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Abstract

We introduce a new class of mappings, called duplomonotone, which is strictly broader than

the class of monotone mappings. We study some of the main properties of duplomonotone

functions and provide various examples, including nonlinear duplomonotone functions arising

from the study of systems of biochemical reactions. Finally, we present three variations of a

derivative-free line search algorithm for �nding zeros of systems of duplomonotone equations,

and we prove their linear convergence to a zero of the function.
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1 Introduction

Monotone mappings have been extensively studied in the literature, see for instance [6, Chapter 12]
or the recent monograph [1]. In many practical problems, though, the monotonicity assumption
turns out to be too strong. Consequently, several generalized notions of monotonocity have been
introduced and thoroughly studied by various authors in order to relax it while keeping some of
the useful properties of monotone mappings, see [2, 4] and the references therein.

In mathematical models of biochemical reaction networks [3], a problem arises of �nding a zero
of functions that are typically not monotone (see Example 2.14). These functions seem to have a
generalized monotonicity property that has not yet appeared in the literature but can be exploited
to �nd a zero of such functions. In this paper we introduce this new class of generalized monotone
mappings, which we call duplomonotone, and present a rather simple derivative-free line search
algorithm that can be used to �nd a zero of a duplomonotone function.

The paper is organized as follows: in Section 2 we introduce duplomonotone mappings, analyze
their basic properties and provide various illustrative examples; in Section 3 we present three
variations of a derivative-free line search algorithm for �nding a zero of a duplomonotone function,
and we prove their linear convergence under strong duplomonotonicity plus some Lipschitz-type
assumption on the points of the lower level set de�ned by the initial point.

Throughout, ‖ · ‖ denotes the Euclidean norm, while the usual inner product is denoted by
〈·, ·〉.We say that F is a set-valued mapping from Rm to Rn, denoted by F : Rm ⇒ Rn, if for every
x ∈ Rm, F (x) is a subset of Rn. The gradient of a di�erentiable function f : Rm → Rn at some
point x ∈ Rm is denoted by ∇f(x) ∈ Rm×n.
∗E-mail: francisco.aragon@ua.es
†E-mail: ronan.mt.�eming@gmail.com
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2 Duplomonotonicity

Recall that a function f : Rm → Rm is said to be monotone when

〈f(x)− f(y), x− y〉 ≥ 0 for all x, y ∈ Rm,

and strictly monotone if this inequality is strict whenever x 6= y. Further, f is called strongly
monotone for some σ > 0 when

〈f(x)− f(y), x− y〉 ≥ σ‖x− y‖2 for all x, y ∈ Rm.

We introduce next a new property that is implied by monotonicity.

De�nition 2.1. A function f : Rm → Rm is called duplomonotone with constant τ̄ > 0 if

〈f(x)− f(x− τf(x)), f(x)〉 ≥ 0 whenever x ∈ Rm, 0 ≤ τ ≤ τ̄ , (1)

and strictly duplomonotone if this inequality is strict whenever f(x) 6= 0. The function f is said
to be strongly duplomonotone for some σ > 0 with constant τ̄ > 0 if

〈f(x)− f(x− τf(x)), f(x)〉 ≥ στ‖f(x)‖2 whenever x ∈ Rm, 0 ≤ τ ≤ τ̄ . (2)

The modulus of strong duplomonotonicity is the supremum of the constants σ for which (2) holds.

Remark 2.2. Letting σ be zero in (2) will allow us to handle both duplomonotonicity and strong
duplomonotonicity at the same time. Hence, we refer to this as f being strongly duplomonotone
with σ ≥ 0.

Obviously, every (strongly) monotone function is (strongly) duplomonotone. In the next simple
example we show that the converse is not true in general: the class of duplomonotone functions is
strictly broader than the class of monotone functions. Thus, we have:

monotonicity
⇒
6⇐ duplomonotonicity

Example 2.3. Given a matrix A ∈ Rm×m, consider the linear function f(x) := Ax. Recall that
the symmetric part of A is the matrix As := 1

2 (A+AT ). The mapping f is monotone if and only
if As is positive semide�nite (see e.g. [6, Example 12.2]). On the other hand, f is duplomonotone
if and only if there is some τ̄ > 0 such that, for any x ∈ Rm, one has

0 ≤ 〈f(x)− f(x− τf(x)), f(x)〉 = τxTATA2x, whenever 0 ≤ τ ≤ τ̄ ;

that is, f is duplomonotone if and only if
(
ATA2

)
s
is positive semide�nite. Furthermore, f is

strongly duplomonotone for σ > 0 if and only if for any x ∈ Rm and any positive τ , one has

0 ≤ 〈f(x)− f(x− τf(x)), f(x)〉 − στ‖f(x)‖2 = τxTATA2x− στxTATAx
= τxTAT (A− σI)Ax,

where I denotes the identity mapping. Therefore, f is strongly duplomonotone for σ > 0 if and
only if

(
AT (A− σI)A

)
s

= AT (As − σI)A is positive semide�nite.

