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Abstract. The stream cipher SNOW 3G designed in 2006 by ETSI/SA-
GE is a base algorithm for the second set of 3GPP confidentiality and
integrity algorithms. In this paper we study the resynchronization mech-
anism of SNOW 3G and of a similar cipher SNOW 3G⊕ using multiset
collision attacks. For SNOW 3G we show a simple 13-round multiset dis-
tinguisher with complexity of 28 steps. We show full key recovery chosen
IV resynchronization attacks for up to 18 out of 33 initialization rounds
of SNOW3G⊕ with a complexity of 257 to generate the data and 253

steps of analysis.
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1 Introduction

The SNOW 3G stream cipher is the core of the 3GPP confidentiality and in-
tegrity algorithms UEA2 and UIA2, published in 2006 by the 3GPP Task Force
[5]. Compared to its predecessor, SNOW 2.0 [4], SNOW 3G adopts a finite state
machine (FSM) of three 32-bit words and 2 S-Boxes to increase the resistance
against algebraic attacks by Billet and Gilbert [2]. Full evaluation of the design
by the consortium is not public, but a survey of this evaluation is given in [6].
SNOW 3G⊕ (in which the two modular additions are replaced by xors) is also
defined and evaluated in this document. The designers and external reviewers
show that SNOW 3G has remarkable resistance against linear distinguishing
attacks [7,8], while SNOW 3G⊕ offers much better resistance against algebraic
attacks.

In this paper we analyze the resynchronization mechanizm of SNOW 3G and
SNOW 3G⊕ using multiset collision attacks. This technique has proved itself
useful against AES [3] but to the best of our knowledge has not been used yet
for the analysis of the key-IV setup of stream ciphers. It seems natural to apply
this technique to SNOW 3G since its finite state machine (FSM) is essentially
a 96-bit AES like cipher in which the LFSR plays a role of a key-schedule. This
picture is complicated by the fact that there is a feedback from the FSM to the
LFSR during the setup phase (a feature never present in block ciphers) and that
the attacker sees only 32-bits of output at a time, while the internal state keeps
changing constantly.
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We start by showing a very efficient multiset distinguisher for 13-round SNOW
3G with complexity of 28 steps. We then switch to the analysis of SNOW 3G⊕

which is a very good model for the main features of SNOW 3G, since its analysis
is not blurred by the presence of carries. We have found an attack on up to 18-
rounds (out of 33) with a complexity of 257 to generate the data and 253 steps
of analysis. In this attack for the first 10 rounds the multiset propagates for free
since we put it in the most significant byte of the IV word IV0. It enters the FSM
at the 11th round. Strong cancellations due to balanced properties of multisets
stop to be useful after 15 rounds and we have to resort to multiset collision
techniques which can allow us to go three more rounds deeper. Multisets still
help us to cancel out the keystream words out of the keystream equation, which
are an obstacle for a simple differential analysis at this depth. This attack is very
technical and is more involved than attacks of similar type on block ciphers. We
have experimentally verified the crucial parts of our attacks.

This paper is organized as follows. We give a description of SNOW 3G and
SNOW 3G⊕ in Section 2. The multiset collision chosen IV attacks on round-
reduced SNOW3G and SNOW 3G⊕ are presented in Section 3. Finally, some
conclusions are given in Section 4.

2 Description of SNOW 3G and SNOW 3G⊕

The SNOW 3G stream cipher uses a 128-bit key and a 128-bit IV, considered as
four 32-bit words vectors. It consists of a linear feedback shift register (LFSR)
of 16 32-bit words and a finite state machine (FSM) with three 32-bit words,
shown in Figure 1. Here ’⊕’ denotes the bit-wise xor and ’�’ denotes the addition
modulo 232. The feedback word of the LFSR is recursively computed as

st+1
15 = α−1 · st

11 ⊕ st
2 ⊕ α · st

0,

where α is the root of the GF (28)[x] polynomial x4+β23x3+β245x2+β48x+β239

with β being the root of the GF (2)[x] polynomial x8 + x7 + x5 + x3 + 1. The
FSM has two input word st

5 and st
15 from the LFSR and is updated as follows.

Rt
3 = S2(Rt−1

2 ), Rt
2 = S1(Rt−1

1 ), Rt
1 = Rt−1

2 � (Rt−1
3 ⊕ st−1

5 ),

and output F t = (st
15 � Rt

1)⊕ Rt
2, where S1 and S2 are 32-bit to 32-bit S-boxes

defined as compositions of 4 parallel applications of two 8-bit to 8-bit small S-
boxes, SR and SQ, with a linear diffusion layer respectively. Here SR is the well
known AES S-box and SQ is defined as SQ(x) = x⊕x9⊕x13 ⊕x15 ⊕x33 ⊕x41 ⊕
x45 ⊕ x47 ⊕ x49 ⊕ 0x25 for x ∈ GF (28) defined by x8 + x6 + x5 + x3 + 1. If we
decompose a 32-bit word B into four bytes B = B0‖B1‖B2‖B3 with B0 being
the most and B3 the least significant bytes, then

Si(B) = MCi ·

⎛
⎜⎜⎝

SR(B0)
SR(B1)
SR(B2)
SR(B3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

⎞
⎟⎟⎠

i

·

⎛
⎜⎜⎝

SR(B0)
SR(B1)
SR(B2)
SR(B3)

⎞
⎟⎟⎠ , (i = 1, 2)
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Fig. 1. Keystream generation of SNOW 3G

where MC1 is the AES mix-column for S1 over GF (28) defined by x8 + x4 +
x3 + x + 1 and MC2 is the similar operation for S2 over GF (28) defined by
x8 + x6 + x5 + x3 + 1.

