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a b s t r a c t

The subsignatures of a system with continuous and exchangeable component lifetimes
form a class of indexes ranging from the Samaniego signature to the Barlow–Proschan im-
portance index. These indexes can be computed through explicit linear expressions involv-
ing the values of the structure function of the system.We show how the subsignatures can
be computed more efficiently from the reliability function of the system via identifications
of variables, differentiations, and integrations.
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1. Introduction

Consider an n-component system (C, φ), where C is the set {1, . . . , n} of its components and φ: {0, 1}n → {0, 1} is its
structure function which expresses the state of the system in terms of the states of its components. We assume that the
system is semicoherent, which means that φ is nondecreasing in each variable and satisfies the conditions φ(0, . . . , 0) = 0
and φ(1, . . . , 1) = 1. We also assume that the components have continuous and exchangeable lifetimes T1, . . . , Tn.

Marichal (2014) recently introduced the concept of subsignature of a system as follows. Let M be a nonempty subset of
the set C of components and let m = |M|. The M-signature of the system is the m-tuple sM = (s(1)M , . . . , s

(m)
M ), where s(k)M is

the probability that the kth failure among the components inM causes the system to fail. That is,

s(k)M = Pr(TS = Tk:M), k ∈ {1, . . . ,m},

where TS and Tk:M denote, respectively, the lifetime of the system and the kth smallest lifetime of the components in M ,
i.e., the kth order statistic obtained by rearranging the variables Ti (i ∈ M) in ascending order of magnitude. A subsignature
of the system is anM-signature for some M ⊆ C .

When M = C the M-signature reduces to the signature s = (s1, . . . , sn) of the system, a concept introduced by
Samaniego (1985) to compare different system designs and to easily compute the reliability of any system.1 When M is a

E-mail address: jean-luc.marichal@uni.lu.
1 Actually, Samaniego (1985) proved that, when the component lifetimes are independent and identically distributed, the system reliability can always

be expressed as the sum of the order statistics distributions weighted by the signature s; this result was then established by Navarro and Rychlik (2007) in
the more general case of exchangeable lifetimes.
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singleton {j} theM-signature reduces to the 1-tuple s(1)
{j} = Pr(TS = Tj), which is the Barlow–Proschan index for component j,

a concept introduced by Barlow and Proschan (1975) tomeasure the importance of the components. Thus, the subsignatures
define a class of 2n

− 1 indexes that range from the standard signature (whenM = C) to the Barlow–Proschan index (when
M is a singleton).

TheM-signature of a system can be computed through any of the following explicit formulas (see Marichal, 2014)2:

s(k)M =


A⊆C

|M∩A|=m−k+1

m − k + 1

n


n−1
|A|−1

 φ(A)−


A⊆C

|M∩A|=m−k

k

n


n−1
|A|

 φ(A), (1)

s(k)M =


j∈M


A⊆C\{j}
|M\A|=k

1

n


n−1
|A|

 
φ(A ∪ {j})− φ(A)


. (2)

Eqs. (1) and (2) show that, under the exchangeable assumption, the subsignatures do not depend on the distribution of the
variables T1, . . . , Tn but only on the structure function.WhenM = C , formula (1) reduces to Boland’s formula (Boland, 2001)

sk =


A⊆C

|A|=n−k+1

1
n
|A|

 φ(A)−


A⊆C

|A|=n−k

1
n
|A|

 φ(A).
WhenM = {j}, formula (2) reduces to Shapley–Shubik’s formula (Shapley, 1953; Shapley and Shubik, 1954)

I(j)BP =


A⊆C\{j}

1

n


n−1
|A|

 
φ(A ∪ {j})− φ(A)


. (3)

The computation of the subsignatures by means of Eqs. (1) and (2) may be cumbersome and tedious for large systems since
it requires the evaluation of φ(A) for every A ⊆ C . To overcome this issue, in this paper we show how these indexes can be
computed from simple manipulations of the reliability function of the structure φ such as identifications of variables and
differentiations.

