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Abstract

Lattice models and discrete networks naturally describe mechanical phenom-
ena at the mesoscale of fibrous materials. A disadvantage of lattice models
is their computational cost. The quasicontinuum (QC) method is a suitable
multiscale approach that reduces the computational cost of lattice models
and allows the incorporation of local lattice defects in large-scale problems.
So far, all QC methods are formulated for conservative (mostly atomistic)
lattice models. Lattice models of fibrous materials however, often require
non-conservative interactions. In this article, a QC formulation is derived
based on the virtual-power of a non-conservative lattice model. By using the
virtual-power statement instead of force-equilibrium, errors in the governing
equations of the force-based QC formulations are avoided. Nevertheless, the
non-conservative interaction forces can still be directly inserted in the virtual-
power QC framework. The summation rules for energy-based QC methods
can still be used in the proposed framework as shown by two multiscale
examples.
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1. Introduction

Structural lattice models and discrete networks that include trusses or
beams are frequently used to represent discrete microstructures of fibrous
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materials (Bronkhorst, 2003; Clyne et al., 2005; Zohdi and Powell, 2006;
Stylianopoulos and Barocas, 2007; Ridruejo et al., 2010; Silberstein et al.,
2012; Beex et al., 2013; Wilbrink et al., 2013). Likewise, for investigating the
mechanical responses of other materials, e.g. concrete and polymers, lattice
models and discrete networks are often applied (Lilliu and Van Mier, 2003;
Cusatis et al., 2003; Ostoja-Starzewski and Wang, 2006; Rinaldi et al., 2008;
Kim and Buttlar, 2009; Zhao, 2012). The advantage of discrete models is
that they naturally incorporate discrete phenomena occurring in meso- and
microstructures of many materials. Individual microscale events such as fiber
failure and bond failure, precursors for macroscale failure, can be readily
incorporated in lattice models, whereas these they are not easily included
in continuum models. Even the incorporation of global mechanisms such
as large rotations may lead to relatively complex continuum models and
finite element implementations (Peng and Cao, 2005; Ten Thije et al., 2007),
whereas they are naturally captured by truss networks.

A clear disadvantage of lattice models is the required computational effort
for large-scale physically relevant models. This large computational cost
essentially results from the construction of the lattice model at the meso- or
microscale. Consequently, if lattice models are being used for macroscopic
computations, a large number of lattice points is involved. First, this leads to
a large number of degrees of freedom (DOFs) making the system of equations
computationally expensive to solve. Secondly, the construction of the system
of equations is computationally expensive because all lattice points must be
visited for this (Beex et al., 2011).

A suitable approach to reduce the computational cost of structural lat-
tice models is the quasicontinuum (QC) method. The QC method was origi-
nally developed for the reduction of atomistic lattice models by Tadmor et al.
(1996a) and has been widely used to investigate phenomena such as intergran-
ular fracture (Miller et al., 1998) and nanoindentation (Tadmor et al., 1996b;
Knap and Ortiz, 2001; Kulkarni et al., 2008). In a previous study (Beex et
al., 2011) the applicability of the QC method has been demonstrated for
structural lattice models of fibrous materials that employ elastic trusses. An
overview of several QC frameworks is given by Miller and Tadmor (2002).

The benefit of the QC method is its intrinsic multiscale character, allow-
ing the accurate incorporation of local lattice defects in large-scale problems.
This is not trivially possible with multiscale methods that are based on com-
putational homogenization (Stylianopoulos and Barocas, 2007). Moreover,
the QC method entirely relies on the microstructural lattice topology, unlike



approaches as those of Xiao and Belytschko (2004) and Fish et al. (2007),
that need a continuum description in addition to the discrete model. This
is an advantage, since continuum descriptions for fibrous materials tend to
be complex to formulate (Peng and Cao, 2005). Another advantage is that a
number of QC frameworks (Knap and Ortiz, 2001; Eidel and Stukowski, 2009;
Beex et al., 2011, 2012a) do not require a handshaking region or coupling pro-
cedure between fully resolved domains (in which the exact lattice model is
recovered) and coarse domains (in which an approximation is made). Several
other multiscale approaches require such a coupling procedure (Shenoy et al.,
1999; Xiao and Belytschko, 2004; Fish et al., 2007; Ha-Minh et al., 2011).

The QC method introduces two remedies to reduce the computational
cost of lattice models. First, interpolation is applied to the displacements of
the lattice points to reduce the number of DOF's and thus reducing the size of
the governing set of equations. In coarse regions, the interpolation triangles
are large so that many lattice points are interpolated. In regions of interest,
e.g. around lattice defects, the exact lattice model is captured by refining
the interpolation such that every lattice point corresponds to a point of the
interpolation triangulation (so-called representative point or reppoint).

Secondly, so-called summation rules are used in the QC method to en-
sure that only a small, selective number of lattice points (so-called sampling
points) needs to be visited to construct the governing equations, instead of
all lattice points. To obtain an accurate solution, all lattice points in the
fully resolved regions are sampling points, while in the coarse regions only
a small number of points is used (see for instance the studies of Zhang and
Gunzburger (2010); Beex et al. (2011) and Beex et al. (2012a)).

Most QC formulations are based on minimizing the total potential energy
of the interpolated system (Tadmor et al., 1996a; Miller et al., 1998; Shenoy
et al., 1999; Eidel and Stukowski, 2009). Also the QC formulation of Beex
et al. (2011), developed for structural lattice models with elastic interactions
only, uses this ansatz. Depending on the application, such an elastic descrip-
tion is adequate (Delincé and Delannay, 2004; Sharma and Sutcliffe, 2004;
Gonella and Ruzzene, 2008; Hatami-Marbini and Picu, 2009; Zeman et al.,
2011). For many applications however, more advanced descriptions of lattice
interactions are required that include dissipation in the lattice interactions
by e.g. using plasticity (Kato et al., 1997; Desphande et al., 2001; Arnoux et
al., 2002; Bronkhorst, 2003; Chen and Baker, 2003; Mohr, 2005; Doyoyo and
Hu, 2006; Silberstein et al., 2012; Beex et al., 2013; Wilbrink et al., 2013) or
damage (Cusatis et al., 2003). In these cases, a straightforward minimiza-
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tion of the potential energy can no longer be employed since the dissipation
leads to non-conservative interactions. Energy-based QC formulations are
thus inadequate for structural lattice models with dissipative interactions.

