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Overview
• Reissner-Mindlin problem. 

• Kirchhoff limit and numerical locking. 

• Some solutions? 

• Mixed variational formulation with meshfree basis functions. 

• An example with the Timoshenko beam problem. 

• The Reissner-Mindlin problem: 

• Local patch projection method. 

• Stabilisation with the method of the augmented Lagrangian. 

• Summary.



The problem.



Reissner-Mindlin plate 
problem



The Kirchhoff Limit
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The issue: 
numerical locking.

Problems with small parameters crop up nearly 
everywhere! 

!
incompressible elasticity, 
incompressible fluid flow, 

plates and shells, 
Cosserat elasticity…



The equations

Find (z3h, �h) � (V3h � Rh) such that for all (y3, �) � (V3h � Rh):

�

�0

L�(�h) : �(�) d� + �t̄�2
�

�0

(�z3 � �h) · (�y3 � �) d� =

�

�0

gy3 d�

or:
ab(�h; �) + �t̄�2as(�h, z3; �, y3) = f(y3)



Locking
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p-refinement



p-refinement
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Locking
Inability of the basis functions to satisfy the 

constraint imposed whilst still having optimal 
approximation properties.

||u � uh|| � C(1/t̄)hp||u��||

Conclusion: We can never fully eliminate locking with 
these approaches.



Mixed weak form
Find (z3h, �h, �h) � (V3h, Rh, Sh)
such that for all (y3h, �, �) � (V3h, Rh, Sh):

ab(�h; �) + (�h; �y3 � �)L2 = f(y3)

(�z3h � �h; �)L2 � t̄2

�
(�h; �)L2 = 0



So the problem is solved?



Stability
Brezzi (Braess): The classical saddle point problem (t̄ = 0) is stable, if and only if, the

following conditions hold:

1. (Z-Ellipticity of a) There exists a constant � � 0 such that:

a(v, v) � ��v�2
X �v � Z

where Z is the kernel of the bilinear form b:

Z := {v � X | b(v, q) = 0 �q � M}

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

inf
q�M

sup
v�X

b(v, q)

�v�X �q�M
= � > 0

A Question of Balance

Xh Mh



Example: Timoshenko Beam
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An unstable discretisation

~
~
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What about FEM?

Chapelle and Bathe



A stable discretisation

~
~
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Sketch proof
1. Arroyo and Ortiz: In the local limit            

Maximum-Entropy basis functions converge to the                               
finite element method         . 

2. Chapelle and Bathe: The                      finite 
element satisfies the kernel coercivity and inf-sup 
condition. 

Implies the proposed meshfree method is stable.

� � 0

CGp/DGp�1

CG1



Back to the Reissner-
Mindlin problem.



What about FEM?
MITC Family - Bathe, Chapelle, Arnold, Fortin…

Generalised Displacement Method
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Local Patch Projection
For the nearly incompressible elasticity problem. 

Ortiz, Puso, Sukumar.



Stability
Brezzi (Braess): The classical saddle point problem (t̄ = 0) is stable, if and only if, the

following conditions hold:

1. (Z-Ellipticity of a) There exists a constant � � 0 such that:

a(v, v) � ��v�2
X �v � Z

where Z is the kernel of the bilinear form b:

Z := {v � X | b(v, q) = 0 �q � M}

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

inf
q�M

sup
v�X

b(v, q)

�v�X �q�M
= � > 0

A Question of Balance

Xh Mh



A solution
Make the Reissner-Mindlin problem look more 

like the incompressible elasticity problem. 
Arnold, Lovadina, Chinosi.



A solution
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Final Formulation



Stability
Brezzi (Braess): The classical saddle point problem (t̄ = 0) is stable, if and only if, the

following conditions hold:

1. (Z-Ellipticity of a) There exists a constant � � 0 such that:

a(v, v) � ��v�2
X �v � Z

where Z is the kernel of the bilinear form b:

Z := {v � X | b(v, q) = 0 �q � M}

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

inf
q�M

sup
v�X

b(v, q)

�v�X �q�M
= � > 0



Choosing stability parameter
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 Consistent with numerical experiments of Lovadina



Convergence
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Conclusions
• During my PhD I have worked to develop meshfree methods for the 

Reissner-Mindlin problem. 

• The resulting method: 

• is based on a sound variational principle. 

• does not lock. 

• retains the mathematical properties of the original Reissner-Mindlin 
problem. 

• More recently I have worked with Ortiz and Cyron to extend the definition of 
the patch projection operator to higher-order basis functions as well as 
meshfree basis functions for the Lagrange multiplier space. Additionally we 
have worked on solving outstanding issues related to numerical integration.


