
It’s Not a Bug, It’s a Feature:

Wait-free Asynchronous Cellular Genetic

Algorithm

Frédéric Pinel1, Bernabé Dorronsoro2, Pascal Bouvry1, and Samee U. Khan3

1 FSTC/CSC/ILIAS, University of Luxembourg
frederic.pinel@uni.lu, pascal.bouvry@uni.lu,

2 University of Lille, France
bernabe.dorronsoro diaz@inria.fr,

3 Department of Electrical and Computer Engineering, North Dakota State
University, USA

samee.khan@ndsu.edu

Abstract. In this paper, we simplify a Parallel Asynchronous Cellular
Genetic Algorithm, by removing thread locks for shared memory access.
This deliberate error aims to accelerate the algorithm, while preserving
its search capability. Experiments with three benchmark problems show
an acceleration, and even a slight improvement in search capability, with
statistical significance.

Keywords: Cellular Genetic Algorithm, Parallelism

1 Introduction

Evolutionary Algorithms (EAs) have been used for many years to solve hard
combinatorial and continous optimization problems. These nature-inspired algo-
rithms iteratively apply transformations to solutions, and converge to an optimal
or near-optimal solution. However, EAs require many iterations to conduct their
search. This motivates the design of concurrent versions of these algorithms, in
order to exploit the parallelism available in current computers. Moreover, paral-
lelism can also improve the search capability of the algorithms [3, 5].

In this paper, we propose a new Parallel Asynchronous Cellular Genetic Al-
gorithm (PA-CGA). Our PA-CGA deliberately includes an error, that simplifies
the design of the algorithm but also improves the speed of the algorithm. We
compare this new PA-CGA with two known PA-CGAs, in terms of execution
speed but also search capability.

Section 2 defines our parallelism objective. Section 3 presents the different
models and how they are compared. Sections 4 describes the experiments.

2 Problem Description

The problem addressed in this paper is the parallelization of PA-CGA to improve
its scalability: how does a PA-CGA behave as the number of threads increases.

2 Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, Samee U. Khan

The behavior of a PA-CGA should not be limited to runtime, but also include
how well the algorithm searches solutions.

The next sections provide background information on parallel EAs and presents
the PA-CGA.

2.1 Background

A survey of parallel genetic algorithm can be found in [9]. Concurrency in genetic
algorithms is often introduced at the population level, because the evolutionary
steps can be applied independently across a population of solutions. An evolu-
tionary step is a sequence of operations, which generate new solutions (called chil-
dren). The sequence is: parent selection (choosing individuals), crossover (gen-
erating a child from the parents), mutation (applying a small random change to
the child) and replacement (criteria for the child to join the population). One
evolution of all individuals in a population is called a generation.

The concurrency in the population generally occurs in three ways: master-
slave, island and cellular. The master-slave model dispatches the operators’ work
to a number of slaves. In the island model, the population is partitioned into
isolated evolutionary processes, which periodically exchange individuals. The
cellular model, implemented in Cellular Genetic Algorithm (CGA) [1], is a fine-
grain island model, where the periodical exchange of individuals is replaced with
a more frequent update to a shared population. The CGA imposes a structure on
the population of candidate solutions, usually a two-dimensional grid, and the
parents for crossover are selected from the neighborhood of an individual. This
increases the diversity in the population. The population structure in a CGA
provides a fine-grain control over the evolution, which facilitates the exploration
of different concurrency models [4].

Individuals evolving in parallel across the population usually evolve together,
which requires synchronization. Asynchronous evolution relaxes this global time
constraint [11, 12]: individuals evolve independently and the population is not of
the same age (underwent the same number of evolutions). Asynchronous models
are also known to improve search capability [2].

2.2 Parallel Asynchronous Cellular Genetic Algorithm

The PA-CGA we study was presented in [14, 15]. Parallelism in the PA-CGA
is introduced at the population level. The population partition model of our
PA-CGAs is inspired from [6, 7, 13]. As shown in Figure 1, the population is
partitioned into a number of contiguous sub-populations, with a similar number
of individuals. Each partition contains pop size/#threads individuals, where
#threads represents the number of threads launched. The neighborhood of an
individual may cross partition boundaries. The threads in a PA-CGA evolve
their partition independently: they do not wait on the other threads in order to
pursue their evolution. The combination of a concurrent execution model with
overlapping neighborhoods leads to concurrent access to shared memory, and
requires synchronization.

Wait-free Asynchronous Cellular Genetic Algorithm 3

Fig. 1: Partition of an 8x8 population over 4 threads.

