Experimental identification of a lattice model for woven
fabrics: application to electronic textile

L.A.A. Beex, C.W. Verberne, R.H.J. Peerlings*

Department of Mechanical Engineering, Findhoven University of Technology, P.O. Box
518, 5600 MB FEindhoven, The Netherlands

Abstract

Lattice models employing trusses and beams are suitable to investigate the
mechanical behavior of woven fabrics. The discrete features of the mesostruc-
tures of woven fabrics are naturally incorporated by the discrete elements of
lattice models. In this paper, a lattice model for woven materials is adopted
which consists of a network of trusses in warp and weft direction, which repre-
sent the response of the yarns. Additional diagonal trusses are included that
provide a resistance against relative rotation of the yarns. The parameters
of these families of discrete elements can be separately identified from tensile
experiments in three in-plane directions which correspond with the orien-
tations of the discrete elements. The lattice model and the identification
approach are applied to electronic textile. This is a fabric in which conduc-
tive wires are incorporated to allow the embedment of electronic components
such as light-emitting diodes. The model parameters are established based
on tensile tests on samples of the electronic textile. A comparison between
the experimental results of an out-of-plane punch test and the simulation
results shows that the lattice model and its characterization procedure are
accurate until extensive biaxial tensile deformation occurs.
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1. Introduction

Woven materials are frequently used, for instance in clothing, bullet-proof
armor and reinforced polymeric and ceramic materials. A relatively new ap-
plication is electronic textile (Edmison et al., 2002; Dalton et al., 2003; Mar-
lescu et al., 2003). Electronic textiles are textiles which contain electronic
components such as light-emitting-diodes, sensors, switches, etcetera. The
woven fabric acts as a compliant substrate for the electronic components
and conductive wires are woven into it in order to electrically connect the
individual electronic components. These conductive wires and the connec-
tions of the conductive wires with the electronic components must stay intact
during manufacturing and use, since failure of the wires and connections en-
tails a malfunctioning product. Mechanical models can be used to study the
mechanical interplay between the different constituents of electronic textile.

To model the mechanical behavior of woven materials different approaches
can be used. It can for instance be investigated by performing finite element
simulations on a single unit cell in which the yarns are discretized in a de-
tailed manner so that, amongst others, yarn-to-yarn interactions are incor-
porated (Lomov and Verpoest, 2006; Lomov et al., 2007; Badel et al., 2007;
Potluri and Sagar, 2008). A limitation of these detailed simulations is their
computational cost, which prohibits large-scale simulations.

On the other hand, continuum models are often used for large-scale sim-
ulations of woven materials (King et al., 2005; Apedo et al., 2010). They
are suitable for large-scale problems because the discrete yarns are not taken
into account individually but only in an average sense. A disadvantage of
continuum models for woven materials is their inability to capture local (dis-
crete) events such as yarn failure and sliding of yarns. This is an important
drawback for the study of electronic textile because the conductive wires are
individual, small but relevant features. Other disadvantages are the relatively
complex incorporation of large rotations (Peng and Cao, 2005) and the oc-
currence of numerical difficulties such as locking (Ten Thije and Akkerman,
2008).

Lattice models that employ trusses or beams offer a more natural, in-
termediate description for woven materials. The discrete members of the
mesostructure of these materials are represented by discrete elements such
as trusses or beams in these models (Kato et al., 1997; Sharma and Sutcliffe,
2004; Ben Boubaker et al., 2007). An example of a lattice model for a woven
fabric is shown in Fig. 1, superimposed on an image of a textile. Individual



yarn segments are modeled by a discrete element such as a spring. At the
yarn-to-yarn contacts, the discrete elements are connected to each other by
nodes. The diagonal elements provide the lattice with shear stiffness. In
this way the shear stiffness of the fabric, that comes into play if the yarns
rotate relative to each other, can be modeled. Local events such as slip in
the member-to-member interaction (Ben Boubaker et al., 2007; Liu et al.,
2010) and failure of individual members can be taken into account in a nat-
ural manner in lattice models (Liu et al., 2010), whereas they are complex
to include in continuum models. The discrete conductive wires in electronic
textile can also be modelled individually in lattice models, whereas this is
not trivially established in continuum descriptions. Furthermore, the high
computational cost of detailed sub-yarn models is avoided. An overview of
several lattice models is given by Ostoja-Starzewski (2002).

Figure 1: A woven fabric (blue) with 12 unit cells of a lattice model superimposed on it
(black). The black lines represent springs or beams which are fixed to each other at the
nodes (black dots).

