
A Strand Space Approach to Provable Anonymity

Yongjian Li1 and Jun Pang2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences

2 Faculty of Science, Technology and Communication, University of Luxembourg

Abstract. We formalize in the strand space theory the notion of prov-
able anonymity. Bundle in a strand space is used to formalize a session
of a protocol. Behaviors of an observer can then be formalized as ex-
tensions of a bundle. Reinterpretation function can be naturally derived
from the mapping from one message term of an edge of a bundle in a
strand space to that in another strand space. We formally define ob-
servational equivalence on bundles and use it to formalise anonymity
properties. The novelty of our theory lies in the observational model and
the construction of reinterpretation functions in the strand space theory.
We build our theory in Isabelle/HOL to achieve a mechanical framework
for the analysis of anonymity protocols.

1 Introduction

Nowadays, people are getting used to carry out their daily activities through
networked distributed systems, e.g., online social networks, location-based ap-
plication, providing electronic services to users. In these systems, people become
more and more concerned about their privacy and how their personal informa-
tion have been used. Anonymity is one of the desired properties of such systems,
referring to the ability of a user to own some data or take some actions without
being tracked down. For example, a user wants to keep anonymous when visiting
a particular website or posting a message on a public bulletin board.

Due to its subtle nature, anonymity has been the subject of many research
paper. For instance, the proposed definitions aim to capture different aspects
of anonymity (either possibilistic [1–5] or probabilistic [6–11]). Formal verifica-
tion of anonymity has been applied to a number of application domains, in-
cluding electronic voting [12, 13], electronic cash protocols [14], file sharing [15,
16] and electronic healthcare [17]. However, automatic approaches to the for-
mal verification of anonymity have mostly focused on the model checking ap-
proach on systems with fixed configurations [1, 6, 4, 9], while theorem proving
seems to be a more suitable approach when dealing with systems of infinite state
spaces [18]. In this paper, we extend our previous effort on formalising provable
anonymity in a powerful general-purpose theorem prover, Isabelle/HOL [19], to
semi-automatically verify anonymity properties.

In the epistemic framework of provable anonymity [3], the notion of obser-
vational equivalence of traces plays an important role. Essentially, two traces
are considered equivalent if an intruder cannot distinguish them. The distin-
guishing ability of the intruder is formalized as the ability to distinguish two
messages, which is in turn based on message structures and relations between
random looking messages. The notion of reinterpretation function is central in
the provable anonymity framework – proving two traces equivalent essentially is
boiled down to prove the existence of a reinterpretation function. Our formaliza-
tion [20] of provable anonymity in Isabelle/HOL relies on inductive definitions
of message distinguishability and observational equivalence on traces observed
by the intruder. This makes our theory differ from its original proposal.

Our main contribution of this paper is twofold: a proposal of formalizing
provable anonymity in the strand space theory [21–23] and its implementation
in a theorem prover. We briefly discuss the novelties of our work below:

– We define an observational model of a passive intruder, meaning that the
intruder does not actively modify the messages or inject new messages. The
intruder only analyzes or synthesizes new messages to tell the difference be-
tween his observation on sessions. These analyzing and synthesizing actions
are naturally represented by extensions of a bundle by adding separation
and decryption (or concatenation and encryption) actions.

– We propose a notion of reinterpretation mapping, which can be naturally
derived from the mapping from one message term of an edge of a bundle in
a strand space to that in another strand space. Intuitively, a reinterpretation
mapping requires that the relation, composed of the corresponding message
pairs, should be single valued. Furthermore, such a reinterpretation mapping
should remain valid after applying the analyzing and synthesizing extension
operations of a bundle. Combining the concepts of reinterpretation mapping
with that of extensions of a bundle, we propose an (adapted) definition of
observational equivalence between two sessions, which are represented by a
bundle in two strand spaces. Thus in the framework, we naturally incorporate
the concept of reinterpretation function which is extensively used in [3].

– We proceed to formalize anonymity properties, i.e., sender anonymity and
unlinkability, in an epistemic framework as in [3]. We then define the se-
mantics of an anonymity protocol, e.g., Onion Routing [24, 25], in the strand
space theory, and formally prove that the protocol realizes sender anonymity
and unlinkability.

– We build our theory in Isabelle/HOL [19] to have a mechanical framework
for the analysis of anonymity protocols. We illustrate the feasibility of the
mechanical framework through the case study on Onion Routing.

In this paper, we assume readers have some knowledge with Isabelle/HOL
syntax and present our formalization directly without elaborated explanation.
Notably, a function in Isabelle/HOL syntax is usually defined in a curried form
instead of a tuple form, that is, we often use the notation f x y to stand for
f(x, y). We also use the notation [[A1;A2; ...;An]] =⇒ B to mean that with
assumptions A1, . . . , An, we can derive a conclusion B.

2 Preliminaries

The basic notations and terminologies are mainly taken from [23].

