notation is used; Structural Diagrams (SD),
Behavioural Diagrams (BD), Package Diagrams (PD), Assertion Diagrams
(AD), Contract Diagrams (CD). Table E.1 lists all VCL packages and the
corresponding figures for each VCL package.

Table E.1: Widget model VCL packages and figures

Package name Figures

Prototype E.1
PD E.1
SD E.2

ZoomBehaviour E.2
PD E.3
SD E.4

233

E.1 The Prototype package

The Prototype package models the concept of WidgetLayer and that it
contains all four widgets defined by the Prototype , Zoom, Stamp, Link,
and AnnoMarker. All of these widgets hold an IDAttribute and at least
one handle. The Link even holds two handles, Arrow and Tail. All but
the AnnoMarker also hold a visual component, such as for example the Im-

print held by the Stamp. Each widgets holds an identity that defines
its behaviour. Those identities are defined in the corresponding packages,
however, due to problems explained in Section 5.8, only the ZoomBehaviour

package has been defined. Nevertheless, all of those remotely defined con-
cepts are specified here, making the structural diagram complete.

Figure E.1: The Prototype’s package diagram

E.2 The ZoomBehaviour package

The ZoomBehaviour package models the identity of a Zoom widget used in
the ideation scenario. The identity holds three functions, DropBind, Lif-
tUnbind, and RotateZoom. Due to problems detailed in Section 5.8, this
model is only partially implemented. In the final implementation, all of the
functions would have been defined remotely in their own packages, specify-
ing all mappings of attributes, actions and effects that would have defined
the function. This would have made it possible to reuse functions that are
likely recurring, such as DropBind.

234

Figure E.2: The Prototype’s structure diagram

Figure E.3: The ZoomBehaviour’s package diagram

Figure E.4: The ZoomBehaviour’s structure diagram

235

Appendix F

List of literature resources

• Amlio, N., & Kelsen, P. (2010). Modular design by contract visually
and formally using VCL. Visual Languages and Human-Centric Com-
puting (VL/HCC), 2010 IEEE Symposium on (pp. 227234). IEEE.
doi:10.1109/VLHCC.2010.39

• Amlio, N., Glodt, C., & Kelsen, P. (2011). Building VCL Models and
Automatically Generating Z Specifications from Them. (M. Butler &
W. Schulte, Eds.)FM 2011: Formal Methods, 6664, 149-153. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-21437-0

• Amio, N., Kelsen, P., Ma, Q., & Glodt, C. (2010). Using VCL as an
aspectoriented approach to requirements modelling. Transactions on
Aspect Oriented Software Development, 7, 151-199. doi:10.1007/978-
3-642-16086-8 5

• Bardohl, R., Ehrig, H., De Lara, J., & Taentzer, G. (2004). Inte-
grating meta-modelling aspects with graph transformation for efficient
visual language definition and model manipulation. Fundamental Ap-
proaches to Software Engineering, 214228. Springer.

• Bottoni, P., Koch, M., Parisi-presicce, F., & Taentzer, G. (2001). A
Visualization of OCL using Collaborations. (M. Gogolla & C. Ko-
bryn, Eds.)UML 2001 - The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, 2185, 257-271. Berlin, Heidelberg:
Springer Berlin Heidelberg. doi:10.1007/3-540-45441-1

• Brockmans, S., Volz, R., & Eberhart, A. (2004). Visual modeling of
OWL DL ontologies using UML. The Semantic WebISWC 2004 (pp.
198213). Springer.

• Burnett, I., Baker, M. J., Bohus, C., Carlson, P., Yang, S., & Van Zee,
P. (1995). Scaling Up Visual Programming Languages. Computer,
28(3), 45-54. doi:10.1109/2.366157

236

• Burnett, M., Atwood, J., Walpole Djang, R., Reichwein, J., Gottfried,
H., & Yang, S. (2001). Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet paradigm. Journal of func-
tional programming, 11(2), 155206. Cambridge University Press.

• Chailloux, E., & Codognet, P. (1997). Toward visual constraint pro-
gramming. Visual Languages, 1997. Proceedings. 1997 IEEE Sympo-
sium on, 420-421.

