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Abstract

We introduce a new class of mappings, called duplomonotone, which is strictly broader than
the class of monotone mappings. We study some of the main properties of duplomonotone
functions and provide various examples, including nonlinear duplomonotone functions arising
from the study of systems of biochemical reactions. Finally, we present three variations of a
derivative-free line search algorithm for finding zeros of systems of duplomonotone equations,
and we prove their linear convergence to a zero of the function.
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1 Introduction

Monotone mappings have been extensively studied in the literature, see for instance [6, Chapter 12]
or the recent monograph [1]. In many practical problems, though, the monotonicity assumption
turns out to be too strong. Consequently, several generalized notions of monotonocity have been
introduced and thoroughly studied by various authors in order to relax it while keeping some of
the useful properties of monotone mappings, see [2, 4] and the references therein.

In mathematical models of biochemical reaction networks [3], a problem arises of finding a zero
of functions that are typically not monotone (see Example 2.14). These functions seem to have a
generalized monotonicity property that has not yet appeared in the literature but can be exploited
to find a zero of such functions. In this paper we introduce this new class of generalized monotone
mappings, which we call duplomonotone, and present a rather simple derivative-free line search
algorithm that can be used to find a zero of a duplomonotone function.

The paper is organized as follows: in Section 2 we introduce duplomonotone mappings, analyze
their basic properties and provide various illustrative examples; in Section 3 we present three
variations of a derivative-free line search algorithm for finding a zero of a duplomonotone function,
and we prove their linear convergence under strong duplomonotonicity plus some Lipschitz-type
assumption on the points of the lower level set defined by the initial point.

Throughout, || - || denotes the Euclidean norm, while the usual inner product is denoted by
(-,). We say that F'is a set-valued mapping from R™ to R", denoted by F : R™ = R", if for every
x € R™, F(x) is a subset of R™. The gradient of a differentiable function f : R™ — R™ at some
point € R™ is denoted by Vf(z) € R™*"™.
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2 Duplomonotonicity
Recall that a function f: R™ — R™ is said to be monotone when
(f(z)— f(y),x —y) >0 forall z,y e R™,

and strictly monotone if this inequality is strict whenever x # y. Further, f is called strongly
monotone for some o > 0 when

(f@) = f(y),z —y) 2 ollz —y|I* for all 2,y € R™.
We introduce next a new property that is implied by monotonicity.

Definition 2.1. A function f:R™ — R™ is called duplomonotone with constant 7 > 0 if
(f(x) = f(x —7f(2)), f(z)) >0 whenever z e R™,0< 7 <7, (1)

and strictly duplomonotone if this inequality is strict whenever f(z) # 0. The function f is said
to be strongly duplomonotone for some o > 0 with constant 7 > 0 if

(f(z) = flz —7f(@)), f(2)) = 07| f(2)|? whenever x € R™,0 < 7 < 7. (2)
The modulus of strong duplomonotonicity is the supremum of the constants o for which (2) holds.

Remark 2.2. Letting o be zero in (2) will allow us to handle both duplomonotonicity and strong
duplomonotonicity at the same time. Hence, we refer to this as f being strongly duplomonotone
with ¢ > 0.

Obviously, every (strongly) monotone function is (strongly) duplomonotone. In the next simple
example we show that the converse is not true in general: the class of duplomonotone functions is
strictly broader than the class of monotone functions. Thus, we have:

monotonicity &~ duplomonotonicity

Example 2.3. Given a matrix A € R™*™ consider the linear function f(x) := Axz. Recall that
the symmetric part of A is the matrix A, := %(A + AT). The mapping f is monotone if and only
if A, is positive semidefinite (see e.g. [6, Example 12.2]). On the other hand, f is duplomonotone
if and only if there is some 7 > 0 such that, for any x € R™, one has

0 < (f(z)— f(x —7f(x)), f(z)) = 72T AT A%z, whenever 0 < 7 < 7;

that is, f is duplomonotone if and only if (ATAQ)S is positive semidefinite. Furthermore, f is
strongly duplomonotone for o > 0 if and only if for any x € R™ and any positive 7, one has

0 < (f(z) = flz = 7f(2)), f(x)) = o] f(2)]*

el AT A%z — oraT AT Ax
= 72T AT(A - o)Az,
where I denotes the identity mapping. Therefore, f is strongly duplomonotone for ¢ > 0 if and
only if (AT(A—ol)A), = AT (A, — ol)A is positive semidefinite.
If A is symmetric, then (AT A?) = A3, whose eigenvalues have the same sign as those of A.