2.1 Messages

The set of messages is defined using the BNF notation:

h ::= Agent A | Nonce N | Key K | MPair h1 h2 | Crypt K h

where A is an element from a set of agents, N from a set of nonces, and K from
a set of keys. Here we use K−1 to denote the inverse key of K. MPair h1 h2 is
called a composed message. Crypt K h represents the encryption of message h
with K. We use the free encryption assumption, where Crypt K h = Crypt K ′ h′

if and only if K = K ′ and h = h′. The set of all messages is denoted by Messages.
Terms of the form Agent A, Nonce N , or Key K are said to be atomic. The set
of all atomic messages is denoted by Atoms. A message h is a text message if
h 6= Key K for any K. The set of all atomic text messages is denoted by T.

In an asymmetric-key protocol model, an agent A has a public key pubK A,
which is known to all agents, and a private key priK A. pubK A is the inverse
key of priK A ((priK A)−1 = pubK A), and vice versa. In a symmetric-key model,
each agent A has a symmetric key shrK A. The inverse key of shrK A is itself
((shrK A)−1 = shrK A). We also assume that (1) asymmetric keys and symme-
try keys are disjoint; (2) the functions shrK, pubK and priK are injective, e.g.,
if shrK A = shrK A′ then A = A′. The public key, private key, and shared key
of an agent are long-term because the agent holds them forever. In contrast,
some keys are created and used only in a session by some agents, and these
keys are short-term. In the following, we abbreviate Crypt K h as {|h|}K , and
MPair h1 . . .MPair hn−1 hn as {|h1, . . . , hn−1, hn|}. Such abbreviations are sup-
ported in Isabelle by syntax translation [19]. In order to reduce the number of
{| or |} for readability, we abbreviate Crypt K (MPair h1 . . .MPair hn−1 hn) as
{|h1, . . . , hn−1, hn|}K in this paper.

2.2 Strands and Strand Space

Actions. The set of actions that agents can take during an execution of a
protocol include send and receive actions. We denote send and receive actions
by a set of two signs Sign = {+,−}, respectively.
Events. An event is a pair (σ, t), where σ ∈ Sign and t ∈ Messages.
Strands and strand spaces. A protocol defines a sequence of events for each
agent’s role. A strand represents a sequence of an agent’s actions in a particular
protocol run, and is an instance of a role. A strand space is a mapping from a
strand set Σ to a trace SP : Σ ⇒ (Sign×Messages) list.

– A node is a pair (s, i), with s ∈ Σ and 0 ≤ i < length (SP s). We use
n ∈ strand s to denote that a node n = (s, i) belongs to the strand s. The
set of all nodes in SP is denoted as Domain SP . Namely, Domain SP=
{(s, i).s ∈ Σ ∧ i < length (SP s)}.

– If n = (s, i) and (SP s)!i = (σ, g), where (SP s)!i means the i-th element in
the strand s. Then we define strand SP n, index SP n, term SP n and sign n
to be the strand, index, term and sign of the node n respectively, namely
strand SP n = s, index SP n = i, term n SP = g and sign n = σ. A node is
positive if it has sign +, and negative if it has sign −.

– If n, n′ ∈ Domain SP , the relation n⇒SP n′ holds between nodes n and n′

if n = (s, i) and n′ = (s, i+1). This represents event occurring on n followed
by that occurring on n′.

– If n, n′ ∈ Domain SP , the relation n →SP n′ holds for nodes n and n′ if
strand SP n 6= strand SP n′, term SP n = term SP n′, sign SP n = +
and sign SP n′ = −. This represents that n sends a message and n′ receives
the message. Note that we place an additional restriction on the relation →
than that in [21, 22], we require strand SP n 6= strand SP n′, i.e., n and n′

are in different strands, which means that actions of sending or receiving a
message can only occur between different strands.

– A term g originates in a strand space from a node n ∈ Domain SP iff
sign SP n = + and g < term SP n, and whenever n′ precedes n on the same
strand, g 6< term SP n′. We write it originate SP g n.

– A term g uniquely originates in a strand space from node n iff g originates
on a unique node n. Nonces and other freshly generated terms are usually
uniquely originated. We write it uniqOrig SP g n.

Bundles. A bundle b = (Nb, Eb) in a strand space SP is a finite subgraph of
the graph (Domain SP, (→SP ∪ ⇒SP)), representing a protocol execution under
some configuration. Nb is the set of nodes, and Eb is the set of the edges incident
with the nodes in Nb, and the following properties hold:

– b is an acyclic finite graph;
– If the sign of a node n is −, and n ∈ Nb, then there is a unique positive node
n′ such that n′ ∈ Nb, n

′ →SP n and (n′, n) ∈ Eb;
– If n′ ⇒SP n and n ∈ b, then n′ ∈ Nb and (n′, n) ∈ Eb.

The set of all the bundles in a strand space SP is denoted as bundles SP .
Causal precedence. Let b be a graph, we define m ≺b n for (m,n) ∈ E+

b , and
m �b n for (m,n) ∈ E∗b . ≺b and �b represent causal precedence between nodes.

From the definition of a bundle b in a strand space SP , we can derive that
it is a casually well-founded graph [21, 22].

Lemma 1. For a bundle b in a strand space SP , b is casually well-founded
graph, and every non-empty subset of the nodes in it has ≺b-minimal members.