• Genon, N., Amyot, D., & Heymans, P. (2011). Analysing the Cogni-
tive Effectiveness of the UCM Visual Notation. System Analysis and
Modeling: About Models, 6598/2011, 221240. Springer. Retrieved
from http://www.springerlink.com/index/G7746GM683W97620.pdf

• Gil, J. Y., Howse, J., & Kent, S. (1999). Constraint Diagrams : A Step
Beyond UML. Technology of Object-Oriented Languages and Systems
(TOOLS USA99). Santa Barbara, California , USA. Retrieved from
http://kar.kent.ac.uk/id/eprint/21740

• Halpin, T. (1998). Object-Role Modeling: an overview.

• Howse, J., Schuman, S., Stapleton, G., & Oliver, I. (2009). Diagram-
matic Formal Specification of a Configuration Control Platform. Elec-
tronic Notes in Theoretical Computer Science, 259, 87-104. doi:10.1016-
/j.entcs.2009.12.019

• Kent, S. (1997). Constraint diagrams: visualizing invariants in object-
oriented models. OOPSLA 97 Proceedings of the 12th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications (Vol. 32). ACM.

• Lin, J., Thomsen, M., & Landay, J. A. (2002). A visual language for
sketching large and complex interactive designs. Proceedings of the
SIGCHI conference on Human factors in computing systems: Chang-
ing our world, changing ourselves (pp. 307314). New York, New York,
USA: ACM. doi:10.1145/503429.503431

• Lohmann, M., Sauer, S., & Engels, G. (2005). Executable Visual
Contracts. 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC05) (pp. 63-70). IEEE. doi:10.1109/VLH-
CC.2005.35

• Lucanin, D., & Fabek, I. (2011). A visual programming language for
drawing and executing flowcharts. MIPRO, 2011 Proceedings of the
34th International Convention (pp. 16791684). IEEE.

237

• Muetzelfeldt, R., & Massheder, J. (2003). The Simile visual modelling
environment. European Journal of Agronomy, 18(3-4), 345-358.
doi:10.1016/S1161-0301(02)00112-0

• Group, O. M. (2006). Object Constraint Language - OMG Available
Specification - Version 2. OMG.

• Sadi, S., & Maes, P. (2007). subTextile: Reduced event-oriented pro-
gramming system for sensate actuated materials. IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2007),
171-174. Ieee. doi:10.1109/VLHCC.2007.37

• Schmidt, A., & Varr, D. (2003). CheckVML: A tool for model checking
visual modeling languages. UML 2003 - The Unified Modeling Lan-
guage. Modeling Languages and Applications, 2863, 9295. Springer.

• Schurr, A., Winter, A., & Zundorf, A. (1995). Visual programming
with graph rewriting systems. Visual Languages, Proceedings., 11th
IEEE International Symposium on (pp. 326333). Darmstadt , Ger-
many: IEEE.

• Spratt, L., & Ambler, A. (1993). A visual logic programming language
based on sets and partitioning constraints. 993 IEEE Symposium on
Visual Languages (pp. 204-208). IEEE Comput. Soc. Press.
doi:10.1109/VL.1993.269597

• Sprinkle, J., & Karsai, G. (2004). A domain-specific visual language
for domain model evolution. Journal of Visual Languages & Comput-
ing, 15(3-4), 291-307. doi:10.1016/j.jvlc.2004.01.006

• Stapleton, G. (2005). A Decidable Constraint Diagram Reasoning Sys-
tem. Journal of Logic and Computation, 15(6), 975-1008. doi:10.1093/
logcom/exi041

• Swenson, K. (1993). A visual language to describe collaborative work.
Visual Languages, 1993., Proceedings 1993 IEEE Symposium on (pp.
298-303). Bergen: IEEE.