Large-scale lattice computations may still be the computational costly.
To overcome this, unit cells of lattice models often represent several unit
cells of the woven material, i.e. one truss or beam represents several parallel
yarns (Sharma and Sutcliffe, 2004). In some studies (Boisse et al., 2001, 2006;
Hamila and Boisse, 2008) the response of the lattice model is translated to
the response of a finite element that is also used to represent a number of unit
cells. Local events such as element failure can no longer be incorporated in
these approaches, but they can still easily deal with large rotations (Sharma
and Sutcliffe, 2004) and locking (Sharma and Sutcliffe, 2004; Hamila and
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Boisse, 2008). Also a number of multiscale approaches can be used to increase
the efficiency of large-scale computations (Nilakantan et al., 2010; Ha-Minh
et al., 2011; Beex et al., 2011).

Identification approaches to establish the parameters of the different dis-
crete elements in lattice models can be complex since the discrete elements
are all mechanically connected. Consequently, they influence each other dur-
ing the experimental parameter identification. Identification approaches can
therefore be somewhat elaborate (Sharma et al., 2003; Sharma and Sutcliffe,
2004; Boisse et al., 2006). In this paper a rather general two-dimensional
lattice model for woven materials is proposed that can be characterized in
a straightforward manner. From three types of in-plane tensile tests that
are performed in the orientations of the three families of discrete elements,
the parameters of the discrete elements are individually established. In this
way no (complex) inverse problem has to be solved to establish the material
parameters.

In order to separately identify the discrete elements, the mutual influence
must be negligible. To this end, the compressive responses of all elements in
the lattice model proposed in this paper vanish. The lattice model and its
identification procedure are applied to a woven electronic textile including
conductive wires, but it can be used for any woven material that is charac-
terized by a compliant rotational stiffness relative to the axial stiffness, such
as e.g. metal grids to reinforce concrete (Han and Tsai, 2011).

The outline of this paper is as follows. First the electronic textile is de-
scribed and the in-plane experiments on the electronic textile are discussed.
Also the fabric strains at which the conductive wires fail are identified. Sub-
sequently, the lattice model is detailed and the identification procedure is
discussed. In section 5 the lattice model including the identification proce-
dure is validated by a three-dimensional punch test. Overall experimental
and predicted deformations are compared as well as the experimental and
predicted punch force-punch displacement curves; failure of the conductive
wires is also evaluated. Finally, conclusions are presented.

2. In-plane experiments

The fabric considered here is an electronic textile produced by TiTV
(www.titv-greiz.de). It is a densely woven fabric with embedded conductive
wires (see Fig. 2). The conductive wires are predominantly oriented in warp



direction and on average one wire is present on 65 warp yarns. In weft direc-
tion an insignificant number of conductive wires are present. The conductive
wires consist of a number of copper filaments (see Fig. 2). At regular intervals
they have some clearance with respect to the textile to allow the mounting
of electronic components (see Fig. 2). The textile yarns of the fabric contain
different fibers of dtex 76. The yarns in warp direction are turned 600 times
per meter and those in weft direction are turned 120 times per meter. The
density of the warp and weft yarns is 11000 m ™! and 8900 m ! respectively.
The warp and weft yarns are woven in a three layer pattern.
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Figure 2: (Left) the electronic textile with the warp direction in horizontal direction and
(right) a microscopic image of the electronic textile. The conductive wires are mainly
oriented in warp direction. The clearance of the conductive wires is clearly visible.

2.1. Methodology

Tensile test samples of the electronic textile (including the conductive
wires) of 100 x 29 mm? are taken in three directions; in warp and weft direc-
tion and at an angle of 45° with respect to the warp direction. The tensile
tests in the latter direction corresponds to the bias extension test (Sharma
et al., 2003; Peng and Cao, 2005). The nominal thickness of the samples is
measured as 0.35 mm, although this thickness is somewhat arbitrary since
the samples are highly heterogeneous. The samples are fixed in between two
clamps with a rough surface together with one piece of double-sided tape to
increase the fixation. The gauge length of all samples is approximately 60
mm. The used tensile tester (Instrom 5566) has a load cell of 500 N. The
strain rate in the experiments in warp and weft direction is 1.67 - 1073 s~}
and in diagonal direction 3.33 - 1073 s~ !, in order to keep the strain rates



of the individual yarns as similar as possible. No influence of time on the
material response is investigated.

During the experiments, images of the strained samples are recorded, to
which an optical strain measurement technique is applied to determine the
local strains. Undesired effects such as slip in the clamps and deformation of
the load cell are therefore circumvented in the strain measurement. Further-
more, in the tensile test in diagonal direction (bias extension test), the pure
shear strains that only occur in region C in Fig. 3, as is well described in lit-
erature (Sharma et al., 2003; Peng and Cao, 2005; Ten Thije and Akkerman,
2008), can be established without any influence of the constraining influence
of the clamps (in regions A and B). To determine the engineering stress of
the samples the measured cell force and the original nominal cross-sectional
area are used.