Existing force-based QC formulations may be appropriate alternatives.
The QC formulations that depart from a force-equilibrium however (Knap
and Ortiz, 2001; Kulkarni et al., 2008), also appear to be energetically incon-
sistent for conservative systems. This has been shown by Eidel and Stukowski
(2009) for the widely used cluster QC approach of Knap and Ortiz (2001).

The aim of this study is therefore to develop an energetically consistent
QC formulation for non-conservative lattice models. Our point of departure
for this forms a virtual-power statement (Germain, 1973) in which the non-
conservative forces can be directly inserted. As a result, the framework is
equivalent to energy minimization for conservative lattices, but its applica-
bility is broader.

Another advantage of using the virtual-power statement is that summa-
tion rules proposed in energy-based QC formulations can directly be used in
the proposed QC methodology. In this study, the summation rule for atom-
istic lattice models as presented by Beex et al. (2012a) is used to reduce the
computational efforts of the considered lattice model.

The outline of this paper is as follows. In section 2 the thermodynamics of
structural lattice models with dissipative interaction forces are formulated.
The lattice model of interest is discussed here as well. In section 3, the
virtual-power-based QC formulation is introduced and applied to an elasto-
plastic lattice model consisting of an equidistant X-braced truss network with
elastoplastic interactions. This fairly simple lattice model is chosen in order
to show the possibilities of the framework. In section 4 two multiscale nu-
merical examples are simulated to evaluate the accuracy and efficiency of the
virtual-power-based QC method and to illustrate some of key features for
fibrous materials.

2. Structural lattice models with non-conservative interactions

It is useful to formulate structural lattice models, as adopted in the QC
method, on a thermodynamic basis. The reason is that most QC methods
are based on energy-minimization and that thermodynamical inconsistencies
in sampling points are carried over to their corresponding lattice points.
These inconsistenties can significantly contribute to the inaccuracy of the
QC method (Eidel and Stukowski, 2009). The thermodynamics of dissipative

4



lattice models are therefore first considered. We subsequently particularize
the framework to the case of a lattice of elastoplastic trusses and briefly
discuss solution methods for it.

The lattice model studied in this paper is a two-dimensional equidistant
X-braced network of elastoplastic trusses (see Fig. 1). It can be considered as
a discrete representation of the microstructure of a fictitious fibrous material.
A unit cell of the truss network contains four truss nodes positioned at the
locations where the horizontal, vertical and diagonal trusses meet (see Fig. 1).
At the center of a unit cell, where the diagonals cross each other, no truss
node is present. This means that every truss node in the network is connected
to eight other nodes. The considered simple lattice is esentially used to show
the possibilities of the virtual-power-based QC method for structural lattice
models including dissipative mechanisms.

X

Figure 1: The equidistant X-braced lattice model with elastoplastic trusses as considered
in this paper. A unit cell of the truss network is marked in black.

2.1. Thermodynamics of non-conservative lattice models

The lattice model considered here merely contains trusses. The DOF's of
the system are thus only the displacement components of the lattice nodes.
For a solution of the lattice model, the internal power of the lattice equals
the external power:

l.lT intF — l.lT extF vu7 (1)

where u refers to the column matrix containing the components of the dis-
placement vectors of all n lattice points. The column matrices ™ F and “*'F



contain the components of the resulting internal forces and externally applied
forces. In Eq. (1) u? ™F can be identified as the internal power, ™ P, and
u’? “'F as the external power, “P.

A dissipative lattice model depends not only on a set of the (controllable)
kinematic variables, u, but also on a set of (not directly controllable) internal
variables, stored in column matrix z. The size of this column matrix is Z x 1
and is independent of the number of kinematic variables, 2n, since it depends
on the number of dissipation mechanisms in the lattice. The energy stored
in the lattice, E/, thus depends on the kinematic and internal variables, i.e.
E = E(u,z). For a lattice model, the total energy stored in the lattice, F,
can be written in terms of the stored energy per lattice point 7, £, which
can be written in terms of the energy stored per interaction (truss) between
a lattice point, i, and one of its neighbors, j, E¥:

E(u,z) = Z E'luz)=) > %E”(u, z), (2)

i=1 jeB?

where B? contains the neighboring points of lattice point 4, which is a subset
of the index set N = {1,...,n} containing all n lattice points (B* C N). The
factor 1/2 arises because half of the energy E* associated with the interaction
between i and j is attributed to node ¢ and the other half to j. Using the
chain rule, the rate of the stored energy reads:

7O
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Now the internal power and the rate of the stored energy have been
defined, the first law of thermodynamics can be used to relate them and
determine the dissipation. The first law states that the power performed by
a system is the sum of the rate of the stored energy and the rate of dissipation
of the system:

ntp— [+ D, (4)

where D is the rate of dissipation. Substituting Eq. (1 & 3) in Eq. (4) yields
D as:



: T [ int oL . TaE
D—u( F 8u) o (5)

Similar to the work of (Germain, 1973), it is now assumed that no dissi-
pation takes place if the internal history variables, z, which are related to the
dissipation mechanisms, remain constant (D = 0 if z = 0). To ensure that
this requirement is valid for all (controllable) w, the term between brackets
in Eq. (5) should vanish. The standard expression for the internal forces
results:

oF

int
and the rate of dissipation is reduced to:

. oF
D=—-z"—. 7
5 (7)
Furthermore, the second law of thermodynamics states that the entropy
of a system must remain constant or increase, i.e. D > 0. If we now introduce
a column matrix with dissipative forces *F = —2Z the following expression

0z
is obtained for the dissipation rate:

D =12"*F > 0. (8)

A dissipation potential, ®, needs to be formulated as functions of the
kinematic and internal variables (u and z respectively). The dissipation
potential can be summed from the dissipation potential of each lattice point,
®?. (if dissipation takes place in the lattice points) or summed from the
dissipation potential of each lattice interaction, ¥, (if dissipation takes place
in the interactions):

Bu,z) = Y Bluz) = 33 %Cbij(u, 2), ()

=1 jep?
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Note that this expression entails that each interaction is visited twice (one
node on each side), as is performed for the stored energy in Eq. (2).