Recall that the reliability function of the structure φ is the multilinear function h: [0, 1]n → R defined by

h(x) = h(x1, . . . , xn) =


A⊆C

φ(A)

i∈A

xi

i∈C\A

(1 − xi). (4)

When the component lifetimes are independent, this function expresses the reliability of the system in terms of the compo-
nent reliabilities; see Barlow and Proschan (1981, Chap. 2) for a background on reliability functions and Ramamurthy (1990,
Section 3.2) for amore recent reference. It is easy to see that this function can always be put in the standardmultilinear form

h(x) =


A⊆C

d(A)

i∈A

xi, (5)

where the link between the coefficients d(A) and the values φ(A) is given through the conversion formulas

d(A) =


B⊆A

(−1)|A|−|B| φ(B) and φ(A) =


B⊆A

d(B).

Example 1. The structure of a system consisting of two components connected in parallel is given by

φ(x1, x2) = max(x1, x2) = x1 ⨿ x2 = x1 + x2 − x1x2 ,

where ⨿ is the (associative) coproduct operation defined by x ⨿ y = 1 − (1 − x)(1 − y). Considering only the multilinear
expression of function φ, one immediately obtains the corresponding reliability function h(x1, x2) = x1 + x2 − x1x2. �

For any function f of n variables, we denote its diagonal section f (x, . . . , x) simply by f (x). For instance, from Eqs. (4) and
(5) we derive

h(x) =


A⊆C

φ(A) x|A| (1 − x)n−|A|
=


A⊆C

d(A) x|A|.

Owen (1972) observed that the right-hand expression in Eq. (3), which is the Barlow–Proschan index for component j,
can be computed by integrating over [0, 1] the diagonal section of the jth partial derivative of h. That is,

I(j)BP =

 1

0
(∂jh)(t) dt. (6)

2 Here and throughout we identify Boolean vectors x ∈ {0, 1}n and subsets A ⊆ {1, . . . , n} by setting xi = 1 if and only if i ∈ A. We thus use the same
symbol to denote both a function f : {0, 1}n → R and its corresponding set function f : 2{1,...,n}

→ R interchangeably.
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Thus, this formula provides a simple way to compute I(j)BP from the reliability function h (at least simpler than the use of
Eq. (3)). As a by-product, from Eq. (6) we easily derive the following integral formula

n
j=1

I(j)BP xj =

 1

0

d
dt

h

t x1 + z(1 − x1), . . . , t xn + z(1 − xn)


z=t dt.

Example 2. Consider the bridge structure as indicated in Fig. 1. The corresponding structure and reliability functions are
respectively given by

φ(x1, . . . , x5) = x1 x4 ⨿ x2 x5 ⨿ x1 x3 x5 ⨿ x2 x3 x4
and

h(x1, . . . , x5) = x1x4 + x2x5 + x1x3x5 + x2x3x4 − x1x2x3x4 − x1x2x3x5
− x1x2x4x5 − x1x3x4x5 − x2x3x4x5 + 2 x1x2x3x4x5.

By using Eq. (6) we immediately obtain (I(1)BP , . . . , I
(5)
BP ) =

 7
30 ,

7
30 ,

1
15 ,

7
30 ,

7
30


. Indeed, we have for instance

I(3)BP =

 1

0
(∂3h)(t) dt =

 1

0
(2t2 − 4t3 + 2t4) dt =

1
15
. �

Remark 1. Example 2 illustrates the fact that the reliability function h can be easily obtained from the minimal path sets
of the system simply by expanding the coproducts in φ and then simplifying the resulting polynomial expression (using
x2i = xi).

Similarly to Owen’s method, in this note we provide a simple way to compute the system subsignatures only from the
reliability function h(x), thus avoiding formulas (1) and (2) which require the evaluation of φ(A) for every A ⊆ C .

When M is a singleton, our method reduces to Owen’s. When M = C , it reduces to the following algorithm (obtained
in Marichal, in press) for the computation of the Samaniego signature.

Let f be a univariate polynomial of degree 6 n,
f (x) = an xn + · · · + a1 x + a0.

The n-reflected of f is the polynomial Rnf defined by
(Rnf )(x) = a0 xn + a1 xn−1

+ · · · + an,
or equivalently, (Rnf )(x) = xn f (1/x).