If A is symmetric, then
(
ATA2

)
s

= A3, whose eigenvalues have the same sign as those of A.
Thus, for A symmetric, the function f is duplomonotone if and only if f is monotone. However,
this may not be the case if A is asymmetric. As a simple example, if we take

A :=

[
2 0
2 0

]
, (3)

then,

As =

[
2 1
1 0

]
,
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which is not positive semide�nite, while

(
ATA2

)
s

=

[
16 0
0 0

]
is positive semide�nite. Thus, f((x, y)T ) = (2x, 2x)T is duplomonotone but is not monotone.
Moreover, it is not di�cult to check that f is not even quasimonotone1. In fact, f is strongly
duplomonotone with modulus σ = 2. Indeed,

AT (A− σI)A =

[
8(2− σ) 0

0 0

]
,

which is positive semide�nite if and only if σ ≤ 2.

A strictly monotone function has at most one zero. This is not the case for duplomonotone
functions: even under strong duplomonotonicity we can see that the function f(x) = Ax with
A given by (3) has a zero at (0, y)T for every y ∈ R. In fact, the zero function is strongly
duplomonotone for any σ > 0.

We have shown a function in Example 2.3 that is duplomonotone but not quasimonotone. It is
interesting to note that there are also functions that are quasimonotone but not duplomonotone,
e.g. f(x) = −|x| for x ∈ R.

Example 2.4. Given a matrix A ∈ Rm×m and a vector b ∈ Rm, consider the a�ne function
f(x) := Ax+ b. By [6, Example 12.2], f is monotone if and only if As is positive semide�nite. On
the other hand, f is duplomonotone if and only if

(Ax+ b)TA(Ax+ b) ≥ 0 for all x ∈ Rm;

that is, f is duplomonotone if and only if As is positive semide�nite on the range of f . For example,
one can check that for A given in (3) and any b = (b1, b2)T ∈ R2, the function f is duplomonotone
if and only if b1 = b2.

Next we present a direct characterization of duplomonotonicity in terms of the Euclidean norm.

Proposition 2.5. A function f : Rm → Rm is strongly duplomonotone for σ ≥ 0 if and only if
there is some constant τ̄ > 0 such that for all x ∈ Rm and all 0 ≤ τ ≤ τ̄ one has

‖f(x− τf(x))‖2 ≤ (1− 2στ)‖f(x)‖2 + ‖f(x− τf(x))− f(x)‖2. (4)

Proof. For any x ∈ Rm and any τ > 0, we have.

‖f(x− τf(x))‖2 = ‖(f(x− τf(x))− f(x)) + f(x)‖2

= ‖f(x− τf(x))− f(x)‖2 + ‖f(x)‖2 + 2〈f(x− τf(x))− f(x), f(x)〉.

The stated equivalence follows then from the de�nition of strong duplomonotonicity of f .

The following example shows the importance of considering the constant τ̄ in the de�nition of
duplomonotonicity: there are functions for which (1) does not hold for all τ > 0. One could also
de�ne a weaker notion of duplomonotonicity where the constant τ̄ in (1) depends on each point
x. Nevertheless, this property might be too weak to guarantee the convergence of the line search
algorithms in Section 3, as we need to ensure that the step size is bounded away from zero.

1A function f : Rm → Rm is quasimonotone if the following implication holds:

〈f(x), y − x〉 > 0⇒ 〈f(y), y − x〉 ≥ 0,

for every x, y ∈ Rm. Monotonicity implies quasimonotonicity.
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Example 2.6. Let f : R2 → R2 be given by f(x) := (x1x
2
2, x2)T for x := (x1, x2)T ∈ R2. It is

easy to check that f is not monotone: if we take x := (−3, 0)T and y := (−1, 1)T , we have

〈f(x)− f(y), x− y〉 = −1.