At this point, the thermodynamical setting for a dissipative lattice model
with trusses is complete, except for the formulation of the stored energy per
truss and the formulation of the dissipation potential per point or interaction
as functions of the kinematic, u, and internal variables, z. Both formulations
depend on the specific lattice model of interest. For a lattice with elastoplas-
tic trusses (see Fig. 1), the expressions of the energy stored per truss, E%
in Eq. (2), and the dissipation potential for a truss, ®7 in Eq. (9), (since
dissipation takes place in the trusses for a network with elastoplastic trusses)
are established below.

2.2. FElastoplastic interactions

The formulations of the stored energy per truss and the dissipation po-
tential per truss are derived here for a truss that is connected to lattice point
1 and neighboring lattice point j. However, the superscripts ij are dropped
below for ease of notation.

The elastoplastic trusses in the considered lattice are all of the same
material with the same material description. The elastic part of the material
description is linear, whereas the hardening behavior is yet to be defined
(in the dissipation potential, ®). First the stored energy per truss (E% in
Eq. (2)) is defined in terms of u and z.

The total axial strain of one elastoplastic truss, €, is split in an elastic
part, “€, and a plastic part, Pe, as follows:

‘e = ‘e + Pe. (10)

The total strain is taken linear in terms of the elongation, A:

e=A—1. (11)

The elongation depends on the kinematic variables, u, according to:

|77+ — & —

&7

A= (12)
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where @' and @’ are the displacement vectors of nodes i and j respectively.
The original length of the interaction is represented by |77 — 7| where 7 is
the original position vector of node i. The internal variables, z, are taken as
the plastic strains of all trusses, i.e. Pe = z. By inserting e = z and Eq. (11
& 12) in Eq. (10), the following expression is obtained for the elastic strain:

e | +w -2

€ —

. , —1—=z 13
o (13)
This relation relates the elastic strain of a truss, °, to u and z.

The elastic part of the material description of all trusses is linear. The
stored energy of a truss can then be expressed in terms of ¢, according to:

1 ) )
E=SYAF - &, (14)

where Y represents the Young’s modulus and A the original cross-sectional
area, which is remains constant for all elongation. Insertion of Eq. (13) in
Eq. (14) leads to the following expression:

1 . .
E=-YAl# - ﬂ(

7+ — & — | )2
5 —1—z

. - 15
e (15)

Now we can define the expression for the local potential dissipation for
each truss (¥ in Eq. (9), although below we drop superscript ij again). The
following formulation is regularly used to describe the onset of yielding in a
1D system (the axial direction of a truss):

¢ =["F|-YF(£) <0, (16)
with
OF
o) A——— 1



where YF' is the yield function. This expression entails that no dissipation
(plastic deformation) occurs if the force *F remains below the correspond-
ing yield force, YF'. The full dissipation potential in Eq. (9) depends on the
column matrix *F, but each local term of the dissipation potential only de-
pends on one component of *F, namely *F. Therefore each local term can
be locally determined, as commonly done in elastoplastic descriptions. The
internal history variable &, which for all trusses are stored in column matrix
&, is introduced for one truss by:

. OB .
To ensure a non-negative rate of dissipation, the following Kuhn-Tucker
equations are imposed for each truss:

£>0 d<0 £d = 0. (19)

The internal history variable ¢ is thereby the effective plastic strain of
a truss. Note that since sign(z) = sign(*F), Eq. (8) is satisfied for each
individual truss (i.e. each component of z and *F) and thus for the entire
lattice.

For the hardening behavior of a truss in the lattice the following formu-
lation is used:

VF = A%l|d —&|(1+ HE), (20)

where H and « are hardening parameters and °c is the initial yield stress.
The same values are used for all trusses.

2.3. Solution procedure

The solution of the lattice can be found by solving Eq. (1) while taking
into account the inequality constraints in Eq. (19) for all trusses. This system
of equations is non-linear due to the non-linear material description of the
trusses (see Eq. (20)) and the fact that we allow for large rotations (see
Eq. (15)). A Newton-Raphson procedure can be used to solve Eq. (1), for
which a first-order Taylor expansion is required:
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ﬁT(intF(*u, *Z) + K( *u’ *Z)du) — -TextF vu’ (21)

where *u and *z are the displacement components and the plastic strains
of the previous iteration respectively. The correction to the displacement
components computed in the present iteration is represented by du. The
overall stiffness matrix K is defined here as %TZF and is thus a second order
derivative of the stored energy (since ™F is the first order derivative of the
stored energy, see Eq. (6)). Note that the inequality constraints (see Eq. (19)
for the constraints acting in each truss) must be met as well, which can be
checked locally for each truss of the network.

In the Newton-Raphson scheme, the first expression in Eq. (21) is used
to obtain a new estimate of the displacement components, whereas the new
plastic strains are determined from these newly obtained displacements by
the use of the inequality constraints in the second expression in Eq. (21).
The latter are numerically dealt with by a standard return mapping proce-
dure (Wilkins, 1963; Simo and Taylor, 1986). Since each inequality constraint
is related to one local dissipation mechanism (in each truss), each inequality
constraint is treated individually in the solution procedure.