Thus, for A symmetric, the function f is duplomonotone if and only if f is monotone. However,
this may not be the case if A is asymmetric. As a simple example, if we take

a=150] 3
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then,
2
A, = [ 1



which is not positive semidefinite, while

[0

is positive semidefinite. Thus, f((z,y)?) = (2z,2x)T is duplomonotone but is not monotone.
Moreover, it is not difficult to check that f is not even quasimonotone!. In fact, f is strongly
duplomonotone with modulus ¢ = 2. Indeed,

AT(A— o)A = [ 82-0) 8],

which is positive semidefinite if and only if o < 2.

A strictly monotone function has at most one zero. This is not the case for duplomonotone
functions: even under strong duplomonotonicity we can see that the function f(z) = Az with
A given by (3) has a zero at (0,y)T for every y € R. In fact, the zero function is strongly
duplomonotone for any o > 0.

We have shown a function in Example 2.3 that is duplomonotone but not quasimonotone. It is
interesting to note that there are also functions that are quasimonotone but not duplomonotone,
e.g. f(x) =—|z| for z € R.

Example 2.4. Given a matrix A € R™*™ and a vector b € R™, consider the affine function
f(z) := Az +b. By [0, Example 12.2], f is monotone if and only if A, is positive semidefinite. On
the other hand, f is duplomonotone if and only if

(Az +0)TA(Az +b) >0 for all € R™;

that is, f is duplomonotone if and only if A, is positive semidefinite on the range of f. For example,
one can check that for A given in (3) and any b = (b1, b2)” € R2, the function f is duplomonotone
if and only if b; = bs.

Next we present a direct characterization of duplomonotonicity in terms of the Euclidean norm.

Proposition 2.5. A function f : R™ — R™ is strongly duplomonotone for o > 0 if and only if
there is some constant T > 0 such that for all x € R™ and all 0 < 7 < T one has

If (@ = 7f @) < (1 = 20m)IIf @)1 + (@ = 7f(2)) = F@)]*. (4)

Proof. For any x € R™ and any 7 > 0, we have.

1f (@ =7 f ()] I(f (@ = 7f(x)) = f(x)) + f(2)]
= |f(@=7f(@) = F@IP + I f@)|* +2(f(z = 7f(2)) = f(x), f(2)).

The stated equivalence follows then from the definition of strong duplomonotonicity of f. O

The following example shows the importance of considering the constant 7 in the definition of
duplomonotonicity: there are functions for which (1) does not hold for all 7 > 0. One could also
define a weaker notion of duplomonotonicity where the constant 7 in (1) depends on each point
x. Nevertheless, this property might be too weak to guarantee the convergence of the line search
algorithms in Section 3, as we need to ensure that the step size is bounded away from zero.

LA function f:R™ — R™ is quasimonotone if the following implication holds:

(f(@),y —a) > 0= (f(y),y —x) 20,

for every x,y € R". Monotonicity implies quasimonotonicity.