• Varro, D. (2003). Towards Symbolic Analysis of Visual Modeling Lan-
guages. Electronic Notes in Theoretical Computer Science, 72(3), 51-
64. doi:10.1016/S1571-0661(04)80611-X

• Visual Contract Language.
Retrieved March 7, 2012, from http://vcl.gforge.uni.lu/

• Visual OCL.
Retrieved March 6, 2012, from http://tfs.cs.tu-berlin.de/vocl/

238

• VENSIM
Retrieved March 5, 2012, from http://www.vensim.com/

• AnyLogic
Retrieved March 5, 2012, from http://www.xjtek.com/

239

Appendix G

Study scenario requirements

G.1 BPMN2 requirements

G.1.1 Structural requirements

• BS1 – The model diagram, subsequently model, holds a Collabora-
tion or Process.

• BS2 – The model has Events.

• BS3 – The model can have Activities.

• BS4 – The model can have Gateways.

• BS5 – The model can have Connections.

• BS6 – The model can have Swimlanes.

• BS7 – The model can have Artefacts.

• BS8 – Events are Start Events, End Events, or Intermediate Events.

• BS9 – Events have a mode and a type.

• BS10 – Activities are either Tasks or Processes.

• BS11 – Gateways have a type.

• BS12 – Connections are Sequence Flows, Message Flows, or Associ-
ations.

• BS13 – Swimlanes are either a Pool or a Lane.

• BS14 – Artefacts are Data Objects, Groups, or Annotations.

• BS15 – Pools can contain multiple Lanes.

240

G.1.2 Behavioural requirements

Behaviour is expressed in model instances only, using the model elements
to express behaviour. No behavioural requirements have been specified.

G.1.3 Constraints

• BC1 – Connections must have exactly one source and one target.

G.2 Stock Management scenario requirements

G.2.1 Structural requirements

• SS1 – A customer has a portfolio, and a standing which can be
either good or bad.

• SS2 – Shares are either common stock or preferred shares.

• SS3 – Preferred shares may be convertible in which case they are
convertible preferred shares which have a conversion rate and an
earliest conversion date.

• SS4 – An order is placed to either buy or sell a given number of
stocks.

• SS5 – A portfolio belongs to a customer and holds all stock he owns.

• SS6 – A customer has a portfolio at the stock brokerage.

• SS7 – A broker works for the stock brokerage. He has a speciality
which can be either as a seller or buyer of stock.

• SS8 – A broker handles orders from customers.

• SS9 – A customer holds credentials which are used to identify with
the stock brokerage.

G.2.2 Behavioural requirements

• SB1 – A customer can check his portfolio.

• SB2 – A customer can issue an order to buy or sell stock.

• SB3 – A customer can review his portfolio.

• SB4 – A customer can wait for his order to be fulfilled.

241

G.2.3 Constraints

• SC1 – A customer cannot sell more shares than are in his portfolio.

• SC2 – A customer in bad standing cannot buy preferred stock.

• SC3 – A customer can only login with the correct credentials.

• SC4 – A customer has at least one portfolio.

• SC5 – Only a broker with the right specialisation can handle an
order.

• SC6 – A customer in bad standing cannot have more than two
portfolios.

G.3 Tangible User Interface requirements

G.3.1 Structural requirements

• TS1 – A widget has one or more handles.

• TS2 – A handle can be bound or unbound.

• TS3 – A handle has a continuous attribute, Domain Presence in the
range]0;1].

• TS4 – A widget holds an ID, a position, rotation angle, and clearable
state.

• TS5 – A widget may hold a visualisation.

• TS6 – Widgets can be differentiated by their mode.

• TS7 – A widget can have a state.

G.3.2 Behavioural requirements

• TB1 – Dropping a handle on the table may bind the widget the
handle is associated with to the underlying.

• TB2 – Lifting the handle removes the Domain Presence of said
handle.

• TB3 – Shaking clears the mode of all widgets whose mode is clear-
able.

• TB4 – Shaking removes the anchored entity from widgets whose
mode is not clearable.

242

• TB5 – A widget can be activated.

• TB6 – A widget can be rotated.

• TB7 – A widget can be dragged or slid over the canvas.

• TB8 – Rotating a widget in the Zoom mode zooms the viewport in.

• TB9 – Rotating a widget in the View mode rotates the viewport
left.

• TB10 – Rotating a widget in the Expander mode rotates the at-
tached visualisation left.

• TB11 – Moving two Spreader widgets apart increases the canvas
space in between them.