Algorithm 1. The following algorithm inputs the number n of components and the reliability function h(x) and outputs the
signature s of the system.
Step 1. Let g(x) = Dh(x) be the derivative of h(x).
Step 2. For every k ∈ {1, . . . , n}, let ck−1 be the coefficient of xk−1 in the (n − 1)-degree polynomial (Rn−1g)(x + 1) =

(x + 1)n−1 g
 1
x+1


.

Step 3. We have sk = ck−1/(k
 n
k


) for k = 1, . . . , n.

Even though such an algorithm can be easily executed by hand for small n, a computer algebra system can be of great
assistance for large n.

Example 3. Consider the bridge structure as indicated in Fig. 1. For this structure we have

h(x) = 2x2 + 2x3 − 5x4 + 2x5, g(x) = 4x + 6x2 − 20x3 + 10x4,

and

(R4g)(x) = 10 − 20x + 6x2 + 4x3.

It follows that (R4g)(x+ 1) = 4x+ 18x2 + 4x3 and hence s =

0, 1

5 ,
3
5 ,

1
5 , 0


. Indeed, we have for instance s3 = c2/(3


5
3


)

=
3
5 . �

Denoting the coefficient of xk−1 in the polynomial f (x) by [xk−1
]f (x), Algorithm 1 can be summarized into the single

equation (see Marichal, in press)

sk =
1

k
 n
k

 [xk−1
]

(Rn−1Dh)(x + 1)


, k = 1, . . . , n.

This note is organized as follows. In Section 2 we provide an algorithm which subsumes both Owen’s method and
Algorithm 1 for the computation of the system subsignatures from the reliability function. We also show how to compute
generating functions of subsignatures. In Section 3 we discuss the concept of M-signature in the special case where M is a
modular set of the system.
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Fig. 1. Bridge structure.

2. An algorithm for the computation of subsignatures

We now present our main result, namely an algorithm for the computation of the system subsignatures from the relia-
bility function.

Algorithm 2. The following algorithm inputs a subsetM ofm components and the reliability function h(x) and outputs the
M-signature sM of the system.
Step 1. Let h(x, z) be the bivariate polynomial obtained from the reliability function h(x) by identifying to x the variables in

M and identifying to z the variables in C \ M .
Step 2. Let g(x, z) = ∂x h(x, z).
Step 3. For every k ∈ {1, . . . ,m}, let ck−1(z) be the coefficient of xk−1 in the polynomial (Rm−1

1 g)(x + 1, z) = (x + 1)m−1

g
 1
x+1 , z


, where Rm−1

1 g is the (m − 1)-reflected of g with respect to its first argument.
Step 4. We have s(k)M =

 1
0 tm−k (1 − t)k−1 ck−1(t) dt for k = 1, . . . ,m.

Proof of Algorithm 2. By Eq. (4) we have

h(x) =


A⊆C

φ(A)


i∈M∩A

xi


i∈M\A

(1 − xi)


i∈A\M

xi


i∈C\(A∪M)

(1 − xi).

It follows that

h(x, z) =


A⊆C

φ(A) x|M∩A| (1 − x)|M\A| z|A\M| (1 − z)n−|A|−|M\A|,

g(x, z) =


A⊆C

φ(A) |M ∩ A| x|M∩A|−1 (1 − x)|M\A| z|A\M| (1 − z)n−|A|−|M\A|

−


A⊆C

φ(A) |M \ A| x|M∩A| (1 − x)|M\A|−1 z|A\M| (1 − z)n−|A|−|M\A|,

and

(Rm−1
1 g)(x + 1, z) =


A⊆C

φ(A) |M ∩ A| x|M\A| z|A\M| (1 − z)n−|A|−|M\A|

−


A⊆C

φ(A) |M \ A| x|M\A|−1 z|A\M| (1 − z)n−|A|−|M\A|.

Let k ∈ {1, . . . ,m}. The coefficient of xk−1 in the polynomial (Rm−1
1 g)(x + 1, z) is then given by

ck−1(z) =


A⊆C

|M\A|=k−1

φ(A) |M ∩ A| z|A\M| (1 − z)n−|A|−|M\A|
−


A⊆C

|M\A|=k

φ(A) |M \ A| z|A\M| (1 − z)n−|A|−|M\A|.