Example 2.6. Let f : R? — R? be given by f(z) := (z12%,22)7 for x := (z1,22)7 € R It is
easy to check that f is not monotone: if we take z := (—3,0)7 and y := (—1,1)7, we have

(f(x) = f(y),z —y) = -1

On the other hand, after some algebraic manipulation, one can show that for all z := (z1,22)7 €
R2?, one has

(f(2) = flz = 7f(2)), f(2)) = ((r = 1)?ai2g + (2 - 7)afal + 1) 723,

which is nonnegative for all 7 € [0,2]. Thus, f is duplomonotone with constant 7 = 2. If
T > 2, the expression above can be negative for some z € R2. Indeed, choose any ¢ > 0 and let
z:=(z1,1/¢/2/(e + 1)) for some z; € R. Then,

= (e*+26%) 27 + 4e* + 16¢® + 20e% + 8¢
() - Flz — @+ ) (). £(2) = s ,

which is negative for 27 sufficiently big.

The next result shows that if a function is both Lipschitz continuous and strongly duplomono-
tone for o > 0, then ¢ is bounded above by the Lipschitz constant.

Proposition 2.7. If a function f : R™ — R™ is Lipschitz continuous with constant £ > 0 and
strongly duplomonotone for o > 0, with f £ 0, then o < {.

Proof. Because of the Lipschitz continuity, we have
lf(x—7f(x))— f(x)|| < lr|f(z)|| forallz e R™ 7> 0.

Let 7 > 0 be the strong duplomonotonicity constant in (2), and pick any z € R™ such that
f(2) # 0. Then

a7l F()? < {f(2) = f(z = 7f(2)), [(2)) <N f(z = Tf(2) = FRIF () < 7 F ()17,
whence o < /. O

In the following result we show a direct consequence of duplomonotonicity for differentiable
functions.

Proposition 2.8. Let f: R™ — R™ be differentiable. The following assertions hold.
(i) If f is duplomonotone, then
f@)'Vf(x)f(x) >0 forall z € R™. (5)
(ii) If f is strongly duplomonotone for ¢ > 0, then
f@)'Vf(@)f(x) 2 ol f(z)|? forallz € R™. (6)

Proof. Assume that f satisfies (2) with ¢ > 0 and ¥ > 0. Fix 2 € R™ and choose an arbitrary
7 € (0,7]. Dividing (2) by 7 we get

N <f(w —7f(z)) -

T

19 j@) 2 ol

and taking the limit as 7\, 0, we obtain f(z)TV f(z)f(z) > ol f(z)|*. O

Remark 2.9. (i) In general, strict duplomonotonicity does not imply that equality in (5) is only
achieved when f(z) = 0, in the same way that strict monotonicity does not imply positive defi-
niteness of V f(x).

(ii) Observe that both assertions also hold under the weaker notion of duplomonotonicity where
the constant 7 depends on each x € R™.



For differentiable functions in one dimension, the notions of (strong) duplomonotonicity and
(strong) monotonicity agree. In fact, we will prove in Proposition 2.11 that the concepts of mono-
tonicity and duplomonotonicity coincide for continuous functions in one dimension®. This is not
the case if the function is not continuous, as we show in Example 2.12.

Corollary 2.10. Let f: R — R be differentiable. Then f is (strongly) monotone if and only if f
is (strongly) duplomonotone.

Proof. This is just a consequence of Proposition 2.8 and the fact that f is (strongly) monotone
with constant o > 0 if and only if f'(z) > o. O

Proposition 2.11. Let f : R — R be continuous. Then f is monotone if and only if [ is
duplomonotone.

Proof. Suppose that f is duplomonotone with constant 7 > 0. If there is some z € R such
that f(z) > 0, then we claim that there is an open interval containing z such that f(z) is both
nondecreasing and positive on it. Indeed, by continuity of f, there is some &y > 0 such that f(x) >
f(2)/2 > 0for all x € (z — dp, 2+ dg). Set 6 := min {dp, 7f(z)/4}. Choose any z,y € (z — §, 2+ 0)
with z > y, and set 7 := ]f(_;j € (0,7). Then, x — 7f(z) = y. From the duplomonotonicity of f,
we deduce

0<fz) = flz—7f(2)) = f2) = fy)

Hence, f is nondecreasing and positive on (z — ¢, z + §), as claimed.