SNOW 3G is initialized with the key K = (k0, k1, k2, k3) and the IV =
(IV0, IV1, IV2, IV3) as follows. Let 1 be the all-one word, first load the LFSR as
follows.

s15 = k3 ⊕ IV0 s14 = k2 s13 = k1 s12 = k0 ⊕ IV1

s11 = k3 ⊕ 1 s10 = k2 ⊕ 1⊕ IV2 s9 = k1 ⊕ 1 ⊕ IV3 s8 = k0 ⊕ 1
s7 = k3 s6 = k2 s5 = k1 s4 = k0

s3 = k3 ⊕ 1 s2 = k2 ⊕ 1 s1 = k1 ⊕ 1 s0 = k0 ⊕ 1

.

The FSM is initialized with R1 = R2 = R3 = 0. Then run the cipher 32 times
with the FSM output F xored to the feedback of the LFSR and no keystream
generated. After this, the cipher is switched into the keystream generation mode,
but the first keystream word is discarded. Hence, there are 33 initialization
rounds. The keystream word generated at clock t is

SNOW 3G: zt = st
0 ⊕ F t = (st

15 � Rt
1) ⊕ Rt

2 ⊕ st
0 (1)

SNOW 3G⊕: zt = st
0 ⊕ F t = st

15 ⊕ Rt
1 ⊕ Rt

2 ⊕ st
0 (2)

If we replace the two modulo additions in SNOW 3G by xors, we get SNOW
3G⊕.

3 Chosen IV Attacks on Reduced Round SNOW 3G and
SNOW 3G⊕

In this section, we evaluate the security margin of SNOW 3G and SNOW 3G⊕

against chosen IV attacks. Our results are listed in Table 1.
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Table 1. Our results on SNOW 3G and SNOW 3G⊕

Cipher Round Data Time Type

SNOW 3G 13 28 28 distinguisher
SNOW 3G⊕ 14 28 28 distinguisher
SNOW 3G⊕ 14 212.1 227 full key recovery
SNOW 3G⊕ 15 232.1 232.4 partial state recovery
SNOW 3G⊕ 18 257 253 full key recovery

3.1 Distinguishing Attack on 13-Round SNOW 3G

We first look at SNOW 3G with 13-round initializations. For each secret key
K, we randomly choose an IV and make a multiset at the most significant byte
IV 0

0 of the most significant word IV0 such that it takes all the byte values in
[0, 255] exactly once. From the key/IV loading of SNOW 3G, we known that
the multiset difference is introduced in the most significant byte of s15. Now we
trace the multiset difference propagation in the 19 registers during the 13 rounds
of initialization, which is shown in Table 2. The differences at round i are the
differences at the end of the corresponding round.

Here we actually have 256 IV s associated with the same key. Denote the first
keystream word generated by (K, IV ) when IV 0

0 = i by zi,0 and denote the
corresponding content in the j-th LFSR cell by si,j , then we have

255⊕
i=0

zi,0 =
255⊕
i=0

(si,0 ⊕ Ri,2) ⊕
255⊕
i=0

(si,15 � Ri,1) =
255⊕
i=0

(si,15 � Ri,1).

From Table 2, the least significant bit is always 0. To show that this property
holds for the other 7 bits in the least significant byte, it suffices to note that the
least significant bytes of R1 forms an permutation set, while the least significant
bytes of si,15 are the same, so by lemma 2 in [1], the least significant byte of⊕255

i=0 zi,0 is always 0. In experiments, we randomly choose 26 IV s to check this
property. For each chosen IV , we make a multiset attack as above and calculate⊕255

i=0 zi,0. We found that the least significant byte of this sum is always 0. This
gives a very simple distinguishing attack of complexity 28 IV’s and key-stream
words for 13-round SNOW 3G. We expect that this attack can be extended into
a key recovery attack on 14-round SNOW 3G, but we preferred to concentrate
on breaking more rounds of SNOW 3G⊕ instead.

3.2 Distinguishing Attack on 14-Round SNOW 3G⊕

The above distinguisher can be extended by several rounds in SNOW 3G⊕. For
each secret key K, we also randomly choose an IV and make a multiset at the
most significant byte IV 0

0 of the most significant word IV0 such that it takes all
the byte values in [0, 255] exactly once. The multiset difference propagation is
formally derived in Table 6 in Appendix A, where Δi = i denotes the difference
in IV 0

0 for i = 0, · · · , 255. From that table, we can see that until round 11, the
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Table 2. Multiset sum propagation in 13-round initialization of SNOW 3G. (? indicates
that the sum in this byte takes some random value and 0 means that the corresponding
sum is 0).

s15 s14 s13 s12 s11 s10 s9 s8 sj: (0≤j≤7) R1 Ri: (i=2,3)

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
.
.
.

...
...

...
...

...
5 0 0 0 0 0 0 0 0 0 0 0

6 ?000 0
...

...
...

...
...

...
...

...
...

7 ?000 ?000 0
...

...
...

...
...

...
...

...

8 ?000 ?000 ?000 0
...

...
...

...
...

...
...

9 ?000 ?000 ?000 ?000 0
...

...
...

...
...

...

10 ?000 ?000 ?000 ?000 ?000 0
...

...
...

...
...