Figure 3: Three deformation modes (A, B and C) occur in the samples during the bias
extension tests due to the influence of clamping. The conductive wires are shown in black
while the red yarns (shown in grey) correspond to regular weft yarns as in Fig. 2.

To investigate the failure of the conductive wires within the fabric, X-ray
images are made (Phoenix PCB analyzer, using 60 £V and 20 um) after the
tensile tests in warp direction. Although these images are not direct input
for the experimental identification, they are used in section 5 to evaluate the
lattice model and the identification procedure.

2.2. In-plane stress-strain responses

The engineering-stress/engineering-strain responses of the in-plane tensile
experiments are shown in Fig. 4. The engineering stress and engineering



strain are used here, to obtain a first impression of the textile behaviour in the
different directions. In section 4 however, the true stress and true strain of the
individual truss elements are determined based on the engineering stress and
engineering strain of the textile, since the software in which the lattice model
has been implemented uses the true-stress/true-strain constitutive relations.
To calculate the engineering stress and engineering strain shown in Fig. 4, the
force measured by the load cell is divided by the nominal cross-sectional area
and the measured clamp displacement is divided by the undeformed clamped
length of the textile samples. Only one response is shown in each direction;
the experimental scatter of each response is relatively small (Verberne, 2011).
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Figure 4: Engineering stress-engineering strain responses of the electronic textile in warp
(blue, dashed), weft (red, dotted) and diagonal direction (magenta, dashed-dotted).

The responses in warp and weft direction show similar levels of stress
for the same applied strain level. However, the shapes of the curves are
clearly different from each other (see Fig. 4). The warp response shows a
nonlinear loading behavior whereas the loading behavior of the weft direction
is virtually linear. Tensile tests on single yarns (not shown) have indicated
that this different behavior in the two directions is caused by the fact that the
two types of yarns are different: they are both made from the same material
but have a different number of turns per meter. All unloading responses
show that a large amount of inelastic deformation has occurred during the
tensile tests.

The diagonal direction exhibits an initially extremely compliant response,
which increases at a strain of approximately 14% (see Fig. 4). This compli-
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ant shear behavior is typical for woven materials and also occurs for instance
in woven grids to reinforce concrete (Han and Tsai, 2011). The response
is determined by the rotation of the warp and weft yarns relative to each
other. Initially, this rotation solely experiences friction in the yarn-to-yarn.
However, at higher levels of strain, and thus larger rotations, the warp and
weft yarns start to make contact with each other, which leads to an increas-
ingly stiffer response. In the densely woven fabric considered here this effect
occurs at moderate strains, but for less densely woven fabrics it may occur
much later and the nonlinear response is thus more pronounced (Sharma and
Sutcliffe, 2004).

2.3. Failure of the conductive wires

X-ray images of the electronic textile samples after the tensile experi-
ments in warp direction are presented in Fig. 5. At the location where the
conductive wires have some clearance, the copper filaments in each wire can
be distinguished. Plastic deformation and failure of the conductive wires can
only be observed at the clearances.

For the undeformed sample and the samples strained to 2% and 6% (en-
gineering strain), no failure of the wires can be seen. Although the sample
that is strained to 6% clearly shows plastic deformation in the wires, the
wires are still intact and their conductivity is unaffected.

Failure of the wires starts at a strain of approximately 7%, as becomes
clear from image D in Fig. 5. A number of copper filaments in the conductive
wires are broken at the clearance of the wires. For larger strains the number
of broken filaments increases and in some cases all filaments of a conductive
wire are broken, so that no electrical contact is made anymore.

3. Lattice model

A unit cell of the proposed two-dimensional lattice model for the elec-
tronic fabric is shown in Fig. 6. The tow truss elements represent warp and
weft yarn segments from one yarn-yarn crossing to the location of the next
one. The unit cell’s dimensions match the dimensions of the unit cell of the
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Figure 5: X-ray images of an undeformed sample (A) and after 2% (B), 6% (C), 7% (D),
8% (E) and 9% (F) straining in warp direction. The conductive wires can be distinguished
but not the woven fabric.



discrete mesostructure of the fabric, i.e. each yarn is represented explicitly
by a (chain of) truss(es).

