

Quasi-Lovász extensions on bounded chains

Miguel Couceiro

Joint work with Jean-Luc Marichal

Université Paris-Dauphine

Let X and Y be “structured” sets.

Aggregation function: A mapping $g: X^n \rightarrow Y$ that

- merges elements of X into an element of Y
- “preserves” X ’s structure in Y ’s.

Traditionally: X and Y are ordered and g is “order-preserving” (nondecreasing)

Well-known examples:

- **Choquet integral:** Numerical aggregation over \mathbb{R}
- **Sugeno integral:** Ordinal aggregation over chains C

Problem: Mixed aggregation e.g.: $g: C^n \rightarrow \mathbb{R}$

Decomposable model:

- Alternatives over C^n (e.g. mental states over the year $n = 12$)
- Evaluation of each state by a local utility function $\varphi: C \rightarrow \mathbb{R}$
- Overall evaluation by a global utility function $U: C^n \rightarrow \mathbb{R}$:

$$U(x_1, \dots, x_n) := C(\varphi(x_1), \dots, \varphi(x_n))$$

where $C: \mathbb{R}^n \rightarrow \mathbb{R}$ is a Choquet integral

Problems: Given $g: C^n \rightarrow \mathbb{R}$

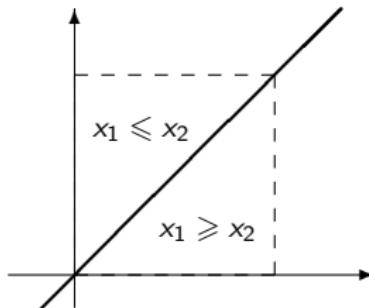
1. Decide if g is Choquet decomposable
2. Determine all possible Choquet decompositions

- I Preliminaries: order simplexes
- II Choquet integrals as Lovász extensions
- III Generalization: quasi-Lovász extensions
- IV Axiomatizations of quasi-Lovász extensions
- V Decompositions of quasi-Lovász extensions

Let σ be a permutation on $[n] = \{1, \dots, n\}$ ($\sigma \in S_n$) :

- $\mathbb{R}_\sigma^n := \left\{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : x_{\sigma(1)} \leq \dots \leq x_{\sigma(n)} \right\}$
- $\{0, 1\}_\sigma^n := \mathbb{R}_\sigma^n \cap \{0, 1\}^n$

Example : $n = 2$ ($2! = 2$ permutations \Rightarrow 2 simplexes!)



In general: \mathbb{R}^n has $n!$ simplexes and each contains exactly $n + 1$ points of $\{0, 1\}^n$

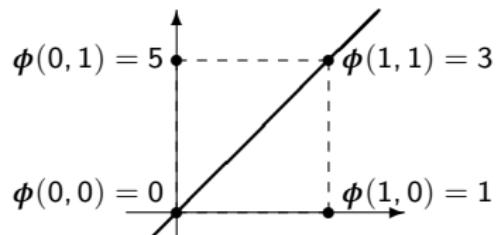
Let $\phi: \{0, 1\}^n \rightarrow \mathbb{R}$ be a (pseudo-Boolean) function s.t. $\phi(\mathbf{0}) = 0$.

Definition (Lovász, 1983)

The **Lovász extension** of $\phi: \{0, 1\}^n \rightarrow \mathbb{R}$ is the function $f_\phi: \mathbb{R}^n \rightarrow \mathbb{R}$ whose restriction to each \mathbb{R}_σ^n is the unique linear function that interpolates ϕ at the $n+1$ points of $\{0, 1\}_\sigma^n$

In particular: $f_\phi|_{\{0, 1\}^n} = \phi$

Example :



$$x_1 \geq x_2 \quad \Rightarrow \quad f_\phi(x_1, x_2) = x_1 + 2x_2$$

$$x_1 \leq x_2 \quad \Rightarrow \quad f_\phi(x_1, x_2) = -2x_1 + 5x_2$$

On \mathbb{R}^2 :

$$f_\phi(x_1, x_2) = x_1 + 5x_2 - 3 \min(x_1, x_2)$$

In general: f_ϕ can always be written in the form

$$f_\phi(\mathbf{x}) = \sum_{S \subseteq [n]} a_\phi(S) \min_{i \in S} x_i \quad (\mathbf{x} \in \mathbb{R}^n)$$

where the coefficients $a_\phi(S)$ are given by the **Möbius transform** of ϕ

Consequence: f_ϕ is always piecewise linear and continuous!

...and on each order simplex \mathbb{R}_σ^n ?