On the other hand, after some algebraic manipulation, one can show that for all x := (x1, x2)T ∈
R2, one has

〈f(x)− f(x− τf(x)), f(x)〉 =
(
(τ − 1)2x21x

4
2 + (2− τ)x21x

2
2 + 1

)
τx22,

which is nonnegative for all τ ∈ [0, 2]. Thus, f is duplomonotone with constant τ̄ = 2. If
τ > 2, the expression above can be negative for some x ∈ R2. Indeed, choose any ε > 0 and let
z := (z1,

√
ε/2/(ε+ 1)) for some z1 ∈ R. Then,

〈f(z)− f(z − (2 + ε)f(z)), f(z)〉 =
−
(
ε4 + 2ε3

)
z21 + 4ε4 + 16ε3 + 20ε2 + 8ε

8(ε+ 1)4
,

which is negative for z21 su�ciently big.

The next result shows that if a function is both Lipschitz continuous and strongly duplomono-
tone for σ > 0, then σ is bounded above by the Lipschitz constant.

Proposition 2.7. If a function f : Rm → Rm is Lipschitz continuous with constant ` > 0 and
strongly duplomonotone for σ > 0, with f 6≡ 0, then σ ≤ `.

Proof. Because of the Lipschitz continuity, we have

‖f(x− τf(x))− f(x)‖ ≤ `τ‖f(x)‖ for all x ∈ Rm, τ > 0.

Let τ̄ > 0 be the strong duplomonotonicity constant in (2), and pick any z ∈ Rm such that
f(z) 6= 0. Then

στ̄‖f(z)‖2 ≤ 〈f(z)− f(z − τ̄ f(z)), f(z)〉 ≤ ‖f(z − τ̄ f(z))− f(z)‖‖f(z)‖ ≤ `τ̄‖f(z)‖2,

whence σ ≤ `.

In the following result we show a direct consequence of duplomonotonicity for di�erentiable
functions.

Proposition 2.8. Let f : Rm → Rm be di�erentiable. The following assertions hold.

(i) If f is duplomonotone, then

f(x)T∇f(x)f(x) ≥ 0 for all x ∈ Rm. (5)

(ii) If f is strongly duplomonotone for σ > 0, then

f(x)T∇f(x)f(x) ≥ σ‖f(x)‖2 for all x ∈ Rm. (6)

Proof. Assume that f satis�es (2) with σ ≥ 0 and τ̄ > 0. Fix x ∈ Rm and choose an arbitrary
τ ∈ (0, τ̄ ]. Dividing (2) by τ we get

−
〈
f(x− τf(x))− f(x)

τ
, f(x)

〉
≥ σ‖f(x)‖2,

and taking the limit as τ ↘ 0, we obtain f(x)T∇f(x)f(x) ≥ σ‖f(x)‖2.

Remark 2.9. (i) In general, strict duplomonotonicity does not imply that equality in (5) is only
achieved when f(x) = 0, in the same way that strict monotonicity does not imply positive de�-
niteness of ∇f(x).
(ii) Observe that both assertions also hold under the weaker notion of duplomonotonicity where
the constant τ̄ depends on each x ∈ Rm.
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For di�erentiable functions in one dimension, the notions of (strong) duplomonotonicity and
(strong) monotonicity agree. In fact, we will prove in Proposition 2.11 that the concepts of mono-
tonicity and duplomonotonicity coincide for continuous functions in one dimension2. This is not
the case if the function is not continuous, as we show in Example 2.12.

Corollary 2.10. Let f : R→ R be di�erentiable. Then f is (strongly) monotone if and only if f
is (strongly) duplomonotone.

Proof. This is just a consequence of Proposition 2.8 and the fact that f is (strongly) monotone
with constant σ ≥ 0 if and only if f ′(x) ≥ σ.

Proposition 2.11. Let f : R → R be continuous. Then f is monotone if and only if f is
duplomonotone.

Proof. Suppose that f is duplomonotone with constant τ̄ > 0. If there is some z ∈ R such
that f(z) > 0, then we claim that there is an open interval containing z such that f(z) is both
nondecreasing and positive on it. Indeed, by continuity of f , there is some δ0 > 0 such that f(x) >
f(z)/2 > 0 for all x ∈ (z − δ0, z + δ0). Set δ := min {δ0, τ̄ f(z)/4}. Choose any x, y ∈ (z − δ, z + δ)
with x > y, and set τ := x−y

f(x) ∈ (0, τ̄). Then, x − τf(x) = y. From the duplomonotonicity of f ,

we deduce
0 ≤ f(x)− f(x− τf(x)) = f(x)− f(y).