The diagonal trusses provide the unit cell with shear stiffness, in corre-
spondence with the lattice model of Sharma and Sutcliffe (2004), except that
two diagonal elements are used instead of one. The advantage of using two
diagonal elements per unit cell is that uniaxial deformation in warp and weft
direction can be described at the scale of a single unit cell. In contrast to
the lattice model of Kawabata et al. (1973), out-of-plane phenomena such
as out-of-plane contraction and undulation are not specifically modeled, but
the influence of many out-of-plane mechanisms on the in-plane responses are
incorporated in the material descriptions of the truss elements. The out-of-
plane bending stiffness is not captured however, but this is rather compliant.
Furthermore, no conductive wires are individually modeled in the lattice
model since they hardly contribute to the response (Verberne, 2011) due to
their small number (one conductive wire is present on 65 warp yarns).

tow elements diagonal elements unit cell

Figure 6: Four tow elements, representing the yarns (left), and two diagonal elements
(center), providing rotational stiffness, are used in a rectangular unit cell of the lattice
model (right).

In the lattice model the (discrete) yarn segments, represented by the tow
truss elements, carry no force when they are compressed. The reason for
this is that it is assumed that they buckle as soon as they are loaded in
compression. Also the diagonal truss elements are considered to carry no
force in compression. As a result, the simple shear loading only charges one
diagonal truss element while the other one is compressed without axial stress
(see ahead to the right image in Fig. 8).

Since the Hencky (i.e. true) strain is used in the numerical implementation
(in MSC.Marc), the axial strains of the individual trusses are expressed in
terms of it:
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e =1In(\) (1)

where A = [/l is the axial stretch factor, with [ and [y the current and initial
length respectively. Since inelastic deformation occurs in the stress-strain
responses of Fig. 4, an elastoplastic model is adopted for the trusses. The
axial strain can be split in an elastic and plastic part as follows:

€ =€+ € (2)

where €, is the axial elastic Hencky strain and e, the axial plastic Hencky
strain.
The elastic response in each truss is governed by Hooke’s law as follows:

oc=Fe, (3)

where o represents the axial true stress and F is the Young’s modulus of the
material.

The lateral contraction due to elastic straining is neglected. The plastic
deformation, on the other hand, is assumed to be incompressible. The true
stress in a truss can therefore be determined from the engineering stress via
the following expression:

T = OengMp (4)

where o, is the axial engineering stress and \, = exp(e,) is the axial plastic
elongation factor.

Because the typical nonlinear responses in the different directions in Fig. 4
show that the material behaves plastically from the very beginning of loading,
the loading response of the trusses is described by the plastic hardening.
The elastic part of the constitutive model is used to describe the unloading
response. To this end, a low initial yield stress, 0,0, is used and the hardening
law is progressive. This is schematically shown in Fig. 7.

At this point the precise hardening law is not yet formulated since the
most suitable hardening law appears out of the identification procedure. For
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Figure 7: Schematic illustration of the uniaxial stress-strain response of the material
description used for the trusses. The initial yield stress is indicated by oyo.

this reason, the current yield stress o, of the three types of truss elements
remains a yet to be defined function of the equivalent plastic strain €, i.e.
oy(€p)-

The lattice model is implemented in the software package MSC.Marc.
The implementation uses an updated Lagrange approach to deal with large
deformations and rotations. The current local axes and cross-sectional area of
the truss elements are updated every iteration. The Mohr-Coulomb criterion
is used to distinguish between tension and compression; its parameters are
selected such that in compression the responses of the truss are negligible.

4. Identification procedure

Considering uniaxial loading in warp and weft direction for a single unit
cell (see the left and center image in Fig. 8), it can be observed that only
the discrete elements that are oriented in the loading direction contribute
to the mechanical response. The reason for this is that the shear response
(modeled by the diagonal elements) is compliant (the magenta curve in Fig. 4)
compared to the response in warp and weft direction (the other two curves in
Fig. 4). The diagonal elements may thus be expected to have a comparatively
low stiffness. As a result only the elements oriented in the loading direction
contribute to mechanical response during warp and weft loading. Note that,
although the stiffness of the diagonal elements increases for strains larger
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than 14% (see Fig. 4), this strain is not exceeded since the warp and weft
strains in Fig. 4 remain below 14%.

On the other hand, for the bias extension test (see the right image in
Fig. 8), only the diagonal element that is oriented in the loading direction
contributes to the mechanical response. The reason for this is that the four
stiffer elements that represent yarn segments act as a mechanism. The di-
agonal element that is not oriented in the loading direction is compressed
without stress, since no resistance against compression is included in the
lattice model.

During the three in-plane tests discussed in section 2, it is thus reasonable
to assume that only the elements oriented in the respective loading directions
contribute to the mechanical response. Hence, a full uncoupling between
tension in warp direction, tension in weft direction and tension in diagonal
direction is assumed. The conditions for this assumption to hold are, as
mentioned above, that the intrinsic material behavior of the fabric shows
a compliant shear response compared to the in-plane principal directions
and that the elements under compression show no stress. The results from
the three in-plane tests in Fig. 4 can now directly be used to determine the
parameters of the three families of discrete elements associated with the three
directions. Below it will be explained how the parameters of each family of
elements can be established based on these tensile test results.