Observe now that f has to be positive and nondecreasing on (z — J,+00), again by conti-
nuity of f. Therefore, if we set a := inf{z € R| f(z) >0} € RU {—o00, 400}, it follows that
{r eR| f(z) > 0} = (a,400) and f is nondecreasing on (a,+o00). Using the same argument, we
deduce that {z e R| f(z) < 0} = (—o0,b) with b € RU {—o00,+00} and f is nondecreasing on
(—00,b). Thus, f is monotone. O

Example 2.12. Consider the function f : R — R defined for z € R by

0, ifze@
fuy—{L itz ¢ Q.

The function f is not monotone (not even locally):

(f(m) = f)(mr—4)=7—4<0.

On the other hand, f is duplomonotone: for any z € Q the duplomonotonicity condition (1)
trivially holds since f(x) = 0, while for any « ¢ Q and any 7 > 0 we have

(f(@) = fle—7f(@) fx) =1 flz—7) = 0.

Furthermore, one can easily check that this function is not strongly duplomonotone. A slight mod-
ification of this example yields a function that is strongly duplomonotone, but still not monotone:
let g : R — R be defined for € R by

(z) = 0, ifzeQ;
T =N, ifedQ.

Again, the function g is not monotone (not even locally), since

(g(m) — g(4))(m — 4) = =(m — 4) < 0.

2This result and the proof included here is due to the referee of this paper, who noticed that the Dirichlet function
in Example 2.12 is not monotone because it is not continuous.




In this case, g is strongly duplomonotone for o = 1 with constant 7 = 1: for any « ¢ Q and any
7 € [0,1] we have

(9(z) — glw —79(x))) g(2) — Tg(x)* = (z—g((1 - 7))z —72°
_ja- rz?, f(1-7)z€Q
0, f(1l-1)z€Q

%

0.

Therefore, without differentiability, the concepts of monotonicity and duplomonotonicity may be
quite different, even in one dimension.

In the next proposition we introduce a property that implies duplomonotonicity, but is still
weaker than monotonicity (see Example 2.14). This property has a characterization for differen-
tiable functions analogous to the positive-semidefiniteness of the Jacobian for monotone functions,
see e.g. [6, Proposition 12.3].

Proposition 2.13. Let f : R™ — R™ be differentiable. Then, for any o > 0, the following two
properties are equivalent:

) (fz—7f(@)) = fl@ = m2f(2), f(2)) 2 o(r2 = 71) || f (@)|]* for all 2 € R™, 0 < 71 < 73 < 75
(ii) f(2)"Vf(z—7f(2)f(x) > ol f(2)]? for all z € R™, 7 € [0, 7].
Proof. Assume that (i) holds. Choose any « € R™ and any 7 € [0, 7). For all ¢ € (0,7 — 7] one has
~(fl@ = (t+7)f(2) = fle = 7f(2)), f(2)) = ot| f(x)]>.
Thus, dividing by ¢t and taking the limit as ¢ \, 0,

ollf (@) < — <t1{% fla—(t+ T)f(wi) — fle—Tf(2)

7f(x)> (Vi — 7@ (@), f@)),

so (ii) follows.
Conversely, assume that (ii) holds. Pick any x € R™ and any 0 < 73 < 75 < 7. Consider the
function

h(A) = (f (z = (A1 + (1 = N)m) f(2)) = f(z — 2 (2)) — o AM(72 — 71) f (), f())
for A € R. Then, by (ii),

W) =(Vf(z— O+ 1= N)f@) (2 — 1) f(x) = o(m = 71) f(2), f(2)) > 0,
for all A € [0, 1], whence,

0="n(0) <h(l) = (f(z =7 f(z)) - fx = 72f(2)) — o(r2 = 1) f (), f(2)),
which implies (i). O

Our motivation to characterize duplomonotone mappings arose from mathematical modeling of
networks of (bio)chemical reactions, an increasingly prominent application of mathematical and
numerical optimization. The next example introduces a very simple (bio)chemical reaction network,
involving three molecules and three reactions, where each row of x corresponds to the logarithmic
abundance of some molecule and each row of — f(z) corresponds to the rate of change of abundance
per unit time.

