Associative string functions

Erkko Lehtonen^(*) Jean-Luc Marichal^(**) Bruno Teheux^(**)

(*) University of Lisbon

(**) University of Luxembourg

Associative functions

Let X be a nonempty set

$$F: X^2 \to X$$
 is associative if

$$F(F(x,y),z) = F(x,F(y,z))$$

Example:
$$F(x, y) = x + y$$
 on $X = \mathbb{R}$

Associative functions

Extension to a function with an indefinite arity

$$F: \bigcup_{n\in\mathbb{N}} X^n \to X$$

$$F(x_1,...,x_n) = F(F(x_1,...,x_{n-1}),x_n) \qquad n \geqslant 3$$

Example

$$F(x_1, x_2) = x_1 + x_2$$

 $F(x_1, x_2, x_3) = F(F(x_1, x_2), x_3) = x_1 + x_2 + x_3$
etc.

Notation

We regard n-tuples x in X^n as n-strings over X

0-string: ε 1-strings: x, y, z, ...n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, ...$

$$X^* = \bigcup_{n \in \mathbb{N}} X^n$$

 X^* is endowed with concatenation

Example:
$$\mathbf{x} \in X^n$$
, $y \in X$, $\mathbf{z} \in X^m \implies \mathbf{x}y\mathbf{z} \in X^{n+1+m}$

$$|\mathbf{x}| = \text{length of } \mathbf{x}$$

Functions of indefinite arities

$$F: X^* \to X$$

n-ary part of F:

$$F_n\colon X^n\to X$$

$$F_n = F|_{X^n}$$

We assume that

$$F(\mathbf{x}) = \varepsilon \iff \mathbf{x} = \varepsilon$$

Associative functions with indefinite arity

Binary associativity

$$F(F(xy)z) = F(x F(yz))$$

Induction formula

$$F(xy) = F(F(x)y) \quad |x| \geqslant 2$$

Proposition

Binary associativity + induction formula

$$F(xyz) = F(xF(y)z)$$
 $|y| \ge 2$, $|xz| \ge 1$

Associative functions with indefinite arity

 $F: X^* \to X$ is associative if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Theorem

 $F: X^* \to X$ is associative if and only if

- (i) Binary associativity + induction formula
- (ii) $F_1 \circ F_1 = F_1$
- (iii) $F_1 \circ F_2 = F_2$
- (iv) $F_2(xy) = F_2(F_1(x)y) = F_2(x F_1(y))$

Observation: $F_1 = id$ can always be considered

Associative functions with indefinite arity

Example

$$F: \mathbb{R}^* \to \mathbb{R}$$

$$F_n(x_1 \cdots x_n) = \sqrt{|x_1|^2 + \cdots + |x_n|^2} \qquad n \geqslant 2$$

$$F_1(x) = x$$

$$F_1(x) = |x|$$

Let Y be a nonempty set

Definition. We say that $F: X^* \to Y$ is *preassociative* if

$$F(y) = F(y') \Rightarrow F(xyz) = F(xy'z)$$

Examples:
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$
 $F_n(\mathbf{x}) = |\mathbf{x}|$ $(X \text{ arbitrary}, Y = \mathbb{N})$

Proposition

 $F: X^* \to X$ is associative $\iff F$ is preassociative and $F(F(\mathbf{x})) = F(\mathbf{x})$

Preassociative functions

Preassociative functions $ran(F_1) = ran(F)$

Associative functions

Theorem

Let $F: X^* \to Y$. The following assertions are equivalent:

- (i) F is preassociative and satisfies $ran(F_1) = ran(F)$
- (ii) F can be factorized into

$$F = f \circ H$$

where $H \colon X^* \to X$ is associative

 $f: \operatorname{ran}(H) \to Y$ is one-to-one

Axiomatizations of function classes

Theorem (Aczél 1949)

 $H\colon \mathbb{R}^2 \to \mathbb{R}$ is

- continuous
- one-to-one in each argument
- associative

if and only if

$$H(xy) = \varphi^{-1}(\varphi(x) + \varphi(y))$$

where $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous and strictly monotone

$$H_n(x_1 \cdots x_n) = \varphi^{-1}(\varphi(x_1) + \cdots + \varphi(x_n))$$

Axiomatizations of function classes

Theorem

Let $F: \mathbb{R}^* \to \mathbb{R}$. The following assertions are equivalent:

- (i) F is preassociative and satisfies $ran(F_1) = ran(F)$, F_1 and F_2 are continuous and one-to-one in each argument
- (ii) we have

$$F_n(x_1 \cdots x_n) = \psi(\varphi(x_1) + \cdots + \varphi(x_n))$$

where $\varphi\colon\mathbb{R}\to\mathbb{R}$ and $\psi\colon\mathbb{R}\to\mathbb{R}$ are continuous and strictly monotone

Preassociative functions

Preassociative functions $ran(F_1) = ran(F)$

Associative functions

String functions

A *string function* if a function

$$F: X^* \to X^*$$

 $F: X^* \to X^*$ is associative if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Associative string functions

 $F: X^* \to X^*$ is associative if

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) \ = \ F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \qquad \forall \ \mathbf{x}\mathbf{y}\mathbf{z} \in X^*$$

Examples

- *F* = id
- \bullet F =sorting data in alphabetic order
- \bullet F = transforming a string of letters into upper case
- F = removing a given letter, say 'a'
- ullet F = removing all repeated occurrences of letters

$$F(mathematics) = matheics$$

Theorem

Let $F: X^* \to Y$. The following assertions are equivalent:

- (i) F is preassociative
- (ii) F can be factorized into

$$F = f \circ H$$

where $H \colon X^* \to X^*$ is associative

 $f: ran(H) \rightarrow Y$ is one-to-one

Preassociative functions		
	Associative string functions	

Open question:

Find characterizations of classes of associative string functions

A very short proof

Recall that $F: X^* \to X$ is

- associative if F(xyz) = F(xF(y)z)
- preassociative if F(y) = F(y') implies F(xyz) = F(xy'z)

Proposition

F is associative \iff F is preassociative and $F(\mathbf{x}) = F(F(\mathbf{x}))$

(⇒) If
$$F$$
 is associative, then $F(\mathbf{y}) = F(F(\mathbf{y}))$ (just take $\mathbf{xz} = \varepsilon$)
Now if $F(\mathbf{y}) = F(\mathbf{y}')$, then

$$F(xyz) = F(xF(y)z) = F(xF(y')z) = F(xy'z)$$

 (\Leftarrow) We have $F(\mathbf{y}) = F(F(\mathbf{y}))$ and therefore

$$F(xyz) = F(xF(y)z)$$