11 ??00 ?000 ?000 ?000 ?000 ?000 0
...

...
...

...

12 ??00 ??00 ?000 ?000 ?000 ?000 ?000 0
... 0

...
13 0?00 ??00 ??00 ?000 ?000 ?000 ?000 ?000 0 ???0 0

difference Δi will not affect the memory registers Ri (i = 1, 2, 3). Hence, at the
end of round 10, the contents in Ri (i = 1, 2, 3) are three unknown constants not
depending on IV0 and the difference Δi. Let the unknown constant in Ri be ci

for i = 1, 2, 3. Table 3 shows the contents evolution process in the three memory
registers. We have the following theorem:

Theorem 1. If there are 14 initialization rounds in SNOW 3G⊕ and the mul-
tiset is taken at IV 0

0 , then
⊕255

i=0 zi,0 = (2a, 3a, a, a) with a ∈ [0, 255].

Proof. From the line 14 of Table 3 and the keystream equation (2), we have

255⊕
i=0

zi,0 =
255⊕
i=0

(si,0 ⊕ Ri,2 ⊕ si,15 ⊕ Ri,1) =
255⊕
i=0

(Ri,1 ⊕ Ri,2)

=
255⊕
i=0

(Bi,13 ⊕ Ci,13 ⊕ s18 ⊕ Δi) ⊕
255⊕
i=0

MC1[S1(A13 ⊕ Δi)].

Note that there is only one active byte in IV0, so we have
⊕255

i=0 Bi,13 = 0,⊕255
i=0 Ci,13 = 0 by Lemma 2 in [1]. Since ∀i, si,18 = s18, we have

⊕255
i=0 s18 = 0.

Thus,
⊕255

i=0 zi,0 =
⊕255

i=0 MC1[S1(A13 ⊕ Δi)] = MC1 · ⊕255
i=0[S1(A13 ⊕ Δi)].

Expanding
⊕255

i=0[S1(Ai,13 ⊕ Δi)], we have
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Table 3. The contents evolution process of the memory registers during the 10 − 17
initializations round of SNOW 3G⊕. (Ai, Bi and Ci are the contents in R1, R2 and R3

for i ≥ 11 with Ai being the content when Δi = 0. * denotes permutation property of
the values, c denotes constant property, ? denotes property to be determined, b denotes
balanced property).

R1 R2 R3

10 c1 c2 c3

11 c2 ⊕ c3 ⊕ k3 MC1[S1(c1)] MC2[S2(c2)]
⊕IV0 ⊕ Δi

(∗, c, c, c) (c, c, c, c) (c, c, c, c)
12 B11 ⊕ C11 MC1[S1(A11 ⊕ Δi)] MC2[S2(B11)]

⊕s16 ⊕ Δi

(∗, c, c, c) (∗, ∗, ∗, ∗) (c, c, c, c)
13 B12 ⊕ C12 MC1[S1(A12 ⊕ Δi)] MC2[S2(B12)]

⊕s17 ⊕ Δi

(b, ∗, ∗, ∗) (∗, ∗, ∗, ∗) (b, b, b, b)
14 B13 ⊕ C13 MC1[S1(A13 ⊕ Δi)] MC2[S2(B13)]

⊕s18 ⊕ Δi

(b, b, b, b) (?, ?, ?, ?) (b, b, b, b)
15 B14 ⊕ C14 MC1[S1(A14 ⊕ Δi)] MC2[S2(B14)]

⊕s19 ⊕ Δi

16 B15 ⊕ C15 ⊕ s20 MC1[S1(A15 ⊕ Δi)] MC2[S2(B15)]
⊕Δi ⊕ α−1Δi

17 B16 ⊕ C16 ⊕ s21 MC1[S1(A16 ⊕ Δi ⊕ α−1Δi)] MC2[S2(B16)]
⊕Δi

255⊕
i=0

S1(A13 ⊕ Δi) =
255⊕
i=0

S1

(
s17 ⊕ C12 ⊕ Δi ⊕ MC1[S1(A11 ⊕ Δi)]

)
, (3)

where A11 = c2 ⊕ c3 ⊕ k3 ⊕ IV0. From (3) and Table 4, we can see that s17, C12

and A11 do not dependent on Δi. Let A11 = A0
11‖A1

11‖A2
11‖A3

11 and s17 ⊕C12 =
m0‖m1‖m2‖m3, then we have the byte equations:

255⊕
i=0

SR[2SR(A0
11 ⊕ Δi) ⊕ SR(A1

11) ⊕ SR(A2
11) ⊕ 3SR(A3

11) ⊕ m0 ⊕ Δi] = a (4)

255⊕
i=0

SR[3SR(A0
11 ⊕ Δi) ⊕ 2SR(A1

11) ⊕ SR(A2
11) ⊕ SR(A3

11) ⊕ m1] = 0 (5)

255⊕
i=0

SR[SR(A0
11 ⊕ Δi) ⊕ 3SR(A1

11) ⊕ 2SR(A2
11) ⊕ SR(A3

11) ⊕ m2] = 0 (6)

255⊕
i=0

SR[SR(A0
11 ⊕ Δi) ⊕ SR(A1

11) ⊕ 3SR(A2
11) ⊕ 2SR(A3

11) ⊕ m3] = 0 (7)

It is easy to see that (5), (6) and (7) equal to 0 for any value of its inputs, while the
value of (4) is dependent on the input value. Let (3) = a, by passing the vector
(a, 0, 0, 0) through the MC1 we finish the proof. �
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Theorem 1 shows that the four sub-bytes of
⊕255

i=0 zi,0 are correlated. In experi-
ments, we randomly choose 26 IV s to verify it. We found that Theorem 1 holds
all the time. This property is a distinguisher with a complexity of 28 steps, given
1 keystream word for each IV .