Although not incorporated in Eq. (21), the boundary conditions of the
system must be taken into account. Neumann boundary conditions are
present in the external force column, **'F, and the Dirichlet boundary con-
ditions are incorporated in the displacement column, u. After the system
is partitioned in a standard manner, the incremental solution results for the
standard Newton-Raphson procedure.

The system of equations is computationally expensive to solve for large-
scale lattice models (i.e. n is large). A large number of 2n DOFs (displace-
ment components) is involved, making the first expression in Eq. (21) com-
putationally expensive to solve. Moreover, all n lattice points need to be
visited to construct the system of equations in Eq. (21), according to Eq. (2,
6&9).

3. Virtual-power-based quasicontinuum method

The QC method, developed for (conservative) atomistic lattice mod-
els (Tadmor et al., 1996a), introduces two remedies to improve the efficiency
of direct lattice computations. First, interpolation of the displacements of the
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lattice points ensures that the number of displacement components (DOF's)
is reduced. Furthermore, summation is used in the QC method to achieve
a more efficient construction of the governing equations. Instead of using
all lattice points to construct the governing equations, an estimate of the
governing equations is obtained by selecting only a small number of lattice
points.

3.1. Interpolation

Interpolation is introduced in QC methods by imposing an interpolation
triangulation to a lattice model. For the two-dimensional lattice model con-
sidered here, an example of a triangulation is shown in Fig. 2. Nodes of the
triangles are positioned at chosen lattice points and the displacements of the
remaining lattice points are interpolated between them. Linear interpolation
is generally used as in this paper, except by Kwon et al. (2009). As a result
of the interpolation, the displacements of the interpolated lattice points fol-
low directly from the displacements of the lattice points at triangle nodes.
The latter are therefore referred to as representative points or reppoints (or
repatoms if the method is being used for atomistic lattices). The reppoints,
stored in set R, are selected from all lattice points, i.e. R C N.

Figure 2: The X-braced truss network (grey) with an imposed triangulation (red). The
blue bold trusses in the center of the fully resolved region are substantially stiffer than the
remaining grey trusses.

The use of interpolation of the lattice model ensures that the QC method
is a true multiscale method. Consider for instance Fig. 2 in which a number
of trusses is significantly stiffer than the regular trusses. In the region sur-
rounding the stiff trusses significant displacement fluctuations are expected.
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Therefore, a fully resolved interpolation grid is used there to capture these
fluctuating displacements, i.e. every lattice point is a reppoint. The exact
lattice model is recovered here, while in the remaining regions the lattice
model is interpolated and many DOFs are eliminated. As a consequence, the
lattice points displace in an affine manner in these coarse domains. Coarse
domains (large triangles) are therefore only allowed to be used in regions
with smooth displacement fluctuations to ensure sufficient accuracy. The
fact that in coarse domains the displacements are coarse-grained and in the
fully resolved domains the displacements of the individual lattice points are
incorporated, gives the QC method its multiscale character.

The displacement components of all lattice points, u, are affected by
interpolation, resulting in condensed displacement column 1, which can be
expressed as a function of the displacement components of the reppoints by
the following expression:

u~u=v"u (22)

where "u is the column matrix with the displacement components of the
reppoints of size 2r x 1 for the two-dimensional truss network of interest.
Here, r refers to the number of reppoints. The condensation matrix is denoted
by ¥ and its size is 2n x 2r. It contains the values of the interpolation
functions, evaluated at the positions of all lattice points.

Interpolation directly affects the displacement components, u, of the lat-
tice according to Eq. (22). The interpolated displacements are Cy-continuous
as a result of the linear interpolation. According to the inequality constraints
in Eq. (21), the internal variables follow from the displacements. Conse-
quently, they are only indirectly influenced by the interpolation of u. The
internal variables are (approximately) constant within an interpolation tri-
angle as a consequence of the linear interpolation of the displacements, since
they are defined as (plastic) strains, of the order of the gradients of the
displacements (kinematic variables).

By substituting Eq. (22) in Eq. (21) the formulation of the virtual-power
statement reads:

raT (\I,T ntp(*q, *z) + OTK(*a, *2) wru) — aTOT R v, (23)
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where U7 "F and WKW can be identified as the condensed internal force
column, ™F (of size 2r x 1), and the condensed stiffness matrix, K (of size
2r x 2r), respectively. For the sake of clarity the condensed external force
column is not considered in more detail here and below. The condensed
counterparts of the internal force column and stiffness matrix are formulated
as follows:

e o 10EY
ME = @’ = 24
22 5o (24)
i=1 jeB
. > 10°E%
K=o’ ——— . 25
Z; %;_ 2 Ou? (25)
1= J 7

Note that the constraints in all trusses (see Eq. (19) for the constraints acting
in one truss) must still be met in in the condensed system.

To ensure that the condensed governing equations in Eq. (23) adequately
approach the original governing equations in Eq. (21), coarse domains (i.e. large
triangles) may only exist in regions with small displacement fluctuations.
In these regions, the displacements are linearly interpolated resulting in
an equal virtual power of two neighboring lattice points in one triangle
(raT WL — T $TOET  This is only valid if the virtual powers of
these two lattice points in the uncondensed system are practically identical
O

As a result of Eq. (23) and because r < n, the (condensed) system
in Eq. (23) is substantially more efficient to solve than the (uncondensed)
system in Eq. (21). This is in correspondence with other QC methods based
on conservative lattices. The inequality constraints for the entire network,
which originate from the considered elastoplastic (non-conservative) lattice,
remain unaffected by interpolation. Through interpolation, a new estimate
of the displacements is computationally more efficiently obtained. Yet, all
constraints need to be satisfied individually and still all n lattice points need

to be visited for the construction of the governing equations in Eq. (23).

3.2. Summation

Now the solution space of the system is reduced by means of interpolation,
the first cause of the large computational effort has been addressed. However,
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still all n lattice points must be visited to construct the condensed internal
force column, ™F, and the condensed stiffness matrix, K.