2.3 Intruder model

We discuss anonymity properties based on observations of the intruder. The
Dolev-Yao intruder model [26] is considered standard in the field of formal sym-
bolic analysis of security protocols – all messages sent on the network are read by
the intruder; all received messages on the network are created or forwarded by

the intruder; the intruder can also remove messages from the network. However,
in the analysis of anonymity protocols, often a weaker attacker model is assumed
– the intruder is passive in the sense that he observes all network traffic, but
does not actively modify the messages or inject new messages – the intruder
gets a message issued by an agent from the network, then stores it for traffic
analysing, and forwards it directly to its intended destination. In the strand
space model, the above behavior is typically modelled by a Tee strand. Fur-
thermore, the copied messages are only used internally for checking observation
equivalence between protocol sessions.

In the study of the anonymity, we are more interested in the observational
equivalence between sessions. A session is modeled by a bundle in a strand space.
Observational equivalence between two session bundles is modelled by comparing
the similarity between bundles which are extended from the above two bundles
by analyzing and synthesizing actions. The observational equivalence holds if a
one-to-one mapping always holds between the corresponding extended bundles.

2.4 Protocol Modeling using Strands

A protocol usually contains several roles, such as initiators, responders and
servers. The sequence of actions of each regular agent acting some role in a
protocol session is pre-defined by the protocol and represented as a parameter-
ized strand. Parameters usually include agent names and nonces. Informally, we
denote a parameter strand acting some role by role[parameter list]. The strands
of the legitimate agents are referred to as regular strands.

A bundle can also contain penetrator strands. We explain them in more
details in the next section. We now use the Onion Routing protocol [24, 25]
(see Figure 1) as an example to illustrate the modelling strategy using strands.
In this figure, we abbreviate Agent A as A, Nonce N as N , and pubK A as
PKA. This figure uses the case when the threshold k of the router is 2, i.e.,
when the router has received two messages, then it turns into the status of
forwarding messages after peeling the received messages. There are four roles in
this protocol: OnionInit1, OnionInit2, OnionRouter and OnionRecv. The strands
of these roles are defined below:

– OnionInit1 SP s A M Y N ′ N , if the agent acting the role is A and the trace
of s in the strand space SP is [(+, {| N ′, Y, {| N |}pubK Y |}pubK M)].

– OnionInit2 SP s A M N , if the agent acting the role is A and the trace of s
in the strand space SP is [(+, {|N |}pubK M)].

– OnionRouter SP s M k, if the agent acting the role is M and the trace of s
in the strand space SP satisfies:
(∀ i.0 ≤ i < k −→ ((∃ N ′ N Y.term SP (s, i) = {| N ′, Y, {| N |}pubK Y |}pubK M)
∨ (∃ N.term SP (s, i) = {|N |}pubK M))) ∧
(∀i.k ≤ i < length (SP s) −→ (∃ N N ′ Y j.(0 < j < k∧ term SP (s, j) =
{| N ′, Y, {| N |}pubK Y |}pubK M ∧term SP (s, i) = {|N |}pubK Y))).

– OnionRecv SP s Y N , if the trace of s in the strand space SP is [(−, {|N |}pubK Y)].

A

B

M

Y0

Y1

Fig. 1. Onion routing with k = 2.

2.5 Penetrator

The symbol bad denotes the set of all penetrators. If an agent is not in the set bad,
then it is regular. The strands of the penetrators are referred to as penetrator
strands. If a strand is not a penetrator one, it is referred to as a regular strand.
We say a node is regular if it is at a regular strand.

There is a set of messages known to all penetrators initially, denoted as initKP,
containing agent names, public keys of all agents, private keys of all penetrators,
and symmetric keys initially shared between the penetrators and the server.

In the classic strand space theory, a penetrator can intercept messages and
generate messages that are computable from its initial knowledge and the mes-
sages it intercepts. These actions are modeled by a set of penetrator strands,
and they represent atomic deductions. More complex deduction actions can be
formed by connecting several penetrator strands together.

Definition 1. A penetrator’ trace relative to initKP is one of the following,
where initKP is the initial knowledge of penetrator:

– text message - M a: [(+, a)], where a ∈ T and a ∈ initKP.
– issuing known key - K K ′ : [(+,Key K ′)], where Key K ′ ∈ initKP.
– concatenation - C g h : [(−, g), (−, h), (+, {|g, h|})].
– separation - S g h: [(−, {|g, h|}), (+, g), (+, h)].
– encryption - E h K: [(−,Key K), (−, h), (+, {|h|}K)].
– decryption - D h K: [(−,Key K−1), (−, {|h|}K), (+, h)].
– Flush - F g: [(−, g)].
– Tee - T g: [(−, g) , (+, g) , (+, g)].

Roughly speaking, penetrator strands can represent two kinds of actions:
analyzing messages (a combination of K and D strands, or just a separation
strand); synthesizing messages (a combination of K and E strands, or just a
concatenation strand). Tee strand is just for copying a message.

A bundle can be extended by adding more penetrator actions to a new bundle.
The set of extended bundles of a bundle b in a strand space SP is inductively

defined in Isabelle/HOL below. Intuitively, a bundle in a strand space is a formal
representation of a protocol session. If a bundle b′ ∈ extendByAnalz SP b (or
b′ ∈ extendBySynth SP b), then b′ contains the same behaviors of regular agents
as those in session b. However, b′ contains more information which is revealed
by the penetrator’s analyzing (or synthesizing) actions.