Hence, f is nondecreasing and positive on (z − δ, z + δ), as claimed.
Observe now that f has to be positive and nondecreasing on (z − δ,+∞), again by conti-

nuity of f . Therefore, if we set a := inf {x ∈ R | f(x) > 0} ∈ R ∪ {−∞,+∞}, it follows that
{x ∈ R | f(x) > 0} = (a,+∞) and f is nondecreasing on (a,+∞). Using the same argument, we
deduce that {x ∈ R | f(x) < 0} = (−∞, b) with b ∈ R ∪ {−∞,+∞} and f is nondecreasing on
(−∞, b). Thus, f is monotone.

Example 2.12. Consider the function f : R→ R de�ned for x ∈ R by

f(x) :=

{
0, if x ∈ Q;

1, if x 6∈ Q.

The function f is not monotone (not even locally):

(f(π)− f(4))(π − 4) = π − 4 < 0.

On the other hand, f is duplomonotone: for any x ∈ Q the duplomonotonicity condition (1)
trivially holds since f(x) = 0, while for any x 6∈ Q and any τ > 0 we have

(f(x)− f(x− τf(x))) f(x) = 1− f(x− τ) ≥ 0.

Furthermore, one can easily check that this function is not strongly duplomonotone. A slight mod-
i�cation of this example yields a function that is strongly duplomonotone, but still not monotone:
let g : R→ R be de�ned for x ∈ R by

g(x) :=

{
0, if x ∈ Q;

x, if x 6∈ Q.

Again, the function g is not monotone (not even locally), since

(g(π)− g(4))(π − 4) = π(π − 4) < 0.

2This result and the proof included here is due to the referee of this paper, who noticed that the Dirichlet function

in Example 2.12 is not monotone because it is not continuous.
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In this case, g is strongly duplomonotone for σ = 1 with constant τ̄ = 1: for any x 6∈ Q and any
τ ∈ [0, 1] we have

(g(x)− g(x− τg(x))) g(x)− τg(x)2 = (x− g((1− τ)x))x− τx2

=

{
(1− τ)x2, if (1− τ)x ∈ Q
0, if (1− τ)x 6∈ Q

≥ 0.

Therefore, without di�erentiability, the concepts of monotonicity and duplomonotonicity may be
quite di�erent, even in one dimension.

In the next proposition we introduce a property that implies duplomonotonicity, but is still
weaker than monotonicity (see Example 2.14). This property has a characterization for di�eren-
tiable functions analogous to the positive-semide�niteness of the Jacobian for monotone functions,
see e.g. [6, Proposition 12.3].

Proposition 2.13. Let f : Rm → Rm be di�erentiable. Then, for any σ ≥ 0, the following two
properties are equivalent:

(i) 〈f(x− τ1f(x))− f(x− τ2f(x)), f(x)〉 ≥ σ(τ2 − τ1)‖f(x)‖2 for all x ∈ Rm, 0 ≤ τ1 ≤ τ2 ≤ τ̄ ;

(ii) f(x)T∇f(x− τf(x))f(x) ≥ σ‖f(x)‖2 for all x ∈ Rm, τ ∈ [0, τ̄ ].

Proof. Assume that (i) holds. Choose any x ∈ Rm and any τ ∈ [0, τ̄). For all t ∈ (0, τ̄ − τ ] one has

−〈f(x− (t+ τ)f(x))− f(x− τf(x)), f(x)〉 ≥ σt‖f(x)‖2.

Thus, dividing by t and taking the limit as t↘ 0,

σ‖f(x)‖2 ≤ −
〈

lim
t↘0

f(x− (t+ τ)f(x))− f(x− τf(x))

t
, f(x)

〉
= 〈∇f(x− τf(x))T f(x), f(x)〉,

so (ii) follows.
Conversely, assume that (ii) holds. Pick any x ∈ Rm and any 0 ≤ τ1 ≤ τ2 ≤ τ̄ . Consider the

function

h(λ) := 〈f (x− (λτ1 + (1− λ)τ2)f(x))− f(x− τ2f(x))− σλ(τ2 − τ1)f(x), f(x)〉

for λ ∈ R. Then, by (ii),

h′(λ) = 〈∇f (x− (λτ1 + (1− λ)τ2)f(x))
T

(τ2 − τ1)f(x)− σ(τ2 − τ1)f(x), f(x)〉 ≥ 0,

for all λ ∈ [0, 1], whence,

0 = h(0) ≤ h(1) = 〈f(x− τ1f(x))− f(x− τ2f(x))− σ(τ2 − τ1)f(x), f(x)〉,

which implies (i).

Our motivation to characterize duplomonotone mappings arose from mathematical modeling of
networks of (bio)chemical reactions, an increasingly prominent application of mathematical and
numerical optimization. The next example introduces a very simple (bio)chemical reaction network,
involving three molecules and three reactions, where each row of x corresponds to the logarithmic
abundance of some molecule and each row of −f(x) corresponds to the rate of change of abundance
per unit time.