• TB12 – Moving two Spreader widgets together decreases the canvas
space between them.

• TB13 – Sliding a widget in the Sword mode across all of model
entity deletes it.

• TB14 – Sliding a widget in the Sword mode over parts of a model
entity clears its contents.

• TB15 – Moving a widget in Hand of God mode moves the grabbed
component(s) as well.

• TB16 – Activating a widget on the canvas depends on the widgets
mode and the underlying canvas area. Consult Table G.1.

• TB17 – Dropping the Stamp on the canvas creates the model entity
the Stamp is currently imprinted with.

G.3.3 Constraints

• TC1 – A widget has at least one handle.

• TC2 – The rotation angle of a widget in the Spreader mode is
modular to 45◦.

• TC3 – The enclosed space drawn from a Lasso must not cut across
canvas sub-areas.

243

Canvas area Widget mode Desired Behaviour

Free space

Knob Anchor the widget to enable the
sliding of the viewport.

Hand of God Release the previously grabbed en-
tity.

Lasso Draw an enclosed space creates a
canvas sub-area.

Chain Show radial menu to select target
component.

Clone Place copy of the component(s)
grabbed by the first handle.

Teleporter Cut the component(s) grabbed by
the first handle and place them at
the second handles location.

Toolbox - Model entities
Stamp Switch the stamp to the underlying

model entity.
Clone Change the type of the model en-

tity grabbed by the first handle in
respect to the underlying toolbox
model entity.

Toolbox - Modelling aids Any Attribute a new mode.

Model entity
Chain Show radial menu to select connec-

tor or component.
Hand of God Grab the underlying model entity.

Clone Grab the underlying model entity.
Teleporter Grab the underlying model entity.

Any
View Reset viewport to default.

Expander Hide respectively show sub-process.
Wormhole Anchors the wormhole end-point to

the enclosing canvas area.

Table G.1: Table of behavioural requirements depending on activation
zone

244

Appendix H

Ideation Scenario companion
document

The following chapters will go through the process of creating the final
model step by step. It is recommended that all users make themselves
familiar with the table and the feel of the Sifteo cubes which are used as
physical handles to the widgets.

Focus a Lanes

In order to facilitate modelling, lanes that are not in the focus of the
modelling can be blended out.

Scenario

The user picks a Zoom Widget and places it on the lanes. He can then
rotate the widget clockwise to increase the focus on the Lanes or activate
it to immediately maximise the zoom factor.

Creating a StartEvent

Every process has to begin with a start event. These events are used to
symbolise the instantiation of a process and, in turn, the associated tasks.
Since the process of ideation is started by the ideator out of the blue, a
global StartEvent is used. The StartEvent can however not just magically
appear. To that end, the table displays a toolbox to the side of the mod-
elling area. This toolbox is not unlike a colouring palette and contains all
common modelling components.

245

Scenario

The user picks a Stamp Widget and places it onto the StartEvent, a circle
with a thin border, in the toolbox. He then activates the stamp which
“imprints” the StartEvent onto the stamp. He then positions the stamp
onto the space mirroring the placement of the StartEvent on the figure
and activates the stamp again.

Creating a Gateway

A Gateway is used to split or link the flow of a process. Since the ideator
can choose from different options, execute them and then select a different
option, a Gateway is used as a splitting and reuniting point.

246

Scenario

The user picks a Stamp Widget and places onto the Gateway, a circle
with a think border, in the toolbox. He then activates the stamp which
“imprints” the Gateway onto the stamp. He then positions the stamp
onto the space mirroring the placement of the StartEvent from the figure
and activates the stamp again.

Link StartEvent and Gateway

In symbolise the link between components and the direction of the execu-
tion flow, BPMN2 uses flow connectors like arrows which can take different
shapes. For this short scenario we will only use the plain arrow. In the first
step we want to create a link between the two components we just created.

Scenario

The user takes two physical handles and places one on the tail of the
arrow in the toolbox and the other on the head. He then activates either
or both, linking them together as one widget. He proceeds to place the
handle carrying the tail of the arrow on the StartEvent and the head on
the Gateway. An arrow will be dynamically displayed to show how the
arrow will be positioned. By activating the handle carrying the arrowhead,
the arrow is finalised.