On each order simplex \mathbb{R}_{σ}^n :

$$f_{\phi}(\mathbf{x}) = f_{\phi}(\mathbf{0}) + \sum_{i \in [n]} x_{\sigma(i)} (f_{\phi}(\mathbf{1}_{\{\sigma(i), \dots, \sigma(n)\}}) - f_{\phi}(\mathbf{1}_{\{\sigma(i+1), \dots, \sigma(n)\}})) \quad (\mathbf{x} \in \mathbb{R}_{\sigma}^n)$$

Definition

A **Choquet integral** is a nondecreasing Lovász extension (vanishing at 0).

Let C be a chain with minimum 0 and maximum 1.

Definition

A **quasi-Lovász extension** is a function $U: C^n \rightarrow \mathbb{R}$ decomposable as

$$U(x_1, \dots, x_n) := f(\varphi(x_1), \dots, \varphi(x_n)) \quad \text{where}$$

- 1 $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is a Lovász extension ($f = f_\phi$ for some ϕ)
- 2 $\varphi: C \rightarrow \mathbb{R}$ is a nondecreasing function verifying $\varphi(0) = 0$.

In DMU: φ is a local utility function and f a Choquet integral.

Problem: Axiomatize the class of quasi-Lovász extensions

As before: For $\sigma \in S_n$, let $C_\sigma^n := \{(x_1, \dots, x_n) \in C^n : x_{\sigma(1)} \leq \dots \leq x_{\sigma(n)}\}$

Definition

$g: C^n \rightarrow \mathbb{R}$ is **comonotonically modular** if for all $\mathbf{x}, \mathbf{x}' \in C_\sigma^n$, for some $\sigma \in S_n$,

$$g(\mathbf{x}) + g(\mathbf{x}') = g(\mathbf{x} \vee \mathbf{x}') + g(\mathbf{x} \wedge \mathbf{x}')$$

NB: (quasi-)Lovász and “(quasi-)lattice polynomials” are comonotonically modular!

Recall: lattice polynomials generalize Sugeno integrals...

NB2: U is comonotonically modular **iff** so is $U_0 = U - U(\mathbf{0})$

Theorem: For any $U: C^n \rightarrow \mathbb{R}$ T.F.A.E.:

1. U is comonotonically modular
2. There is $g: C^n \rightarrow \mathbb{R}$ s.t. $\forall \sigma \in S_n$ and $\forall \mathbf{x} \in C_\sigma^n$,

$$U_0(\mathbf{x}) = \sum_{i \in [n]} (g(x_{\sigma(i)}) \wedge \mathbf{1}_{\{\sigma(i), \dots, \sigma(n)\}}) - g(x_{\sigma(i)} \wedge \mathbf{1}_{\{\sigma(i+1), \dots, \sigma(n)\}})$$

3. U is comonotonically separable: $\forall \sigma \in S_n, \exists g_i^\sigma: C \rightarrow \mathbb{R}, i \in [n],$ s.t.

$$U(\mathbf{x}) = \sum_{i=1}^n g_i^\sigma(x_{\sigma(i)}) \quad \text{for } \mathbf{x} \in C_\sigma^n.$$

NB: (quasi-)Lovász and (quasi-)lattice polynomials are comonotonically separable!

Definition

$g: C^n \rightarrow \mathbb{R}$ is **weakly homogeneous** if there is an order-preserving $\varphi: C \rightarrow \mathbb{R}$ s.t.

$$\varphi(0) = 0 \quad \text{and} \quad g(x \wedge \mathbf{1}_A) = \varphi(x)g(\mathbf{1}_A) \quad \text{for every } x \in C \text{ and } A \subseteq [n]$$

Theorem: For any nonconstant $U: C^n \rightarrow \mathbb{R}$ T.F.A.E.:

1. U is a quasi-Lovász with $U_0(\mathbf{1}_A) \neq 0$ for some $A \subseteq [n]$.
2. U is comonotonically modular and U_0 is weakly homogeneous
3. There is an order-preserving $\varphi_U: C \rightarrow \mathbb{R}$ s.t.

$$\varphi_U(0) = 0 \quad \text{and} \quad \varphi_U(1) = 1 \quad \text{and} \quad U = f_{U|_{\{0,1\}^n}} \circ \varphi_U$$

Moreover: We can choose $\varphi_U(x) = \frac{U_0(x \wedge \mathbf{1}_A)}{U_0(\mathbf{1}_A)}$.

Question: Is the previous decomposition unique?

Theorem: For a quasi-Lovász extension $U = f \circ \varphi$ T.F.A.E.:

1. U is nonconstant
2. There is $A \subseteq [n]$ s.t. $U_0(\mathbf{1}_A) \neq 0$
3. There is $a > 0$ s.t. $\varphi = a \varphi_U$ and $f_0 = f - f(\mathbf{0}) = \frac{1}{a} (f_{U|_{\{0,1\}^n}})_0$.

Thank you for your attention!