

Meshfree methods for shear-deformable beams and plates based on mixed weak forms

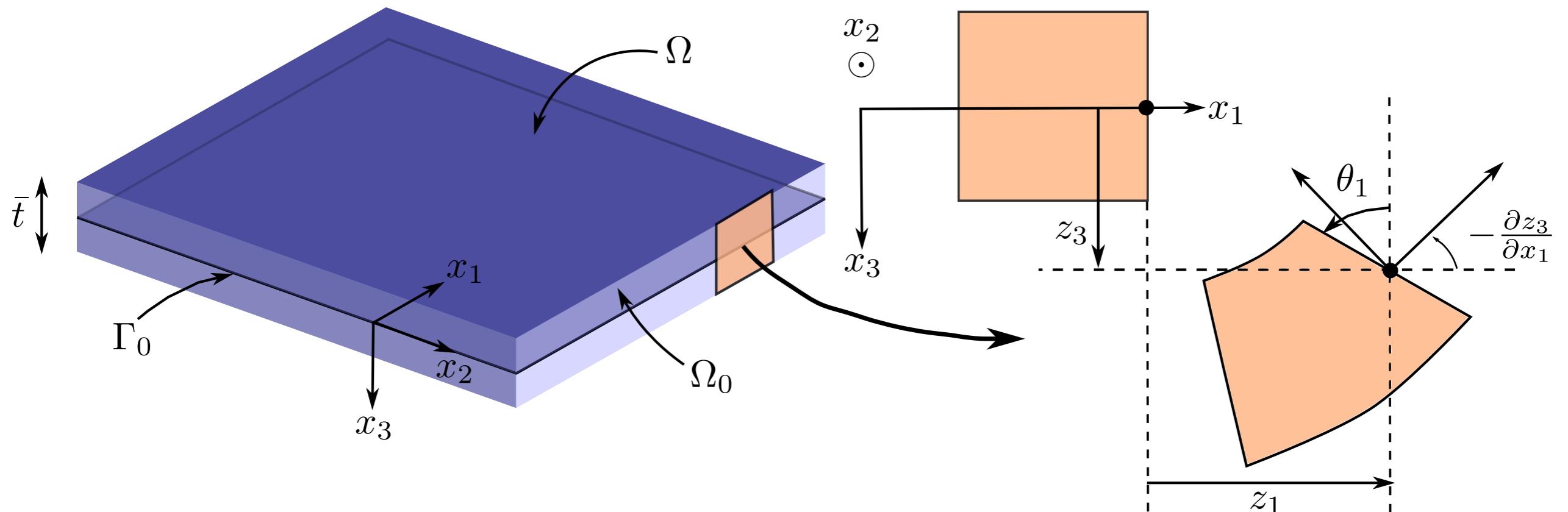
Jack S. Hale
Department of Aeronautics
Imperial College London

Overview

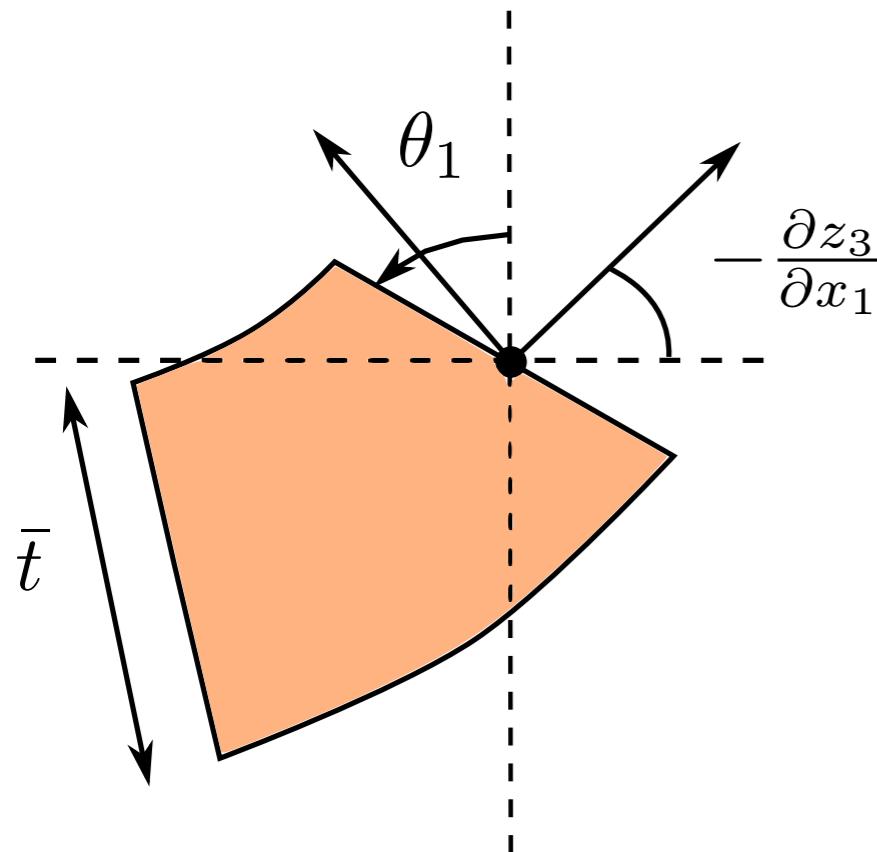
- Reissner-Mindlin problem.
- Kirchhoff limit and numerical locking.
- Some solutions?
- Mixed variational formulation with meshfree basis functions.
- An example with the Timoshenko beam problem.
- The Reissner-Mindlin problem:
 - Local patch projection method.
 - Stabilisation with the method of the augmented Lagrangian.
- Summary.

The problem.

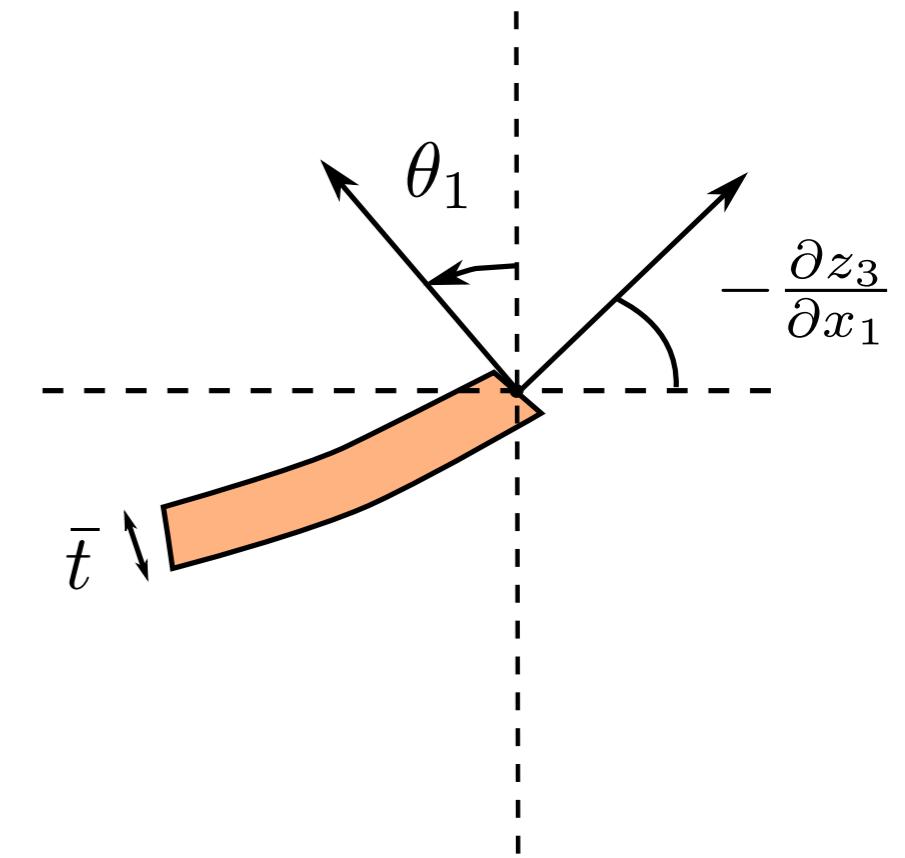
Reissner-Mindlin plate problem



The Kirchhoff Limit



$$\bar{t} \rightarrow 0$$



Reissner-Mindlin

Kirchhoff

Problems with small parameters crop up nearly
everywhere!

incompressible elasticity,
incompressible fluid flow,
plates and shells,
Cosserat elasticity...

The issue:
numerical locking.

The equations

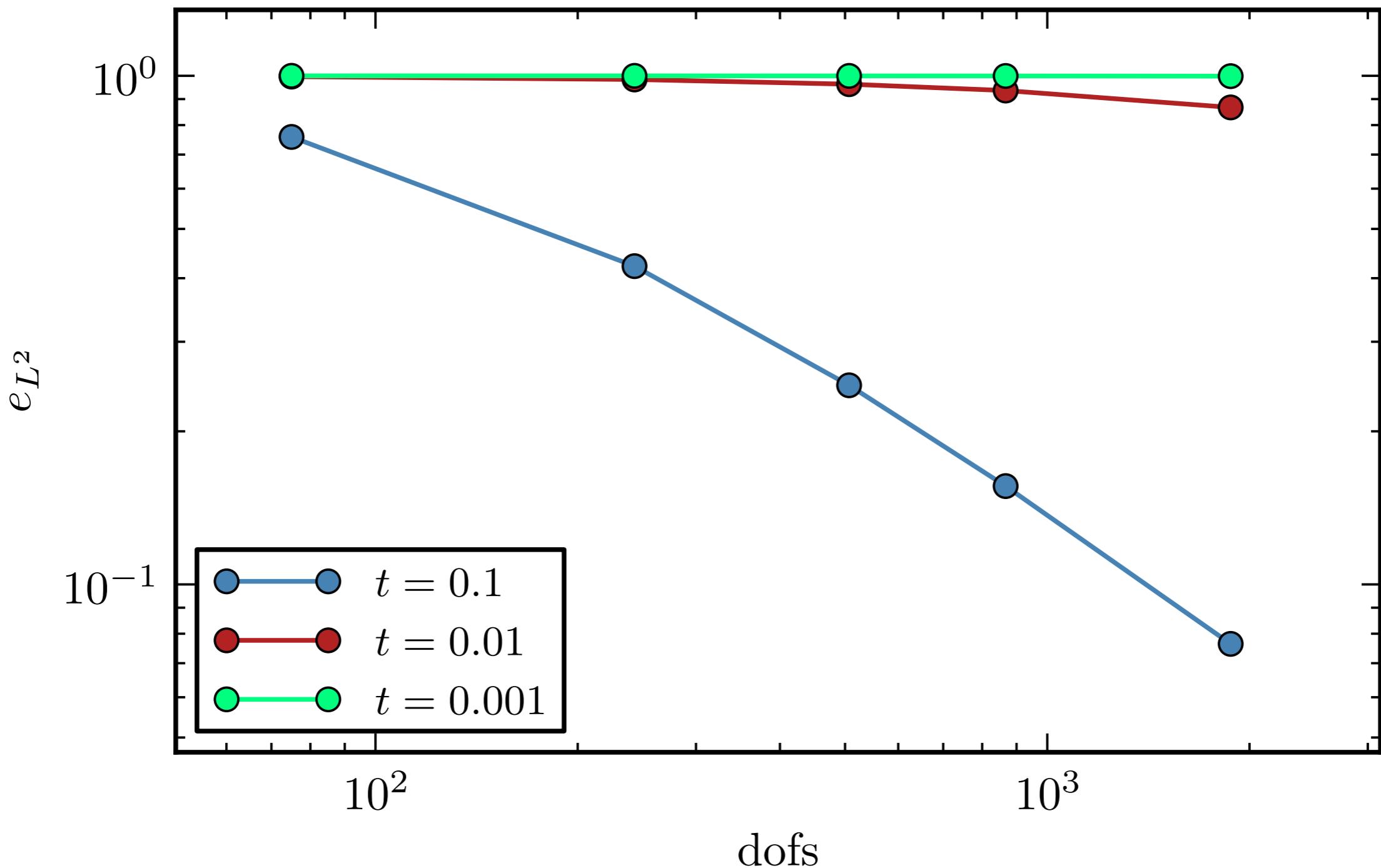
Find $(z_{3h}, \boldsymbol{\theta}_h) \in (\mathcal{V}_{3h} \times \mathcal{R}_h)$ such that for all $(y_3, \boldsymbol{\eta}) \in (\mathcal{V}_{3h} \times \mathcal{R}_h)$:

$$\int_{\Omega_0} L\epsilon(\boldsymbol{\theta}_h) : \epsilon(\boldsymbol{\eta}) \, d\Omega + \lambda \bar{t}^{-2} \int_{\Omega_0} (\nabla z_3 - \boldsymbol{\theta}_h) \cdot (\nabla y_3 - \boldsymbol{\eta}) \, d\Omega = \int_{\Omega_0} g y_3 \, d\Omega$$

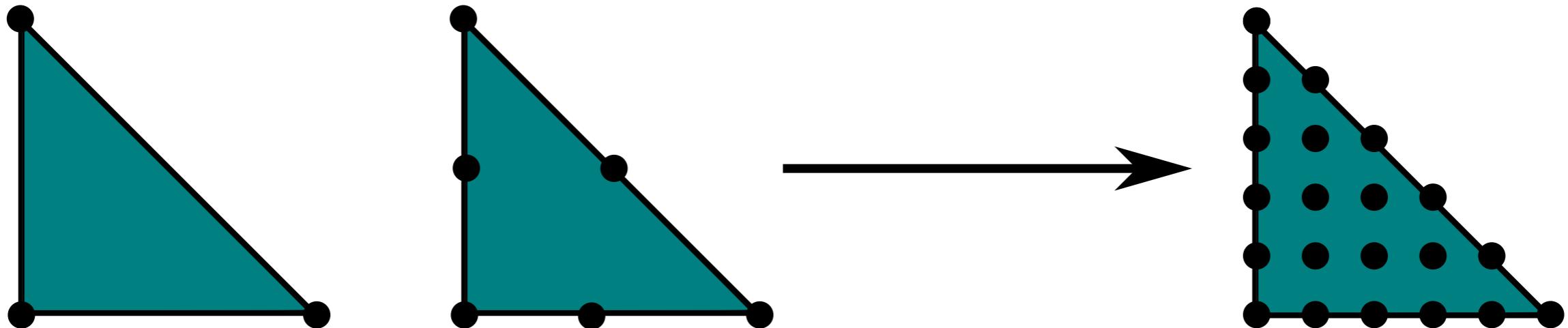
or:

$$a_b(\boldsymbol{\theta}_h; \eta) + \lambda \bar{t}^{-2} a_s(\boldsymbol{\theta}_h, z_3; \boldsymbol{\eta}, y_3) = f(y_3)$$

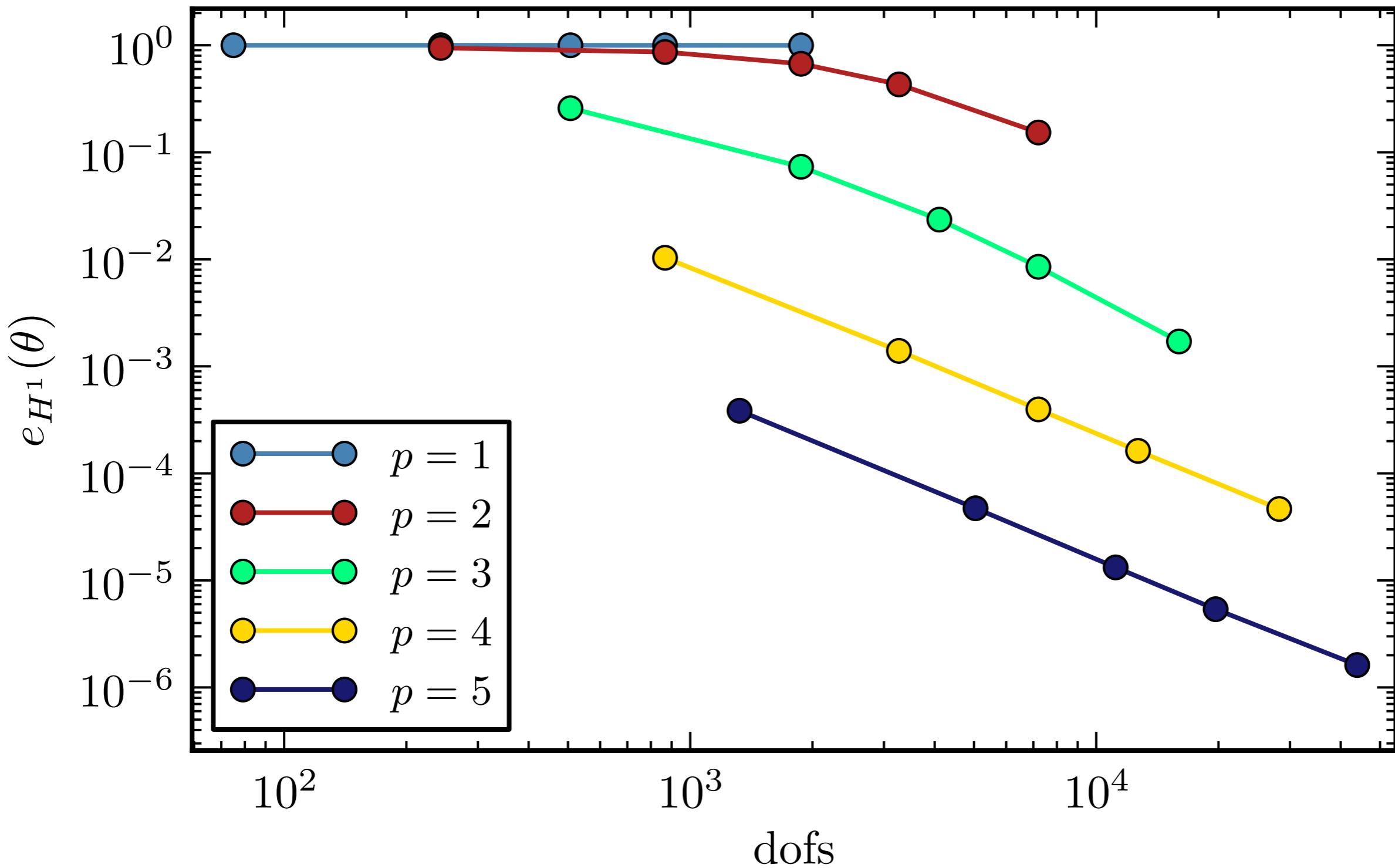
Locking



p-refinement



p-refinement



Locking

Inability of the basis functions to satisfy the constraint imposed whilst still having optimal approximation properties.

$$\|u - u_h\| \leq C(1/\bar{t})h^p\|u''\|$$

Conclusion: We can never fully eliminate locking with these approaches.

Mixed weak form

Find $(z_{3h}, \boldsymbol{\theta}_h, \boldsymbol{\gamma}_h) \in (\mathcal{V}_{3h}, \mathcal{R}_h, \mathcal{S}_h)$
such that for all $(y_{3h}, \boldsymbol{\eta}, \boldsymbol{\psi}) \in (\mathcal{V}_{3h}, \mathcal{R}_h, \mathcal{S}_h)$:

$$a_b(\boldsymbol{\theta}_h; \boldsymbol{\eta}) + (\boldsymbol{\gamma}_h; \nabla y_3 - \boldsymbol{\eta})_{L^2} = f(y_3)$$

$$(\nabla z_{3h} - \boldsymbol{\theta}_h; \boldsymbol{\psi})_{L^2} - \frac{\bar{t}^2}{\lambda} (\boldsymbol{\gamma}_h; \boldsymbol{\psi})_{L^2} = 0$$

So the problem is solved?

Stability

Brezzi (Braess): The classical saddle point problem ($\bar{t} = 0$) is stable, if and only if, the following conditions hold:

1. (\mathcal{Z} -Ellipticity of a) There exists a constant $\alpha \geq 0$ such that:

$$a(v, v) \geq \alpha \|v\|_{\mathcal{X}}^2 \quad \forall v \in \mathcal{Z}$$

where \mathcal{Z} is the kernel of the bilinear form b :

$$\mathcal{Z} := \{v \in \mathcal{X} \mid b(v, q) = 0 \quad \forall q \in \mathcal{M}\}$$