Example 2.14. Consider the function f : R3 → R3 de�ned for x ∈ R3 by f(x) := ([F,R] −
[R,F ]) exp([F,R]Tx), where exp(·) denotes the component-wise exponential,

F :=

 0 0 1
1 0 0
0 1 0

 , R :=

 1 0 0
0 1 0
0 0 1

 ,
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and [ · , · ] is the horizontal concatenation operator. That is, for x := (x1, x2, x3)T ∈ R3 we have

f(x) =

 2ex1 − ex2 − ex3

−ex1 + 2ex2 − ex3

−ex1 − ex2 + 2ex3

 .
The function f is not monotone because ∇f(x) is not positive semide�nite for all x ∈ R3. For

instance, if z := (0, 0, log(2))T and w := (3, 3, 2)
T
, we have

wT∇f(z)w = −2.

Nevertheless, the function f is duplomonotone because, in fact, it satis�es Proposition 2.13(ii) with
σ = 0. Indeed, if we de�ne

ϕ(x, τ) := 〈f(x)− f(x− τf(x)), f(x)〉,

we have
∂ϕ

∂τ
(x, τ) = 〈∇f(x− τf(x))T f(x), f(x)〉. (7)

After some algebraic manipulation, we obtain

ϕ(x, τ) = 3ex1+τ(−2ex1+ex2+ex3 )(−2ex1 + ex2 + ex3)

+3ex2+τ(e
x1−2ex2+ex3 )(ex1 − 2ex2 + ex3)

+3ex3+τ(e
x1+ex2−2ex3 )(ex1 + ex2 − 2ex3)

+(−2ex1 + ex2 + ex3)2 + (ex1 − 2ex2 + ex3)2

+(ex1 + ex2 − 2ex3)2.

Thus,

∂ϕ

∂τ
(x, τ) = 3ex1+τ(−2ex1+ex2+ex3 )(−2ex1 + ex2 + ex3)2

+3ex2+τ(e
x1−2ex2+ex3 )(ex1 − 2ex2 + ex3)2

+3ex3+τ(e
x1+ex2−2ex3 )(ex1 + ex2 − 2ex3)2

≥ 0,

and because of (7), we have that Proposition 2.13(ii) holds for all τ > 0.
Indeed, the function f is strictly duplomonotone because ∂ϕ

∂τ (x, τ) > 0 for all x 6∈ Ω, where

Ω :=
{
x ∈ R3 | f(x) = 0

}
=
{

(x1, x2, x3)T ∈ R3 | x1 = x2 = x3
}
.

Hence, ϕ(x, τ) > ϕ(x, 0) = 0 for all x 6∈ Ω and all τ > 0; that is, f is strictly duplomonotone.

The sum of two monotone operators is clearly monotone. Further, if a mapping F is monotone,
one can easily show that for all α > 0 the mapping F + αI is strongly monotone. Do these
properties also hold for duplomonotone functions? The answer is negative in general. As we show
in the next example, duplomonotonicity can be destroyed by the addition of a monotone linear
function of arbitrarily small slope.

Example 2.15. Consider the matrix

A :=

[
0 1
0 0

]
.

By Example 2.3, the function f(x) := Ax is duplomonotone, since ATA2 = 02×2. Choose any
α > 0 and consider the function g(x) := Bx, with B := A+ αI. Then,(

BTB2
)
s

=

[
α3 3

2α
2

3
2α

2 α3 + 2α

]
.

The eigenvalues of
(
BTB2

)
s
are α3 + α ± 1/2α

√
9α2 + 4. If α ∈ (0, 1/2), we have that α3 + α −

1/2α
√

9α2 + 4 < 0. Therefore, the function g = f +αI is not duplomonotone for any α ∈ (0, 1/2).
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A direct consequence of Proposition 2.8 is that −f(x) is a descent direction for ‖f(·)‖2 at any
point x ∈ Rm when f is duplomonotone. This property inspires the derivative-free algorithms in
Section 3 for �nding zeros of the function f .

Corollary 2.16. Let f : Rm → Rm be di�erentiable and strongly duplomonotone for σ > 0. Then,
for all x ∈ Rm, either f(x) = 0 or the vector −f(x) provides a descent direction for the merit
function ‖f(·)‖2 at the point x.

Proof. Observe that, for any x ∈ Rm, we have ∇
(
‖f(·)‖2

)
(x) = 2∇f(x)f(x). Thus, inequality (6)

implies that
〈∇
(
‖f(·)‖2

)
(x),−f(x)〉 = −2〈∇f(x)f(x), f(x)〉 ≤ −2σ‖f(x)‖2. (8)

The assertion follows.