3.3 Key Recovery Attack on 14-Round SNOW 3G⊕

The above distinguisher can be converted into a key recovery attack on 14-round
SNOW 3G⊕. It works as follows. From Theorem 1, we have

255⊕
i=0

SR[2SR(A0
11 ⊕ Δi) ⊕ SR(A1

11) ⊕ y(0) ⊕ Δi] =
255⊕
i=0

z3
i,0, (8)

where y(0) = SR(A2
11) ⊕ 3SR(A3

11) ⊕ m0. To solve it, we randomly choose two
other IV s, IV ′ and IV ′′, such that

1. IV ′
r = IV ′′

r = IVr for r = 1, 2, 3.
2. IV

′r
0 = IV r

0 for r = 0, 2, 3.
3. IV

′1
0 = IV 1

0 ⊕ β1.
4. IV

′′r
0 = IV r

0 for r = 0, 2, 3.
5. IV

′′1
0 = IV 1

0 ⊕ β2.

with βi ∈ GF (28) for i = 1, 2. For IV ′ and IV ′′, we also make a multiset
at the corresponding most significant byte. Our observation is that for such
chosen IV s, we can derive similar equations to (8) due to the linearity of A11 =
c2 ⊕ c3 ⊕ k3 ⊕ IV0, A′

11 = c2 ⊕ c3 ⊕ k3 ⊕ IV ′
0 and A′′

11 = c2 ⊕ c3 ⊕ k3 ⊕ IV ′′
0 :

255⊕
i=0

SR[2SR(A0
11 ⊕ Δi) ⊕ SR(A1

11 ⊕ β1) ⊕ y(β1) ⊕ Δi] =
255⊕
i=0

z
′3
i,0 (9)

255⊕
i=0

SR[2SR(A0
11 ⊕ Δi) ⊕ SR(A1

11 ⊕ β2) ⊕ y(β2) ⊕ Δi] =
255⊕
i=0

z
′′3
i,0 , (10)

where y(β1) = y(β2) = y(0) according to the conditions 2 and 4. From (8)−(10),
we can derive A1

11 with 224 steps. It is interesting to note that we cannot restore
A0

11 and y(0) together with A1
11 from (8) − (10). The reason is that (8) − (10)

cannot be regraded as random equations, which is supported by extensive exper-
iments. Note that the information we recovered is the byte where we introduce
the difference βi. In order to determine other bytes of A11, we just shift the byte
position where the difference βi is introduced to Ar

11(r = 2, 3). Thus, we will get
equations looking like

255⊕
i=0

SR[2SR(A0
11 ⊕ Δi) ⊕ SR(A1

11) ⊕ SR(A2
11 ⊕ γj) ⊕ 3SR(A3

11) ⊕ m0 ⊕ Δi] =

255⊕
i=0

z3
i,0

255⊕
i=0

SR[2SR(A0
11 ⊕ Δi) ⊕ SR(A1

11) ⊕ SR(A2
11) ⊕ 3SR(A3

11 ⊕ δj) ⊕ m0 ⊕ Δi] =

255⊕
i=0

z3
i,0
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for randomly chosen γj , δj ∈ GF (28) (j = 1, 2, 3), from which we can recover
A2

11 and A3
11. We can determine A0

11 by shifting the multiset position to another
byte and introduce the byte differences at A0

11. Thus, we will get

255⊕
i=0

SR[3SR(A0
11 ⊕ ξj) ⊕ 2SR(A1

11 ⊕ Δi) ⊕ SR(A2
11) ⊕ SR(A3

11) ⊕ m1 ⊕ Δi] =
255⊕
i=0

z0
i,0

for randomly chosen ξj ∈ GF (28)(j =1, 2, 3). In this case,
⊕255

i=0 zi,0=(a, 2a, 3a, a)
with a ∈ GF (28).

Next, we can restore s17 ⊕ C12 by substituting Ai
11 (i = 0, 1, 2, 3) into the

solution set of (8)−(10), identifying the corresponding variable and determining
mi. To make a full key recovery, we need to look at the second keystream word
and derive the following byte equations:

255⊕
i=0

SR[s0
18 ⊕ Δi ⊕ 2f0 ⊕ f1 ⊕ f2 ⊕ 3f3︸ ︷︷ ︸

MC2

⊕ 2SR(A0
12 ⊕ Δi) (11)

⊕ SR(A1
12 ⊕ αj) ⊕ SR(A2

12) ⊕ 3SR(A3
12)] =

255⊕
i=0

z0
i,1 ⊕

255⊕
i=0

z3
i,0

255⊕
i=0

SR[s1
18 ⊕ αj ⊕ 3f0 ⊕ 2f1 ⊕ f2 ⊕ f3︸ ︷︷ ︸

MC2

⊕ 3SR(A0
12 ⊕ Δi) (12)

⊕ 2SR(A1
12 ⊕ αj) ⊕ SR(A2

12) ⊕ SR(A3
12)] =

255⊕
i=0

z1
i,1

255⊕
i=0

SR[s2
18 ⊕ f0 ⊕ 3f1 ⊕ 2f2 ⊕ f3︸ ︷︷ ︸

MC2

⊕ SR(A0
12 ⊕ Δi) (13)