N N

o ) > 9 9
Do o >

o ° > 3 o

Figure 8: Schematic representation of three in-plane loading situations for the identifica-
tion procedure in which only the truss elements oriented in the loading direction contribute
to the response (black). The other truss elements (grey) are inactive or contribute neg-
ligibly. The left image represents loading in warp direction, the center image loading in
weft direction and the right image diagonal loading.

Although the diagonal truss elements are oriented at an angle of 29° with
respect to the warp elements and the diagonal tensile tests (bias extension
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tests) are performed at an angle of 45° to the warp direction, the stress-strain
responses from the bias extensions tests are directly used for the identification
of the parameters of the diagonal trusses. Clearly, this difference in angle
is not optimal, but the predicted unit cell responses nevertheless match the
experimental responses well (see ahead to Fig. 12).

4.1. From engineering stress to element stress

Before the material parameters of the different families of truss elements
can be established, the geometric parameters are set. The nominal initial
area Ag of all trusses is set to 0.0155 mm?. This value is in the order of
magnitude of the actual yarns. In principle, since only the force transmitted
by the trusses matters, any diameter can be selected as long as it is dealt
with in a consistent manner. The length of the elements [y is based on the
microscopic images of Fig. 2. The geometric parameters are presented in
Table 1.

Before the parameters of the discrete members can be fitted, first the
engineering stresses obtained from the tensile tests, oe,q . (see Fig. 4), must be
converted to the engineering stresses of the individual discrete elements, 0¢p,.
The reason is that the engineering stresses obtained from the tensile tests,
Tengt (see Fig. 4), are computed as if the electronic textile is a continuum,
whereas the engineering stresses of the discrete members are needed (see
Fig. 9). Therefore, the ratio between the yarn area, Ay, and the nominal
cross-sectional area of the textile, A,,, must be taken into account as follows:

Ueng,tAn

Teng = = 4 = (5)

where A, is the nominal area associated with a single discrete element (see
Fig. 9).

The areas are determined based on the in-plane dimensions of the unit cell
(see Fig. 2), the dimensions of the yarns and the thickness of the electronic
textile; they can be found in Table 1.

4.2. Elastic behavior

Now that the engineering stresses of the elements can be determined, the
three Young’s moduli can be fitted. As mentioned before, the elastic part
of the constitutive model is used to describe the three unloading responses.
One has to take into account that at the moment that unloading takes place,
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Figure 9: A schematic representation of a cross section of the fabric in out-of-plane direc-

tion. The (initial) area of an element is represented by Ay and the nominal area associated
with it by A,.

the cross-sectional area is deformed, since during loading plastic deforma-
tion occurs in an incompressible manner. The true stress at the moment
of unloading must thus be employed to fit the Young’s moduli. To deter-
mine this true stress, it is assumed that all strain applied until the point
of unloading is plastic strain and A, in Eq. (4) may thus be replaced by A.
The Young’s moduli are fitted on the highest 40% (in terms of stress) of the
unloading responses. Damage has not taken place at this point, since cyclic
loading responses show that the unloading stiffness remains similar (Ver-
berne, 2011).The resulting curves and the fits of the moduli are shown in
Fig. 10. The values of the moduli are given in Table 1.

True stress [MPa]
=
Ul
(@]

0 0.1 0.2 03 o4 0.5
Hencky strain [-]
Figure 10: The true stress as a function of the total Hencky strain of the individual

elements in warp (blue, dashed), weft (red, dotted) and diagonal direction (magenta,
dashed-dotted) and the corresponding fits of the Young’s moduli (black, solid).
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4.8. Plastic behavior

To ensure that the plastic part of the constitutive model of the elements
is used for the entire loading responses, small yield stresses are used for all
three families of elements (see Table 1). A lower value than 0.2 M Pa is
theoretically desired, but smaller values lead to convergence problems in the
final validation simulation as described in Section 5. Furthermore, this yield
stress is sufficiently small for accurate fits (see ahead to Fig. 12).

To determine which hardening law can be used and to fit its parame-
ters, the true stress-equivalent plastic strain curves are presented in a log-log
diagram in Fig. 11. The (effective) plastic strain has been determined by
subtracting, at each level of stress, the elastic strain as given by the Young’s
moduli determined above from the total strain. Consequently, the Young’s
moduli have no influence on the plastic hardening behaviour that is used to
describe the entire loading curves. The following power law seems suitable
for the hardening behavior of the three responses, since the log-log diagrams
are more or less linear in the regimes of influence:

oy =0y + H(E)" (6)

where 0,9 ~ 0 is the initial yield stress and H and n are hardening param-
eters. The resulting fits of the hardening behavior and the corresponding
parameters are shown in Fig. 11 and Table 1 respectively.

