### Preassociative aggregation functions

### Jean-Luc MARICHAL Bruno TEHEUX

University of Luxembourg

IPMU 2014

### Associative functions

 $G: X^2 \to X$  is *associative* if

$$G(G(a,b),c) = G(a,G(b,c))$$

**Examples**: 
$$G(a, b) = a + b$$
 on  $X = \mathbb{R}$   
 $G(a, b) = a \wedge b$  on  $X = L$  (lattice)

From associative functions to functions with indefinite arity

$$G(G(a,b),c) = G(a,G(b,c))$$

#### Extension to *n*-ary functions

$$\begin{array}{rcl} G_3(a,b,c) &:= & G(G(a,b),c) \\ G_4(a,b,c,d) &:= & G(G_3(a,b,c),d) \cdots \\ G_{n+1}(x_1,\ldots,x_{n+1}) &:= & G(G_n(x_1,\ldots,x_n),x_{n+1}) \end{array}$$

By induction we construct

$$G^e: \bigcup_{n\geq 2} X^n \to X: \mathbf{x} \in X^n \mapsto G_n(\mathbf{x})$$

### Associative functions with indefinite arity

# Fact If $G: X^2 \to X$ is associative and $p + q + r \ge 2$ then $G^e(x_1, \dots, x_p, y_1, \dots, y_q, z_1, \dots, z_r)$ $= G^e(x_1, \dots, x_p, G^e(y_1, \dots, y_q), z_1, \dots, z_r)$

### Definition.

 $F: \bigcup_{n\geq 0} X^n \to X$  is *associative* if for every  $p + q + r \geq 0$ 

$$F(x_1,\ldots,x_p, y_1,\ldots,y_q, z_1,\ldots,z_r) = F(x_1,\ldots,x_p,F(y_1,\ldots,y_q),z_1,\ldots,z_r)$$

### We use more comfortable notations

We regard *n*-tuples **x** in  $X^n$  as *n*-strings over X

```
1-strings: x, y, z, ...
n-strings: x, y, z, ...
```

0-string:  $\varepsilon$ 

 $|\mathbf{x}| = \text{length of } \mathbf{x}$ 

For  $F: X^* \to Y$  we set

$$F_n := F|_{X^n}.$$

We convey

$$F(\mathbf{x}) = F(\varepsilon) \iff \mathbf{x} = \varepsilon$$
$$F(\mathbf{x}) = \varepsilon \quad \text{if } Y = X.$$

### Associative functions with indefinite arity

 $F: X^* \to X$  is *associative* if

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \qquad \forall \ \mathbf{xyz} \in X^*$$

 $F_1$  may differ from the identity map!

#### Proposition

Let  $F: X^* \to X$  and  $G: X^* \to X$  be two associative functions such that  $F_1 = G_1$  and  $F_2 = G_2$ . Then F = G.

### Associative functions with indefinite arity

 $F: X^* \to X$  is *associative* if

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \qquad \forall \ \mathbf{xyz} \in X^*$$

 $F_1$  may differ from the identity map!

#### Proposition

Let  $F: X^* \to X$  and  $G: X^* \to X$  be two associative functions such that  $F_1 = G_1$  and  $F_2 = G_2$ . Then F = G.

### Preassociative functions

**Definition**. We say that  $F: X^* \to Y$  is *preassociative* if

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Examples: 
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
  
 $F_n(\mathbf{x}) = |\mathbf{x}|$ 

Associative functions are preassociative

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{xyz}) = F(\mathbf{xy'z})$$

#### Fact

If  $F: X^* \to X$  is associative, then it is preassociative

*Proof.* Suppose 
$$F(\mathbf{y}) = F(\mathbf{y}')$$
  
Then  $F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) = F(\mathbf{x}F(\mathbf{y}')\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$ 

Construction of preassociative functions

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{xyz}) = F(\mathbf{xy'z})$$

Proposition (right composition)

If  $F: X^* \to Y$  is preassociative, then so is the function

$$x_1 \cdots x_n \mapsto F_n(g(x_1) \cdots g(x_n))$$

for every function  $g \colon X \to X$ 

**Example**: 
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
  $(X = Y = \mathbb{R})$ 

Construction of preassociative functions

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{xyz}) = F(\mathbf{xy'z})$$

**Proposition** (left composition)

If  $F: X^* \to Y$  is preassociative, then so is

$$g \circ F : \mathbf{x} \mapsto g(F(\mathbf{x}))$$

for every function  $g \colon Y \to Y$  such that  $g|_{\operatorname{ran}(F)}$  is one-to-one