In our framework, in order to check the observational equivalence between
two bundles, we not only need to compare the correspondence of messages in
two sessions, but also need to check the the correspondence of messages in two
sessions which are extended from the original two sessions.

inductive set extendByAnalz:: strand space ⇒ graph ⇒ graph set

for SP::strand space and b::graph where

itSelf: b ∈ bundles SP =⇒ b ∈ extendByAnalz SP b;

| Add Decrypt: [[b’ ∈ extendByAnalz SP b;

Is K strand SP ks; (ks,0) /∈ (nodes b’);

Is D strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’); (s,2) /∈ (nodes b’);

(ks,0) → SP (s,0); n ∈ nodes b’; n → SP (s,1)]]
=⇒ extendGraphByAdd1 (extendGraphByAdd2 b’ ks)

s (ks,0) n ∈ extendByAnalz SP b

| Add SepOrTee: [[b’ ∈ extendByAnalz SP b;

Is Sep strand SP s ∨ Is Tee strand SP s;

(node sign SP n) = +; n ∈ (nodes b’);

n → SP (s,0); (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’); (s,2) /∈ (nodes b’)]]
=⇒ extendGraphByAdd3 b’ s n ∈ extendByAnalz SP b

inductive set extendBySynth:: strand space ⇒ graph ⇒ graph set

for SP::strand space and b::graph where

itSelf: b ∈ bundles SP =⇒ b ∈ extendBySynth SP b

| Add Encrypt: [[b’ ∈ extendBySynth SP b;

Is K strand SP ks; (ks,0) /∈ (nodes b’);

Is E strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’);(s,2) /∈ (nodes b’);

(ks,0) → SP (s,0); n ∈ nodes b’; n → SP (s,1)]]
=⇒ extendGraphByAdd1 (extendGraphByAdd2 b’ ks)

s (ks,0) n ∈ extendBySynth SP b

| Add Cat: [[b’ ∈ extendBySynth SP b;

Is Cat strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’);(s,2) /∈ (nodes b’);

n ∈ nodes b’; n → SP (s,0); n’ ∈ nodes b’;

n’ → SP (s,1); n 6= n’

]] =⇒ extendGraphByAdd1 b’ s (ks,0) n ∈ extendBySynth SP b

| Add Tee: [[b’ ∈ extendBySynth SP b;

Is Tee strand SP s; (node sign SP n) = +;

n ∈ (nodes b’); n → SP (s,0);

(s,0) /∈ (nodes b’); (s,1) /∈ (nodes b’);

(s,2) /∈ (nodes b’)]] =⇒ extendGraphByAdd3 b’ s n ∈ extendBySynth SP b

3 Message Reinterpretation and Observational
Equivalence on Bundles

We give a definition of message mapping from terms of a node set in a strand
space to those of nodes in another strand space as follows:

mapping:: strand space ⇒ strand space ⇒ (node set) ⇒ (msgPair set)

where mapping SP SP’ NodeSet

≡ {p. ∃n. n∈ NodeSet ∧ p= (term SP n, term SP’ n)}

Then we can naturally derive a definition from messages of a node set of
a bundle in a strand space to those in another strand space. A session which
is modeled by a bundle b in a strand space SP , is said to be reinterpreted to
another which is modeled by b in another strand space SP ′, if the following
conditions hold:

– Let r = mapping SP SP ′ (nodes b), single valued r guarantees that an agent
cannot reinterpret any message differently.

– The casual relation of b in strand space SP is the same as that of b in SP ′.

– For a message pair (m,m′) ∈ r, if m is an atomic message, then m = m′. This
means that an agent can uniquely identify a plain-text message he observes.
An agent can only reinterpret the encrypted messages.

The corresponding formalization of Reinterp in Isabelle/HOL is given below.

Reinterp::graph ⇒ strand space ⇒ strand space ⇒ bool where

Reinterp b SP SP’ ≡
let r= mapping SP SP’ (nodes b) in

single valued r ∧
(∀ n1 n2. (n1 → SP n2) −→ (n1 → SP’ n2)) ∧
(∀ n1 n2. (n1 ⇒ SP n2) −→ (n1 ⇒ SP’ n2)) ∧
(∀ n. n ∈ nodes b

−→ ofAgent SP (strand n)= ofAgent SP’ (strand n)) ∧
(∀ m m’. Is atom m −→ (m,m’) ∈ r −→ m = m’)

Next lemma says that b is also a bundle in SP ′ if b is a bundle in SP and
Reinterp b SP SP ′.

