Associative string functions

Erkko Lehtonen ${ }^{(*)} \quad$ Jean-Luc Marichal ${ }^{(* *)} \quad$ Bruno Teheux ${ }^{(* *)}$

(*) University of Lisbon
(**) University of Luxembourg

Associative functions

Let X be a nonempty set
$F: X^{2} \rightarrow X$ is associative if

$$
F(F(x, y), z)=F(x, F(y, z))
$$

Example: $F(x, y)=x+y$ on $X=\mathbb{R}$

Associative functions

Extension to a function with an indefinite arity
$F: \bigcup_{n \in \mathbb{N}} X^{n} \rightarrow X$

$$
F\left(x_{1}, \ldots, x_{n}\right)=F\left(F\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right) \quad n \geqslant 3
$$

Example

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
& F\left(x_{1}, x_{2}, x_{3}\right)=F\left(F\left(x_{1}, x_{2}\right), x_{3}\right)=x_{1}+x_{2}+x_{3} \\
& \text { etc. }
\end{aligned}
$$

Notation

We regard n-tuples \mathbf{x} in X^{n} as n-strings over X
0 -string: ε
1-strings: x, y, z, \ldots
n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots$

$$
X^{*}=\bigcup_{n \in \mathbb{N}} X^{n}
$$

X^{*} is endowed with concatenation
Example: $\mathbf{x} \in X^{n}, y \in X, \mathbf{z} \in X^{m} \quad \Rightarrow \quad \mathbf{x} y \mathbf{z} \in X^{n+1+m}$

$$
|\mathbf{x}|=\text { length of } \mathbf{x}
$$

Functions of indefinite arities

$$
F: X^{*} \rightarrow X
$$

n-ary part of F :

$$
\begin{aligned}
& F_{n}: X^{n} \rightarrow X \\
& F_{n}=\left.F\right|_{X^{n}}
\end{aligned}
$$

We assume that

$$
F(\mathbf{x})=\varepsilon \quad \Longleftrightarrow \quad \mathbf{x}=\varepsilon
$$

Associative functions with indefinite arity

Binary associativity

$$
F(F(x y) z)=F(x F(y z))
$$

Induction formula

$$
F(\mathbf{x} y)=F(F(\mathbf{x}) y) \quad|\mathbf{x}| \geqslant 2
$$

Proposition

Binary associativity + induction formula

$$
F(x y z)=F(x F(y) z) \quad|y| \geqslant 2,|x z| \geqslant 1
$$

Associative functions with indefinite arity

$F: X^{*} \rightarrow X$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Theorem

$F: X^{*} \rightarrow X$ is associative if and only if
(i) Binary associativity + induction formula
(ii) $F_{1} \circ F_{1}=F_{1}$
(iii) $F_{1} \circ F_{2}=F_{2}$
(iv) $F_{2}(x y)=F_{2}\left(F_{1}(x) y\right)=F_{2}\left(x F_{1}(y)\right)$

Observation: $F_{1}=$ id can always be considered

Associative functions with indefinite arity

Example

$$
\begin{gathered}
F: \mathbb{R}^{*} \rightarrow \mathbb{R} \\
F_{n}\left(x_{1} \cdots x_{n}\right)=\sqrt{\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}} \quad n \geqslant 2 \\
F_{1}(x)=x \\
F_{1}(x)=|x|
\end{gathered}
$$

Preassociative functions

Let Y be a nonempty set
Definition. We say that $F: X^{*} \rightarrow Y$ is preassociative if

$$
F(\mathbf{y})=F\left(y^{\prime}\right) \Rightarrow F(x y z)=F\left(x^{\prime} y^{\prime}\right)
$$

Examples: $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

$$
F_{n}(\mathbf{x})=|\mathbf{x}| \quad(X \text { arbitrary, } Y=\mathbb{N})
$$

Proposition

$F: X^{*} \rightarrow X$ is associative $\Longleftrightarrow F$ is preassociative and $F(F(\mathbf{x}))=F(\mathbf{x})$

Preassociative functions

Preassociative functions

Preassociative functions

Theorem

Let $F: X^{*} \rightarrow Y$. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$
(ii) F can be factorized into

$$
F=f \circ H
$$

where $H: X^{*} \rightarrow X$ is associative

$$
f: \operatorname{ran}(H) \rightarrow Y \text { is one-to-one }
$$

Axiomatizations of function classes

Theorem (Aczél 1949)

$H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is

- continuous
- one-to-one in each argument
- associative
if and only if

$$
H(x y)=\varphi^{-1}(\varphi(x)+\varphi(y))
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and strictly monotone

$$
H_{n}\left(x_{1} \cdots x_{n}\right)=\varphi^{-1}\left(\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)\right)
$$

Axiomatizations of function classes

Theorem

Let $F: \mathbb{R}^{*} \rightarrow \mathbb{R}$. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$,
F_{1} and F_{2} are continuous and one-to-one in each argument
(ii) we have

$$
F_{n}\left(x_{1} \cdots x_{n}\right)=\psi\left(\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)\right)
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and strictly monotone

Preassociative functions

Preassociative functions

String functions

A string function if a function

$$
F: X^{*} \rightarrow X^{*}
$$

$F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Associative string functions

$F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples

- $F=\mathrm{id}$
- $F=$ sorting data in alphabetic order
- $F=$ transforming a string of letters into upper case
- $F=$ removing a given letter, say 'a'
- $F=$ removing all repeated occurrences of letters

$$
F(\text { mathematics })=\text { matheics }
$$

Preassociative functions

Theorem

Let $F: X^{*} \rightarrow Y$. The following assertions are equivalent:
(i) F is preassociative
(ii) F can be factorized into

$$
F=f \circ H
$$

where $H: X^{*} \rightarrow X^{*}$ is associative

$$
f: \operatorname{ran}(H) \rightarrow Y \text { is one-to-one }
$$

Preassociative functions

Preassociative functions
Associative string functions

Open question:
Find characterizations of classes of associative string functions

Thank you for your attention !

A very short proof

Recall that $F: X^{*} \rightarrow X$ is

- associative if $F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z})$
- preassociative if $F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right)$ implies $F(\mathbf{x y z})=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)$

Proposition

F is associative $\Longleftrightarrow F$ is preassociative and $F(\mathbf{x})=F(F(\mathbf{x}))$
(\Rightarrow) If F is associative, then $F(\mathbf{y})=F(F(\mathbf{y})) \quad$ (just take $\mathbf{x z}=\varepsilon$) Now if $F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right)$, then

$$
F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z})=F\left(\mathbf{x} F\left(\mathbf{y}^{\prime}\right) \mathbf{z}\right)=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)
$$

(\Leftarrow) We have $F(\mathbf{y})=F(F(\mathbf{y}))$ and therefore

$$
F(x y z)=F(x F(y) z)
$$