Table 1: Established parameters of the three families of elements.

warp weft diagonal

Ay [mm?] | 0.0155 0.0155 0.0155
lo [mm] 0.288 0.161 0.330
A, [mm? | 0.0563 0.1008 0.0492
o0 [MPa] |02 0.2 0.2

E [GPa] 5.276 10.32 9.500
n 0.371 1.17 2.52

H [MPa] | 3154 2.816 2,372
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Figure 11: Log-log diagram of the true stress of the discrete elements as a function of the
equivalent plastic Hencky strain in warp (blue, dashed), weft (red, dotted) and diagonal
direction (magenta, dashed-dotted) and the fits of the hardening behavior (black, solid).

4.4. Validation of the unit cell response

The responses of a unit cell of the lattice model in the three tested di-
rections are shown together with the experimental responses in Fig. 12. In
the lattice model the linear Mohr-Coulomb criterion is used to make the
compressive responses of the individual elements ten times more compliant
than the tensile responses. The in-plane stress-strain curves in warp and
weft direction as well as the major part of the response in diagonal (45°)
direction correspond well with the experimental curves. A small discrepancy
can be distinguished in the response in weft direction. This is caused by
the formulation of the Mohr-Coulomb criterion in MSC.Marc and the values
that are used to ensure a large difference between the tensile response and
compressive response.

Only the final part of the diagonal response deviates from the experimen-
tal response. A small part of this deviation, between a strain of approxi-
mately 28% and 38%), is caused by the contribution of compressive behavior
of the diagonal element that is not oriented in the direction of the loading.
At an engineering strain of 38% (see Fig. 12), all tow elements are oriented
in the same direction as the loaded diagonal element and they thus no longer
act as a mechanism and start to contribute to the predicted response. As a
result, the response of the unit cell increases significantly. This effect is less
pronounced in the experiment, in which the transition from relative rotation
to a stretching dominated response is more gradual.
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Figure 12: Comparison of the experimentally obtained engineering stress-engineering
strain curves of Fig. 4 in warp (blue, dashed), weft (red, dotted) and diagonal direction
(magenta, dashed-dotted) and the responses of a unit cell loaded in the same directions
(black, solid). The response of a single diagonal truss element loaded in its axial direction
(dashed) is also shown for comparison.

The material parameters of the diagonal elements are based on the bias
extension test in which the loading angle is 45° with respect to the warp
direction. In the unit cell of the lattice model however, the diagonal ele-
ments are oriented at angles of 29° to the warp direction. To validate the
diagonal response of the unit cell, the unit cell is loaded in 45°. Interestingly,
the response of a single diagonal element loaded in its axial direction (the
black, dashed curve in Fig. 12) shows that there is no significant discrepancy
with the response of the unit cell in diagonal (45°) direction. Only from an
engineering strain of 28% onwards the responses start to diverge due to the
contribution of the remaining elements of the unit cell. Sliding may also have
an influence on this, since it is not incorporated in the model but may occur
in bias extension (Lomov et al., 2008). The bias extension test results thus
turn out to be rather insensitive to the loading direction.

5. Simulation of an out-of-plane punch test

To validate the lattice model, an out-of-plane punch test (see Fig. 13) is
simulated and predictions made for it are compared to experimental results.
An out-of-plane punch test is used here, because out-of-plane deformations
typically occur if electronic textile is used for clothing. The punch test can
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for instance be regarded as a human elbow or knee pressing into a piece of
electronic textile. Since broken conductive wires result in malfunctioning
electronic textile products, the behaviour of the conductive wires is particu-
larly investigated.

The test setup for this experiment is shown in Fig. 13. In the punch
test, a sample of electronic textile with a free area of 100 x 100 mm? is fixed
between two clamps in warp direction. A sphere with a diameter of 30 mm is
placed below the center of the sample and punches the sample at a velocity of
1 mm/s. This results in an average strain rate of the warp yarns at the center
of the specimen of 8.3- 1072 s~!, which is of the same order of magnitude as
the strain rates used in the tensile tests discussed in section 2.

During the punch test, the reaction force on the punch is measured as
a function of its displacement. The tensile tester is equipped with a 10 kN
load cell with a stiffness of 16,400 N/mm for this purpose. Since the warp
yarns are fixed in the clamps at two edges and the punch is moved by a large
distance (50-60 mm), large macroscopic and local deformations are expected.