Creating the first batch of Tasks

Tasks are conveying the actions in BPMN2. They deliver the main mes-
sages and take many nuances. It is therefore imperative that the right

247

kind of tasks be chosen. In this case, the ideator chooses two plain tasks
but applies them differently.

Scenario

The ideator uses the Stamp Widget . He places it over the Tasks icon in
the toolbox and activates the Stamp Widget. From the radial menu he
chooses the plain Tasks and activates the Stamp Widget a second time.
He then proceeds to apply the Tasks to the canvas as shown in the figure.
He places only one Tasks. The ideator proceeds to link the Gateway and
Tasks by the same scenario as illustrated in H.

Scenario

From the previous linking of Gateway and Tasks, the ideator still has two
handles to apply arrows. He places the tail on the Gateway and the head
onto an empty space, where in the figure the arrow tot he second Tasks
would end. He then actives the widget. A radial menu will guide the
ideator through the selection of end point component for the arrow. He
will first select “Tasks” and then the plain “Tasks” from the second level.

All things must end in an event

An EndEvent is the logical counterpart of a StartEvent. It is used to end
all flows and indicate that the desired business interaction has come to a
close.

248

Scenario

The ideator uses the Stamp Widget to first associate the EndEvent with
the widget using the toolbox and than apply it onto the canvas. He will
then link the Gateway and EndEvent using the linking method described
in H.

Chaining components

During the modelling of a system, some tasks are very clear and well
known. These “strings” of tasks usually require redundant modelling ac-
tions. A specialised widget, the Chain Widget is used to make this process
easy to apply in TUIs.

249

Scenario

The ideator places the Chain Widget onto the Tasks he wants to start
the chain at. In this case it would be the lower left Tasks as can be
seen from the figure. The ideator activates the widget which will display
all available flow connectors in a radial menu. The ideator selects the
appropriate connector, the arrow in our case and activates the widget a
second time. He can no proceed to slide the widget to the left, drawing
the arrow along with the handle as it it were attached. once at a suitable
spot on the canvas he can activate the widget once more, showing a radial
menu of suitable end point components. The ideator should first select
“Tasks” and then the plain “Tasks” from the second level. This process is
repeated once more to create the second first select “Tasks” and then the
plain “Tasks” from the second level. The process is repeated once more
to create the second Tasks.

Chaining mixed components

Chaining can not only be used with similar items but also across multiple
type of components.

Scenario

Analogous to H. From the radial menus the ideator can choose the com-
ponents matching the figure.

Chaining or Stamping

The ideator should create and link two more Tasks. It is up to him how
he wants to create those Tasks.

250

Alternative 1

The ideator uses a Stamp Widget and assigns it to the parallel Tasks by
first activating it on the general Tasks and then, from the radial menu,
selecting the parallel Tasks. He then creates those Tass on the canvas as
indicated by the figure. Subsequently, he attributes a second handle to
the widget and associates the arrow flow connector to the Stamp Widget
in order to create the four needed links.

Alternative 2

The ideator uses a Chain Widget. He places it on the Gateway and
activates it. Choosing the flow connector and a direction to move in, he
proceeds to create a parallel Tasks from the second level radial menu.
From that parallel Tasks he creates the missing link. In exactly the same
way he produces the mirrored second Tasks.

Alternative 3

The ideator can mix the use of the Stamp Widget and Chain Widget.

Final linking

The ideator finalises the Process, adding the last links to the model.

251

The ideator uses a Chain Widget and places it on the rightmost Gate-
way. After activating the widget he chooses the arrow flow connector and
loops it back into the leftmost Gateway, completing the process loop. He
now creates the last missing link from the last of the three Tasks at the
bottom to the rightmost Gateway using the same method.

252

Appendix I

Weighting evaluation criteria

To find a Visual Modelling Language (VML), such as UML, suitable to
express the modelling of Business Process Model and Notation 2 (BPMN2)
models using a Tangible User Interface (TUI), several criteria have been
distilled. It is important to weigh these criteria carefully and gather as
much feedback as possible. Therefore, this small study has been devised
to gauge the user perspective.