Thus we have

tm−k (1 − t)k−1 ck−1(t) =


A⊆C

|M∩A|=m−k+1

φ(A) (m − k + 1) t |A|−1 (1 − t)n−|A|
−


A⊆C

|M∩A|=m−k

φ(A) k t |A| (1 − t)n−|A|−1.

By integrating the right-hand side over [0, 1] and then using the classical identity 1

0
tp (1 − t)q dt =

1

(p + q + 1)


p+q
p

 , p, q ∈ N, (7)

we precisely obtain the right-hand side of Eq. (1). This completes the proof. �

Asmentioned in the Introduction, the signature s of the system can be computed by Algorithm 1. Although this algorithm
was established in Marichal (in press), we now show how it can be easily derived from Algorithm 2.
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Proof of Algorithm 1. We only need to prove Step 3. Using Step 4 in Algorithm 2 and then Eq. (7), we see that sk = ck−1
 1
0

tn−k (1 − t)k−1 dt = ck−1/(k
 n
k


) for every k = 1, . . . , n, which is sufficient. �

Algorithm 2 shows that theM-signature can be computed from the bivariate polynomial h(x, z)without the full knowl-
edge of the reliability function h(x). Thus, two n-component systems having the same bivariate polynomial h(x, z) also have
the sameM-signature.

The following proposition provides explicit expressions for the coefficient ck−1(z) in terms of the coefficients of (x − 1)i
and xi in g(x, z). The expression given in Eq. (8) is particularly interesting for small values of k, while that in Eq. (9) is inter-
esting for small values ofm − k. For instance, we obtain

c0(z) = g(1, z) and cm−1(z) = g(0, z).

Proposition 1. Let g(x, z) and ck−1(z) be the functions defined in Algorithm 2. Then we have

ck−1(z) =

k−1
i=0

(−1)i

m − 1 − i
m − k

 
[(x − 1)i] g(x, z)


, (8)

ck−1(z) =

m−k
i=0


m − 1 − i

k − 1

 
[xi] g(x, z)


, (9)

where [(x − 1)i] g(x, z) =
1
i! (∂

i
1g)(1, z) and [xi] g(x, z) =

1
i! (∂

i
1g)(0, z).

Proof. We clearly have g(x, z) =
m−1

i=0


[(x − 1)i] g(x, z)


(x − 1)i and hence

(Rm−1
1 g)(x + 1, z) =

m−1
i=0


[(x − 1)i] g(x, z)


(−1)i (x + 1)m−1−i

=

m−1
i=0


[(x − 1)i] g(x, z)


(−1)i

m−1−i
j=0


m − 1 − i

j


xm−1−j

=

m−1
j=0

xm−1−j
m−1−j
i=0

(−1)i

m − 1 − i

j

 
[(x − 1)i] g(x, z)


.

Considering the coefficient of xk−1 in the latter expression leads to formula (8). Formula (9) can be established similarly. �

The following proposition gives an explicit expression for the generating function
m

k=1 s
(k)
M xk of theM-signature in terms

of the reliability function h(x). Thus, it provides an alternative way to compute theM-signature.

Proposition 2. Let g(x, z) be the function defined in Algorithm 2. Then we have
m

k=1

s(k)M xk =

 1

0
x Rm−1

t


(Rm−1

1 g)((t − 1) x + 1, z)


z=t dt,

where Rm−1
t denotes the (m − 1)-reflection with respect to variable t. In particular,
m

k=1

s(k)M =


j∈M

I(j)BP =

 1

0
g(t, t) dt.

Proof. By definition of the polynomial Rm−1
1 g in Algorithm 2 we have that

m
k=1

ck−1(z) tk−1 xk−1
= (Rm−1

1 g)(t x + 1, z).

Multiplying through by x, replacing t by t − 1, and then applying Rm−1
t to both sides, we obtain

m
k=1

ck−1(z) tm−k (1 − t)k−1 xk = x Rm−1
t


(Rm−1

1 g)((t − 1) x + 1, z)

.