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

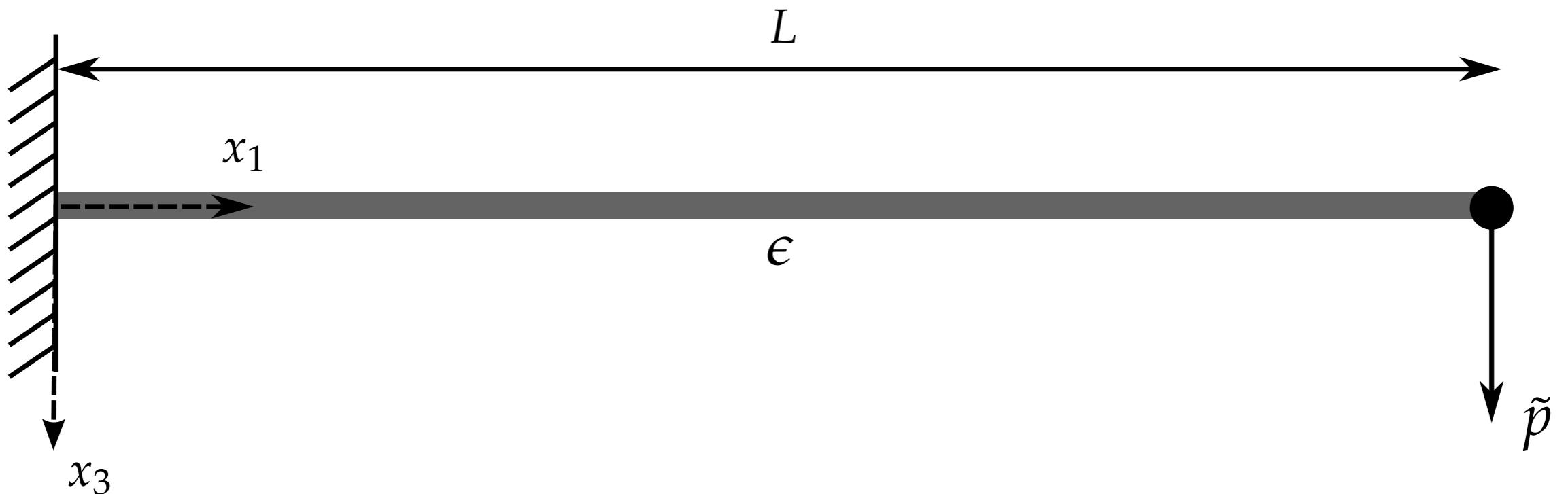
$$\inf_{q \in \mathcal{M}} \sup_{v \in \mathcal{X}} \frac{b(v, q)}{\|v\|_{\mathcal{X}} \|q\|_{\mathcal{M}}} = \beta > 0$$