⊕ 3SR(A1
12 ⊕ αj) ⊕ 2SR(A2

12) ⊕ SR(A3
12)] =

255⊕
i=0

z2
i,1

255⊕
i=0

SR[s3
18 ⊕ f0 ⊕ f1 ⊕ 3f2 ⊕ 2f3︸ ︷︷ ︸

MC2

⊕ SR(A0
12 ⊕ Δi) (14)

⊕ SR(A1
12 ⊕ αj) ⊕ 3SR(A2

12) ⊕ 2SR(A3
12)] =

255⊕
i=0

z3
i,1,

where

f0 = SQ(2SR(A0
11 ⊕ Δi) ⊕ SR(A1

11 ⊕ αj) ⊕ SR(A2
11) ⊕ 3SR(A3

11)) (15)

f1 = SQ(3SR(A0
11 ⊕ Δi) ⊕ 2SR(A1

11 ⊕ αj) ⊕ SR(A2
11) ⊕ SR(A3

11)) (16)

f2 = SQ(SR(A0
11 ⊕ Δi) ⊕ 3SR(A1

11 ⊕ αj) ⊕ 2SR(A2
11) ⊕ SR(A3

11)) (17)

f3 = SQ(SR(A0
11 ⊕ Δi) ⊕ SR(A1

11 ⊕ αj) ⊕ 3SR(A2
11) ⊕ 2SR(A3

11)) (18)

for randomly chosen αj (j = 1, 2, 3). Since A11 is known, we can recover A0
12, A1

12

and SR(A2
12) ⊕ 3SR(A3

12) ⊕ s0
18 from (11) by the three equations corresponding

to αj (j = 1, 2, 3). Shifting the byte position of αj and the multiset position
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Δi to the other positions, we can derive A2
12, A3

12 in a similar manner. After
obtaining A12, we can restore s18 by (11) − (14), which is a linear combination
of the internal states after initialization. Then we proceed in the same way as
above to look at the next 15 keystream words and derive 16 linear equations on
the internal states of LFSR after the key/IV setup. Solving this linear system
will yield the initial internal state of the LFSR. The values of the three memory
registers can be recovered from A11, A12 and s17 ⊕ C12 according to Table 4.
Then we can run the cipher backwards to recover the secret key since all the
steps here are invertible.

The total complexity of the above attack is 4 · 224 + 4 · 28 + 4 · 224 + 4 · 28 ≈
227 steps and 17 keystream words for each IV . We also made experiments to
verify the attack. The experiments show that there are exactly 256 solutions to
(7) − (9) with a common A1

11 and (10) − (13) behaves like random equations.
From (10) − (13), we always recover A12 and s18 correctly.

3.4 Key Recovery Attack on 15-Round SNOW 3G⊕

In this and the following subsections, we extend previous ideas and combine
them with the Gilbert-Minier [3] like ideas of functional collisions in order to
cover more rounds of SNOW 3G⊕.

For 15-round SNOW 3G⊕, from the first keystream word we have:

255⊕
i=0

MC1[S1(s17 ⊕ C12 ⊕ Δi ⊕ MC1[S1(A11 ⊕ Δi)])] ⊕
255⊕
i=0

MC1[S1(s18

⊕ Δi ⊕ MC2[S2(MC1[S1(A11 ⊕ Δi)])] ⊕ MC1[S1(A12 ⊕ Δi)])] =
255⊕
i=0

zi,0.

Note that the first term B14 =
⊕255

i=0 MC1[S1(s17 ⊕ C12 ⊕ Δi ⊕ MC1[S1(A11 ⊕
Δi)])] has a special pattern (2a, 3a, a, a) with unknown a. Denote the inverse of
MC1 by MC−1

1 , we have

255⊕
i=0

S1(s18⊕Δi⊕MC2[S2(B12)]⊕MC1[S1(A12⊕Δi)]) = MC−1
1 (

255⊕
i=0

zi,0⊕B14).

(19)
Expanding (19) to byte equations, we have

255⊕
i=0

SR[s0
18 ⊕ Δi ⊕ 2f0 ⊕ f1 ⊕ f2 ⊕ 3f3︸ ︷︷ ︸

MC2

⊕ 2SR(A0
12 ⊕ Δi) (20)

⊕ SR(A1
12 ⊕ ηj) ⊕ SR(A2

12) ⊕ 3SR(A3
12)] = kc0

j ⊕ a

255⊕
i=0

SR[s1
18 ⊕ ηj ⊕ 3f0 ⊕ 2f1 ⊕ f2 ⊕ f3︸ ︷︷ ︸

MC2

⊕ 3SR(A0
12 ⊕ Δi) (21)

⊕ 2SR(A1
12 ⊕ ηj) ⊕ SR(A2

12) ⊕ SR(A3
12)] = kc1

j
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255⊕
i=0

SR[s2
18 ⊕ f0 ⊕ 3f1 ⊕ 2f2 ⊕ f3︸ ︷︷ ︸

MC2

⊕ SR(A0
12 ⊕ Δi) (22)

⊕ 3SR(A1
12 ⊕ ηj) ⊕ 2SR(A2

12) ⊕ SR(A3
12)] = kc2

j

255⊕
i=0

SR[s3
18 ⊕ f0 ⊕ f1 ⊕ 3f2 ⊕ 2f3︸ ︷︷ ︸

MC2

⊕ SR(A0
12 ⊕ Δi) (23)

⊕ SR(A1
12 ⊕ ηj) ⊕ 3SR(A2

12) ⊕ 2SR(A3
12)] = kc3

j ,

where kcj = MC−1
1 · ⊕255

i=0 zi,0 corresponding to ηj , fi (0 ≤ i ≤ 3) defined in
(15)− (18) and ηj (1 ≤ j ≤ t) are randomly chosen byte differences with t to be
determined. Our first observation is that there is no unknown variables on the
right hand of (21)− (23), so these equations can be used directly to restore the
involving variables. However, if we try to solve (21) by exhaustively searching
all the possible values of A11, A0

12, A1
12 and s1

18 ⊕ S1(A2
12) ⊕ S1(A3

12), we need
to choose t = 7 and the time complexity is 256 steps. In order to get an efficient
attack, we proceed as follows.