It is straightforward to extend the de�nition of duplomonotonicity for set-valued mappings.

De�nition 2.17. A set-valued mapping F : Rm ⇒ Rm is called duplomonotone with constant
τ̄ > 0 if for all x ∈ Rm and all τ ∈ [0, τ̄ ] one has

〈y0 − y1, y0〉 ≥ 0 whenever y0 ∈ F (x), y1 ∈ F (x− τy0).

The mapping F is said to be strongly duplomonotone for some σ > 0 with constant τ̄ > 0 if for all
x ∈ Rm and all τ ∈ [0, τ̄ ] one has

〈y0 − y1, y0〉 ≥ στ‖y0‖2 whenever y0 ∈ F (x), y1 ∈ F (x− τy0).

One can easily extend the characterization of duplomonotonicity given in Proposition 2.5 to
set-valued mappings.

Proposition 2.18. A set-valued mapping F : Rm ⇒ Rm is strongly duplomonotone for σ ≥ 0 if
and only if there is some τ̄ > 0 such that for all x ∈ Rm and all τ ∈ [0, τ̄ ] one has

‖y1‖2 ≤ (1− 2στ)‖y0‖2 + ‖y1 − y0‖2 whenever y0 ∈ F (x), y1 ∈ F (x− τy0).

We will not explore duplomonotone set-valued mappings any further here, as it is beyond the
scope of the present paper.

3 Derivative-free algorithms for systems of duplomonotone

equations

In this section we consider the problem of �nding solutions of systems of nonlinear equations

f(x) = 0, (9)

where f : Rm → Rm is strongly duplomonotone for σ > 0. Corollary 2.16 drives us to consider the
following derivative-free line search algorithm for �nding zeros of f .

Algorithm 1: Backtracking (with σ > 0 known)

Fix a precision ε > 0. Choose any x0 ∈ Rm, 0 < α < 2σ, 0 < β < 1, and set k := 0.
while ‖f(xk)‖ > ε do

Compute λk := 1
αβ

pk , where pk is the smallest positive integer such that

‖f(xk − λkf(xk))‖2 ≤ (1− αλk)‖f(xk)‖2. (10)

xk+1 := xk − λkf(xk);
k := k + 1;

end
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Observe that, when f is di�erentiable, the step size acceptance criteria (10) is implied by the
usual Armijo rule for the function ‖f(·)‖2 and the direction dk := −f(xk). Indeed, given some
constant c ∈ (0, 1), the Armijo rule for ‖f(·)‖2 will search for a step size λk satisfying

‖f(xk + λkdk)‖2 ≤ ‖f(xk)‖2 + 2cλkd
T
k∇f(xk)f(xk)

= ‖f(xk)‖2 − 2cλkf(xk)T∇f(xk)f(xk).

Proposition 2.8(ii) gives us

‖f(xk)‖2 − 2cλkf(xk)T∇f(xk)f(xk) ≤ (1− 2σcλk)‖f(xk)‖2.

Taking α := 2σc, we get 0 < α < 2σ, and (10) follows.
The steepest descent algorithm could be applied to �nd solutions to nonlinear equations of

type (9) whenever the function f has a computable Jacobian. The main advantage of Algorithm 1
relative to the steepest descent method is that no derivative information is needed. On the other
hand, note that one cannot assure in general that the steepest descent method will converge to a
zero of the function f , but to a critical point of ‖f(·)‖2 (for more details, see e.g. [5, Chapter 11]).
This is not a concern under strong duplomonotonicity for σ > 0: in this case, any critical point of
‖f(·)‖2 will be a zero of f . Indeed, otherwise one would have ∇

(
‖f(·)‖2

)
(x̃) = 0 and f(x̃) 6= 0 for

some x̃ ∈ Rm. Then
0 = ∇

(
‖f(·)‖2

)
(x̃) = 2∇f(x̃)f(x̃),

whence, by Proposition 2.8(ii),

0 = f(x̃)T∇f(x̃)f(x̃) ≥ σ‖f(x̃)‖2 > 0,

which is a contradiction.

