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Quasi-Lovász extensions on bounded chains

Miguel Couceiro
Joint work with Jean-Luc Marichal

Université Paris-Dauphine
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Motivation

Let X and Y be “structured” sets.

Aggregation function: A mapping g : X n → Y that

• merges elements of X into an element of Y

• “preserves” X ’s structure in Y ’s.

Traditionally: X and Y are ordered and g is “order-preserving” (nondecreasing)

Well-known examples:

• Choquet integral: Numerical aggregation over R

• Sugeno integral: Ordinal aggregation over chains C

Problem: Mixed aggregation e.g.: g : Cn → R
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Motivation: decision under uncertainty

Decomposable model:

• Alternatives over Cn (e.g. mental states over the year n = 12)

• Evaluation of each state by a local utility function φ : C → R

• Overall evaluation by a global utility function U : Cn → R:

U(x1, . . . , xn) := C(φ(x1), . . . , φ(xn))

where C: Rn → R is a Choquet integral

Problems: Given g : Cn → R

1. Decide if g is Choquet decomposable

2. Determine all possible Choquet decompositions
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Order simplexes

Let σ be a permutation on [n] = {1, . . . , n} (σ ∈ Sn) :

• Rn
σ :=

{
x = (x1, . . . , xn) ∈ Rn : xσ(1) ⩽ · · · ⩽ xσ(n)

}
• {0, 1}nσ := Rn

σ ∩ {0, 1}n

Example : n = 2 (2! = 2 permutations ⇒ 2 simplexes!)

-

6

x1 ⩽ x2

x1 ⩾ x2

�
�
�

�
�
�
�

��

In general: Rn has n! simplexes and each contains exactly n+ 1 points of {0, 1}n
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Lovász extension

Let ϕ : {0, 1}n → R be a (pseudo-Boolean) function s.t. ϕ(0) = 0.

.
Definition (Lovász, 1983)
..

......

The Lovász extension of ϕ : {0, 1}n → R is the function fϕ : Rn → R whose restriction
to each Rn

σ is the unique linear function that interpolates ϕ at the n+ 1 points of {0, 1}nσ

In particular: fϕ|{0,1}n = ϕ
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Lovász extensions: Example

Example :

-

6

r r
r r

ϕ(0, 0) = 0 ϕ(1, 0) = 1

ϕ(0, 1) = 5 ϕ(1, 1) = 3

�
�
�
�

�
��

x1 ⩾ x2 ⇒ fϕ(x1, x2) = x1 + 2x2

x1 ⩽ x2 ⇒ fϕ(x1, x2) = −2x1 + 5x2

On R2 :

fϕ(x1, x2) = x1 + 5x2 − 3min(x1, x2)
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Representations of Lovász extensions

In general: fϕ can always be written in the form

fϕ(x) = ∑
S⊆[n]

aϕ(S) min
i∈S

xi (x ∈ Rn)

where the coefficients aϕ(S) are given by the Möbius transform of ϕ

Consequence: fϕ is always piecewise linear and continuous!

...and on each order simplex Rn
σ?
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Choquet integral as a Lovász extension

On each order simplex Rn
σ:

fϕ(x) = fϕ(0) + ∑
i∈[n]

xσ(i)

(
fϕ(1{σ(i),...,σ(n)})− fϕ(1{σ(i+1),...,σ(n)})

)
(x ∈ Rn

σ)

.
Definition
..
......A Choquet integral is a nondecreasing Lovász extension (vanishing at 0).
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Generalization: Quasi-Lovász extensions

Let C be a chain with minimum 0 and maximum 1.

.
Definition
..

......

A quasi-Lovász extension is a function U : Cn → R decomposable as

U(x1, . . . , xn) := f (φ(x1), . . . , φ(xn)) where

...1 f : Rn → R is a Lovász extension (f = fϕ for some ϕ)

...2 φ : C → R is a nondecreasing function verifying φ(0) = 0.

In DMU: φ is a local utility function and f a Choquet integral.

Problem: Axiomatize the class of quasi-Lovász extensions
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Comonotonic modularity

As before: For σ ∈ Sn, let Cn
σ :=

{
(x1, . . . , xn) ∈ Cn : xσ(1) ⩽ · · · ⩽ xσ(n)

}

.
Definition
..

......

g : Cn → R is comonotonically modular if for all x, x′ ∈ Cn
σ , for some σ ∈ Sn,

g(x) + g (x′) = g (x∨ x′) + g(x∧ x′)

NB: (quasi-)Lovász and “(quasi-)lattice polynomials” are comonotonically modular!

Recall: lattice polynomials generalize Sugeno integrals...

NB2: U is comonotonically modular iff so is U0 = U −U(0)
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Description of comonotonically modular functions

.
Theorem: For any U : Cn → R T.F.A.E.:
..

......

1. U is comonotonically modular

2. There is g : Cn → R s.t. ∀ σ ∈ Sn and ∀ x ∈ Cn
σ ,

U0(x) = ∑
i∈[n]

(
g(xσ(i) ∧ 1{σ(i),...,σ(n)})− g (xσ(i) ∧ 1{σ(i+1),...,σ(n)})

)

3. U is comonotonically separable: ∀ σ ∈ Sn, ∃ gσ
i : C → R, i ∈ [n], s.t.

U(x) =
n

∑
i=1

gσ
i (xσ(i)) for x ∈ Cn

σ .

NB: (quasi-)Lovász and (quasi-)lattice polynomials are comonotonically separable!
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Axiomatization of quasi-Lovász extensions

.
Definition
..

......

g : Cn → R is weakly homogeneous if there is an order-preserving φ : C → R s.t.

φ(0) = 0 and g(x ∧ 1A) = φ(x)g(1A) for every x ∈ C and A ⊆ [n]

.
Theorem: For any nonconstant U : Cn → R T.F.A.E.:
..

......

1. U is a quasi-Lovász with U0(1A) ̸= 0 for some A ⊆ [n].

2. U is comonotonically modular and U0 is weakly homogeneous

3. There is an order-preserving φU : C → R s.t.

φU (0) = 0 and φU (1) = 1 and U = fU |{0,1}n ◦ φU

Moreover: We can choose φU (x) = U0(x∧1A)
U0(1A)

.
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Decompositions of quasi-Lovász extensions

Question: Is the previous decomposition unique?

.
Theorem: For a quasi-Lovász extension U = f ◦ φ T.F.A.E.:
..

......

1. U is nonconstant

2. There is A ⊆ [n] s.t. U0(1A) ̸= 0

3. There is a > 0 s.t. φ = a φU and f0 = f − f (0) = 1
a (fU |{0,1}n )0.
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Thank you for your attention!