Example 2.14. Consider the function f : R* — R3 defined for = € R?® by f(z) := ([F,R] —
[R, F]) exp([F, R]Tz), where exp(-) denotes the component-wise exponential,

0 0

1
F = 0 0 ,R;:
1 0

O O =
o = O
—_ o O

1
0



and [-,-] is the horizontal concatenation operator. That is, for x := (21,72, 23)7 € R we have

2e*t — 2 — "3

J— x X X
flz)=| —e™ + 2e%2 — "8
—e®t — e¥2 4 2e*3

The function f is not monotone because Vf(x) is not positive semidefinite for all x € R3. For
instance, if z := (0,0,10g(2))” and w := (3,3,2)", we have

wIVf(2)w = —2.

Nevertheless, the function f is duplomonotone because, in fact, it satisfies Proposition 2.13(ii) with
o = 0. Indeed, if we define

oz, 7) = (f(z) = flx = 7f(2)), f(z)),

we have
I T
5, (@ 7) = (Vf(z = 7f(2))" f(2), f(z)). (7)
After some algebraic manipulation, we obtain
o(x,7) = ZeTHT(T2TFETIHET)(_9pT1 | o2 4 o3)
+36x2+7(e’1 —2e"2 +e1'3)(eac1 — 2e%2 + 6903)
_"_36w3-§—7'(e“”1-i-e382 —2623)(e$1 + 2 _ 2ew3)
+(726I1 + eCEQ +ew3)2 + (exl _ 26CE2 +e$3)2
+(e™ 4 €2 — 2¢%3)2,
Thus,
a—f(mﬂ') = P tT(-2eT e 2 de 3)(—263”1 + e*2 + em3)2

+36m2+’r(ew1 72em2+em3)(6z1 — 9¢%2 + 613)2
+3€m3+7(em1+em2—2613)(eml + %2 26953)2
> 0,

and because of (7), we have that Proposition 2.13(ii) holds for all 7 > 0.

Indeed, the function f is strictly duplomonotone because g—f(m, 7) > 0 for all x &€ Q, where

Q:={zeR’| f(z) =0} = {(z1,22,23)" €R® |2y =20 =23}
Hence, p(z,7) > ¢(x,0) =0 for all z € Q and all 7 > 0; that is, f is strictly duplomonotone.

The sum of two monotone operators is clearly monotone. Further, if a mapping F' is monotone,
one can easily show that for all « > 0 the mapping F' + ol is strongly monotone. Do these
properties also hold for duplomonotone functions? The answer is negative in general. As we show
in the next example, duplomonotonicity can be destroyed by the addition of a monotone linear
function of arbitrarily small slope.

Example 2.15. Consider the matrix

0 1
a0 1],
By Example 2.3, the function f(x) := Ax is duplomonotone, since AT A% = 0gx5. Choose any
a > 0 and consider the function g(x) := Bz, with B := A+ al. Then,

3 3.2
T 2 . Q 50
(B"B?), = [ 502 a32+2a}.

The eigenvalues of (BTB2)S are o® + a £ 1/2av/9a2 + 4. If a € (0,1/2), we have that o® + a —
1/2av/9a2 4+ 4 < 0. Therefore, the function g = f + ol is not duplomonotone for any « € (0,1/2).



A direct consequence of Proposition 2.8 is that —f(z) is a descent direction for ||f(-)||* at any

point z € R™ when f is duplomonotone. This property inspires the derivative-free algorithms in
Section 3 for finding zeros of the function f.

Corollary 2.16. Let f : R™ — R"™ be differentiable and strongly duplomonotone for o > 0. Then,
for all x € R™, either f(x) = 0 or the vector —f(x) provides a descent direction for the merit
function ||f()||* at the point x.