If f is Lipschitz continuous with a known constant ` > 0 and is also strongly duplomonotone for
σ > 0 with constant τ̄ > 0, then, as a direct consequence of the characterization in Proposition 2.5,
we get

‖f(x− τf(x))‖2 ≤ (1− 2στ + `2τ2)‖f(x)‖2, (11)

for all x ∈ Rm and all 0 ≤ τ ≤ τ̄ . The right-hand side of (11) attains its minimum (with respect
to τ ∈ [0, τ̄ ]) at τ? := min

{
σ/`2, τ̄

}
. Thus, if σ/`2 ≤ τ̄ , we have

‖f(x− τ?f(x))‖2 ≤
(

1− σ2

`2

)
‖f(x)‖2. (12)

This makes us consider the following variation of Algorithm 1, where the step size is chosen con-
stant.

Algorithm 2: Constant step length min
{
σ/`2, τ̄

}
Fix a precision ε > 0. Choose any x0 ∈ Rm, and set k := 0 and λ := min

{
σ/`2, τ̄

}
.

while ‖f(xk)‖ > ε do
xk+1 := xk − λf(xk);
k := k + 1;

end

As a direct consequence of (12) we have that Algorithm 2 is (globally) linearly convergent to a
zero of f , and moreover, the Lipschitz assumption can be relaxed as follows.

Theorem 3.1. Let f : Rm → Rm be strongly duplomonotone for σ > 0 with constant τ̄ > 0. Let
x0 ∈ Rm be an initial point, and assume there exists some constant ` > 0 such that

‖f(x− τf(x))− f(x)‖ ≤ `τ‖f(x)‖ for all x ∈ L(x0) and all 0 ≤ τ ≤ τ̄ , (13)
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where L(x0) is the lower level set de�ned by

L(x0) := {x ∈ Rm : ‖f(x)‖ ≤ ‖f(x0)‖} . (14)

Set λ := min
{
σ/`2, τ̄

}
. Then the iteration xk+1 := xk − λf(xk) satis�es

‖f(xk+1)‖ ≤
√

1− 2σλ+ `2λ2 ‖f(xk)‖;

whence, f(xk) is linearly convergent to zero. Thus, if f is continuous, any accumulation point of
the sequence xk is a zero of f .

Proof. It follows from the argumentation above.

Even when f is known to be Lipschitz continuous, its Lipschitz constant might not be easy
to compute. The next result shows that in this case Algorithm 1 can be used, and the step size
λk can always be found by a backtracking technique where λk is bounded away from zero and the
algorithm is linearly convergent. We denote by d·e the ceiling function, i.e., the smallest following
integer to a given number.

Theorem 3.2. Let f : Rm → Rm be strongly duplomonotone for σ > 0 with constant τ̄ > 0. Let
x0 ∈ Rm be an initial point, and assume that there is a positive constant ` such that (13) holds.
Then, for all 0 < α < 2σ and all 0 < β < 1, Algorithm 1 generates a sequence xk such that f(xk)
is linearly convergent to zero with rate

√
1− βp, where

p :=

⌈
1

log β
(logα+ min {log(τ̄), log (2σ − α)− 2 log `})

⌉
. (15)

Thus, if f is continuous, any accumulation point of the sequence xk is a zero of f .

Proof. Let x ∈ L(x0). We will prove that the step size (1/α)βp with p as in (15) always satis-
�es (10), i.e., that we have

‖f(x− (1/α)βpf(x))‖2 ≤ (1− βp)‖f(x)‖2. (16)

Proposition 2.5 gives us

‖f(x− τf(x))‖2 ≤ (1− 2στ)‖f(x)‖2 + ‖f(x− τf(x))− f(x)‖2, (17)

for all τ ∈ [0, τ̄ ]. Take p as in (15), that is,

p :=

⌈
max

{
log(ατ̄)

log β
,

logα+ log (2σ − α)− 2 log `

log β

}⌉
.

Then (13) holds for all 0 < τ ≤ (1/α)βp. This, together with (17), implies that

‖f(x− τf(x))‖2 ≤ (1− 2στ + `2τ2)‖f(x)‖2 whenever 0 < τ ≤ 1

α
βp.

Moreover, we have that 1− 2στ + `2τ2 ≤ 1− ατ if and only if τ ≤ (2σ − α)/`2. The de�nition of
p implies that (1/α)βp ≤ (2σ − α)/`2; hence,

‖f(x− τf(x))‖2 ≤ (1− ατ)‖f(x)‖2 whenever 0 < τ ≤ 1

α
βp,

which implies (16). Therefore, given a point xk generated by Algorithm 1, the integer pk can
always be found and it satis�es pk ≤ p. Thus, λk = (1/α)βpk ≥ (1/α)βp, and we have

‖f(xk+1)‖2 = ‖f(xk − λkf(xk)‖2 ≤ (1− αλk)‖f(xk)‖2 ≤ (1− βp)‖f(xk)‖2,

which in particular yields xk+1 ∈ L(x0), and the claims in the statement follow.
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Remark 3.3. Notice that: (i) the constant ` in (13) does not need to be known in order to use
Algorithm 1, but is involved in the rate of convergence, and (ii) Lipschitz continuity of the function
f on L(x0) implies (13).

