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Abstract— Small quadrotor UAVs represent a very interesting
class of small flying robots because of their ability to fly in- and
outdoor. Therefore, these vehicles have an enormous potential
for near-area surveillance and exploration. However, especially
indoor flight is a difficult task for vehicle control which
has to stabilize the desired velocity vector and the required
attitude of the quadrotor. This paper mainly describes the
development of such a nonlinear vehicle control system based
on state-dependent Riccati equations (SDRE). The controller is
integrated in an overall mission system concept for UAVs.

I. INTRODUCTION

Unmanned flying vehicles (UAVs) have gained increasing
interest in recent years because of a wide area of possible
military and commercial applications. A very promising
class of UAVs comprises small vehicles that can be flown
either in- and outdoor and offer the possibility for near-
area surveillance and search-and-rescue. However, indoor
flight comes up with some very challenging requirements in
terms of size, weight and maneuverability of the vehicle that
rule out most of the aircraft types, see [1] for a very good
overview. One type of aircraft with a strong potential also
for indoor flight is the rotorcraft and the so called quadrotor
has been chosen by many researchers as the most promising
vehicle, see e.g. [1], [2] and [3].

The quadrotor can be described as a vehicle with four
propellers in a cross configuration. While the front and the
rear motor rotate clockwise, the left and the right motor rotate
counter-clockwise which nearly cancels gyroscopic effects
and aerodynamic torques in trimmed flight. One additional
advantage of the quadrotor compared to a conventional
helicopter is the simplified rotor mechanics. By varying the
speed of the single motors, the lift force can be changed
and vertical and/or lateral motion can be created. Pitch
movement is generated by a difference between the speed
of the front and the rear motor while roll movement results
from differences between the speed of the left and right rotor,
respectively. Yaw rotation results from the difference in the
counter-torque between each pair (front-rear and left-right) of
rotors. The overall thrust is the sum of the thrusts generated
by the four single rotors. In spite of the four actuators, the
quadrotor is a dynamically unstable system that has to be
stabilized by a suitable control system in order to operate
autonomously.

There are some contributions in the literature that are
concerned with control system design for quadrotor vehicles,
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see e.g. [1], [2] and [3] to mention only a few. Many of the
proposed control systems are based on a linearized model
and conventional PID- or state space control while other
approaches apply sliding-mode orH∞ control. In this paper
we will take into account the nonlinear dynamics of the
quadrotor and develop a controller based on state-dependent
Riccati equations (SDRE). The basic idea of the SDRE-
approach is proposed in [5] and has been applied to a number
of control problems also in aerospace applications, see e.g.
[5], [8], but not yet to the control of a small quadrotor UAV.

II. DYNAMIC MODEL OF THE QUADROTOR

The general dynamic model of a quadrotor has been pre-
sented in a number of papers and will not be discussed here
in all details again. For further considerations of modelling,
we refer to [1] and [3]. We consider an inertial frame and
a body fixed frame whose origin is in the center of mass of
the quadrotor as shown in Fig. 1.

Fig. 1. Configuration, inertial and body fixed frame of the quadrotor.

The orientation of the quadrotor is given by the three Euler
angles, namely yaw angleψ, pitch angleθ and roll angleφ
that together form the vectorΩΩΩT = (φ, θ, ψ). The position
of the vehicle in the inertial frame is given by the vector
rrrT = (x, y, z). The transformation of vectors from the body
fixed frame to the inertial frame is given by the rotation
matrixRRR wherecθ for example denotescos θ andsθ denotes



sin θ:

RRR =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ



 (1)

Since the thrust force generated by rotori, i = 1, 2, 3, 4 is
Fi = b · ω2

i whereb is the thrust factor andωi is the speed
of rotor i, we obtain a first set of differential equations that
describe the acceleration of the quadrotor:
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With the inertia matrixIII (which is a diagonal matrix with
the inertiasIx, Iy and Iz on the main diagonal), the rotor
inertiaJR and the vectorτττ that describes the torque applied
to the vehicle’s body we obtain a second set of differential
equations:

IIIΩ̈ΩΩ = −Ω̇ΩΩ × IIIΩ̇ΩΩ −
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The vectorτττ is defined as

τττ =
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with the drag factord and the lengthl of the lever. With a
renaming of the inputs as

u1 = b(ω2
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and the definition of a new variable

ωd = ω2 + ω4 − ω1 − ω3 (6)

evaluation of (2) and (3) yields the overall dynamic model
in the following form

ẍ = (cosφ sin θ cosψ + sinφ sinψ) · u1/m

ÿ = (cosφ sin θ sinψ − sinφ cosψ) · u1/m

z̈ = −g + (cosφ cos θ) · u1/m

φ̈ = θ̇ψ̇(
Iy − Iz
Ix

) −
JR
Ix
θ̇ωd +

l

Ix
u2

θ̈ = φ̇ψ̇(
Iz − Ix
Iy

) +
JR
Iy
φ̇ωd +

l

Iy
u3

ψ̈ = φ̇θ̇(
Ix − Iy
Iz

) +
l

Iz
u4 (7)

This model can be rewritten in state-space formẋxx = fff(xxx,uuu)
whereuuuT = (u1, u2, u3, u4) is the vector of input variables
given in (5) andxxx ∈ R

12 is the vector of state variables
given as follows:

xxxT = (x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇) (8)

From (7) and (8) we obtain

ẋxx =
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(9)
with the abbreviationsI1 = (Iy− Iz)/Ix, I2 = (Iz − Ix)/Iy
andI3 = (Ix − Iy)/Iz.

It becomes obvious that the state space model can be
decomposed into one subset of differential equations that
describes the dynamics of the attitude (i.e. the angles) and
one subset that describes the translation of the UAV. From
(9) we obtain the first subset of differential equations, called
submodelM1 as





ẋ8
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The input variables of that first submodel are the variables
u2, u3 andu4. The variableωd is looked upon as a measur-
able disturbance here. From the angular rates as the output
of M1 the angles are obtained by pure integration. The three
angles (or state variablesx7, x9 andx11) are the inputs of
the next submodelM2 which is given by




ẋ2

ẋ4
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(11)
Herein, the controllable input is the variableu1. The resulting
structure of the quadrotor model is shown in Fig. 2.

Fig. 2. Decomposed structure of the quadrotor model.

III. OVERALL UAV CONTROL SYSTEM

When considering present available UAV systems (also
including small size UAVs), most of them have a similar
system structure. In general, a UAV system comprises a
control station with man-machine interface and human op-
erator, a bidirectional data link and the unmanned vehicle
or UAV itself, see also [4]. In most applications, the vehicle



is remotely controlled by the human operator at the control
station. In this case, the data link is not only used for data
transmission from the vehicle to the control station but also
for the transmission of the operator’s control commands.

From a control engineering point of view, a UAV system
contains two main control loops [4]. The first main control
loop is the vehicle control loop. Even if a UAV is under
remote control, the human operator is most often not able
to overtake all tasks of an aircraft pilot because of limited
situation awareness and low reaction times. Therefore, the
vehicle control system is necessary for UAVs of all dimen-
sions regardless of the UAV’s task or mission. The second
main loop is the mission control loop that comprises the sta-
bilized vehicle as a platform for mission related sensors and
actuators and the mission control system. The functionality
of the mission control system might be distributed between
on-board functions and functions performed by the human
operator at the control station. Therefore this control loop
is at least partially closed via data link. The mission control
system commands desired values to the vehicle control loop,
uses the mission related sensors to collect environmental
information and commands the available mission related
actuators.