Lemma 2. [[Reinterp b SP SP ′; b ∈ bundles SP]]=⇒ b ∈ bundles SP ′

With the concepts of reinterpretation and the extensions of bundles, we can
formalize the definition of observational equivalence between sessions as follows:

obsEquiv::graph ⇒ strand space ⇒ strand space ⇒ bool where

obsEquiv b SP SP’ ≡
∀ b’ b’’. b’ ∈ (extendByAnalz SP b) −→
b’’ ∈ (extendBySynth SP b’)−→
(b’ ∈ extendByAnalz SP’ b ∧
b’’ ∈ extendBySynth SP’ b’ ∧ Reinterp b’ SP SP’)

This definition obsEquiv means that for any extension b′ of the bundle b,
the reinterpretation relation will be kept between the two sessions which are
modelled by b′ in strand space SP and SP ′ respectively.

Remark 1. The intuition behind the above definition is that messages in two
sessions look the same to an agent if they are the same for the messages the
agent understands and if a message in one sequence looks like a random bit-
string to the agent, then the corresponding message in the other sequence also
looks like a random bit-string. In detail,

1. For a plain-text, if the agent observes it in an action of a session, then he
should observe the exact same message in the corresponding action of the
other session.

2. A message looks like a random bit-string if the decryption key is not pos-
sessed by the agent. Then the corresponding message should also be like a
random bit-string, which means that it is also a message encrypted by a key
whose inverse key is not possessed by the observer.

3. The reinterpretation should be preserved by the synthesizing and analyz-
ing operations on the observed messages. In the strand space theory, these
operations are modelled by the penetrator strands, thus the preservation
is checked by comparing the corresponding messages mapping from an ex-
tended session to another extended session which are extended by the same
similar penetrator strand.

In the work of Garcia et al. [3], a reinterpretation function between two mes-
sage sequences is used as a underlining concept. In our work, the single-valued
requirement of the message mapping between two bundles gives a sufficient con-
dition for the existence of a reinterpretation function. Moreover, the bundle
extensions give a mechanical way to derive the reinterpretation function.

4 Anonymity Properties

Using the observational equivalence relations over a set of possible observation
equivalent bundles, we can formally introduce epistemic operators [3] as follows:

diamond :: graph ⇒ strand space set⇒ strand space

⇒ assertONBundle ⇒ bool where

diamond b SPS SP Assert ≡ ∃ SP’. SP’ ∈ SPS

∧ ((obsEquiv b SP SP’) ∧ Assert b SP’)

box :: graph ⇒ strand space set ⇒ strand space

⇒ assertONBundle ⇒ bool where

box b SPS SP Assert ≡
∀ SP’ ∈ SPS. (obsEquiv b SP SP’) −→ (Assert b SP’)

Intuitively, b |= � bs ϕ means that for any bundle b′ in bs, if b′ is obser-
vationally equivalent to b, then b′ satisfies the assertion ϕ. On the other hand,

b |= 3 trs ϕ means that there is a bundle b′ in trs, b′ is observationally equiva-
lent to b and b′ satisfies the assertion ϕ. Now we can formulate some information
hiding properties in our epistemic language. We use the standard notion of an
anonymity set: it is a collection of agents among which a given agent is not
identifiable. The larger this set is, the more anonymous an agent is.

Suppose that b is a bundle of a protocol in which a message m is originated
by some agent. We say that b provides sender anonymity w.r.t. the anonymity
set AS and a set of possible runs if it satisfies:

origInBundle::agent ⇒ msg ⇒ graph ⇒ strand space ⇒ bool where

origInBundle A g b SP ≡
∃ n. n ∈ nodes b ∧ originate SP g n

senderAnonymity::agent set ⇒ msg ⇒ graph

⇒ strand space set⇒ strand space ⇒ bool where

senderAnonymity AS g b SPS SP ≡
(∀ X. X:AS −→ diamond b SPS SP (origInBundle X g))

Here, AS is the set of agents who are under consideration, and SPS is the set
of all the strand spaces where b represents a protocol session. Intuitively, this
definition means that each agent in AS can originate g in a session which is
represented by b in SP . Therefore, this means that B cannot be sure of anyone
who originates this message in the session.

5 A Case Study: Onion Routing

Onion Routing [24, 25] provides both sender and receiver anonymity for com-
munication over the Internet and servers as the basis of the Tor network [27].
Its main idea is based on Chaum’s mix cascades [28] that messages in Onion
Routing have a layered encryption (thus called onions) and travel from source
to destination via a sequence of proxies (called onion routers). Each onion router
can decrypt (or peel) one layer of a received message and forward the remainder
to the next onion router. To disguise the relations between incoming and outgo-
ing messages, an onion router collect incoming messages until it has received k
messages, permutes the messages and sends in batch to their intended receivers.