Proof. Observe that, for any € R™, we have V (|| f(-)||?) (z) = 2V f(z) f(z). Thus, inequality (6)
implies that
(VIFOI?) (@), = f()) = =2V f(2) f(2), f(z)) < =20 f(2)]]*. (8)

The assertion follows. O
It is straightforward to extend the definition of duplomonotonicity for set-valued mappings.

Definition 2.17. A set-valued mapping F' : R™ == R™ is called duplomonotone with constant
7> 0 if for all z € R™ and all 7 € [0, 7] one has

(Yo — y1,Y0) > 0 whenever yg € F(x),y1 € F(x — Tyo).

The mapping I is said to be strongly duplomonotone for some o > 0 with constant 7 > 0 if for all
x € R™ and all 7 € [0, 7] one has

(Yo — y1,%0) > UTHyOH2 whenever yo € F(z),y1 € F(xz — Tyo).

One can easily extend the characterization of duplomonotonicity given in Proposition 2.5 to
set-valued mappings.

Proposition 2.18. A set-valued mapping F : R™ = R™ is strongly duplomonotone for o > 0 if
and only if there is some T > 0 such that for all x € R™ and all T € [0,7] one has

lyall® < (1 =207)[lyoll® + llyr — woll*  whenever yo € F(x),y1 € F(x — Tyo).
We will not explore duplomonotone set-valued mappings any further here, as it is beyond the

scope of the present paper.

3 Derivative-free algorithms for systems of duplomonotone
equations

In this section we consider the problem of finding solutions of systems of nonlinear equations
flx) =0, 9)

where f : R™ — R™ is strongly duplomonotone for ¢ > 0. Corollary 2.16 drives us to consider the
following derivative-free line search algorithm for finding zeros of f.

Algorithm 1: Backtracking (with ¢ > 0 known)

Fix a precision € > 0. Choose any zg € R™, 0 < a < 20,0 < < 1, and set k := 0.
while || f(zx)| > ¢ do
Compute Ag := éﬁpk, where pj is the smallest positive integer such that

1f(zx = Aef (@) P < (1= ap)llf (). (10)
Tpt1 = Tk — M f (T1);
k:=k+1;
end




Observe that, when f is differentiable, the step size acceptance criteria (10) is implied by the
usual Armijo rule for the function ||f(:)||* and the direction dj, := —f(x)). Indeed, given some
constant ¢ € (0,1), the Armijo rule for ||f(-)||? will search for a step size \;, satisfying

1f(en+ Mde) | < 1 @i)l? + 2eAnd] V f () f (k)
= |f@)lI? = 2ehef (zx) "V f (@) f (1)

Proposition 2.8(ii) gives us

If (@)l = 2ehe f () TV f(x) fzr) < (1= 20ehe)||f(zn)]]?

Taking a := 20¢, we get 0 < o < 20, and (10) follows.

The steepest descent algorithm could be applied to find solutions to nonlinear equations of
type (9) whenever the function f has a computable Jacobian. The main advantage of Algorithm 1
relative to the steepest descent method is that no derivative information is needed. On the other
hand, note that one cannot assure in general that the steepest descent method will converge to a
zero of the function f, but to a critical point of || f(-)||* (for more details, see e.g. [5, Chapter 11]).
This is not a concern under strong duplomonotonicity for ¢ > 0: in this case, any critical point of
| £(-)|I> will be a zero of f. Indeed, otherwise one would have V (||f(-)[|?) (Z) = 0 and f(z) # 0 for
some £ € R™. Then

0=V (IfO)I?) (@) =2V (@) f (),
whence, by Proposition 2.8(ii),

0= f(@)"Vf(@)f(@) = ollf(@)* >0,

which is a contradiction.

If f is Lipschitz continuous with a known constant ¢ > 0 and is also strongly duplomonotone for
o > 0 with constant 7 > 0, then, as a direct consequence of the characterization in Proposition 2.5,
we get

If (@ = rf@)I* < (1 =207 + £27%)| f(2)]]%, (11)

for all z € R™ and all 0 < 7 < 7. The right-hand side of (11) attains its minimum (with respect
to 7 € [0,7]) at 7* := min {o/¢2,7}. Thus, if 0/¢* < 7, we have

o2

I s)P < (1= G ) 1@ (12

This makes us consider the following variation of Algorithm 1, where the step size is chosen con-
stant.