The remedy adopted in the QC method to avoid accessing all n lattice
points is to access only a small number of s lattice points in order to obtain
an estimate of the condensed virtual power (i.e. the condensed governing
equations). This procedure is called summation in QC methodologies. The
lattice points that are used for this are referred to as sampling points since
they sample the virtual power of the lattice points in its vicinity. They are
stored in set S and are selected from all lattice points (S C N).

The key principle of summation is that the virtual power of a sampling
point 7 can be used to represent the virtual power of w'’ lattice points in the
vicinity of the sampling point (including sampling point ¢ itself). This entails
for the governing equations that:

TuT(intﬁ(*ﬁ, *Z) +f{( *ﬁ, *Z)dru) — ruT\I,TextF vru

with

th ‘I’T Z Z 1 aE 7 (27)

€S jGBZ

1 92 Ei
K=9"Y w D o v (28)

i€S ]GBl

in which “F and K are the summed condensed internal force column and
summed condensed stiffness matrix, respectively.

As a result of the presence of the weight factor, w?, the dissipation poten-
tial will not show the same elastoplastic behavior for a truss connected to a
sampling point. To ensure that the elastoplastic behavior of a truss recovers
its response in the direct lattice model (i.e. to ensure equal dissipation), the
dissipation potential for the truss between sampling point ¢ and neighbor j
in Eq. (16), ®, needs to be modified to (where we use the superscript ij again
for clarity):
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Y = [*F| - w'VF(£7) <0, (29)
since *' F' = w'%E= | where 2V refers to the component of z that is associated
with the truss between points i and j. Eq. (29) implies that the yield function
Y[ is to be weighted equally with the same weight factor w?.

The advantage of using summation is that only a small number of s
sampling points (assuming that s < n) need to be visited to obtain an
approximation of the condensed governing equations, instead of all n lattice
points (to determine the condensed governing equations exactly). In this
way, the QC method not only solves the governing equations efficiently by
interpolation but also efficiently construct the governing equations. Since the
inequality constraints hold for each truss connected to a sampling point, the
inequality constraints apply to all trusses related to sampling points.

An important advantage of the proposed virtual-power based QC frame-
work is that the internal forces are accurately related to all virtual displace-
ments of influence. This automatically follows from the virtual-power based
framework as was the case for the energy-based QC frameworks (Eidel and
Stukowski, 2009; Beex et al., 2011) which did not take dissipation into ac-
count. The relation between the virtual displacements and the forces is
for instance illustrated by the summed condensed internal force column in
Eq. (27) in which % ensures that stored energy of a truss, represented by
E" . is related to the virtual displacements of the sampling point itself and
also to its neighboring points.

For the summed condensed internal force column in a force-based QC
framework (Knap and Ortiz, 2001) however, the following formulation is
used:

= . , OEINT \T
mn _ 7 7
F-w Z((w > aui) N) | (30)
€S JjEB?
where for the two-dimensional lattice considered here u’ contains the dis-
placement components of sampling point i (0’ = [ug_1 u]") and N is of
size 2 x 2n. The components of N* are given by:

(31)

; 1 if(k=1&1=2i—1)or (k=2 & [ =2i),
Nkl = .
0 otherwise.
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Eq. (30) illustrates that only the dependence of the stored energy of a truss,
E% . on the displacement components of the sampling points are considered
in the force-based methods (indicated by %), but not its dependence on the
displacement components of the neighboring points of the sampling points.
As a consequence, the accuracy of force-based QC methods is compromized,
whereas this is not the case for the proposed virtual-power-based QC method
in which the same dependence is recovered as in energy-based (QC method-
ologies. This is explained extensively by Eidel and Stukowski (2009) for
conservative lattice models.

Now the question arises which lattice points are suitable to serve as sam-
pling points. The answer to this question results from the requirement that
the virtual power of each sampling point needs to be approximately the same
as those of the lattice points represented by each sampling points. Hence,
we need to identify lattice points for which ”ﬁT\IIT% R~ ”ﬁf\IlTagjl, SO
that one of them can serve as a sampling point to represent the others. The
number of lattice points that each sampling point ¢ represents, the weight
factor w?, can be determined in different ways and one has to decide if the
virtual power of the sampling points is established in a local or nonlocal fash-
ion. The combination of these three issues (which sampling points to select,
how to determine w’ and which sampling points are treated locally or non-
locally) is specified in a so-called summation rule of which several have been
proposed (Tadmor et al., 1996a; Knap and Ortiz, 2001; Eidel and Stukowski,
2009; Zhang and Gunzburger, 2010; Beex et al., 2011, 2012a). An overview
is given by Miller and Tadmor (2002).

Although the summation rule presented by Beex et al. (2011) has been
developed for structural lattice models with only nearest-neighbor interac-
tions (as the truss network considered in this study) the modified version of
this summation rule (Beex et al., 2012a), the so-called central summation
rule, is used here. The reason is that less sampling points are necessary in
the central summation rule which leads to an efficient QC method. A disad-
vantage of the central summation rule compared to the original summation
rule (Beex et al., 2011) is that it only gives an estimate of virtual power. As
shown by Beex et al. (2012a) and below in section 4, an improved accuracy
in the fully resolved regions of interest can be obtained by increasing the size
of the fully resolved regions.

In the central summation rule one internal sampling point is selected in
the center of each triangle to sample all lattice points in the triangle and on
top of the triangle edges (with w’ > 1) while the reppoints of the triangle are
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selected to only represent themselves (see Fig. 3). The reppoints are selected
as discrete sampling points (with w’ = 1) so that in the fully resolved regions
the exact lattice model is recovered. In case all lattice points in a triangle
are located at triangle edges and triangle nodes, no internal sampling node
is selected and all lattice points of the corresponding triangle are selected
as discrete sampling nodes to overcome metastable solutions (Beex et al.,
2012a). Furthermore, the virtual powers of all sampling points are computed
in a nonlocal fashion so that no internal interface occurs, as for instance in
the QC methods of Tadmor et al. (1996a) and Shenoy et al. (1999) and other
multiscale approaches of Xiao and Belytschko (2004) and Fish et al. (2007).