3 Approach

We present in Section 3.1, three parallel models for a PA-CGA: the Island [9],
Lock [14] and Free, based on the principles of Section 2. The Free model is
our contribution. It is an incorrect implementation of a PA-CGA: the thread
locks protecting the shared population are removed, thus data consistency is not
ensured. This is meant to improve the runtime and scalability of the PA-CGA.
However, this change should impact the search capability of the PA-CGA. To
investigate the behavior of the Free model, we compare the models across a
selection of benchmark problems, presented in Section 3.2. The behavior of the
models is observed across several metrics, presented in Section 3.3.

3.1 PA-CGA Models

Algorithm 1 Island model

while < max gens do

while < max gens & not every 100 gens do ⊲ evolve local partition 100×
for all individual in local partition do

individual← evolved(individual) ⊲ “←” follows replacement policy
end for

end while

for all individual in global partition do ⊲ update the global partition
rw lock(global individual)
global individual← local individual

rw unlock(global individual)
end for

end while

4 Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, Samee U. Khan

In the PA-CGA Island model, presented in Algorithm 1, each thread operates
on two populations: (a) its local partition, and (b) the global population. Once
100 generations are completed, the thread-local partition (a) is copied to the
global population (b). This copy is performed asynchronously (one individual at
a time). The global population (b) is accessed by threads when they require indi-
viduals from another partition. This occurs at crossover, when a parent selected
belongs to another partition. POSIX read-write locks [8] are used by the threads
to read individuals from another partition, and to commit their partition to the
global population. The Island model aims to reduce contention on the shared
population by operating on a thread-local data as much as possible.

Algorithm 2 Lock model

for all gens do
for all individual in global partition do

child← evolved(individual)
rw lock(global individual)
global individual← child ⊲ “←” follows replacement policy
rw unlock(global individual)

end for

end for

The PA-CGA Lock model, presented in Algorithm 2, is the closest to the
classic asynchronous CGA. The only difference is that each thread evolves the
individuals of its partition only. Each individual is protected with a POSIX read-
write lock. This allows for concurrent read access. When an individual can be
replaced with a better child, the change occurs immediately (provided a thread
lock is acquired), and is then visible to all other threads. The Lock model requires
more communication across threads than the Island model, however, changes are
reflected immediately.

Algorithm 3 Free model

for all gens do
for all individual in global partition do

child← evolved(individual)
global individual← child ⊲ “←” follows replacement policy

end for

end for

The PA-CGA Free model is the simplest of all models, as per Algorithm 3.
A thread evolves its partition, and updates the global population immediately.
However changes in the global population are made without thread locking. This
is apparently an error, because a thread may read an individual that is currently
being updated (dirty read). This is possible because of the representation of an

Wait-free Asynchronous Cellular Genetic Algorithm 5

Table 1: Benchmark of combinatorial optimization problems
Problem Fitness function n Optimum

MTTP fMTTP (x) =
n∑

i=1

xi · wi 200 -400.0

PPEAKS fPPEAKS(x) = 100 100.0
1

N
max1≤i≤p(N − HammingD(x, Peaki))

MMDP fMMDP (s) =
∑k

i=1
fitnesssi 240 40.0

fitnesssi = 1.0 if si has 0 or 6 ones
fitnesssi = 0.0 if si has 1 or 5 ones
fitnesssi = 0360384 if si has 2 or 4 ones
fitnesssi = 0.640576 if si has 3 ones

individual; usually a large array of word size elements. This model is considered
wait-free, because a thread’s progress is bounded by a number of steps it has
to wait before progress resumes. Increasing the number of threads makes dirty
reads more frequent, because it reduces the size of each partition, each thread
evolves its partition faster, and more individuals lie on the border of a partition.

3.2 Benchmarks

The benchmark problems selected for our comparison are well-known combi-
natorial optimization problems, displaying different features like multi-modality,
epistasis, large search space, etc. Due to the lack of space it is not possible to give
details on these problems, but the reader is referred to [1]. They are summarized
in Table 1 (name, fitness value, number of variables –n–, and optimum). They
are the Massively Multi-modal Deceptive Problem (MMDP) –instance of 40 sub-
problems of 6 variables each–, the Minimum Tardiness Task Problem (MTTP)
–instances of 200 tasks–, and the PPEAKS problem, with 100 peaks.

3.3 Metrics

The metrics for the comparison aim to capture the behavior of the three algo-
rithms as the number of threads increases.