5.1 Modeling Onion Routing

We model a simplified version of Onion Routing with only one onion router as
done in [3]. We assume a set of users AS and one router M , with M /∈ AS. We
also assume that each agent can send a message before the router M launches a
batch of forwarding process, and the router does not accept any message when
it is forwarding. We define its initiator and receiver and router strands. For
instance, we define the two kinds of an initiator strands as follows:

is initiator1::strand space ⇒ sigma ⇒ agent ⇒ agent ⇒ nat

⇒ nat ⇒ bool where

is initiator1 SP s M Y N0 N ≡
(SP s)=[(+, (Crypt (pubEK M) {|(Nonce N0),(Agent Y),

Crypt (pubEK Y) (Nonce N)|}))]
∧uniqOrig (Nonce N) (s,0)

∧uniqOrig (Nonce N0) (s,0)

is initiator2::strand space ⇒ sigma ⇒ agent ⇒ nat ⇒ bool where

is initiator2 SP s M N ≡
(SP s)=[(+, Crypt (pubEK M) (Nonce N))]

∧uniqOrig (Nonce N) (s,0)

Next we define the strands in a strand space of onion protocol to be the union
of the above kinds strands and penetrator strands.

onionStrandSpec:: agent ⇒ strand space ⇒ bool where

onionStrandSpec M SP≡
∀ s. (Is penetrator strand SP s ∨
(∃ Y N0 N. is initiator1 SP s M Y N0 N) ∨
(∃ N. is initiator2 SP s M N) ∨
(∃ k. is router SP s M k ∧ (ofAgent SP s=M)) ∨
(∃ Y N. is recv SP s Y N)

onionStrandSpaces::agent ⇒ strand space set where

onionStrandSpaces M≡={SP. onionStrandSpec M SP}

5.2 An overview of our proof strategy

In the following sections, we will formalize and prove the anonymity properties
of Onion Routing. Due to the complexity of the epistemic operators in property
definitions, the proof is rather envolved. We give an overview of our formalization
and the main proof steps.

We will formalize the sender anonymity of Onion Routing in the view of a
Spy for a session w.r.t. a set of honest agents and all possible equivalent bun-
dles. Consider a session, which is modelled by a bundle b in a strand space SP ,
according to the definitions of epistemic operators, which are used in the defini-
tion of sender anonymity, we need to construct another strand space SP ′ which
satisfies the following two conditions:

(1) SP ′ is still an Onion routing strand space.

(2) b in strand space SP is observationally equivalent to b in SP ′. That is
to say, obsEquiv b SP SP ′. In order to show this, by the definition of
obsEquiv, we need to prove that for any bundle b′ ∈ extendByAnalz SP b,
b′′ ∈ extendBySynth SP ′ b′ and Reinterp b′′ SP SP ′.

Whether two sessions are observationally equivalent for a protocol depends on
the knowledge of the intruder after his observation of the two sessions. Therefore,

we need to discuss some secrecy upon on the intruder’s knowledge. We introduce
a new predicate:

nonLeakMsg g M ≡ ∀ B N0 N.(g = (Crypt (pubK M)
{|Nonce N0,Agent B,Crypt (pubK B)(Nonce N)|})) −→ (B /∈ bad ∨ N0 6= N)

Formally, nonLeakMsg m M specifies that if a message m has the form of
Crypt (pubK M) {|Nonce N0,Agent B,Crypt (pubK B)(Nonce N)|}, then either
B /∈ bad or N0 6= N . This specifies a non-leakage condition of nonce part N0

in a message of the aforementioned form which is sent to the router even if its
nonce part N is forwarded to the intruder.

5.3 Message swapping

In this section, we present a method for the construction of an observationally
equivalent session.

The swap function. We define a function swapMsg g h msg, which swaps
g with h if either g or h occurs in msg. Then we extend the swap operation
naturally to events (applying to the message field of an event) and to strand
space (applying to the message field of every event in a strand).

primrec swapMsg::msg ⇒ msg ⇒ msg ⇒ msg where

swapMsg g h (Nonce na) =

(if (g=(Nonce na)) then h else if (h=(Nonce na))

then g else (Nonce na)) |

swapMsg g h (Agent A) =

(if (g=(Agent A)) then h else if (h=(Agent A))

then g else (Agent A)) |

swapMsg g h (Crypt K m) =

(if (g= (Crypt K m)) then h else if (h= (Crypt K m))

then g else (Crypt K (swapMsg g h m)))

swapSignMsg::msg ⇒ msg ⇒ (Sign × msg) ⇒ (Sign × msg) where

swapSignMsg g h sMsg ≡ (fst sMsg, swapMsg g h (snd sMsg))

definition swapStrandSpace::msg ⇒ msg ⇒ strand space ⇒ strand space

where swapStrandSpace g h SP ≡(%s. if ((Is D strand SP s)

∧ (node term SP (s,1)=g ∨ node term SP (s,1)=h))

then [(-,node term SP (s,0)),

(-,swapMsg g h (node term SP (s,1))),

(+,plainTxt (swapMsg g h (node term SP (s,1))))]

else if ((Is E strand SP s)

∧ (node term SP (s,2)=g ∨ node term SP (s,2)=h))

then [(-,node term SP (s,0)),

(-,plainTxt (swapMsg g h (node term SP (s,2)))),

(+,swapMsg g h (node term SP (s,2)))]

else (map (swapSignMsg g h) (SP s)))

Here plainTxt g is a function which returns the plain text of g which is of
an encrypted form. E.g., plainTxt {|Nonce N |}pubK Y = Nonce N . We emphasize
that g and h are two messages of encrypted form when we use the definition
swapStrandSpace g h SP in this work.

In strand space SP , if message g(h) is uniquely originated in node n(n′), g(h)
is not a subterm of h(g), n(n′) is in Domain SP , then g(h) is uniquely originated
in node n′(n). Here we also assume that g(h) is an encrypted message.