° . .
g ®
° °
g ®

o { o —« @
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. . [ ] . [ ] . [ ) . ® .
®

Figure 3: Schematic representation of the central summation rule applied to the X-braced
truss network. The thick, blue trusses in the fully resolved region are substantially stiffer
than the regular trusses. Black dots are discrete sampling points (with w? = 1) and
large black dots are internal sampling points (with w? < 1). The neighboring nodes of
the sampling nodes that must be taken into account in the nonlocal computation are not
highlighted.

4. Numerical examples

In this section, the virtual-power-based QC framework including the cen-
tral summation rule of Beex et al. (2012a) is applied to two numerical exam-
ples to illustrate the computational gain and accuracy that can be achieved.
The elastoplastic lattice model of section 2 is used in the examples which have
a true multiscale character, since large-scale networks with local adaptations
are considered. The examples are set up in a dimensionless form.

The main purpose of this section is to establish that the virtual-power-
based QC method is a viable approach for non-conservative (i.e. dissipa-
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tive) lattice models, the computational efficiency and and that it results in
a considerable reduction in computing times at an acceptable loss of accu-
racy. For more detailed analysis of the approximations introduced in different
QC strategies, in the conventional reversible, atomistic setting, we refer the
reader to the studies of Miller and Tadmor (2009); Luskin and Ortner (2009);
Dobson et al. (2010) and Yang et al. (2013). The central summation rule
of Beex et al. (2012a) is used here is because of its fully nonlocal charac-
ter and because it gives a significant better approximation of the governing
equations than the other fully nonlocal summation rules such as the clus-
ter summation rules (Knap and Ortiz, 2001; Eidel and Stukowski, 2009).
However, the virtual-power-based QC approach may also be combined with
alternative summation strategies and this may have an effect on accuracy
and efficiency.

4.1. Problem statement

The lattice spacings in horizontal and vertical direction are set to 1. The
length of the diagonal trusses is thus v/2. The lattice model contains 100 x 100
unit cells (20,402 DOFs). The parameters of the trusses’ material behavior
are presented in Table 1, corresponding to a purely elastic response up to a
strain of 1%. The use of these parameters results in a smooth increase of
plastic deformation for strains larger than 1% (see ahead to the left image in
Fig. 9 for the response of a unit cell).

Table 1: Dimensionless material parameters.

Y 1

A 1
°g 0.01
H 10
o 0.5

In the numerical examples, a stiff region of 6 x 6 unit cells is introduced at
the center of the lattice by modeling the trusses in this square substantially
stiffer than the regular trusses. The Young’s modulus of these trusses is
therefore increased by a factor of 100 and a large initial yield stress is used
so that no plastic deformation occurs in the stiff region. The local stiff
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region in the lattice model can be regarded as a hard particle or region inside
a fibrous material. An example can for instance be the locally thermally
bonded material investigated by Hou et al. (2009) or an electronic textile
with a light-emitting-diode mounted on it (Beex et al., 2013).

As a result of the local stiff region, large displacement fluctuations are
expected near this domain so that a fully resolved region is required in and
around it. The displacement fluctuations in the remaining domain are ex-
pected to be significantly smaller so that coarse triangles can be used. This
results in a true multiscale example that forms a representative test case for
the virtual-power-based QC method.

The local influence of this stiff region on the lattice is investigated for uni-
form loading using periodic boundary conditions (Kouznetsova et al., 2001).
It can thus be considered as a representative volume element in a periodic
structure. To this end, the cross-sectional area of the trusses of which both
lattice points are located on the model edges is only half of the area of the
other trusses. Uniform deformation is applied in horizontal direction up to a
strain of 10%. The maximum strain is reached in 100 increments in the QC
simulations as well as in the direct lattice computations. Note that in the di-
rect lattice computation, used to evaluate the QC framework, the boundary
conditions are directly applied to the lattice points (truss nodes), whereas
they are applied to the reppoints only in the QC model.

4.2. Computational efficiency

Four different triangulations are used to investigate the smallest possible
size of the fully resolved region that still gives sufficiently accurate results (see
Fig. 4). The fully resolved region is centered around the central stiff region
since this is the region of interest where significantly fluctuating displace-
ments occur. The coarse domain is kept similar (i.e. a similar coarseness)
in the four triangulations so that only the influence of the size of the fully
resolved region is investigated. Another reason to keep the coarse domain
as coarse as possible is that the refinement of the coarse domain leads to
a relatively large extra number of reppoints and sampling points for only a
limited increase of the accuracy (Beex et al., 2011).

The diagram in Fig. 4 shows that the number of reppoints and sam-
pling points of the four triangulations is only 5-15% of the number of points
used in direct lattice computations. The number of reppoints is a general,
platform-independent measure for the computational effort to solve the gov-
erning equations in each iteration and the number of sampling points is a
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Figure 4: The four triangulations used to investigate the influence of a stiff region in the
lattice. For clarity, trusses are not shown. Red circles represent internal sampling points
(w® > 1) and blue crosses represent discrete sampling points (w® = 1). The triangulations
have fully resolved regions of 14 x 14 (top-left), 20 x 20 (top-right), 26 x 26 (middle-left)
and 32 x 32 unit cells (middle-right). A zoom of the fully resolved region with 14 x 14 unit
cells can be seen in the bottom-left image. The diagram on the bottom-right shows the
number of reppoints (black bars) and sampling points (white bars) relative to the total

number of points for the four triangulations.




measure for the efforts to construct the governing equations in each iteration.

In Table 2 the computation times of a single increment for the different
models are shown, which are average values based on the first ten incre-
ments. The values normalised by the increment time of the direct lattice
computations correspond well to the relative number of reppoints and sam-
pling points.