Our first metric is execution speed. It is the wall-clock runtime of the al-
gorithms for the maximum number of generations. However, increased speed is
useless if the search capability is degraded such that it requires more generations,
therefore we add the following metrics:

– Success rate: the number of experiments when the optimum was found.
– Evaluation-efficiency: the number of evaluations required to find the opti-

mum, when found. This is measured in evaluations (calculation of the fitness
of an individual) instead of generations, because of the concurrent evolution
in each partition.

– Time-efficiency: speed and evaluation-efficiency are combined by measuring
the wall-clock time required to find the optimum (when found). This is useful
from the perspective of a potential user of the algorithm.

6 Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, Samee U. Khan

Table 2: PA-CGA parameters
Parameter Value

Population size 40 × 40
Asynchronous mode fixed line sweep
Selection operator L5, binary tournament
Crossover operator two-point crossover
Crossover probability 1.0
Mutation operator ×2 flips
Mutation probability 1.0
Maximum generations 2500
Island synchronization period 100 generations
Runs 100

4 Experiments

This section defines the parameters, the environment and results for the exper-
iments.

4.1 Experimental Setup

Table 2 summarizes the various parameters for the PA-CGA. The asynchronous
mode sets the order in which the threads evolve the individuals in their parti-
tion. This is consistent with [2]. Mutation consists in randomly flipping two bits
in the individual. The maximum number of generations is the stop condition
per thread. The Island synchronization period specifies when the thread-local
partition is committed to the global population (for other threads to access).
For each benchmark, 100 searches or runs are performed. The individuals are
randomly generated for each run.

The computer used for the experiments is a Bullx S6030, where one board
holds four Intel Xeon E7-4850@2GHz processors of 10 cores each. We use one
board for the experiments (up to 40 cores). The operating system is GNU/Linux
2.6.32-5-amd64 (Debian), GCC is version 4.4.5.

4.2 Experimental Results

In this section, we present the results from the benchmark problems, grouped
by metric.

Runtime Figure 2 plots the average runtime (wall-clock) over the 100 runs in
msec, as defined in Section 3.3. We can observe that all models reduce their
runtime as the number of threads increases. The Free model is the fastest and
scales the best, which is expected given the wait-free design, although not sig-
nificantly for PPEAKS, Figure 2b. The small difference between models for
PPEAKS is due to the fitness function of PPEAKS, which is more time consum-
ing than MTTP and MMDP and therefore minors the synchronization delays.
The speedup observed may seem low (especially for MTTP and MMDP), but
the load is essentially due to synchronization.

Wait-free Asynchronous Cellular Genetic Algorithm 7

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(a) MTTP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(b) PPEAKS

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(c) MMDP

Fig. 2: Runtime

Evaluation Efficiency Figures 3 show the average number of evaluations
needed to find the optimum, as defined in Section 3.3. Because this metric mea-
sures runs when the optimum is found, we first discuss the success rate.

The success rate for the different PA-CGA models for MTTP and PPEAKS
is 100% across the runs (and is not plotted). For MMDP, Figure 3c, the rate is
below 100%. All models display about the same success rate, which also decreases
from 35 threads and up. At this point, the partitions become too small, the
generations too fast, thus reducing diversity in the partitions, which hurts the
search.

Regarding evaluation-efficiency, the Free model obtains similar or better re-
sults than Lock (Wilcoxon Signed-Rank test). On MTTP, PPEAKS and MMDP,
Free is better in respectively 5, 10 and 20% of the cases. Also, the Lock and Free
obtain constant results with the number of threads. The dirty reads in the Free
model slightly help its evaluation-efficiency. The other observation is that the
Island model does not scale well.

8 Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, Samee U. Khan

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

ev
al

ua
tio

ns
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(a) MTTP

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

ev
al

ua
tio

ns
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(b) PPEAKS

 82

 84

 86

 88

 90

 92

 94

 96

 98

 0 5 10 15 20 25 30 35 40

su
cc

es
s

ra
te

 %
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(c) MMDP Success rate

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

ev
al

ua
tio

ns
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(d) MMDP

Fig. 3: Evaluations to optimum (when found)

Time Efficiency Figures 4 show the time elapsed to reach the optimum, when
found, as defined in Section 3.3.

For the Island model, Figures 4a, 4c show that the gain in runtime is offset
by the loss in evaluation-efficiency. For PPEAKS, the gain in runtime is so high,
that time-efficiency manages to improve. The Lock and Free models do improve
their time-efficiency with a greater number of threads, mainly because of the gain
in speed. The Free model obtains the best results. This is due to the surprisingly
good evaluation-efficiency, which means that the dirty reads do not harm the
search, and may actually help.