The following six broad criteria are used to judge the suitability of
VML. Please rate how important it is for you that a VML you would
want to use fulfils the criterion?

Not impor-
tant at all

Somewhat
important

Neutral Important Very impor-
tant

Tool support
Semantics & Trans-
formation
Expressivity
Usability
Error checking
Verification

253

Appendix J

Widget list

Table J.1: A listing of all widgets conceived in cooperation
with Bicheler.

Name Physical Action Intent Result

Zoom View The actor places the
widget on the surface
and rotates the widget
clockwise respectively
counter-clockwise.

The actor wants
to increase or de-
crease the zoom
factor of the can-
vas with respect
to the handles cur-
rent position.

The virtual cam-
era zooms and is
repositioned based
on the current
handle position.

Rotate View The actor places the
widget on the sur-
face and rotates the
widget clockwise resp.
counter-clockwise.

The actor wants
to rotate the can-
vas.

The canvas rotates
in the direction
the widget is ro-
tated.

Drag Canvas The actor places the
widget on the surface
and drags it in the de-
sired direction.

The actor wants
to reposition the
canvas, using the
widget as a virtual
knob.

The canvas is
repositioned, op-
posite to the
widget movement
direction, pro-
ducing the drag
effect.

Continued on next page

254

Table J.1 – Continued from previous page

Name Physical Action Intent Result

Stamp The actor moves the
widget onto an ele-
ment of the stamp
toolbox, assigns the
element by activating
the widget and then
stamps one or multi-
ple elements onto the
canvas.

The actor wants
to select an el-
ement from the
stamp toolbox and
place one or multi-
ple instances of it
on the canvas.

The desired num-
ber of elements are
placed on the can-
vas.

Link The actor chooses the
type of link the same
way as the stamp but
using the link tool-
box. Then he moves
the two handles of the
link widget over two
zones on the canvas
and after seeing a pre-
view of the link, fixes
it by activating either
handle.

The actor wants
to link existing
zones using a spe-
cific kind of link.,
Using the preview,
the actor can es-
tablish a tempo-
rary link by leav-
ing the handles
on the respective
zones.

The existing zones
are linked by the
new type of link.

Chain The actor slides the
widget from a zone to
a destination and ac-
tivates the handle to
confirm and select the
kind of element to be
created.

The actor wants
to create a new el-
ement in a process
by creating a link
and element from
an existing compo-
nent to the newly
created one.

A new component
with link to it is
created.

Wormhole
[Create]

The actor places two
handles to create a
wormhole between
them.

The actor wants
to link two dif-
ferent locations on
the canvas.

Both locations
are linked and
accept elements
to be transferred
through it.

Wormhole
[Transfer]

The actor swipes
zones into the vicinity
of one end of the
wormhole to transfer
them to the other.

The actor wants
to transfer model
elements from one
end to the other.

All model ele-
ments pushed
through one end
will appear on the
other end.

Continued on next page

255

Table J.1 – Continued from previous page

Name Physical Action Intent Result

Spreader The actor places two
handles on the sur-
face and either brings
them closer together
or increases the dis-
tance between them
while they touch the
surface.

The actor wants
to increase or de-
crease the space
available between
or within existing
zones.

Space pours in or
is removed from
the area between
the horizontal
or vertical axes
implied by the
widget placement.
Connectors are
shortened resp.
lengthened.

Sword The actor “cuts”
across the canvas in
a slashing motion,
deleting all zones the
handle touches.

The actor wants
to remove or
delete components
from the canvas.

The “cut” zones
are deleted from
the canvas.

Hand of God The actor places the
handle on an existing
zone and activates it
to “grab” it. The
actor moves the han-
dle to its destination
and activates the wid-
get again to “drop”
the held zone.

The actor wants
to move a com-
ponent around
on the canvas or
drags the edge of
a zone to resize
the contained
elements.

The element is
moved from its
initial position to
the destination.
When the handles
is moved on the
surface, a preview
is shown.

Lasso The actor places the
widget on the surface
and activates it. He
then draws a closed
shape around the de-
sired zones and acti-
vates the widget once
more.