Table 2: CPU times to compute a single increment and the overhead times of the direct
lattice computation (dlc) and the QC computations using triangulations with fully resolved
regions of 14 x 14 lattice spacings (QC14), 20 x 20 lattice spacings (QC20), 26 x 26 lattice
spacings (QC26) and 32 x 32 lattice spacings (QC32).

dle QC14 | QC20 | QC26 | QC32
normalized increment [—] 1 0.03 |0.06 |0.12 |0.16
increment [s] 192 5.8 10.9 | 224 | 31.2
Overhead [s] 0.4 3.2 3.7 4.2 5.0

Hence, the relative number of reppoints and sampling points give a good
indication of the achieved computational gain in computing times.

The overhead times are also presented in Table 2 (final line). For the
direct lattice computation this includes the formulation of the lattice points,
but for the QC implementations the interpolation functions need to be eval-
uated at the lattice points, sampling points have to selected from the lattice
points, neighboring lattice points of the sampling points have to be selected
and weight factors associated with the sampling points have to be computed.
This overhead time has to be spent only once for each simulation and is gen-
erally smaller than the cost of a single increment.

The computational gain highly depends on the scale difference between
the fully resolved domain and the model domain. In the reference case con-
sidered in this study, this scale difference is small, so that we are able to
actually perform the direct lattice computation and compare its results to
those of the QC computations. In practice, significantly larger scale differ-
ences are expected; consider e.g. the example of local failure in large-scale
models, as in the study of Ha-Minh et al. (2011). In such cases, the rela-
tive number of reppoints and sampling points will be significantly smaller,
which means that the computational gain will be significantly larger than
that reported here.
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In Fig. 5 the relative number of reppoints and sampling points is presented
for different model domains which all have a fully resolved region of 14 x 14
unit cells. The triangles in the coarse domain are of a similar size. It can
be seen that the relative number of reppoints and sampling points reduces
significantly for increasing model sizes and hence, a significant increase of the
computational efficiency occurs for an increasing scale difference between the
fully resolved domain and model domain. Note that the relative number of
reppoints and sampling points approach their limit values which are the ratios
that occur if no fully resolved region is present.
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Figure 5: Top: five triangulations with a fully resolved region of 14 x 14 unit cells, but for
different model domains. Sampling points are not shown. The numbers indicate the scale
difference, which is defined as the ratio between the length of the entire model domain and
the length of the fully resolved domain. Bottom: the relative number of reppoints (black)
and sampling points (white) for the five triangulations.

4.83. Accuracy

Results of the direct lattice computation and QC simulation for the tri-
angulation with a fully resolved region of 14 x 14 unit cells are presented in
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Fig. 6. The results of the trusses that are not shown in the top-right image
of Fig. 6 belong to the summed lattice points. This means that they are
represented by the internal sampling points.

Overall, the results predicted by the virtual-power-based QC method ad-
equately correspond to those of the direct lattice computation for uniform
deformation. The horizontal trusses on the left and right of the stiff region
experience large plastic strains in tension, while the vertical trusses above
and below the stiff region are plastically more compressed than the other
vertical trusses. The trusses with the maximum plastic strains are located
at the four corners of the stiff region.

To evaluate the accuracy of the QC results in a more quantitative man-
ner, the plastic strains at maximum deformation of the horizontal trusses
connected to the sampling points are regarded in more detail. The horizon-
tal trusses are used for this because they are oriented in the loading direction.
The error of the plastic strain in the truss 4, e’, is determined as follows:

; qe i _ dlczz
e =

- 100% (32)

dlczi

where 2 is axial plastic strain in truss i. The superscript gc refers to the
solution of the virtual-power-based QC model for a particular triangulation
and superscript dlc refers to the solution of the direct lattice computation.

The errors of the plastic strains are presented in Fig. 7 for the four triangu-
lations of Fig. 4. It is clearly visible that around the edges of the fully resolved
regions rather large errors in the plastic strains are present. They correspond
to errors observed for summation rules that lead to ghost-forces (Shenoy et
al.; 1999), but they are not true ghost-forces since the summation rule is
fully nonlocal. Several global quantities (the average plastic strain, the total
stored energy and the reaction forces on the right side of the entire model)
were investigated to quantify the global error for the different triangulations,
but they all correspond well with the global quantities computed with the full
lattice model (less than 0.1% difference was observed). Hence, the QC com-
putations with all four triangulations predict the global mechanical response
well.

Locally however, the response is significantly different as can be seen in
Fig. 7. Around the fully resolved regions the error is significant, but one
is mainly interested in the fully resolved domain. Therefore, the error in
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-0.04 0 0.12

Figure 6: The plastic strains in the trusses at the maximum uniform deformation com-
puted by the direct lattice computation (left) and the virtual-power-based QC computation
(right) for the triangulation with a fully resolved region of 14 x 14 unit cells (see Fig. 4).
The triangulation is not shown. The top images show the entire models and the bottom
images show zooms of the fully resolved region around the stiff region (white).

the fully resolved domain is evaluated for the four triangulations based on
the average error of the plastic strain in twelve lattice trusses. The twelve
interactions of interest are shown on the left in Fig. 8 and again Eq. (32) is
used for the error.

The local average relative errors of the plastic strains for the four trian-
gulations shown in Fig. 4 are shown on the right in Fig. 8. The trend of
the local average relative errors is decreasing for an increasing size of the
fully resolved domain. A pronounced decrease is noticed between the error
of the triangulation with a fully resolved domain of 14 x 14 unit cells and
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0 40%

Figure 7: The errors of the plastic strains in the sampling points of the four triangulations
of Fig. 4 plotted on the undeformed configurations.

the error of the triangulation with a fully resolved domain of 20 x 20 unit
cells. For triangulations with fully resolved regions larger than 20 x 20 unit
cells, a relatively small decrease can be observed. This is in agreement with
the results of Beex et al. (2012a) in which the central summation rule is used
for atomistic lattice models. In the results of Beex et al. (2012a), the error
also decreases significantly if the size of the fully resolved domain is enlarged
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so that all local displacement fluctuations occur inside the fully resolved do-
main. For a further increase of the size of the fully resolved domain, only a
minor decrease of the error was observed. In Beex et al. (2012a), it has been
shown that if an error in the fluctuations field remains at the border of the
fully resolved domain, the error remains non-zero. This is in agreement with
the local average relative errors in Fig. 8.