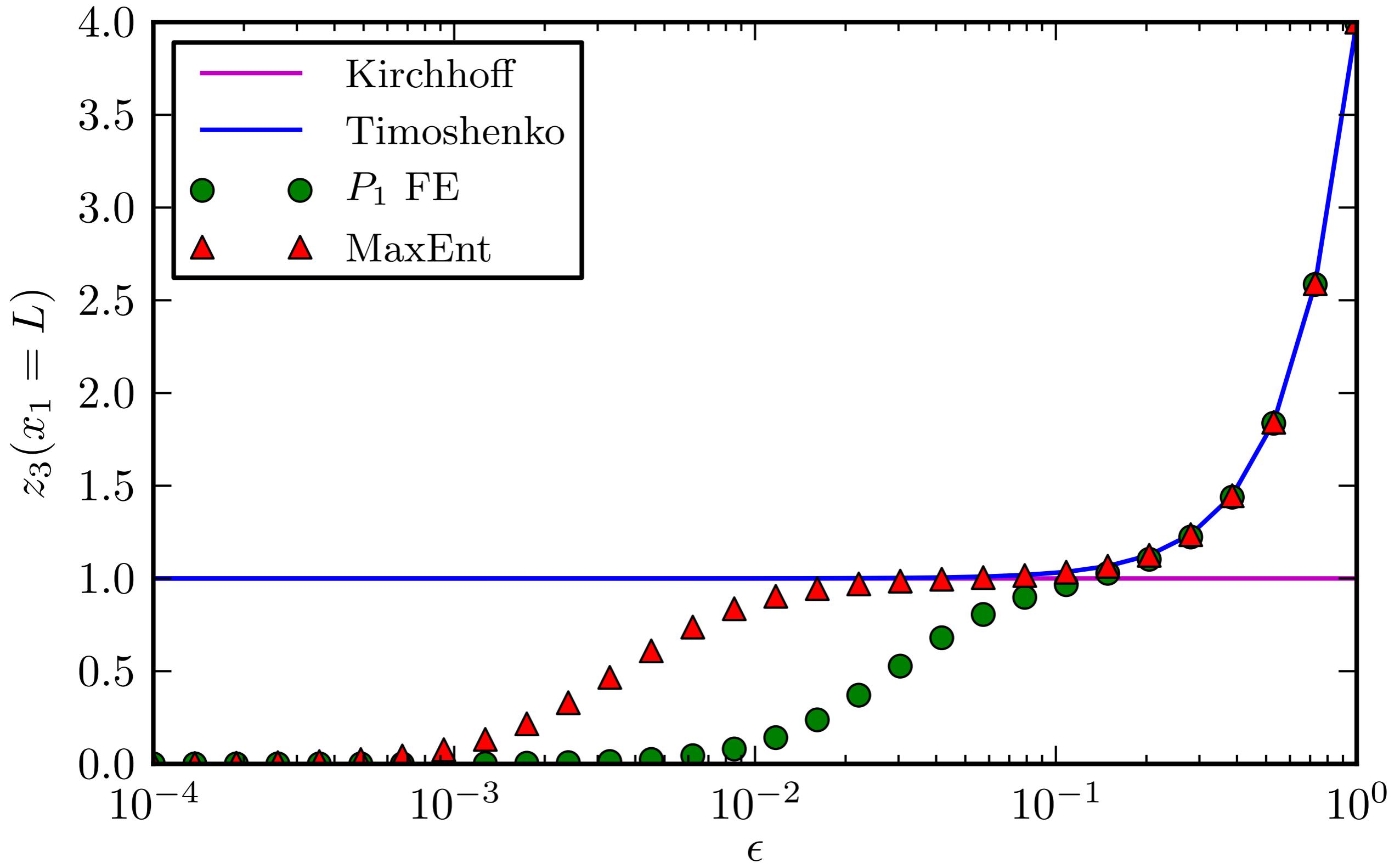
A Question of Balance

\mathcal{X}_h

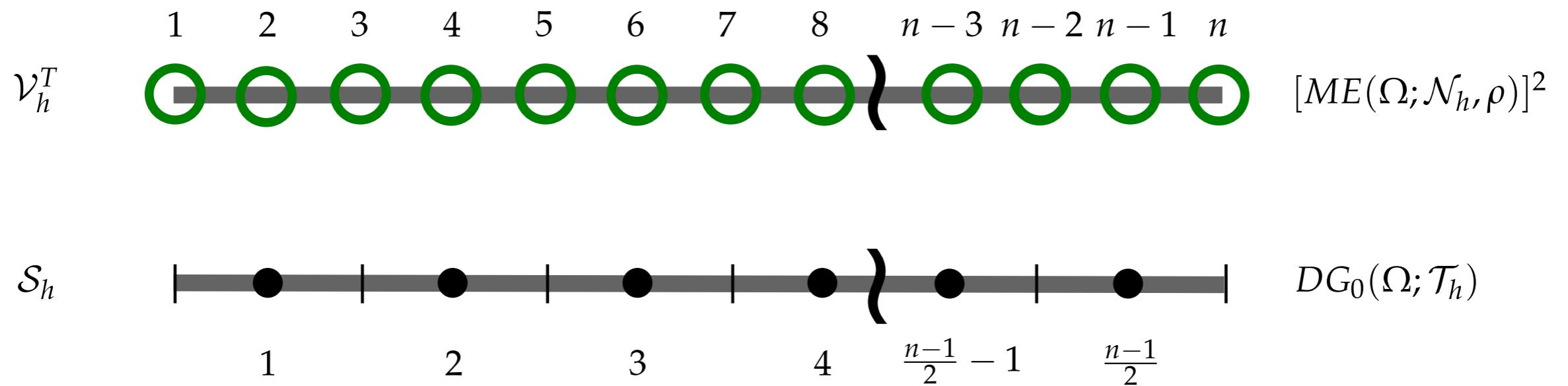
\mathcal{M}_h

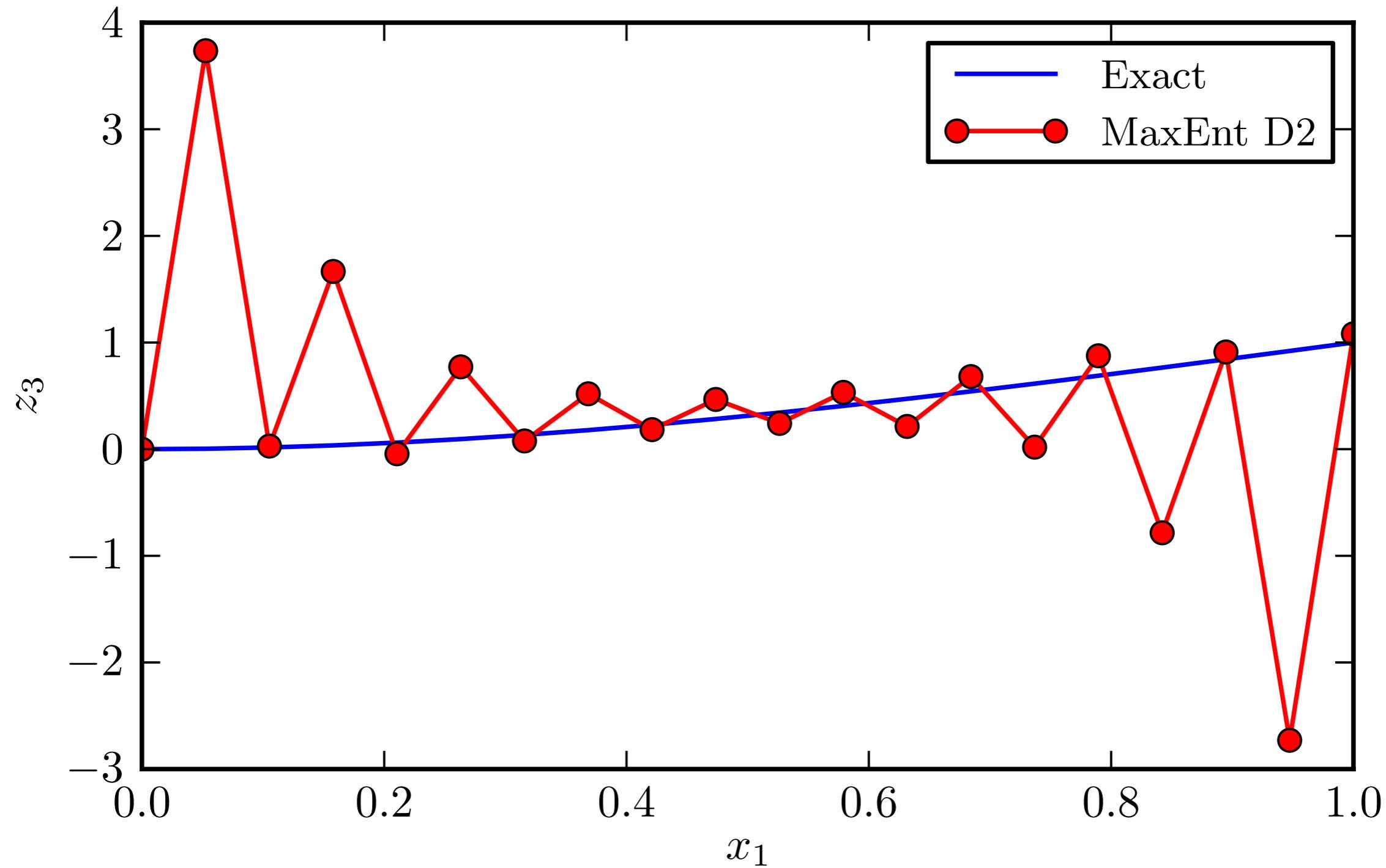
Example: Timoshenko Beam



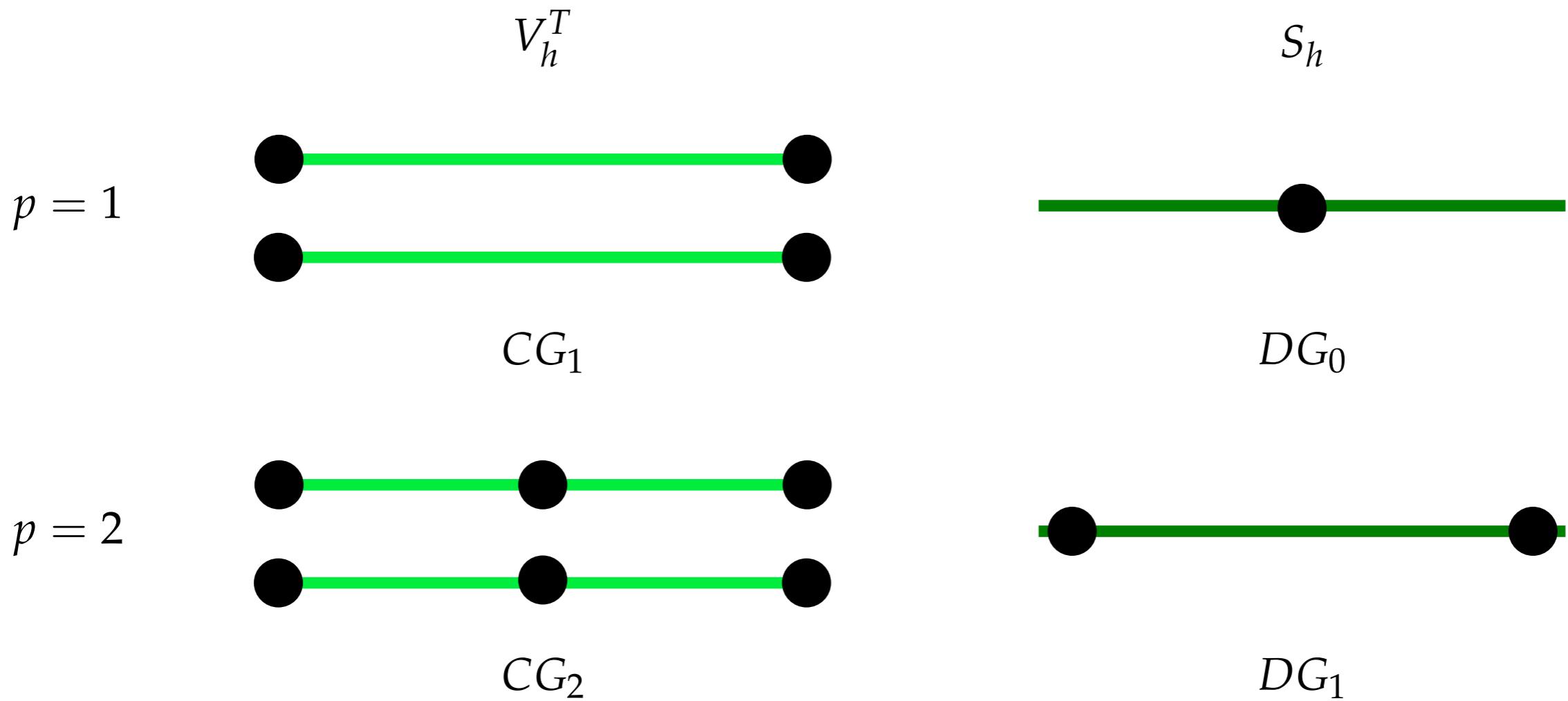


An unstable discretisation



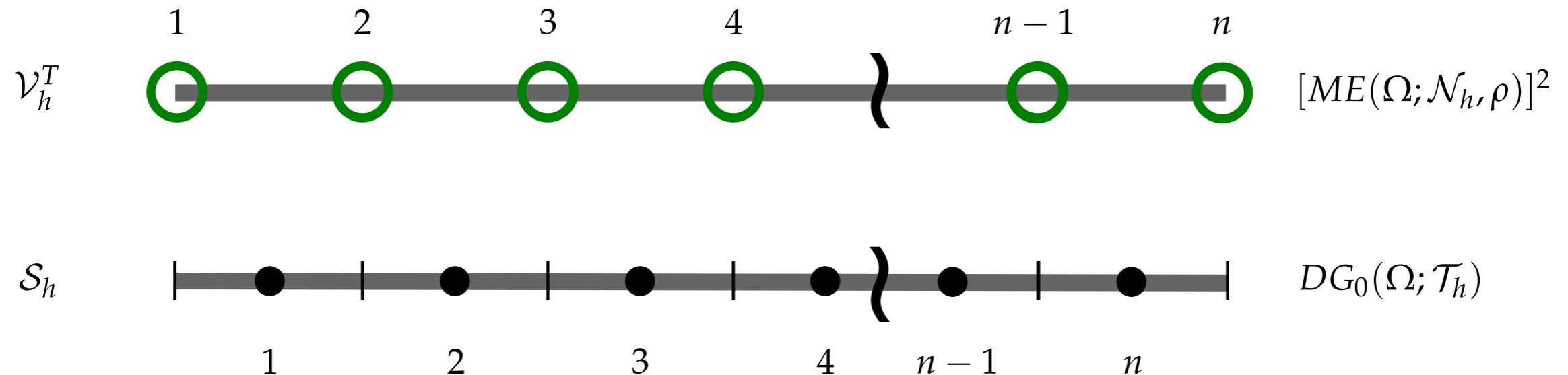


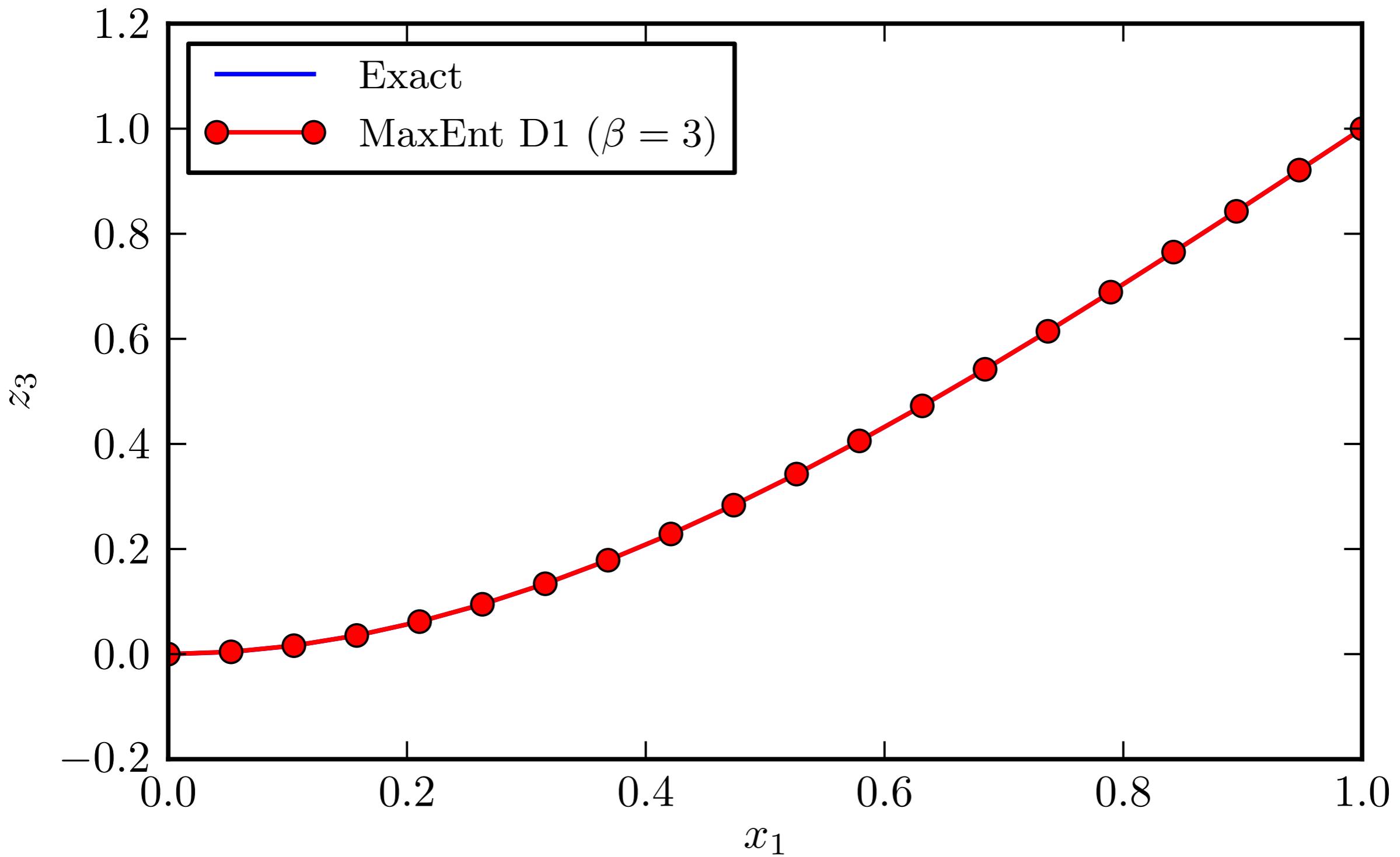
What about FEM?