**Example**: 
$$F_n(\mathbf{x}) = \exp(x_1^2 + \dots + x_n^2)$$
  $(X = Y = \mathbb{R})$ 

Construction of preassociative functions

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{xyz}) = F(\mathbf{xy'z})$$

**Proposition** (left composition)

If  $F: X^* \to Y$  is preassociative, then so is

$$g \circ F : \mathbf{x} \mapsto g(F(\mathbf{x}))$$

for every function  $g \colon Y \to Y$  such that  $g|_{\operatorname{ran}(F)}$  is one-to-one

**Example**: 
$$F_n(\mathbf{x}) = \exp(x_1^2 + \dots + x_n^2)$$
  $(X = Y = \mathbb{R})$ 

**Question**: Given a preassociative *F*, which are the *g* such that  $g \circ F$  is preassociative?

## Associative $\iff$ Preassociative with 'constrained' $F_1$

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

#### Proposition

 $F: X^* \to X$  is associative if and only if it is preassociative and  $F_1(F(\mathbf{x})) = F(\mathbf{x}), \qquad \mathbf{x} \neq \varepsilon$ 

## We relax the constraint on $F_1$

Relaxation of  $F_1(F(\mathbf{x})) = F(\mathbf{x}), \ \mathbf{x} \neq \varepsilon$ :

$$\operatorname{ran}(F_{n\leq 1}) = \operatorname{ran}(F)$$

where

$$\operatorname{ran}(F_{n\leq 1}) = \{F_1(x) : x \in X\} \cup \{F(\varepsilon)\}$$
  
$$\operatorname{ran}(F) = \{F(\mathbf{x}) : \mathbf{x} \in X^*\}$$

## Nested classes of preassociative functions



# If $\operatorname{ran}(F_{n\leq 1}) = \operatorname{ran}(F)$

#### Proposition

Let  $F: X^* \to Y$  and  $G: X^* \to Y$  be two preassociative functions such that  $\operatorname{ran}(F_{n\leq 1}) = \operatorname{ran}(F)$ ,  $\operatorname{ran}(G_{n\leq 1}) = \operatorname{ran}(G)$ ,  $F_0 = G_0$ ,  $F_1 = G_1$  and  $F_2 = G_2$ . Then F = G.

## Factorizing preassociative functions with associative ones

### **Theorem** (Factorization)

Let  $F: X^* \to Y$ . The following assertions are equivalent:

(i) F is preassociative and satisfies  $ran(F_{n\leq 1}) = ran(F)$ 

(ii) F can be factorized into

$$F = f \circ H$$

where  $H: X^* \to X$  is associative and  $f: \operatorname{ran}(H) \to Y$  is one-to-one.

## Aczélian semigroups

### Theorem (Aczél 1949)

 $H \colon \mathbb{R}^2 \to \mathbb{R}$  is

- continuous
- one-to-one in each argument
- associative

if and only if

$$H(xy) = \varphi^{-1}(\varphi(x) + \varphi(y))$$

where  $\varphi \colon \mathbb{R} \to \mathbb{R}$  is continuous and strictly monotone

A class of associative functions:

$$H_n(\mathbf{x}) = \varphi^{-1}(\varphi(x_1) + \cdots + \varphi(x_n))$$

## Preassociative functions from Aczélian semigroups

#### Theorem

Let  $F : \mathbb{R}^* \to \mathbb{R}$ . The following assertions are equivalent:

 (i) F is preassociative and satisfies ran(F<sub>n≤1</sub>) = ran(F), F<sub>1</sub> and F<sub>2</sub> are continuous and one-to-one in each argument
 (ii) we have

$$\nabla_n(\mathbf{x}) = \psi(\varphi(\mathbf{x}_1) + \cdots + \varphi(\mathbf{x}_n))$$

where  $\varphi\colon\mathbb{R}\to\mathbb{R}$  and  $\psi\colon\mathbb{R}\to\mathbb{R}$  are continuous and strictly monotone

## Open problems

- (1) Find new axiomatizations of classes of preassociative functions from existing axiomatizations of classes of associative functions
- (2) Find interpretations/applications of preassociativity in (fuzzy,modal) logic, artificial intelligence, machine learning, MCDM...
- (3) Given a preassociative F, which are the g such that  $g \circ F$  is preassociative?