The most important observation based on Fig. 8 is that for the trian-
gulation with a fully resolved region of 20 x 20 unit cells, the local average
relative error is below 5%. This indicates that this triangulation gives results
that may often be considered to be accurate enough, while the computational
cost is low (see Fig. 4). A triangulation with a larger fully resolved region
can be used if a larger accuracy is required, but this is at the expense of the
computational efficiency.
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Figure 8: The twelve interactions selected around the stiff region (left) and (right) the
local average relative errors of the plastic strains of the twelve interactions shown in the
left image for the four triangulations shown in Fig. 4.

4.4. Textile-like lattice model

To illustrate that the virtual-power-based QC framework picks up trends
if the lattice model is changed, the Young’s modulus of the diagonal trusses
is next decreased by a factor of 10. In this way the mechanical response of
the lattice more or less corresponds to a general response of lattice models for
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woven fabrics (Sharma and Sutcliffe, 2004; Beex et al., 2013). In such lattice
models, the relatively stiff horizontal and vertical interactions represent two
families of yarns and the compliant diagonal trusses represent the rotational
stiffness between the two families of yarns. Except for the stiffness of the
diagonal trusses, all other model parameters and boundary conditions are
the same as before. The stiff region in this case may represent a light-
emitting-diode placed on a patch of electronic textile (Beex et al., 2013).

The homogenized stress-strain responses of a unit cell of the textile-like
lattice model is compared to the response of the original lattice on the left
in Fig. 9. The initial stiffness (during macroscopic uniform deformation)
reduces to approximately 80% of the original stiffness. The initial stiffness
during macroscopic shear deformation however decreases to approximately
10% of the original stiffness (not shown here). This is caused by the fact
that during macroscopic shear deformation mainly the diagonal trusses are
loaded, whereas during macroscopic uniform deformation the diagonal and
vertical trusses are also loaded through the horizontal trusses.

0.08 | T
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-
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Strain (%)

Figure 9: Left: the homogenized engineering stress-strain responses of an original unit
cell (solid line) and of a unit cell with compliant diagonal interactions (dashed line) for
uniform loading. Right: the plastic strains in the fully resolved region computed by the
virtual-power-based QC model for the triangulation with a fully resolved region of 20 x 20
unit cells (at maximum applied uniform deformation).

The plastic strains predicted with the virtual-work-based QC framework

for the lattice with compliant diagonal trusses are presented on the right
in Fig. 9. They show a clear difference with the previous results. In this
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case only the horizontal interactions are plastically elongated. Because the
diagonal interactions only yield at an axial strain of 10% (due to their small
Young’s modulus), no yield of the diagonal interactions can be observed at
maximum uniform loading. Because the diagonal trusses only transfer small
loads, the vertical trusses are also not plastically deformed. The virtual-
power-based QC framework is thus well applicable a wide range of dissipative
lattice models.

5. Conclusion

Lattice models and discrete networks are appropriate to describe the me-
chanical behavior of fibrous and heterogeneous materials, since they auto-
matically incorporate mesoscale phenomena that dominate the material re-
sponse of these materials. Large-scale computations of lattice models and
discrete networks that are necessary for physically relevant simulations, in-
volve substantial computational efforts since a large number of lattice points
is required. The quasicontinuum (QC) method is a suitable multiscale ap-
proach to reduce the computational efforts of lattice models and discrete
networks because it

e allows the incorporation of the mesoscopic lattice model in regions of
interest,

e completely relies on the lattice model and not on accompanying contin-
uum descriptions that can be complex to construct for fibrous materials
and

e does not require a coupling or handshaking procedure (in the proposed
framework).

Several QC methods presented so far, are based on energy-minimization
and can thus only deal with conservative lattice models. Many lattice models
for fibrous materials however, are non-conservative. In this paper, a virtual-
power-based QC formulation is presented that can deal with non-conservative
lattice models. Since it is based on the virtual-power statement, the con-
struction of the governing equations is accurate in contrast to force-based
QC methods which relate the internal forces incompletely to the virtual dis-
placements of the lattice points. This is caused by the fact that in the
virtual-power based QC formulation the virtual power is sampled (summed),
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instead of the forces. The dissipation involved in non-conservative lattice
models is naturally incorporated by the constraints that follow from the vir-
tual power statement. Another point of departure that is not used here could
also be the so-called minimum principle (Ortiz and Stainier, 1999) in which
the incremental work is minimized. Whether this approach would lead to a
different framework remains to be seen.

In the numerical examples, two straightforward lattice models with elasto-
plastic trusses are used to show the possibilities of the method. The exam-
ples are truly multiscale in nature. Since no continuum descriptions are
necessary and no internal interfaces occur, the QC counterparts of the di-
rect lattice models are surprisingly easy to implement. The two elastoplastic
lattice models show different results that are adequately captured the virtual-
power-based QC framework. Comparisons with the results of direct lattice
computations indicate that the local average relative error in the results of
the virtual-power-based QC method are below 5% for a specific triangulation.
Compared to the direct lattice simulations, the computational efficiency of
the QC computation for this triangulation is 6% in terms of degrees of free-
dom and 9% in terms of effort to construct the governing equations (i.e. the
number of sampling points). Since the considered problems are representa-
tive studies only, the computational gain is expected to be even larger for
large-scale models in which a higher grade of scale separation is present. This
makes the virtual-power based QC framework a powerful method to reduce
the computational cost of dissipative lattice models while ensuring a high
accuracy in regions of interest.
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