Algorithm 2: Constant step length min {0/62, ?}

Fix a precision € > 0. Choose any xo € R™, and set k := 0 and A := min {0/62, %} .
while || f(zg)|| > € do

Thy1 = T — Af(21);

k=k+1;

end

As a direct consequence of (12) we have that Algorithm 2 is (globally) linearly convergent to a
zero of f, and moreover, the Lipschitz assumption can be relaxed as follows.

Theorem 3.1. Let f: R™ — R™ be strongly duplomonotone for o > 0 with constant T > 0. Let
xo € R™ be an initial point, and assume there exists some constant £ > 0 such that

|f(z—71f(x) = f(z)|| < 7| f(x)]] for all x € L(xg) and all 0 < 7 < 7, (13)



where L(xq) is the lower level set defined by
Lzo) == {z € R™ : [ f(2) ]| < [If (zo)]}- (14)

Set X :=min {c/¢*,7}. Then the iteration w41 := x), — Af(x)) satisfies

1 (@rr) | < V1= 20X+ 202 | f )1

whence, f(xy) is linearly convergent to zero. Thus, if f is continuous, any accumulation point of
the sequence xy is a zero of f.

Proof. 1t follows from the argumentation above. O

Even when f is known to be Lipschitz continuous, its Lipschitz constant might not be easy
to compute. The next result shows that in this case Algorithm 1 can be used, and the step size
A, can always be found by a backtracking technique where A\ is bounded away from zero and the
algorithm is linearly convergent. We denote by [-] the ceiling function, i.e., the smallest following
integer to a given number.

Theorem 3.2. Let f : R™ — R™ be strongly duplomonotone for o > 0 with constant T > 0. Let
xo € R™ be an initial point, and assume that there is a positive constant ¢ such that (13) holds.
Then, for all 0 < a < 20 and all 0 < B < 1, Algorithm 1 generates a sequence xy such that f(xy)
is linearly convergent to zero with rate /1 — P, where

pi= Loéﬂ (log & + min {log(7), log (20 — @) — 21og f})-‘ . (15)

Thus, if f is continuous, any accumulation point of the sequence xy is a zero of f.

Proof. Let x € L(xz). We will prove that the step size (1/a)f? with p as in (15) always satis-
fies (10), i.e., that we have

1£(z = (1/a)BP f(@))II* < (1 = B7)I1f ()1 (16)
Proposition 2.5 gives us
If (@ = 7f@)I* < (1= 207)[If (@)II* + [lf(x = 7f(2)) = f(2)]%, (17)
for all 7 € [0,7]. Take p as in (15), that is,

log(aT) loga +log (20 — o) —2log¥
p = | max , .
log 8 log 8

Then (13) holds for all 0 < 7 < (1/a))8P. This, together with (17), implies that

If(z—Tf@)]* < (1 =207+ 27| f(2)||* whenever 0 < 7 < éﬂp.

Moreover, we have that 1 — 207 + £272 < 1 — a7 if and only if 7 < (20 — «)/¢?. The definition of
p implies that (1/a)BP < (20 — ) /¢?; hence,

£ = f@)IP < (L= an)lf @ whenever 0 < 7 < — ",

which implies (16). Therefore, given a point xj generated by Algorithm 1, the integer py can
always be found and it satisfies py < p. Thus, Ay = (1/a)BP* > (1/a)SP, and we have

1 @ra) 1 = 11F (e = Aef @)1 < (1= ad) [ f(@e)]* < (1= B7)I1f ()|,

which in particular yields zx11 € L(xg), and the claims in the statement follow. O
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Remark 3.3. Notice that: (i) the constant ¢ in (13) does not need to be known in order to use
Algorithm 1, but is involved in the rate of convergence, and (ii) Lipschitz continuity of the function
f on L(zp) implies (13).