5 Conclusions

We proposed a new PA-CGA parallel model, called Free. The Free model is
based on a deliberate design error in the PA-CGA: all thread locks are removed,
and access to the shared population leads to dirty reads. The absence of thread
locks makes it wait-free. It is also the simplest PA-CGA design. This new model
was compared to existing models: Island and Lock. The evaluation consisted in

Wait-free Asynchronous Cellular Genetic Algorithm 9

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(a) MTTP

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(b) PPEAKS

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(c) MMDP

Fig. 4: Time to optimum (when found)

solving three benchmark problems (MTTP, PPEAKS, MMDP) using 1 to 40
threads, on a 40-core machine. These benchmarks are not computationally in-
tensive, therefore the differences between models is more apparent. Experiments
show that the Free model scales the best, and provides better or equal search
capability, compared to the previously published Island and Lock models.

Future work includes exploring other sources of randomness such as operating
system thread scheduling, and removing partition borders.

Acknowledgment

This work is supported by the Fonds National de la Recherche Luxembourg:
CORE Project Green-IT, INTER Project Green@cloud (i2r-dir-tfn-12grcl) and
AFR contract no 4017742.

10 Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, Samee U. Khan

References

1. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Operations Re-
search/Compuer Science Interfaces, Springer-Verlag Heidelberg (2008)

2. Alba, E., Giacobini, M., Tomassini, M., Romero, S.: Comparing synchronous and
asynchronous cellular genetic algorithms. In: et al., J.M. (ed.) Proc. of the Interna-
tional Conference on Parallel Problem Solving from Nature VII (PPSN-VII). Lec-
ture Notes in Computer Science (LNCS), vol. 2439, pp. 601–610. Springer-Verlag,
Heidelberg, Granada, Spain (2002)

3. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transac-
tions on Evolutionary Computation 6(5), 443–462 (October 2002)

4. Alba, E., Blum, C., Asasi, P., Leon, C., Gomez, J.A.: Optimization techniques for
solving complex problems, vol. 76. Wiley (2009)

5. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms, Book Series
on Genetic Algorithms and Evolutionary Computation, vol. 1. Kluwer Academic
Publishers, 2nd edn. (2000)

6. Folino, G., Pizzuti, C., Spezzano, G.: Parallel hybrid method for SAT that couples
genetic algorithms and local search. IEEE Transactions on Evolutionary Compu-
tation 5(4), 323–334 (August 2001)

7. Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel
genetic programming. IEEE Transactions on Evolutionary Computation 7(1), 37–
53 (February 2003)

8. IEEE and The Open Group: POSIX (ieee std 1003.1-2008, open group base spec-
ifications issue 7). http://www.unix.org (2008)

9. Luque, G., Alba, E., Dorronsoro, B.: Parallel Genetic Algorithms, chap. 5, Parallel
Metaheuristics: A New Class of Algorithms, pp. 107–125. JohnWiley & Sons (2005)

10. Manderick, B., Spiessens, P.: Fine-grained parallel genetic algorithm. In: Schaf-
fer, J. (ed.) Proc. of the Third International Conference on Genetic Algorithms
(ICGA). pp. 428–433. Morgan Kaufmann (1989)

11. Maruyama, T., Konagaya, A., Konishi, K.: An asynchronous fine-grained parallel
genetic algorithm. In: Proc. of the International Conference on Parallel Problem
Solving from Nature II (PPSN-II). pp. 563–572. Lecture Notes in Computer Science
(LNCS), North-Holland (1992)

12. Muhlenbein, H.: Evolution in time and space - the parallel genetic algorithm. In:
Foundations of Genetic Algorithms. pp. 316–337. Morgan Kaufmann (1991)

13. Nakashima, T., Ariyama, T., Ishibuchi, H.: Combining multiple cellular genetic
algorithms for efficient search. In: Proc. of the Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL). pp. 712–716 (2002)

14. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for de novo genomic sequencing. In: Proceedings of the 2009 IEEE In-
ternational Conference of Soft Computing and Pattern Recognition. pp. 178–183.
IEEE Press (2009)

15. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for scheduling in grids. In: Nature Inspired Distributed Computing (NI-
DISC) sessions of the International Parallel and Distributed Processing Simposium
(IPDPS) 2010 Workshop. p. 206b. IEEE Press (2010)