We then conclude by using Step 4 in Algorithm 2. The particular case can be derived from the main result by setting
x = 1. �

From Proposition 2 we immediately derive the following algorithm for the computation of the generating function of the
M-signature. An advantage of this algorithm over Algorithm 2 is that it provides theM-signature without computing all the
coefficients ck−1(z).
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Algorithm 3. The following algorithm inputs a subsetM ofm components and the reliability function h(x) and outputs the
generating function of theM-signature sM of the system.

Step 1. Let h(x, z) be the bivariate polynomial obtained from the reliability function h(x) by identifying to x the variables in
M and identifying to z the variables in C \ M .

Step 2. Let g(x, z) = ∂x h(x, z).
Step 3. Let f (t, x, z) = x (Rm−1

1 g)((t − 1) x + 1, z).
Step 4. We have

m
k=1 s

(k)
M xk =

 1
0 (R

m−1
1 f )(t, x, t) dt .

Example 4. Let us consider again the bridge structure as indicated in Fig. 1 and let us compute the generating function of
the correspondingM-signature forM = {1, 2, 3}. We have

h(x, z) = 2xz + 2x2z − 2x3z − 3x2z2 + 2x3z2,
g(x, z) = 2z + 4xz − 6x2z − 6xz2 + 6x2z2,
f (t, x, z) = −8x2z + 8tx2z + 2x3z − 4tx3z + 2t2x3z + 6x2z2 − 6tx2z2,

and finally
3

k=1 s
(k)
M xk =

11
30 x2 +

1
6 x3. Thus sM = (0, 11

30 ,
1
6 ). �

3. Subsignatures associated with modular sets

Suppose that the system contains a module (M, χ), where M ⊆ C is the corresponding modular set and χ : {0, 1}M →

{0, 1} is the corresponding structure function. In this case the structure function of the system expresses through the com-
position

φ(x) = ψ

χ(xM), xC\M

, (10)

where xM = (xi)i∈M and xC\M
= (xi)i∈C\M . The reduced system (of n − m + 1 components) obtained from the original

system (C, φ) by considering the modular setM as a single macro-component [M] will be denoted by (CM , ψ), where CM =

(C \ M) ∪ {[M]} and ψ: {0, 1}CM → {0, 1} is the organizing structure. For general background on modules, see
Barlow and Proschan (1981, Chap. 1).

Denote by TM the lifetime of the module and by sM the signature of the module as an m-component system, that is, the
m-tuple whose kth coordinate is given by sMk = Pr(TM = Tk:M) for k = 1, . . . ,m.

The following theorem shows that s(k)M factorizes into the product of sMk and the expected value of the function (∂[M]hψ )(t)
with respect to a certain beta distribution, where hψ : [0, 1]CM → R is the reliability function of the structureψ . WhenM is
a singleton, this result reduces to Owen’s formula (6).

This result was established in Marichal (2014, Cor. 16). Here we give a simpler proof based on Algorithms 1 and 2.

Theorem 3. For every nonempty modular set M ⊆ C and every k ∈ {1, . . . ,m}, we have

s(k)M = sMk

 1

0
rk,m(t) (∂[M]hψ )(t) dt,

where rk,m(t) is the p.d.f. of the beta distribution on [0, 1] with parameters α = m − k + 1 and β = k.

Proof. We prove the result by using Algorithm 2. Let hχ : [0, 1]M → R be the reliability function of χ . By Eq. (10) we then
have h(x) = hψ


hχ (xM), xC\M


. Since ∂[M]hψ does not depend upon its [M]-variable, by the chain rule we have

g(x, z) =
d
dx

hψ

hχ (x), z


= gχ (x) (∂[M]hψ )(z),

where gχ (x) = Dhχ (x). Thus, for every k ∈ {1, . . . ,m}, we have

ck−1(z) = [xk−1
](Rm−1

1 g)(x + 1, z) = (∂[M]hψ )(z) [xk−1
](Rm−1

1 gχ )(x + 1).

But by Algorithm 1, we have [xk−1
](Rm−1

1 gχ )(x + 1) = k
m

k


sMk . Therefore, by Algorithm 2, we finally obtain

s(k)M = sMk k
m
k

  1

0
tm−k (1 − t)k−1 (∂[M]hψ )(t) dt,

where k
m

k


= 1/

 1
0 tm−k (1 − t)k−1 dt (use Eq. (7)). This proves the theorem. �
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