Lemma 3. [[uniqOrig SP g n; ¬g < h; ¬h < g; uniqOrig SP h n′; ofEncryptForm g;
ofEncryptForm h; n ∈ Domain SP ; n′ ∈ Domain SP]]
=⇒ uniqOrig (swapStrandSpace g h SP) g n′

swap g h SP is an Onion Strand Space. This is stated as a lemma below.

Lemma 4. [[SP ∈ onionStrandSpaces M ; term SP (s, 0) = g; term SP (s′, 0) =
h; is initiator M SP s g; is initiator M SP s′ h]]
=⇒ (swapStrandSpace g h SP) ∈ onionStrandSpaces,
where is initiator M SP s g ≡ (∃Y N0 N. is initiator1 M SP s Y N0 N ∧ g =
Crypt (pubK M){|Nonce N0,Agent B,Crypt (pubK B) (Nonce N)|})∨
(∃N. is initiator2 SP s M N ∧ g = Crypt (pubEK M) (Nonce N).

Alignment properties. Now we first define a predicate, initBundle SP b ≡
b ∈ bundles SP ∧ (∀s.(∃i.(s, i) ∈ nodes b) −→ is regular strand SP s∨Tee SP s).
We can show that the relation, r = mapping SP SP ′ nodes b, which is composed
of the corresponding message pairs of two sessions, which are modelled by b in
SP and b in swapStrandSpace g h SP respectively, is single valued. Here we also
assume that initBundle SP b.

Lemma 5. [[b ∈ bundles SP ; SP ∈ onionStrandSpaces M ; term SP (s, 0) = g;
term SP (s′, 0) = h; is initiatorM SP s g; is initiatorM SP s′ h; initBundle SP b;
SP ′ = swapStrandSpace g h SP ; r = mapping SP SP ′ (nodes b)]]
=⇒ Reinterp b SP SP ′

After applying analyzing operations pairwise on b, we can extend b to b′, let
SP ′ = (swapStrandSpace g h SP), then we also have b′′ ∈ extendsByAnalz b′SP ′

and Reinterp b′′ SP SP ′. After applying synthesizing operations pairwise on the
b′ in Lemma 5, we obtain another bundle b′′, let r = mapping SP SP ′ nodes b′, if
M is not in bad, and both nonLeakMsg g M and nonLeakMsg h M , then we also
have b′′ ∈ extendsBySynth b′(swapStrandSpace g h SP) and Reinterp b′′ SP SP ′.

Observational equivalence between b and swap g h b. Next we show
that b in SP is observationally equivalent to b in swap g h SP if the following
constraints are satisfied: g = {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M , g is
sent to the router, and h is also sent to the router M , and both g and h satisfy
the nonLeakMsg conditions.

Lemma 6. [[SP ∈ onionStrandSpaces M ; b ∈ bundles SP ; initBundle SP b;
g = Crypt (pubEK M){|(Nonce N0), (Agent Y), (Crypt (pubEK Y) (Nonce N))|};
term SP n = g; n ∈ nodes b; term SP n′ = h; n′ ∈ nodes b; M /∈ bad;
nonLeakMsg g M ; nonLeakMsg h M ; is initiatorM SP (strand n) g; is initiatorM
SP (strand n′) h]] =⇒ obsEquiv b SP (swap g h SP)

5.4 Proving anonymity properties

Let us give two preliminary definitions: the senders in a bundle, and a predicate
nonLeakBundle b M specifying that b is a bundle where each honest agent sends
a message m which satisfies nonLeakMsg m b.

sendersInBundle::strand space ⇒ graph ⇒ agent set

where sendersInBundle SP b ≡
{A.∃ s. ofAgent SP s= A ∧ (s,0) ∈ nodes b

((∃ Y n0 n. is initiator1 SP s M Y n0 n) ∨
(∃ n. is initiator2 SP s M n))}

nonLeakBundle::strand space ⇒ graph⇒ agent⇒bool

where nonLeakBundle SP b M ≡
∀ g n n’. ((n → SP n’) ∧ n’ ∈ nodes b ∧
ofAgent SP (strand n) /∈ bad) −→ nonLeakMsg g M

Message g is forwarded to B by the router M , and is originated by some
honest agent, and the bundle in SP satisfies nonLeakBundle SP b M , then the
honest agent who originates g cannot be observed. Namely, the sender anonymity
holds for the intruder w.r.t. the honest agents who send messages to M in the
session modeled by b. This is summarized by the following theorem.

