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Overview

e Reissner-Mindlin problem.
 Kirchhoft limit and numerical locking.
e Some solutions?
e Mixed variational formulation with meshfree basis functions.
« An example with the Timoshenko beam problem.
e The Reissner-Mindlin problem:
e |Local patch projection method.
e Stabilisation with the method of the augmented Lagrangian.

o Summary.
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The problem.
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oreen Reissner-Mindlin plate
problem
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The Kirchhott Limit

Reissner-Mindlin Kirchhoff
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Problems with small parameters crop up nearly
everywhere!

incompressible elasticity,
incompressible fluid flow,
plates and shells,
Cosserat elasticity...

I'he Issue:
numerical locking.
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I'he equations

Find (z31,01) € (V3n X Rp) such that for all (y3,1m) € (Va3 X Rp):

/ Le(0y,) : e(n) dQ2 + )\5_2/ (Vzz3 —0y) - (Vys —m) dQ2 = / qys dS
20 20 20

or:.
ap(0n;n) + M 2as(0r, 23;:1m,93) = f(y3)
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D-refinement

A h—h
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D-refinement
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| ocKINg

Inability of the basis functions to satisfy the
constraint imposed whilst still having optimal
approximation properties.

| = un|| < C(L/E)RP[|u"]]

Conclusion: We can never fully eliminate locking with
these approaches.
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Mixed weak torm

Find (23h70h77h) S (V3h7Rh75h)
such that for all (ysn,n,®¥) € Vsn, Ru, Sn):

ay(On;m) + (Vs Vys —n)rz = f(y3)
42
(Vzan = Os )12 — = (s )12 = 0
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So the problem is solved?
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Stability

Brezzi (Braess): The classical saddle point problem (¢ = 0) is stable, if and only if, the
following conditions hold:

1. (Z-Ellipticity of a) There exists a constant a > 0 such that:
a(v,v) > al|v]|3 Yv € Z
where Z is the kernel of the bilinear form b:

Z:={veX|blw,q) =0 Vqe M}

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

b(v,
inf sup (v, 9) =5>0
€M yex ||v|lx|lqllim

A Question of Balance

Xh ./\/lh
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Example: [imoshenko Beam
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An unstable discretisation
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What about FEM?

Vy Sh
| |
p=1
@ @
CGq DG
@ | |
@ @ @
CGy DGq

Chapelle and Bathe
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A stable discretisation
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Sketch prooft

1. Arroyo and Ortiz: In the local limit 8 — 0
Maximum-Entropy basis functions converge to the
finite element method CGh .

2. Chapelle and Bathe: The CG, /DG, finite
element satisfies the kernel coercivity and inf-sup
condition.

Implies the proposed meshfree method is stable.
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Back to the Reissner-
Mindlin problem.
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" What about FEM?

MITC Family - Bathe, Chapelle, Arnold, Fortin...

CGs CGa + Bs NED-

Z3 6 Y

Generalised Displacement Method
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relative error
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| ocal Patch Projection

For the nearly incompressible elasticity problem.
Ortiz, Puso, Sukumar.
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Stability

Brezzi (Braess): The classical saddle point problem (¢ = 0) is stable, if and only if, the
following conditions hold:

1. (Z-Ellipticity of a) There exists a constant a > 0 such that:
a(v,v) > al|v]|3 Yv € Z
where Z is the kernel of the bilinear form b:

Z:={veX|blw,q) =0 Vqe M}

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

b(v,
inf sup (v, 9) =5>0
€M yex ||v|lx|lqllim

A Question of Balance

Xh ./\/lh
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A solution

Make the Reissner-Mindlin problem look more
Ike the Incompressible elasticity problem.
Arnold, Lovadina, Chinosi.

Displacement

Mixed

Shear Energy
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A solution

Problem 17 (Discrete stabilised mixed scaled Reissner-Mindlin problem). Find the transverse

deflection, rotations and transverse shear stresses (zsy, 0, yh) e (Vi Ry, Sp) such that for all

()’3, n, l//) € (V3h/ Rh/ Sh)

ap(0y,, n) + Aaay(0, z3n 1, y3) + (¥, Vs — 0)12o,) = 8(3) (6.10a)
2-2
(Vzzp, = 0, ¥)120,) — Y1 — o) (yh, V)12, =0 (6.10b)

a(v;v) == ay(0, 1) + Aaa (6,251, ;) > S|vll;, VveX



Imperial College

Final Formulation

A1 — ar?
( )(Hi(vzéh —0,),Vy; - ’I)Lz(go) = g(rs)

ab(eh/ ’1) + A(Xas(ohl Z3n, 1, )’3) +

12
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Stability

Brezzi (Braess): The classical saddle point problem (¢ = 0) is stable, if and only if, the
following conditions hold:

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

b
inf sup (v, )

=068>0
a€Myex |||l xlq]l m
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Choosing stability parameter
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Consistent with numerical experiments of Lovadina
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Convergence
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u

. 1242e-5
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:6e—5
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Conclusions

* During my PhD | have worked to develop meshfree methods for the
Reissner-Mindlin problem.

* The resulting method:
* IS based on a sound variational principle.
* does not lock.

e retains the mathematical properties of the original Reissner-Mindlin
problem.

* More recently | have worked with Ortiz and Cyron to extend the definition of
the patch projection operator to higher-order basis functions as well as
meshfree basis functions for the Lagrange multiplier space. Additionally we
have worked on solving outstanding issues related to numerical integration.