We regard the left part of (21) as a function of the following variables: A11,
A0

12, A1
12 and s1

18⊕SR(A2
12)⊕SR(A3

12). Note that there are 7 bytes involved here
and if these bytes take the same value for two independent IV s, the outputs of
(21) should be equal. In order to detect such an internal collision, we randomly
choose a series of byte differences ηj (1 ≤ j ≤ t) and compare the corresponding
output kc1

j . If a pair of IV , IV and IV ′, passes all the t tests, i.e., the outputs of
(21) remain the same for ηj (1 ≤ j ≤ t), we can conclude with high probability
that the 7 bytes involved in the two equations have the same value for IV and
IV ′.

More precisely, given 228 (K, IVi)s such that

∀i �= j, (IVi)r = (IVj)r for r = 2, 3. (24)

∀i �= j, (IVi)r �= (IVj)r for r = 0, 1. (25)

will guarantee that there exists such a pair. To filter out the wrong candidates,
we choose t = 8. A wrong candidate will pass 8 consecutive tests with probability
256 · 2−64 = 2−8 which is less than 1, while the correct candidate will always
pass the tests. We use the standard birthday paradox argument to detect such
a pair, the time complexity is about 228 · 8 = 231 steps. Now we have two IV s,
IV and IV ′, that generate the same input values for (21), i.e.,

– A11 = A′
11, A0

12 = A
′0
12, A1

12 = A
′1
12.

– s1
18 ⊕ SR(A2

12) ⊕ SR(A3
12) = s

′1
18 ⊕ SR(A

′2
12) ⊕ SR(A

′3
12).

We need to investigate the value evolution process of the memory registers in the
first 10 rounds of initialization to derive the state information, which is shown
in Table 4. In Table 4, ci (i = 1, 2, 3) are the same variables as those in Table 3.

We have the following facts on Table 4 when the (K, IVi) pair are chosen
according to the conditions (24) and (25):
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Table 4. The value evolution process of the memory registers in the first 10-round
initialization of SNOW 3G⊕ (hi (i = 1, 2, 3) are known constants)

Ai Bi Ci

0 0 0 0
1 k1 h1 h2

2 k2 ⊕ h1 ⊕ h2 MC1[S1(k1)] h3

3 h3 ⊕ k3 ⊕ MC1[S1(k1)] MC1[S1(A2)] MC2[S2(B2)]
4 B3 ⊕ C3 MC1[S1(A3)] MC2[S2(B3)]

⊕k0 ⊕ 1
5 B4 ⊕ C4 MC1[S1(A4)] MC2[S2(B4)]

⊕k1 ⊕ 1 ⊕ IV3

6 B5 ⊕ C5 MC1[S1(A5)] MC2[S2(B5)]
⊕k2 ⊕ 1 ⊕ IV2

7 B6 ⊕ C6 MC1[S1(A6)] MC2[S2(B6)]
⊕k3 ⊕ 1

8 B7 ⊕ C7 MC1[S1(A7)] MC2[S2(B7)]
⊕k0 ⊕ IV1

9 B8 ⊕ C8 ⊕ k1 MC1[S1(A8)] MC2[S2(B8)]
10 B9 ⊕ C9 ⊕ k2︸ ︷︷ ︸ MC1[S1(A9)]︸ ︷︷ ︸ MC2[S2(B9)]︸ ︷︷ ︸

c1 c2 c3

11 c2 ⊕ c3 ⊕ k3 MC1[S1(c1)] MC2[S2(c2)]
⊕IV0 ⊕ Δi

12 B11 ⊕ C11 MC1[S1(A11 ⊕ Δi)] MC2[S2(B11)]
⊕s16 ⊕ Δi

R1 R2 R3

1. A4 = A′
4, B4 = B′

4 and C4 = C′
4, which are only determined by K.

2. Ai = A′
i, Bi = B′

i and Ci = C′
i for i = 5, 6, 7.

3. A8 ⊕ A′
8 = IV1 ⊕ IV ′

1 , B8 = B′
8 and C8 = C′

8.
4. A9 = A′

9, C9 = C′
9.

5. A10 ⊕ A′
10 = c1 ⊕ c′1 = MC1[S1(A8)] ⊕ MC1[S1(A′

8)].
6. B10 = B′

10, i.e., c2 = c′2.

From Table 4, A11 = c2⊕c3⊕k3⊕IV0 and A11 = A′
11, we have c3⊕c′3 = IV0⊕IV ′

0 ,
i.e.,

S2(MC1[S1(A8)]) ⊕ S2(MC1[S1(A′
8)]) = MC−1

2 · (IV0 ⊕ IV ′
0). (26)

We can determine A8 and A′
8 from (26) and A8⊕A′

8 = IV1⊕IV ′
1 with 232 steps.