Theorem 1. [[SP ∈ onionStrandSpacesM ; b ∈ bundles SP ; g = Crypt (pubEK B)
(Nonce N); n ∈ nodes b; sign SP n = − ; regularOrig (Nonce N) b SP ;
term SP n = g; nonLeakBundle SP b M ; M /∈ bad]] =⇒ senderAnonymity
(sendersInBundle SP b− bad) (Nonce N) b (onionStrandSpaces M) SP

6 Conclusion and Future Work

We presented a strand space approach to provable anonymity and formally im-
plemented it in the theorem prover Isabelle/HOL. In order to do this, we ex-
tended the classical strand space theory. We built the concept of a protocol
session based on the notion of “bundle” in a strand space. In the classical strand
space theory, secrecy and authentication are studied by focusing individual ses-
sions. However, two protocol sessions are needed in order to decide observational
equivalence according to the adversary’s knowledge obtained in the two sepa-
rate sessions – in our extended strand space theory, they are represented by a
similar bundle in two different strand spaces. Moreover, an observer needs to
compare corresponding messages to decide the equivalence of two sessions based

on his knowledge. In the strand space theory, knowledge deduction actions are
represented by penetrator strands. Therefore, we proposed two kinds of bundle
extensions: analyzing and synthesizing extensions, which improve the deduction
ability of an observer. In the end, we proposed a natural definition on reinter-
pretation relation between two sessions. Essentially, the two compared sessions
should have the same topological relation, and the message mapping of the two
sessions should be single-valued. Combining reinterpretation relation and bundle
extensions, we arrived at the key concept of observational equivalence between
sessions. Based on this, we defined the semantics of anonymity properties in
an epistemic framework and formally proved sender anonymity for the Onion
Routing protocol. In the future, we plan to extend the whole theory to active
intruders in the style of Dolev-Yao [26], and perform more case studies.

Acknowledgments. The first author, Yongjian Li, was supported by a grant
61170073 from the National Natural Science Foundation of China.

References

1. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. 4th European
Symposium on Research in Computer Security. Volume 1146 of LNCS., Springer
(1996) 198–218

2. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security 12(1) (2004) 3–36

3. Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable anonymity. In: Proc.
3rd Workshop on Formal Methods in Security Engineering, ACM (2005) 63–72

4. Chothia, T., Orzan, S.M., Pang, J., Torabi Dashti, M.: A framework for automat-
ically checking anonymity with µCRL. In: Proc. 2nd Symposium on Trustworthy
Global Computing. Volume 4661 of LNCS., Springer (2007) 301–318

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.D.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proc. 23rd IEEE Computer Security
Foundations Symposium, IEEE CS (2010) 107–121

6. Shmatikov, V.: Probabilistic model checking of an anonymity system. Journal of
Computer Security 12(3/4) (2004) 355–377

7. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security 13(3) (2005) 483–514

8. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Proc. 16th Conference
on Concurrency Theory. Volume 3653 of LNCS., Springer (2005) 171–185

9. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proc. 3rd
Workshop on Security Issues in Concurrency. Volume 180 of ENTCS. (2007) 55–76

10. Chen, X., Pang, J.: Measuring query privacy in location-based services. In: Proc.
2nd ACM Conference on Data and Application Security and Privacy, ACM Press
(2012) 49–60

11. Chen, X., Pang, J.: Protecting query privacy in location-based services. GeoInfor-
matica (2013) To appear.

12. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4) (2009) 435–487

13. Jonker, H.L., Mauw, S., Pang, J.: A formal framework for quantifying voter-
controlled privacy. Journal of Algorithms in Cognition, Informatics and Logic
64(2-3) (2009) 89–105

14. Luo, L., Cai, X., Pang, J., Deng, Y.: Analyzing an electronic cash protocol us-
ing applied pi-calculus. In: Proc. 5th Conference on Applied Cryptography and
Network Security. Volume 4521 of LNCS., Springer (2007) 87–103

15. Yan, L., Sere, K., Zhou, X., Pang, J.: Towards an integrated architecture for peer-
to-peer and ad hoc overlay network applications. In: Proc. 10th Workshop on
Future Trends in Distributed Computing Systems, IEEE CS (2004) 312–318

16. Chothia, T.: Analysing the mute anonymous file-sharing system using the pi-
calculus. In: Proc. 26th Conference on Formal Methods for Networked and Dis-
tributed Systems. Volume 4229 of LNCS. (2006) 115–130

17. Dong, N., Jonker, H.L., Pang, J.: Formal analysis of privacy in an eHealth protocol.
In: Proc. 17th European Symposium on Research in Computer Security. Volume
7459 of LNCS., Springer (2012) 325–342

18. Kawabe, Y., Mano, K., Sakurada, H., Tsukada, Y.: Theorem-proving anonymity
of infinite state systems. Information Processing Letters 101(1) (2007) 46–51

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer (2002)

20. Li, Y., Pang, J.: An inductive approach to provable anonymity. In: Proc. 6th
Conference on Availability, Reliability and Security, IEEE CS (2011) 454–459

21. Javier Thayer, F., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a security
protocol correct? In: Proc. 19th IEEE Symposium on Security and Privacy, IEEE
CS (1998) 96–109

22. Javier Thayer, F., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security
protocols correct. Journal of Computer Security 7(1) (1999) 191–230

23. Li, Y., Pang, J.: An inductive approach to strand spaces. Formal Aspects of
Computing 25(4) (2013) 465–501

24. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Proc. 1st Workshop on Information Hiding. Volume 1774 of LNCS., Springer (1996)
137–150

25. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Proc. 18th IEEE Symposium on Security and Privacy, IEEE (1997)
44–54

26. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(12) (1983) 198–208

27. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Proc. 13th USENIX Security Symposium. (2004) 303–320

28. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2) (1981) 84–90