Even if this paper mainly deals with the development of
the vehicle control system of the quadrotor UAV, also the
mission control system and the available sensors must be
considered in order to define the structure of the vehicle
control. Our UAV system is equipped with an inertial mea-
surement unit (IMU) and a GPS system. The IMU is used
together with a Kalman Filter to measure the angular rates,
the angles and the current velocities. The remote pilot or
the onboard mission system commands a desired velocity
vector to the vehicle control in order to guide the UAV on
a desired flight path. Direct position control as proposed in
many papers (see e.g. [2], [3]) is most often not necessary for
vehicle guidance and position measurement or estimation is
most often not accurate enough for direct feedback control.
The default command from the mission system (or in cases
where the remote pilot stops acting) is the zero velocity
vector, i.e. the quadrotor UAV should hover at the current
position. The GPS is mainly used by the mission system
for supervision of the flight path and the calculation of the
desired velocity vector. The overall UAV control structure
is shown in Fig. 3. In this paper the main focus is on the
vehicle control system as described in the following sections.

IV. VEHICLE CONTROLLER DESIGN

The decomposed model structure as shown in Fig. 2
already suggests a nested structure for vehicle control. In
order to achieve and maintain a desired velocity vector,
first the necessary attitude of the UAV has to be stabilized.
Therefore, we propose a decomposition of the control system
in an outer-loop velocity control and an inner-loop attitude
control. In this structure, the inner attitude control loophas to
be much faster than the outer loop and stabilizes the desired
angles that are commanded by the outer loop. This nested
structure is shown in Fig. 4. First we consider the inner

Fig. 3. Overall UAV control structure.

Fig. 4. Nested structure of the UAV vehicle control.

control loop with controllerC1, the attitude control loop,
that has to stabilize the desired roll, pitch and yaw angle, i.e.
the desired vectorΩT

d = (φd, θd, ψd) = (x7,d, x9,d, x11,d).
The corresponding dynamic model comprises the last six
equations of the state space model (8) which is a series of the
nonlinear submodelM1 and an integrator. Then we derive
the outer-loop controllerC2 to stabilize a desired velocity
vector.

A. State-dependent Riccati Equation Control

The state-dependent Riccati equation (SDRE) control was
initially derived by Cloutier, see [5] for an overview. The
basic idea was motivated by linear quadratic regulation and
introduces a factorization of a nonlinear system in a way that
it becomes linear at any fixed state

ẋxx = AAA(xxx)xxx+BBB(xxx)uuu (12)

where the matricesAAA andBBB both depends on the current
state variables. The controllability issues of such methods
are discussed in [5]. Control gains at any statexxx can be
calculated using standard linear optimal control theory, i.e.
choosing that control that minimizes the cost function

J = 0.5

∫

∞

t0

xxxTQQQ(xxx)xxx+ uuuTRRR(xxx)uuudt (13)



whereQQQ(xxx) penalizes the state andRRR(xxx) penalizes control
effort. By solving the algebraic Riccati equation

AAATPPP +PPPAAA+QQQ−PPPBBBRRR−1BBBTPPP = 000 (14)

we obtain the matrixPPP (xxx) and the control gains become

uuu = −KKK(xxx)xxx = −RRR(xxx)−1BBBT (xxx)PPP (xxx)xxx (15)

In general, this technique requires that the algebraic Riccati
equation must be solved at every state and therefore also the
control gains have to be recalculated at every state. This
seems to be computationally complex, but [8] developed
some real-time methods that can be implemented on an
embedded microcontroller. In addition, stability of the SDRE
approach was shown in [6], [7].

B. Attitude Control using SDRE

We apply the SDRE method to the attitude control prob-
lem. The vector of state variables for that problem is given
by xxxTI = (x7, x8, x9, x10, x11, x12) while the vector of input
variables isuuuTI = (u2, u3, u4) and one state-dependent model
can be obtained from (9) by factorization as

ẋxxI =
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Please note that this factorization is not unique as also
discussed in [5]. In (16) only the matrixAAA(xxxI) is state-
dependent while the matrixBBB is a constant matrix.