To simulate the punch experiment, only a quarter of the specimen is
modeled using symmetry boundary conditions (see Fig. 13). The model
consists of 9 x 16 unit cells in warp and weft direction respectively (170 lattice
nodes). This means that one unit cell in the punch simulation corresponds
to 19.5 x 19.5 fabric unit cells as described in sections 3 and 4. To ensure
that a unit cell as used in the punch simulation has the same response as
19.5 x 19.5 original unit cells, the cross-sectional areas of the truss elements
are 19.5 larger than those used for the identification.

The clamps in which the specimen is fixed are modeled by displacement
boundary conditions on the edge of the model that is oriented orthogonally
to the warp direction. The punch is considered as a frictionless rigid body
in the simulation. Since the velocity of the punch is small, a quasistatic
analysis can be performed. To ensure that some amount of out-of-plane
stiffness is present in the model before the punch makes contact with the
lattice, a bilinear initial out-of-plane displacement is given to the lattice,
with an amplitude of 1 mm. In the true punch simulation the maximum
displacement of 52.5 mm is reached in 51,500 increments. The convergence
tolerance is formulated in terms of the relative displacements and is set to a
value of 0.01. Smaller tolerances lead to the same results.
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Figure 13: Top view (left) and side view (right) of the test setup for the punch experiment.
The clamps are shown in green and the spherical punch in dark grey. The applied punch
displacement in the experiments is denoted by u, (right). The quarter of the electronic

textile that is modeled in the simulation is indicated by the red dashed square (left). The
dimensions are given in mm.

5.1. Force-displacement response

The force-displacement curve is presented in Fig. 14 together with four
experimental curves. The initial response is compliant since hardly any out-
of-plane stiffness is present at the start of the test. However, the slope
increases rapidly until a punch displacement of 20 mm is reached. From
20 mm onwards the slope of all experimental curves remains more or less
constant until a displacement of approximately 40 mm is reached. At this
punch displacement already one of the curves has deviated from the average
trend of the remaining curves due to slip in the clamps. At a displacement of
40 mm the second curve starts to deviate due to a large amount of slip in the
clamps and at larger displacements this can be observed for the remaining
two curves as well. In none of the experiments the electronic textile fails;
slip from the clamps determines the force drop in all cases. The deformation
of the samples is presented in the left parts of the four images in Fig. 15.

The numerically predicted force-displacement curve presented in Fig. 14
shows a good agreement with the experimental curves until a punch displace-
ment of approximately 25 mm. At this displacement the local axial strains
of the warp elements on top of the punch are approximately 14%. In the
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Figure 14: The experimental (blue, dashed) and predicted (black, solid) force as a function
of the punch displacement.

warp elements between the punch and the fixed edge of the model local axial
strains of 9-10% are observed. However, towards the free edge of the model,
which is parallel to the warp yarns, the local axial warp strains decay to
approximately 3% over only 6 out of 16 unit cells in weft direction.

The good accuracy of the simulation until a punch displacement of 25
mm can also be observed in images A (at a displacement of 10 mm) and B
(at a displacement of 20 mm) in Fig. 15, since the free edge in the simulations
deforms exactly as in the experiment. For larger punch displacements (image
C and D), a disagreement of these free edges can be observed.

From a displacement of approximately 25 mm onwards, the slope of the
computed curve continues to increase, whereas that of the experimentally
obtained curves remains constant and then drops. This discrepancy can
be related to a number of causes, but the most important one is the poor
performance of the unit cell for extensive biaxial deformation. For large
biaxial deformations the diagonal truss elements, that are only meant to
describe the in-plane shear response of the textile, elongate significantly and
start to contribute significantly to the mechanical response of the model.
The maximum engineering strain of the diagonal trusses is approximately
0.56 (for comparison with Fig. 12).

Predicted local relative rotation angles between the warp and weft yarns
have not been compared to the local experimental shear angles because of the
(limited) experimental equipment. Macroscopically, the shear angles seem to
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Figure 15: Comparisons of half of the deformed electronic textile during the punch test as
obtained from the experiments (left) and the deformed model as predicted by the simula-
tion (right). The four comparisons show the electronic textile at punch displacements of
10 mm (A), 20 mm (B), 30 mm (C) and 40 mm (D). Note that the images made during
the experiment are truly three-dimensional while the deformations computed by the sim-
ulation only give an indication of the three-dimensional shape. (This can be observed by
the left fixed edge in the experimentally obtained images that is oriented at an angle with
respect to the vertical axis, while the right fixed edge in the simulation results is oriented
exactly along the vertical axis.)

correspond rather well (based on Fig. 15) until a displacement of approxi-
mately 25 mm is reached. For larger displacements, the macroscopic shear
angles deviate.