The actor wants
to select a sub-
section containing
certain elements of
the canvas.

The space en-
closed in the
shape is marked
and treated as
separate area of
the canvas until
the widget selec-
tion is cancelled.

256

	Introduction
	Research questions
	Research objectives

	State of the Art
	Modelling
	Definitions

	Visual Modelling Languages
	VML's many influences

	Tangible User Interfaces

	Case Study
	Identifying suitable languages
	Collection

	Pre-selection
	VML selection
	UML & VOCL
	VCL
	Constraint Diagrams

	Designing a scenario
	BPMN2 introduction and model
	Preliminary TUI model
	A simple TUI instance

	Case study
	Measurements
	Study walkthrough
	Product
	UML & VOCL
	VCL
	Augmented Constraint Diagrams

	Evaluation
	Tool support
	Availability
	Maintenance
	Latest version
	Branch

	Semantics & Transformation
	Formally defined
	Transformability

	Expressivity
	# X (# X)
	# X satisfied (# Sat_X)
	# requirements partially satisfied (# Part_Sat)
	# unsatisfied requirements (# UnSat)
	Ratio

	Usability
	Naming conventions
	Naming fit
	Documentation
	Tutorial
	Hands-on tutorial
	Primitive mutability
	Live suggestions

	Error Checking
	Time
	Syntax highlighting
	Degree
	Error correction suggestion
	Debugging possible

	Verification
	Modularity
	Verification scheme

	Weighting scheme

	Results
	Study Conclusion

	The Visual Contract Language, an introduction
	Syntax
	Primitives
	Structural diagrams
	Behavioural diagram
	Package diagram
	Assertion diagrams
	Contract diagrams

	Semantics
	Modelling in VCL, using VCB

	A VCL Model of a TUI for modelling with BPMN2
	Introduction
	Tangible User Interfaces
	TUI technical aspects
	A brief look at TWT

	BPMN2 and its usage in this document
	The TUI VCL metamodel
	Packages

	The BPMN2 VCL metamodel
	Packages

	The Business-to-Table concept and metamodel
	The Ideation model
	The Widget model
	The Interaction model
	Conclusion
	Separation of Concerns
	Requirements coverage
	Expressiveness
	Conclusion

	Ideation
	Introducing the scenario
	Extending the model

	First test scenario
	Second test scenario
	Final test scenario
	Analysis & Evaluation
	Conclusion

	Conclusion
	Future Work

	Bibliography
	TUI metamodel VCL packages
	The TUIPrimitives package
	The Actions package
	The Attributes package
	The Effects package
	The EndPoints package
	The Functions package
	The Mappings package
	The Layers package
	The Widgets package
	The TUI package

	BPMN2 metamodel VCL packages
	The Primitives package
	The Extensibilities package
	The BaseElements package
	The Foundation package
	The Infrastructures package
	The ItemDefinitions package
	The Messages package
	The Artifacts package
	The Resources package
	The ResourceAssignments package
	The Expressions package
	The Errors package
	The Collaborations package
	The GlobalTasks package
	The Services package
	The ItemAwareElements package
	The IOSpecifications package
	The DataAssociations package
	The Data package
	The Processes package
	The Lanes package
	The Escalations package
	The EventDefinitions package
	The Events package
	The FlowElements package
	The FlowElementContainers package
	The CallableElements package
	The Common package
	The LoopCharacteristics package
	The SubProcesses package
	The Activities package
	The Gateways package
	The Tasks package
	The Participants package
	The Core package

	BusinessToTable metamodel VCL packages
	The Mutator package
	The BusinessToTable package

	Ideation scenario VCL packages
	The Ideation package

	Widget model VCL packages
	The Prototype package
	The ZoomBehaviour package

	List of literature resources
	Study scenario requirements
	BPMN2 requirements
	Structural requirements
	Behavioural requirements
	Constraints

	Stock Management scenario requirements
	Structural requirements
	Behavioural requirements
	Constraints

	Tangible User Interface requirements
	Structural requirements
	Behavioural requirements
	Constraints

	Ideation Scenario companion document
	Weighting evaluation criteria
	Widget list