Even if f is known (or conjectured) to be both Lipschitz continuous and strongly duplomono-
tone for 0 > 0, in practical situations the values of both the Lipschitz constant and o might be
unknown or difficult to compute. The following modification of Algorithm 1 permits finding an
adequate step size by a double backtracking technique, where an additional backtracking is per-
formed in order to find an appropriate value of the parameter « in (10) such that o < 2.

Algorithm 3: Double backtracking (with ¢ > 0 unknown)
Fix a precision € > 0, and a minimum and a maximum step size 0 < Apin < Amax-
Choose any 79 € R™, 0 < a < AL, 0< 3 <1, and set k := 0.
while || f(zx)| > ¢ do
Ak 1= Amax;
while || f(zx — Arf(ze))[? > (1 = aXp)||f(zr)|?* do
Ak 1= BAk;
if A\, < Apin then
a:=af;
Ak = Amax;
end
end
L1 ‘= Tk — )\kf(xk);
k=k+1;
end

Theorem 3.4. Let f: R™ — R™ be strongly duplomonotone for o > 0 with constant 7 > 0. Let
xo € R™ be an initial point, and assume that there exists some positive constants ¢ such that (13)
holds. Then, for all positive constants Amin and Amax such that there exists some integer q with
Amin < B9\ max < min {20/62, ?}, Algorithm 3 generates a sequence xy, such that f(zy) is linearly

convergent to zero with rate /1 — afPTI\.x, where

_ [log(20 — 289 \ax) — log()
pe= [ log(3) W

Thus, if f is continuous, any accumulation point of the sequence i is a zero of f.

(18)

Proof. Denote by «q the initial value of « in Algorithm 3. Proposition 2.5 together with (13) gives
us
If(x—Tf(@)]? < (1—207 + 27| f(x)||*> whenever z € L(xg),0 < 7 < 7.

Further, we have that 1 — 207 4+ 272 < 1 — afP7 with 0 < 7 < 7 if and only if 0 < 7 <

min { (20 — ag3?)/¢*>,7}. By assumption, there exists some positive integer ¢ such that Apin <
BIAmax < min {20 /¢%,7}. By the definition of p in (18), we have 8%\ max < (20 —apBP) /(2. Hence,

20—0&051) }
—s T ¢ -

)\min S Bq)\max S mln{ 62 )

Thus, for all z € L(zg), we have

1£ (& = (B9Amax) f(@))I* < (1 = a0 B a1 f ()| (19)

Finally, observe that there is some positive integer s such that 5°Amax < Amin. Therefore, given
Tk, & new point xxy1 is guaranteed to be found in a finite number of steps of Algorithm 3, because
the double backtracking loop can only be executed a maximum of sp + ¢ times (after a maximum
of sp iterations the value of o will be equal to 8P, after which, a maximum of ¢ iterations will be
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enough to find an appropriate step size Ax). Thus, we have al; > B8P 9\ nax. Consequently, by
the acceptance criteria of the step size in Algorithm 3, we have

1f @rrn)I? < (1= aXo) [ (@) [P < (1= 0B Amax) 1 ()17,

and the claims follow. O

Remark 3.5. (i) The condition Apin < B9Amax < min {20/¢% 7} in Theorem 3.4 is needed to avoid
the possibility of an infinite loop in an iteration of the algorithm. Nevertheless, we believe this
condition should not be too difficult to guarantee in practice, as it basically requires that Ay, is
not “too big” and S is not “too small”.

(ii) Certainly, the constant 8 used for updating « can be chosen different from the constant 8 used
for updating Mg, and Theorem 3.4 would remain valid with slight changes. Nonetheless, we have
decided to use the same constant to ease the notation and the analysis.

(ili) In Algorithm 3, the constant « is required to be smaller than Al  to avoid unnecessary
iterations (otherwise, the initial step A\ = Amax would always be too big, since 1 — a\; would be
negative).
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