Knowing A8 and A′
8, we can derive c3 and c′3. So far, we have partially recovered

the internal states corresponding to IV and IV ′.

3.5 Key Recovery Attack on 18-Round SNOW 3G⊕

Now we skip the 16 and 17 rounds case, since they are similar and go directly to
the 18-round. Let us denote F = MC1[S1(·)], G = MC2[S2(·)] and H = G[F (·)],
then from the first keystream word, we have:



150 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

255⊕
i=0

F [s20 ⊕ α−1Δi ⊕ Δi ⊕ H(s17 ⊕ C12 ⊕ Δi ⊕ F (A11 ⊕ Δi)) ⊕ F (s18⊕ (27)

H(A11 ⊕ Δi) ⊕ F (A12 ⊕ Δi)] ⊕
255⊕
i=0

H(s19 ⊕ Δi ⊕ H(A12 ⊕ Δi) ⊕ F (s17

⊕ C12 ⊕ Δi ⊕ F (A11 ⊕ Δi)) ⊕
255⊕
i=0

F (s21 ⊕ Δi ⊕ H(s18 ⊕ Δi ⊕ H(A11

⊕Δi) ⊕ F (A12 ⊕ Δi)) ⊕ F (s19 ⊕ Δi ⊕ H(A12 ⊕ Δi)) ⊕ F (s17 ⊕ C12⊕

Δi ⊕ F (A11 ⊕ Δi)) =
255⊕
i=0

zi,0.

Here by using multisets, we get rid of the LFSR words, s33 and s18, involved
in the keystream equations. Of these, s33 is the main obstacle to a differential
analysis of the keystream equation. To have an intuitive view, we color the
repeating patterns of variables in the left side of (23) in the same color. Note
that we can control the values of s17, s18, s19, s20 and s21 by properly choosing
the IV s. From the following equations (28) − (33),

s16 = α−1(k3 ⊕ 1) ⊕ (k2 ⊕ 1) ⊕ α(k0 ⊕ 1) ⊕ k3 ⊕ IV0 (28)

s17 = α−1(k0 ⊕ IV1) ⊕ (k3 ⊕ 1) ⊕ α(k1 ⊕ 1) ⊕ k1 ⊕ s16 ⊕ h1 (29)

s18 = α−1k1 ⊕ k0 ⊕ α(k2 ⊕ 1) ⊕ k2 ⊕ F (k1) ⊕ h1 ⊕ h2 ⊕ s17 (30)

s19 = α−1k2 ⊕ k1 ⊕ α(k3 ⊕ 1) ⊕ k3 ⊕ F (k1) ⊕ F (k2 ⊕ h1 ⊕ h2) (31)
⊕ h3 ⊕ s18

s20 = α−1(k3 ⊕ IV0) ⊕ k2 ⊕ αk0 ⊕ F (k2 ⊕ h1 ⊕ h2) ⊕ H(k2) ⊕ (k0 ⊕ 1) (32)
⊕ F (k3 ⊕ h3 ⊕ F (k1)) ⊕ s19

s21 = α−1s16 ⊕ k3 ⊕ αk1 ⊕ k1 ⊕ 1⊕ IV3 ⊕ F (k3 ⊕ F (k1)) ⊕ H(k2) (33)
⊕ F (A4) ⊕ s20.

we know that if we choose IV and IV ′ such that: IV3 = IV ′
3 and

α−1(IV1 ⊕ IV ′
1) ⊕ (IV0 ⊕ IV ′

0) = 0,

then, we have s17 = s′17, s18 = s′18, s19 = s′19, s21 = s′21 and s20 ⊕ s′20 =
α−1(IV0 ⊕ IV ′

0). If we undo the MC1 on both sides of (27), we can see that in
order to have a collision on the involved variables of the left side of (27), we need
the following 32-bit conditions:

C12 = C′
12. (34)

A11 = A′
11. (35)

A12 = A′
12. (36)
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There are 96 bits involved here, so 248 random (K, IV ) pairs satisfying the
above specified conditions will ensure that there exists such a collision with high
probability. Then injecting the byte differences λj (1 ≤ j ≤ 8) into the second
most significant byte of the involved variables will preserve the collision. Such a
collision can be detected by changing these byte differences and comparing the
most and second most significant bytes of the corresponding keystream words
xors. The time complexity of this detection is 248 · 8 · 2 = 252 steps. Then from
Table 4 and (34) − (36), we have c1 = c′1, i.e.,

k2 ⊕ F (A8) ⊕ G(B8) = k2 ⊕ F (A′
8) ⊕ G(B′

8). (37)

From Table 4, B8 is determined by B6 and C6 which are the same when the key
and IV3 are fixed, and thus B8 = B′

8. Further, from (37), we get A8 = A′
8, i.e.,

F (A6) ⊕ F (A′
6) = IV1 ⊕ IV ′

1 ⇒ F (k2 ⊕ 1⊕ IV2 ⊕ F (A4) ⊕ G(B4))⊕ (38)
F (k2 ⊕ 1⊕ IV ′

2 ⊕ F (A4) ⊕ G(B4)) = IV1 ⊕ IV ′
1 .

Let k2 ⊕F (A4)⊕G(B4)⊕ 1 = V which is an unknown constant, then from (38)
we get V in 232 steps. Then we know A6 = V ⊕ IV2 and A′

6 = V ⊕ IV ′
2 .