Using (16), the control gain matrixKKK(xxxI) can be calcu-
lated, while the overall control inputuuuI must also take into
account the measurable disturbanceωd as well as the fact
that a desired statexxxI,d given by the outer velocity control
loop must be stabilized. The measurable disturbance can be
compensated using a compensation

uuuc = −
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The stabilization of a desired state which is not zero can be
guaranteed by a pre-filter matrixMMM(xxxI) assuming that the
control gain matrixKKK(xxxI) is already determined:

MMM(xxxI) = pinv
(

(BBBKKK(xxxI) −AAA(xxxI))
−1BBB

)

(18)

where pinv() denotes the pseudo-inverse of a non-quadratic
matrix. The overall attitude control law, i.e. the controllerC1

can then be summarized as follows:

uuuI = −KKK(xxxI)xxxI +MMM(xxxI)xxxI,d + uuuc (19)

C. Velocity Control

If the inner-loop attitude control is sufficiently fast, we
can assume that a desired value of the roll, pitch and
yaw angle is achieved very fast with respect to the outer
velocity control loop. Therefore the closed inner control loop
can approximately be considered as a static block that just
transfers the desired values of roll, pitch and yaw angle to
the next modelM2, resulting in the structure given in Fig.
5.

Fig. 5. Structure of the outer (velocity) control loop.

According to (11), we can describe modelM2 by the
following set of nonlinear differential equations:

ẋ2 = (cosx7d sinx9d cosx11d + sinx7d sinx11d) · u1/m

ẋ4 = (cosx7d sinx9d sinx11d − sinx7d cosx11d) · u1/m

ẋ6 = cosx7d cosx9d · u1/m− g (20)

where all x7d, x9d, x11d and u1 are input variables. If we
assume that the angles, i.e. the input variablesx7d, x9d, x11d

are sufficiently small, the trigonometric functions can be
replaced bysinα ≈ α andcosα ≈ 1. In addition, we assume
the existence of three independent ”artificial” input variables
ũ1, ũ2, ũ3 that depend on the other four input variables,
which yields

ẋ2 ≈ (x9d + x7d · x11d) · u1/m = ũ1

ẋ4 ≈ (x9d · x11d − x7d) · u1/m = ũ2

ẋ6 ≈ u1/m− g = ũ3 (21)

Concerning the new input variables, the control task is very
simple since it comprises the control of three independent
systems of first order which might be solved by a pure
proportional controller, respectively:

ũ1 = k1 · (x2d − x2)

ũ2 = k2 · (x4d − x4)

ũ3 = k3 · (x6d − x6) (22)

Herein the controller parametersk1, k2 and k3 could be
chosen in a way that the outer loop is sufficiently fast but
not too fast with respect to the inner loop attitude control.



Sinceũ1, ũ2, ũ3 are the ”artificial” input variables, the real
input variablesx7d, x9d, x11d andu1 must be calculated with
the help of (21). Here we have three equations with four
unknowns that gives us the possibility to choosex11d =
ψd = 0. That means that the quadrotor is steered without
yaw rotation which is not necessary for achieving a desired
velocity vector. Thus (21) can be rewritten as

x9d · u1/m = ũ1

−x7d · u1/m = ũ2

u1/m− g = ũ3 (23)

The set of equations (23) can be solved to obtain the desired
input variables:

u1 = m · (ũ3 + g)

x7d =
−ũ2

ũ3 + g

x9d =
ũ1

ũ3 + g
x11d = 0 (24)

whereũ1, ũ2, ũ3 are calculated using (22).

V. SIMULATION RESULTS

The quadrotor model and the control algorithms derived as
explained is implemented and simulated in Matlab/Simulink.
For that purpose, the parameters of a real quadrotor are iden-
tified and inserted in the simulation model. The quadrotor is
modelled using the nonlinear equations as given in (9). The
parameter of the outer velocity control loop are chosen as
k1 = k2 = k3 = 1, obtained from experiments.