Even if f is known (or conjectured) to be both Lipschitz continuous and strongly duplomono-
tone for σ > 0, in practical situations the values of both the Lipschitz constant and σ might be
unknown or di�cult to compute. The following modi�cation of Algorithm 1 permits �nding an
adequate step size by a double backtracking technique, where an additional backtracking is per-
formed in order to �nd an appropriate value of the parameter α in (10) such that α < 2σ.

Algorithm 3: Double backtracking (with σ > 0 unknown)

Fix a precision ε > 0, and a minimum and a maximum step size 0 < λmin < λmax.
Choose any x0 ∈ Rm, 0 < α < λ−1max, 0 < β < 1, and set k := 0.
while ‖f(xk)‖ > ε do

λk := λmax;
while ‖f(xk − λkf(xk))‖2 > (1− αλk)‖f(xk)‖2 do

λk := βλk;
if λk < λmin then

α := αβ;
λk := λmax;

end

end

xk+1 := xk − λkf(xk);
k := k + 1;

end

Theorem 3.4. Let f : Rm → Rm be strongly duplomonotone for σ > 0 with constant τ̄ > 0. Let
x0 ∈ Rm be an initial point, and assume that there exists some positive constants ` such that (13)
holds. Then, for all positive constants λmin and λmax such that there exists some integer q with
λmin ≤ βqλmax < min

{
2σ/`2, τ̄

}
, Algorithm 3 generates a sequence xk such that f(xk) is linearly

convergent to zero with rate
√

1− αβp+qλmax, where

p :=

⌈
log(2σ − `2βqλmax)− log(α)

log(β)

⌉
. (18)

Thus, if f is continuous, any accumulation point of the sequence xk is a zero of f .

Proof. Denote by α0 the initial value of α in Algorithm 3. Proposition 2.5 together with (13) gives
us

‖f(x− τf(x))‖2 ≤ (1− 2στ + `2τ2)‖f(x)‖2 whenever x ∈ L(x0), 0 < τ ≤ τ̄ .

Further, we have that 1 − 2στ + `2τ2 ≤ 1 − α0β
pτ with 0 < τ ≤ τ̄ if and only if 0 < τ ≤

min
{

(2σ − α0β
p)/`2, τ̄

}
. By assumption, there exists some positive integer q such that λmin ≤

βqλmax < min
{

2σ/`2, τ̄
}
. By the de�nition of p in (18), we have βqλmax ≤ (2σ−α0β

p)/`2. Hence,

λmin ≤ βqλmax ≤ min

{
2σ − α0β

p

`2
, τ̄

}
.

Thus, for all x ∈ L(x0), we have

‖f(x− (βqλmax)f(x))‖2 ≤ (1− α0β
p+qλmax)‖f(x)‖2. (19)

Finally, observe that there is some positive integer s such that βsλmax < λmin. Therefore, given
xk, a new point xk+1 is guaranteed to be found in a �nite number of steps of Algorithm 3, because
the double backtracking loop can only be executed a maximum of sp+ q times (after a maximum
of sp iterations the value of α will be equal to αβp, after which, a maximum of q iterations will be
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enough to �nd an appropriate step size λk). Thus, we have αλk ≥ α0β
p+qλmax. Consequently, by

the acceptance criteria of the step size in Algorithm 3, we have

‖f(xk+1)‖2 ≤ (1− αλk)‖f(xk)‖2 ≤ (1− α0β
p+qλmax)‖f(x)‖2,

and the claims follow.

Remark 3.5. (i) The condition λmin ≤ βqλmax < min
{

2σ/`2, τ̄
}
in Theorem 3.4 is needed to avoid

the possibility of an in�nite loop in an iteration of the algorithm. Nevertheless, we believe this
condition should not be too di�cult to guarantee in practice, as it basically requires that λmin is
not �too big� and β is not �too small�.
(ii) Certainly, the constant β used for updating α can be chosen di�erent from the constant β used
for updating λk, and Theorem 3.4 would remain valid with slight changes. Nonetheless, we have
decided to use the same constant to ease the notation and the analysis.
(iii) In Algorithm 3, the constant α is required to be smaller than λ−1max to avoid unnecessary
iterations (otherwise, the initial step λk = λmax would always be too big, since 1− αλk would be
negative).
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