5.2. Fuailure of the conductive wires

The strains that occur during the punch experiment cannot directly be
determined from the experiments. The damage of the conductive wires how-
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ever, can be investigated after the punch experiment. This gives a qualitative
idea of the maximum strains that have occurred during the punch test in
warp direction. To visualize the damage of the conductive wires, the same
X-ray equipment is used as for the warp tensile experiments in section 2.3.
The damage at six locations indicated in Fig. 16 is shown in Fig. 17. One
must take into account however, that the conductive wires in Fig. 5 have
undergone uniaxial tension while the wires shown in this section have been
subjected to more complex loading situations.

The engineering warp strains computed by the model at the six loca-
tions are also shown in Fig. 17. The warp strains are shown for a punch
displacement of 52.5 mm, because at this punch displacement the experi-
mental curves decrease on average. Slip from the clamps has taken place at
this displacement, but since this is difficult to asses, it is assumed that most
samples have been exposed to this punch displacement.

e w B
C

D

E F

Figure 16: Schematic representation of the bottom left quarter of a sample in the punch
test. The red dashed curve represents a quarter of the punch and the horizontal lines with
small ellipsoids represent the conductive wires. Six regions are indicated by A to F, at
which the residual deformations of the conductive wires after the punch experiment have
been visualized using X-ray imaging (see Fig. 17).

At locations A and B it is clearly visible in Fig. 17 that several conductive
wires have failed. Since in section 2.3 it has been established that failure
of the wires starts at warp strains of 7%, significantly larger strains have
occurred at these locations. This corresponds with the large engineering
warp strains that are observed in the simulation results at these locations
(also indicated in Fig. 17).

23



Figure 17: X-ray images of the electronic textile after the punch test. The damage of the
conductive wires is shown for the locations A-F in Fig. 16. The engineering warp strains
as computed in the simulation at a punch displacement of 52.5 mm, €g;m, are also shown.
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At location E no failure can be seen but only plastic deformation of
the conductive wires. The engineering warp strain of 3% computed at this
location corresponds with this observation since it is significantly smaller
than the warp strain of 7% at which failure initiates.

At locations C, D and F, it is visible that a substantial amount of plastic
deformation has occurred in the wires (see again Fig. 17). The amount of
damage is less than at locations A and B but clearly a substantial number of
fibrils within several conductive wires have failed. This is in correspondence
with the predictions since all predicted engineering warp strains are above
the threshold of 7%. The relatively large amount of damage at location F
compared to locations C and D is quantitatively not completely in agreement
with the predictions, since at location F a strain of 8% is predicted and the
predicted strains at locations C and D are larger. However, qualitatively the
model predicts failure correctly, since all predicted strains are larger than 7%
at the locations where failure occurs.

6. Conclusion

The aim of this article was to present a straightforward experimental iden-
tification procedure for an in-plane lattice model of woven fabrics. The ad-
vantage of the presented identification approach is that the tensile responses
in three in-plane directions can be directly used to separately determine the
parameters of the three families of discrete elements in the lattice model.
This has been established by ensuring that only the family of elements that
are oriented in the loading direction during one of the three tensile tests con-
tribute to the mechanical response. Therefore, no mutual influence of the
different elements occurs during each tensile test and no (complex) inverse
problem needs to be solved. The unit cell of the proposed lattice model is
based on the mesoscopic structure of the textile, so that each conductive wire
can be incorporated in the model if desired.

To ensure that a separate identification of the families of discrete elements
is allowed two conditions must hold. First, the compressive response of the
elements in the lattice model must be negligible compared to the tensile
response of the elements. Second, the in-plane shear stiffness of the woven
material must be compliant compared to the responses in the two principal
in-plane directions. Since the latter generally holds for most woven materials,
the lattice model and its identification procedure can be used more generally
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than for the electronic textile considered here. A disadvantage of these two
conditions is that the lattice model cannot be used for cyclic loading.

The lattice model and its identification procedure are validated by an
out-of-plane punch test on electronic textile, in which copper wires are incor-
porated to provide conductivity. In the punch test local strains of 55% occur
in the most critical direction (in the direction of the conductive wires), so it
can be considered as a stringent validation test. The results show that failure
of the conductive wires is qualitatively, and to some extent quantitatively,
well predicted by the lattice model; at all locations at which failure occurs
in the experiments, strains larger than the failure strain of the conductive
wires are predicted.

Furthermore, comparing the experimental data with the numerical results
shows that the lattice model is accurate for small and moderate strains. For
large biaxial deformation the predicted response of the lattice model is stiffer
than the actual response of the fabric. The cause of this is that during
large biaxial deformation, the diagonal elements, used only to describe the
shear response, influence the responses in the two principal directions as a
result of their extensive elongation. An alternative may therefore be to use
rotational springs instead of truss elements to describe the in-plane shear
response, which is not investigated in this paper. Future research will show
the capabilities of such models.
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