From A12 = A′
12, c1 = c′1 and B11 = B′

11, we have G(c2)⊕G(c′2) = IV0⊕ IV ′
0 ,

see Table 4. Again from Table 4, we have

H(k1 ⊕ B8 ⊕ H(A6)) ⊕ H(k1 ⊕ B8 ⊕ H(A′
6)) = IV0 ⊕ IV ′

0 . (39)

So we can derive k1⊕B8 from (39) in 232 steps. Combining k1⊕B8 with A6 and
A′

6, we get c2 and c′2. Then from A11 = A′
11, we get c3⊕c′3 = IV0⊕IV ′

0 ⊕c2⊕c′2,
i.e.,

H(IV1 ⊕ F (A6) ⊕ k0 ⊕ G(B6)) ⊕ H(IV ′
1 ⊕ F (A′

6) ⊕ k0 ⊕ G(B6)) (40)
= IV0 ⊕ IV ′

0 ⊕ c2 ⊕ c′2.

From (40), we can get k0 ⊕ G(B6) in 232 steps. Thus, we know A8 and A′
8, c3

and c′3. So far, the information restored is shown in Table 5, where ♣ means
recovered and ♦ means partially recovered.

Table 5. The register values restored

5 6 7 8 9 10 11

R1 ♣ ♣ ♣
R2 ♦ ♣ ♦ ♣ ♣
R3 ♣ ♣ ♣

In order to recover the key, we recall the above attack once with a different
value of IV3 = IV ′

3 , i.e., we choose another set of 248 random (K, IV ) pairs such
that the key K is the same as before and the IV s satisfy the same conditions,
but with a different set of values. Then the above analysis process also applies
to the second set. Our observation is that the values of the registers in the FSM
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in the second set case are highly correlated to those in the first set case. For
example, k2 ⊕F (A4)⊕G(B4)⊕ 1 = V is the same, since it only depends on the
key K. From the values of k0 ⊕ G(B6), we have

k0 ⊕ G(B6) = const1. (41)

k0 ⊕ G(B6) = const2. (42)

From (41) and (42), we have

H(IV3 ⊕ 1 ⊕ k1 ⊕ B4 ⊕ C4) ⊕ H(IV3 ⊕ 1⊕ k1 ⊕ B4 ⊕ C4) = const3. (43)

From (43), we can restore k1⊕B4⊕C4 in 232 steps, which in turn gives us A5 and
A5, B6 and B6. Combining these values with A8 and A8 which are known from
the corresponding individual analysis, we can recover k0 successfully. We can use
similar procedures to recover the other key words. The total time complexity is
252 · 2 = 253 steps and the data complexity is 28 · 248 · 2 = 257 keystream words.

4 Conclusions

In this paper, we have shown chosen IV resynchronization attacks on SNOW
3G and SNOW 3G⊕. We show full key-recovery attacks on up to 18 out of
33 initialization rounds of SNOW 3G⊕ using a multiset collision idea. We also
show 13-round distinguisher of 28 complexity for the actual SNOW 3G. Practical
parts of all these attacks have been verified experimentally on a PC. Our results
show that about half of the initialization rounds of SNOW 3G might succumb
to chosen IV resynchronization attacks. The remaining security margin however
is quite significant and thus these attacks pose no threat to the security of
SNOW 3G.

Acknowledgements. We would like to thank the anonymous reviewers for very
helpful comments. Bin Zhang was with State Key Laboratory of Information
Security, Institute of Software, Chinese Academy of Sciences, Beijing, 100190,
China and supported by the key programm of the National Natural Science
Foundation of China (Grant No. 60833008) and the general programm of the
National Natural Science Foundation of China (Grant No. 60603018).

References

1. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

2. Billet, O., Gilbert, H.: Resistance of SNOW 2.0 Against Algebraic Attacks. In:
Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 19–28. Springer, Heidelberg
(2005)

3. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES Can-
didate Conference 2000, pp. 230–241 (2000)



Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 153

4. Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 37–46. Springer, Heidelberg
(2003)

5. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW 3G Specification, version 1.1 (September 2006),
http://www.3gpp.org/ftp/

6. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 5: Design and Evaluation Report, version 1.1 (September
2006), http://www.3gpp.org/ftp/

7. Nyberg, K., Wallén, J.: Improved Linear Distinguishers for SNOW 2.0. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006)

8. Watanabe, D., Biryukov, A., De Canniére, C.: A Distinguishing Attack of SNOW
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A Multiset Difference Propagation Table

Table 6. Multiset difference propagation in 10-round initialization of SNOW 3G⊕

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 sj Ri

(0≤j≤4) (i=1,2,3)

0 Δi 0 0 0 0 0 0 0 0 0 0 0 0

1 Δi Δi 0 0 0 0 0 0 0 0 0
...

...

2 Δi Δi Δi 0
...

...
...

...
...

...
...

...
...

3 Δi Δi Δi Δi 0 0 0 0 0 0 0
...

...

4 Δi Δi Δi Δi Δi 0
...

...
...

...
...

...
...

5 Δi⊕ Δi Δi Δi Δi Δi 0
...

...
...

...
...

...
α−1Δi

6 Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
...

...
...

α−1Δi

7 Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
.
.
.

...
α−1Δi α−1Δi

8 Δi Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
...

α−1Δi α−1Δi

9 Δi⊕ Δi Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
α−1Δi α−1Δi α−1Δi

10 Δi⊕ Δi⊕ Δi Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0 0
α−2Δi α−1Δi α−1Δi α−1Δi
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