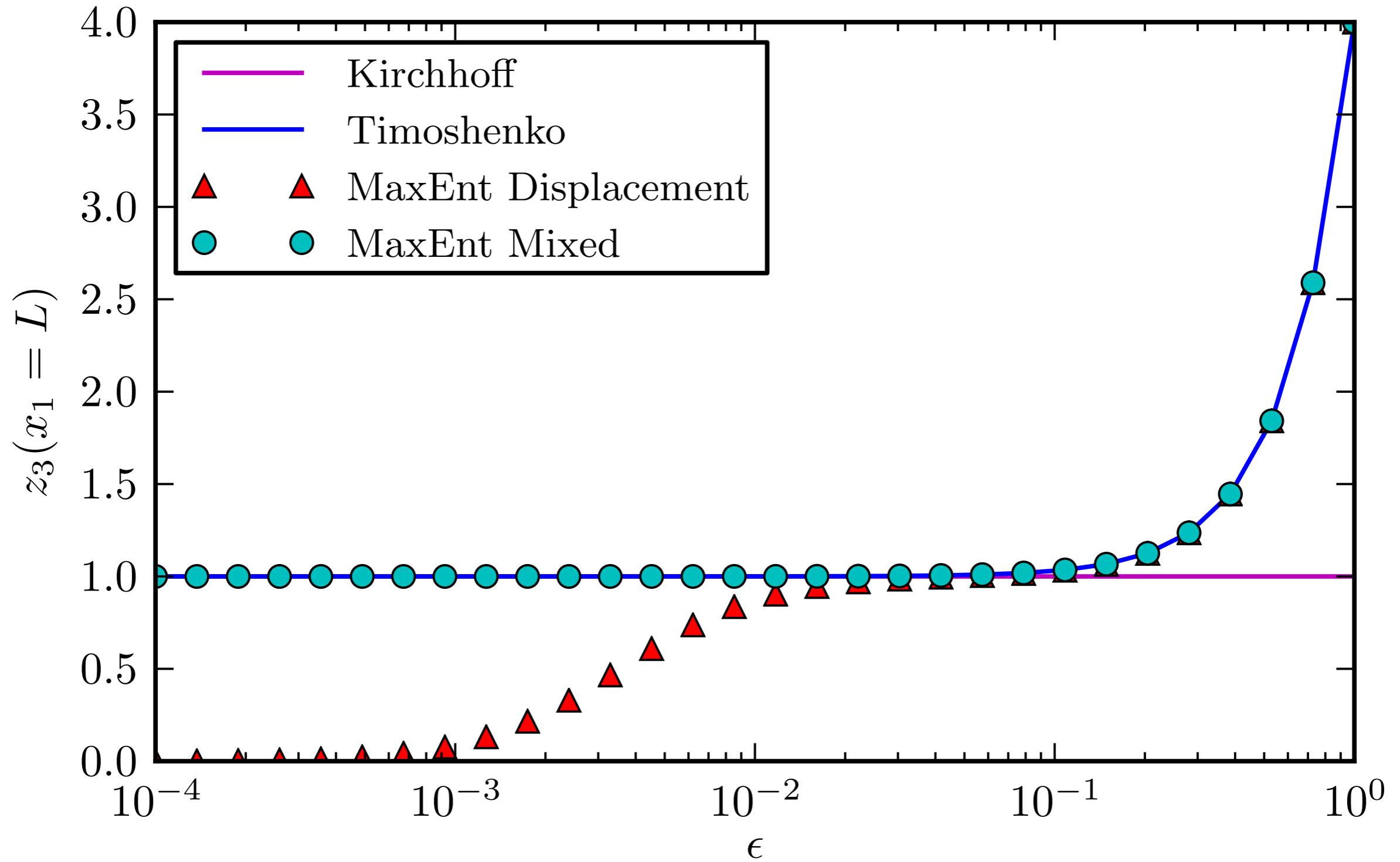


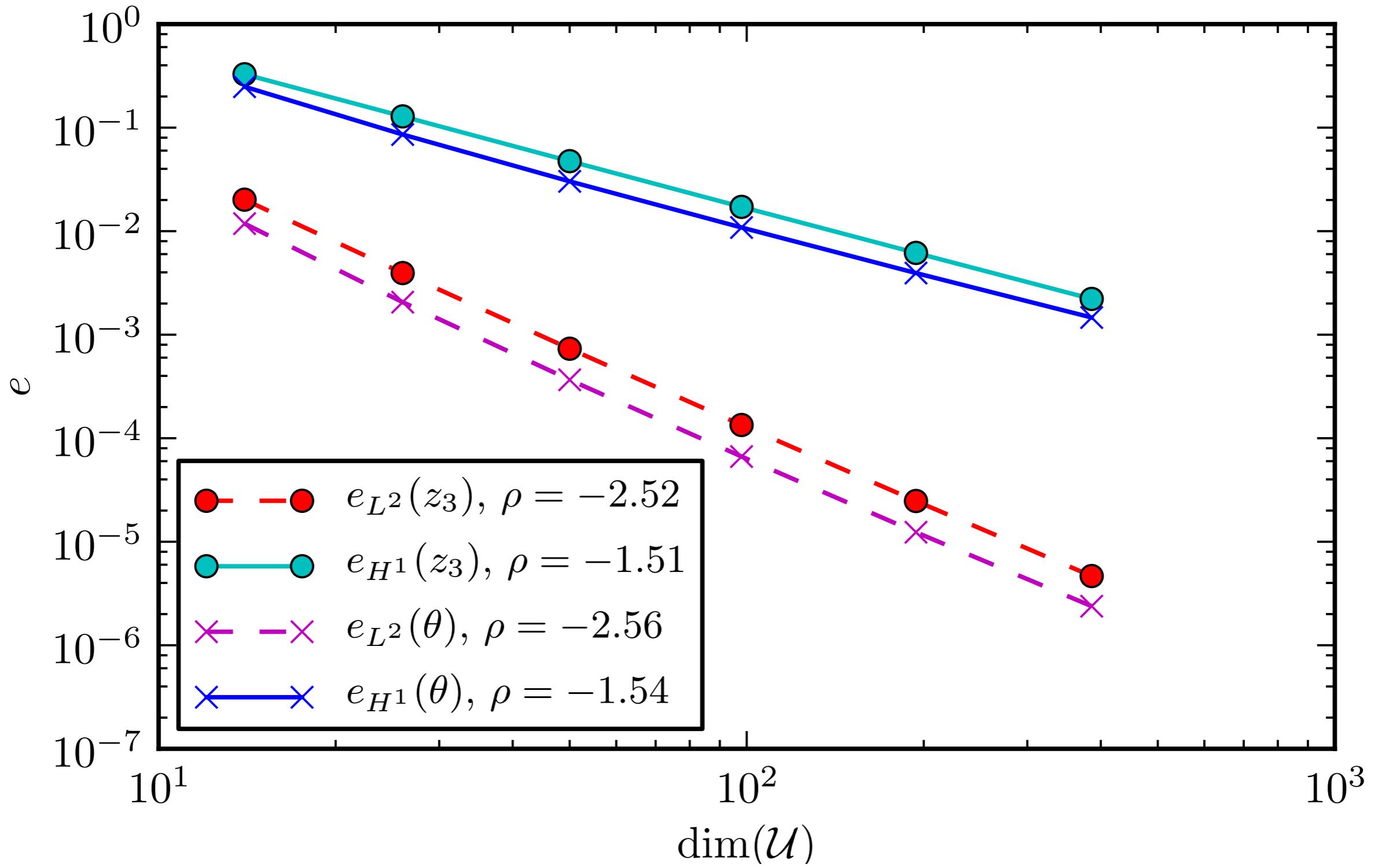
Chapelle and Bathe

A stable discretisation









Sketch proof

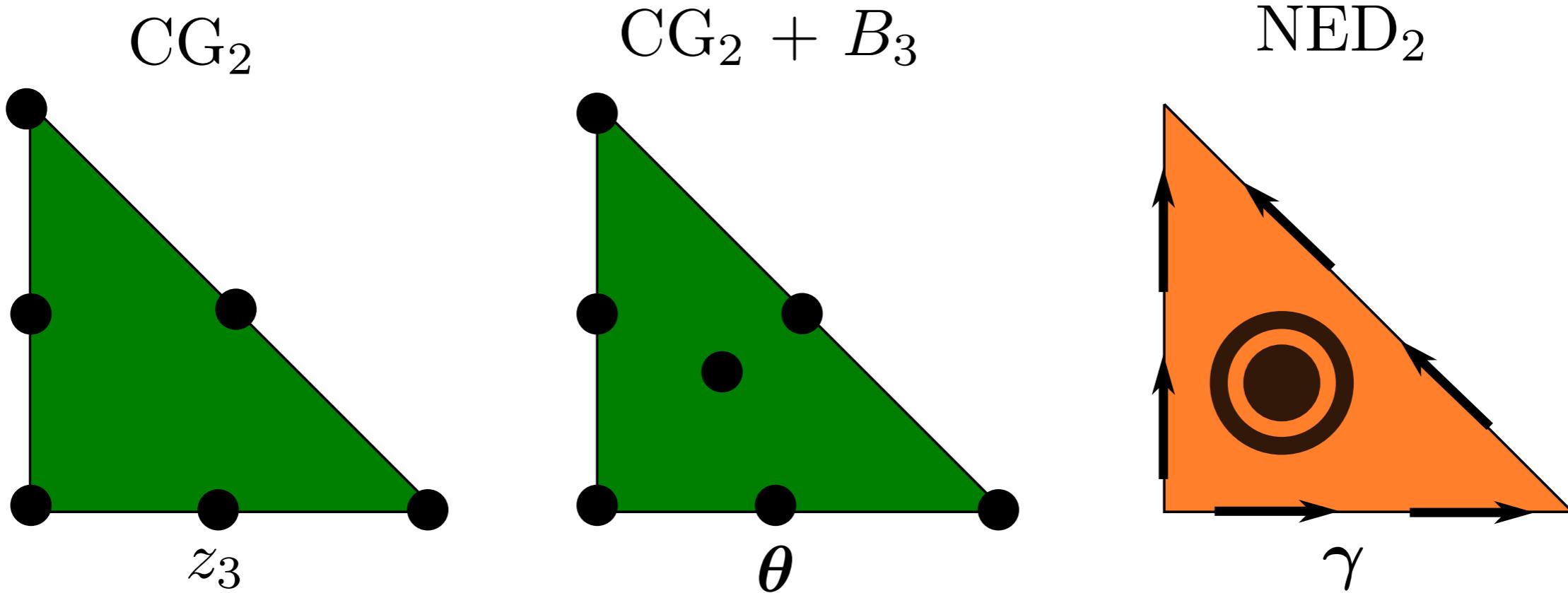
1. *Arroyo and Ortiz*: In the local limit $\beta \rightarrow 0$ Maximum-Entropy basis functions converge to the finite element method CG_1 .
2. *Chapelle and Bathe*: The CG_p/DG_{p-1} finite element satisfies the kernel coercivity and inf-sup condition.

Implies the proposed meshfree method is stable.