First a pure attitude control task is simulated. Here we
start with a deviation of the three anglesφ = 10◦, θ = 10◦

and ψ = 10◦. The desired state which has to be achieved
by the control action is the hovering state where all angles
and all velocities are zero. The simulation result is shown
in Fig. 6 where the time plot of all angles is presented.
It becomes obvious that after a short transition phase all
angles are stabilized at the required value of zero. During
that compensation of the initial disturbances of the angles,
the quadrotor changes the position until a new hovering
position is reached and stabilized. This movement at the
beginning cannot be avoided since there is also an initial
horizontal acceleration because of the deviation of the
attitude. The movement of the quadrotor during attitude
control is shown in Fig. 7.

In a next simulation, inner-loop attitude control and outer-
loop velocity control is applied. Again we start with an initial
deviation of the three anglesφ = 10◦, θ = 10◦ andψ = 10◦.
The task now is to achieve and stabilize a velocity vector in
pure x-direction with ẋd = 1 m/sec. The time plot of all
velocities is presented in Fig. 8 while the position in three
dimensions is shown in Fig. 9. Again, the desired state is
achieved after a short transition phase and the quadrotor is
moving with constant velocity in purex-direction. During
that constant flight the angles are also kept constant and the
required attitude for that desired movement is maintained.
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Fig. 6. Time plot of the angles during attitude control.
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VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a vehicle control system for a small
quadrotor UAV based on the state-dependent Riccati equation
controller (SDRE). Both an inner-loop attitude controllerand
an outer-loop velocity controller are developed and embed-
ded in an overall mission control concept for UAVs. The
dynamic model of the quadrotor is derived and implemented
in a Matlab/Simulink simulation model. With the help of
that simulation, the nonlinear vehicle control system is tested
and its efficiency demonstrated. In our ongoing work this
control concept will be implemented in an embedded system
in the real quadrotor and the overall mission system will be
realized.

REFERENCES

[1] S. Bouabdallah, P. Murrieri, R. Siegwart, “Design and Control of an
Indoor Micro Quadrotor”,in Proc. of the Int. Conf. on Robotics and
Automation ICRA’2004, New Orleans, USA, 2004.

[2] A. Tayebi, S. McGilvray, Attitude stabilization of a four-rotor aerial
robot, in Proc. of 43rd IEEE Conf. on Decision and Control, Atlantis,
Paradise Island, Bahamas, 2004.

[3] P. Castillo, A. Dzul, R. Lozano, Real-time stabilizationand tracking
of a four-rotor mini rotorcraft,IEEE Trans. on Control Systems
Technology, VOL.12, No. 4, July 2004, pp. 510 - 516.

[4] H. Voos, Autonomous Systems Approach to UAVs,in Proc. of the 18th
Bristol International Conference on Unmanned Air Vehicle Systems,
Bristol, UK, 2003.

[5] J.R. Cloutier, “State-Dependent Riccati Equation Techniques: An
Overview”, Proc. of the 1997 American Control Conference, June
1997, Albuquerque, NM.

[6] Y. Zhang, S. Agrawal, P. Hemanshu, M. Piovoso, Optimal Control
using State Dependent Riccati Equation (SDRE) for a Flexible Cable
Transporter System with Arbitrarily Varying Lengths,Proc. of the
2005 IEEE Conference on Control Applications, Toronto, Canada,
August 2005, pp. 1063 - 1068.

[7] C. Willard, B. Randal, “Ensuring Stability of State-dependent Riccati
Equation Controllers Via Satisficing”,Proc. of the 41st IEEE Confer-
ence on Decision and Control, Las Vegas, Nevada USA, Dec. 2002,
pp. 2645-2650.

[8] P.K. Menon, T. Lam, L.S. Crawford, V.H. Cheng, “Real-time Compu-
tational Methods for SDRE Nonlinear Control of Missiles”,Proc. of
the 2002 American Control Conference, May 2002, Anchorage, AK.