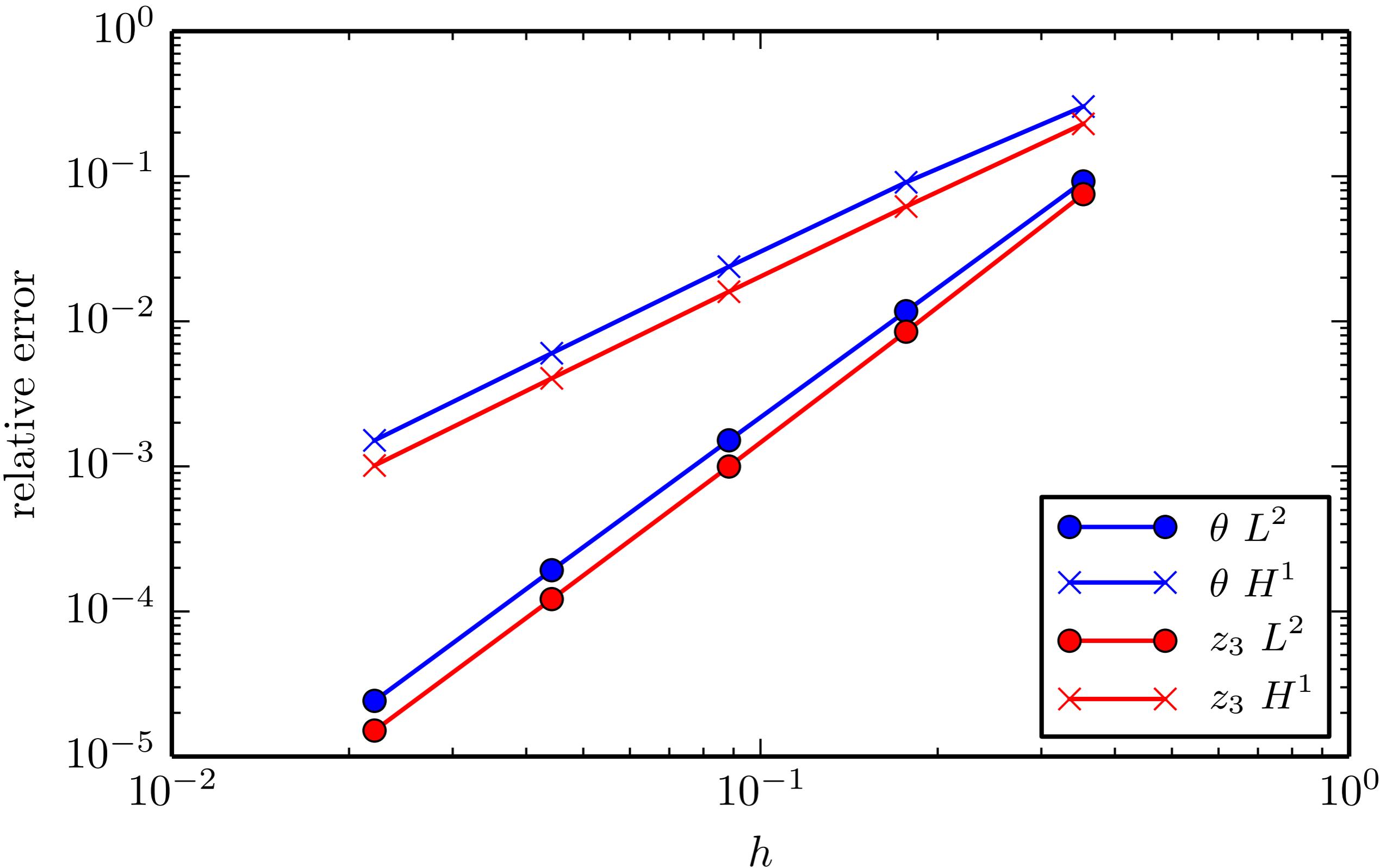
Back to the Reissner-
Mindlin problem.

What about FEM?

MITC Family - *Bathe, Chapelle, Arnold, Fortin...*



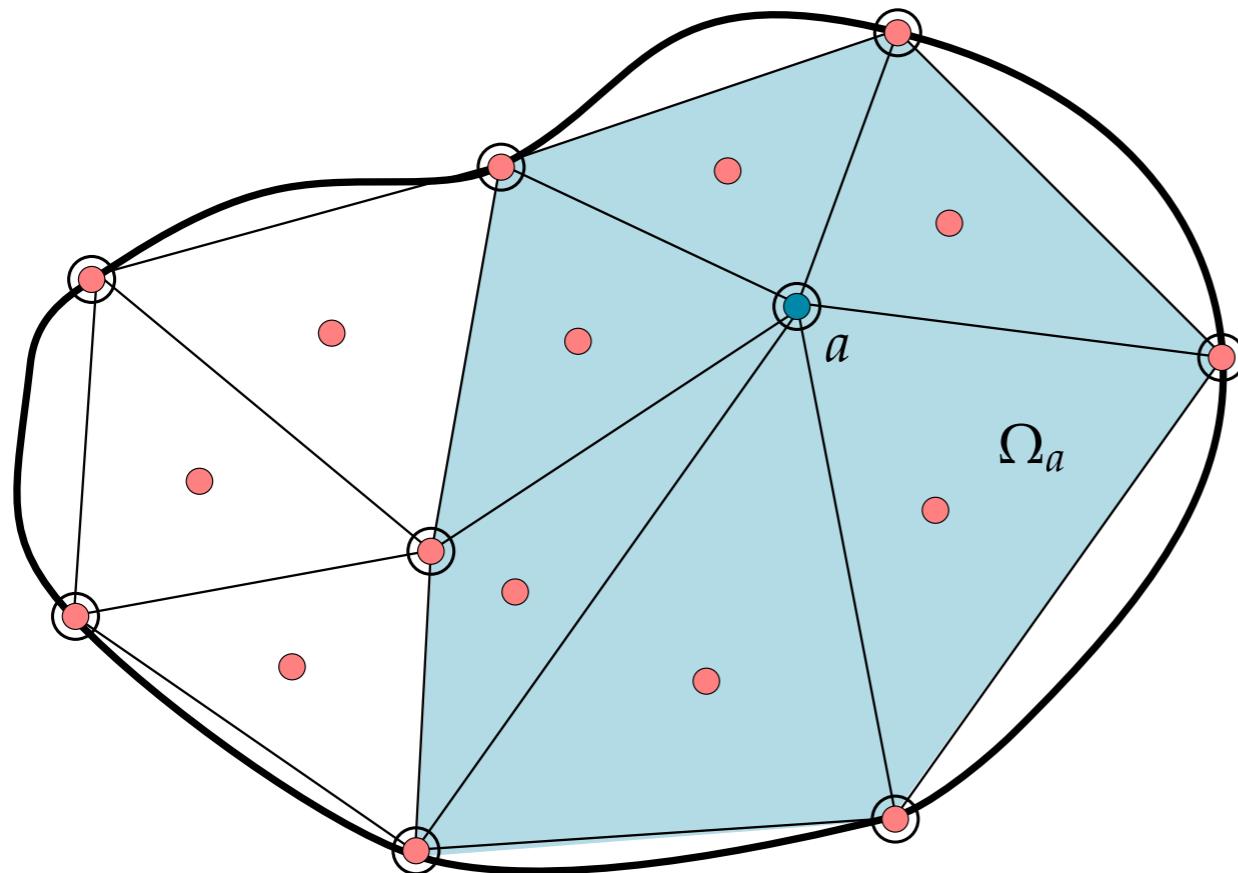
Generalised Displacement Method



Local Patch Projection

For the nearly incompressible elasticity problem.

Ortiz, Puso, Sukumar.



$$p_a = -\lambda_e \sum_{b=1}^N \left\{ \frac{\int_{\Omega_a} N_{pa} \mathbf{m}^T \mathbf{B}_b \, d\Omega}{\int_{\Omega_a} N_{pa} \, d\Omega} \right\} \mathbf{u}_b$$

Stability

Brezzi (Braess): The classical saddle point problem ($\bar{t} = 0$) is stable, if and only if, the following conditions hold:

1. (\mathcal{Z} -Ellipticity of a) There exists a constant $\alpha \geq 0$ such that:

$$a(v, v) \geq \alpha \|v\|_{\mathcal{X}}^2 \quad \forall v \in \mathcal{Z}$$

where \mathcal{Z} is the kernel of the bilinear form b :

$$\mathcal{Z} := \{v \in \mathcal{X} \mid b(v, q) = 0 \quad \forall q \in \mathcal{M}\}$$

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

$$\inf_{q \in \mathcal{M}} \sup_{v \in \mathcal{X}} \frac{b(v, q)}{\|v\|_{\mathcal{X}} \|q\|_{\mathcal{M}}} = \beta > 0$$

A Question of Balance

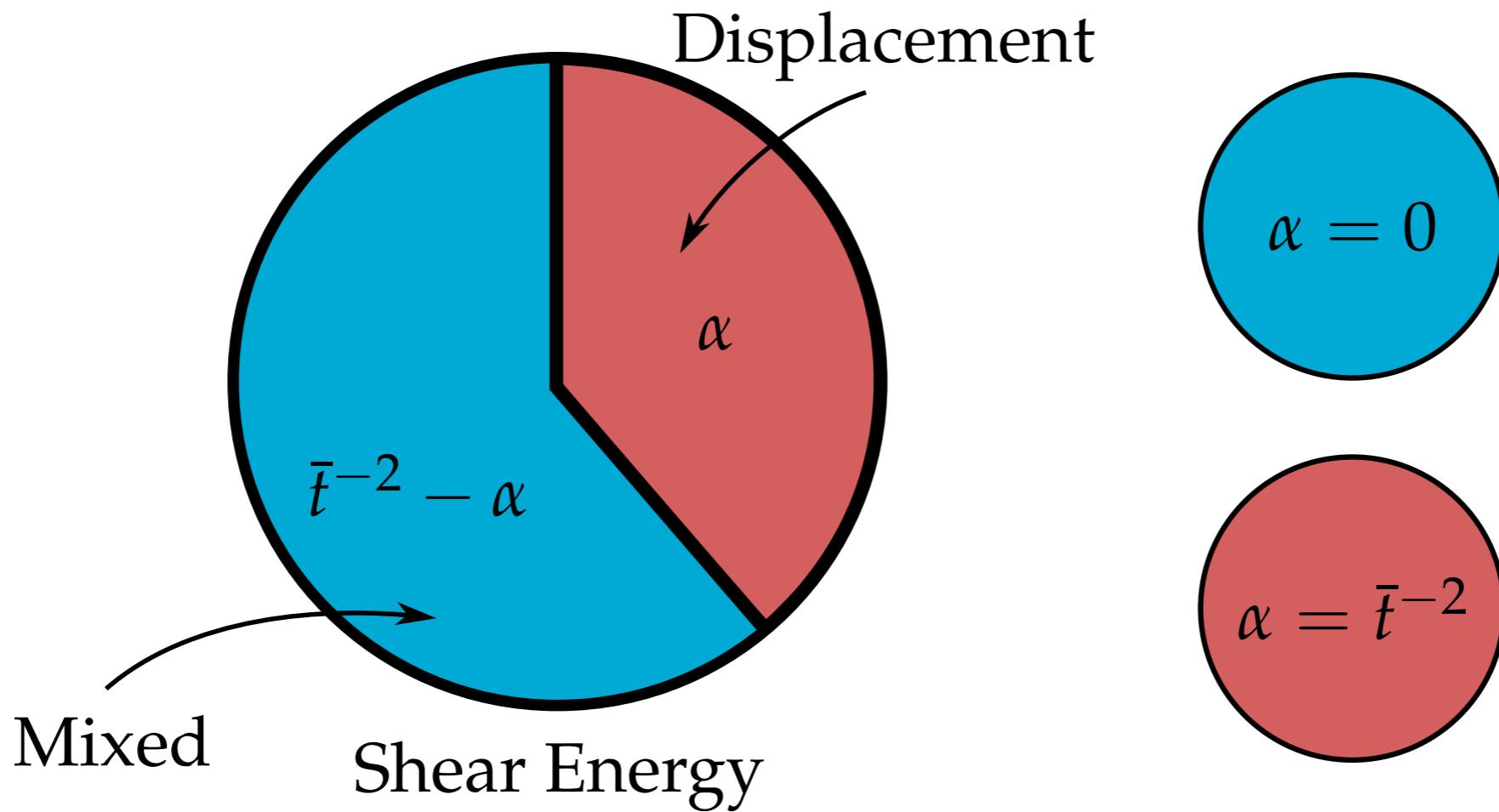
\mathcal{X}_h

\mathcal{M}_h

A solution

Make the Reissner-Mindlin problem look more like the incompressible elasticity problem.

Arnold, Lovadina, Chinosi.



A solution

Problem 17 (Discrete stabilised mixed scaled Reissner-Mindlin problem). *Find the transverse deflection, rotations and transverse shear stresses $(z_{3h}, \boldsymbol{\theta}_h, \boldsymbol{\gamma}_h) \in (\mathcal{V}_{3h}, \mathcal{R}_h, \mathcal{S}_h)$ such that for all $(y_3, \boldsymbol{\eta}, \boldsymbol{\psi}) \in (\mathcal{V}_{3h}, \mathcal{R}_h, \mathcal{S}_h)$:*

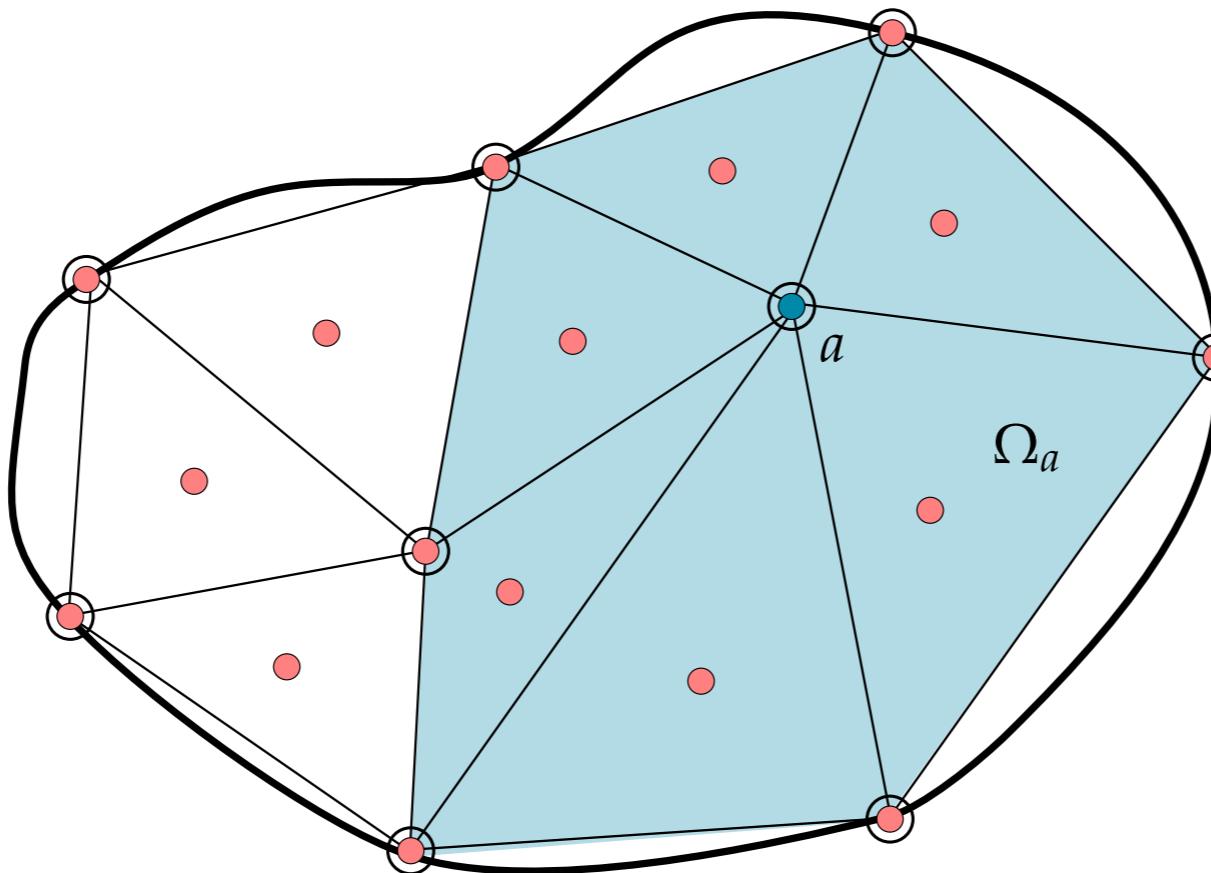
$$a_b(\boldsymbol{\theta}_h, \boldsymbol{\eta}) + \lambda \alpha a_s(\boldsymbol{\theta}_h, z_{3h}; \boldsymbol{\eta}, y_3) + (\boldsymbol{\gamma}_h, \nabla y_3 - \boldsymbol{\eta})_{L^2(\Omega_0)} = g(y_3) \quad (6.10a)$$

$$(\nabla z_{3h} - \boldsymbol{\theta}_h, \boldsymbol{\psi})_{L^2(\Omega_0)} - \frac{\bar{t}^2}{\lambda(1 - \alpha\bar{t}^2)} (\boldsymbol{\gamma}_h, \boldsymbol{\psi})_{L^2(\Omega_0)} = 0 \quad (6.10b)$$

$$a(v; v) := a_b(\boldsymbol{\theta}, \boldsymbol{\eta}) + \lambda \alpha a_s(\boldsymbol{\theta}, z_3; \boldsymbol{\eta}, y_3) \geq \delta \|v\|_{\mathcal{X}}^2 \quad \forall v \in \mathcal{X}$$

Final Formulation

$$a_b(\boldsymbol{\theta}_h, \boldsymbol{\eta}) + \lambda \alpha a_s(\boldsymbol{\theta}_h, z_{3h}; \boldsymbol{\eta}, y_3) + \frac{\lambda(1 - \alpha \bar{t}^2)}{\bar{t}^2} (\Pi_h^p(\nabla z_{3h} - \boldsymbol{\theta}_h), \nabla y_3 - \boldsymbol{\eta})_{L^2(\Omega_0)} = g(y_3)$$



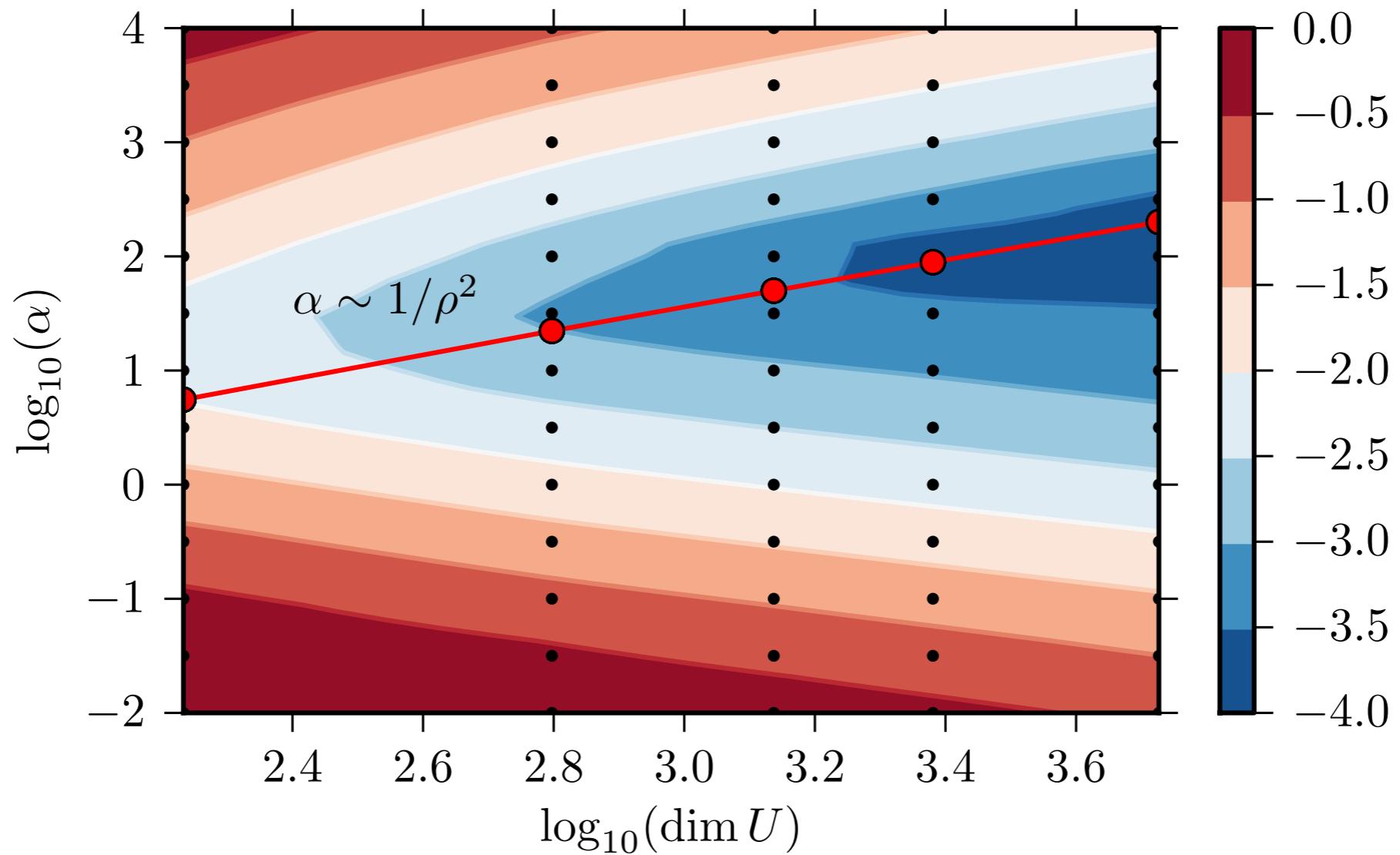
Stability

Brezzi (Braess): The classical saddle point problem ($\bar{t} = 0$) is stable, if and only if, the following conditions hold:

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

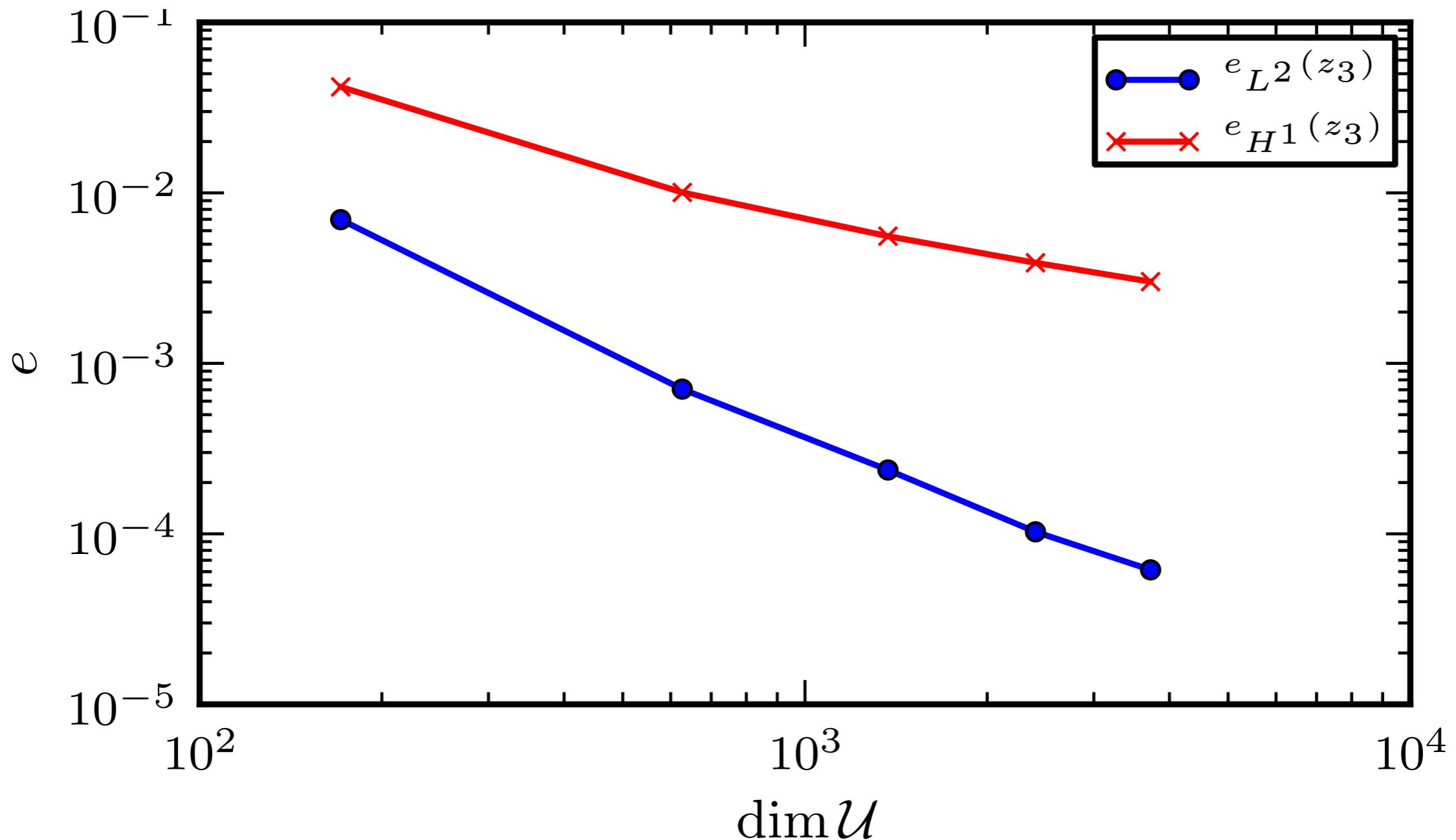
$$\inf_{q \in \mathcal{M}} \sup_{v \in \mathcal{X}} \frac{b(v, q)}{\|v\|_{\mathcal{X}} \|q\|_{\mathcal{M}}} = \beta > 0$$

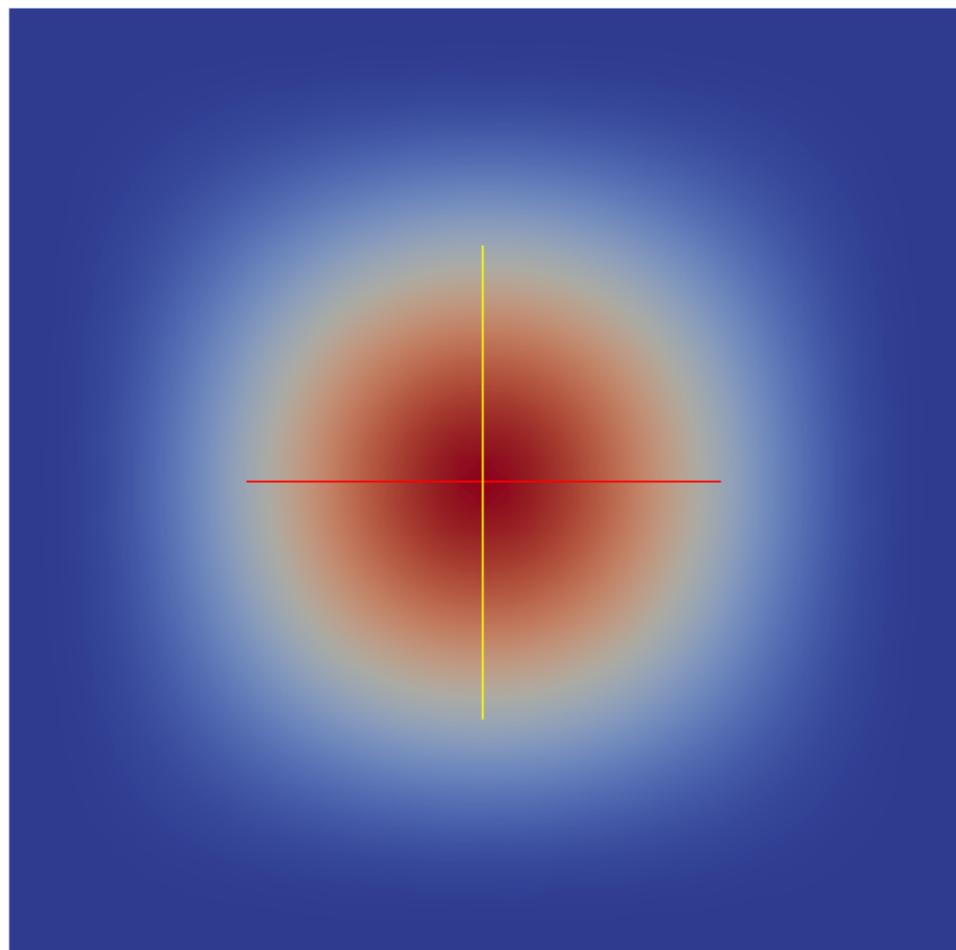
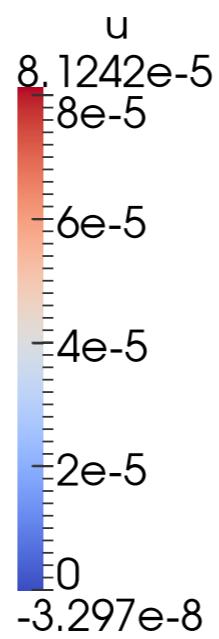
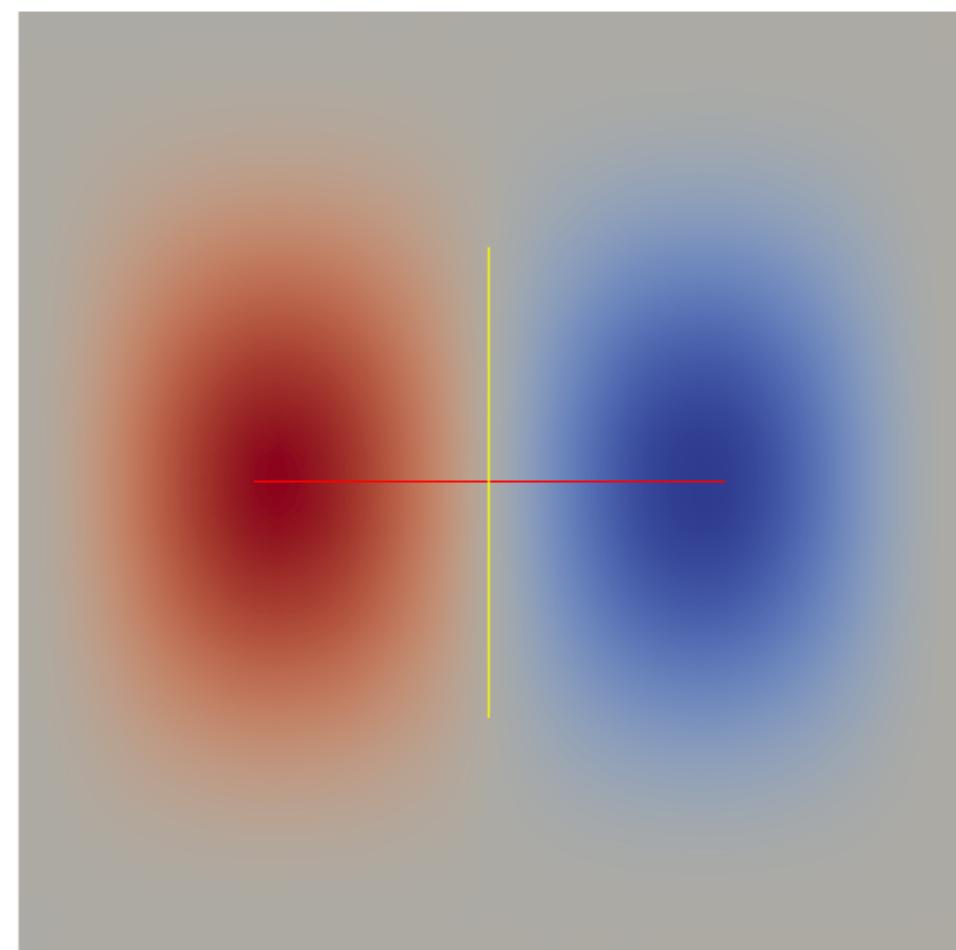
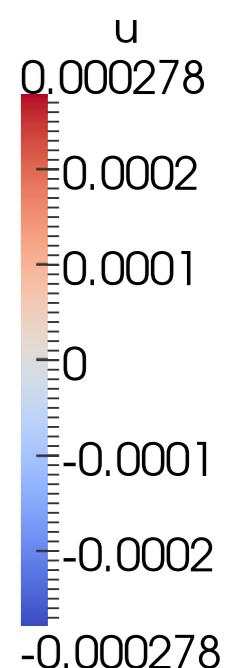
Choosing stability parameter



Consistent with numerical experiments of *Lovadina*

Convergence





Conclusions

- During my PhD I have worked to develop meshfree methods for the Reissner-Mindlin problem.
- The resulting method:
 - is based on a sound variational principle.
 - does not lock.
 - retains the mathematical properties of the original Reissner-Mindlin problem.
- More recently I have worked with Ortiz and Cyron to extend the definition of the patch projection operator to higher-order basis functions as well as meshfree basis functions for the Lagrange multiplier space. Additionally we have worked on solving outstanding issues related to numerical integration.