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Abstract. We analyse the security of the cryptographic hash function
LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By
exploiting non-injectivity of some of the building primitives of LAKE,
we show three different collision and near-collision attacks on the com-
pression function. The first attack uses differences in the chaining values
and the block counter and finds collisions with complexity 233. The sec-
ond attack utilizes differences in the chaining values and salt and yields
collisions with complexity 2%2. The final attack uses differences only in
the chaining values to yield near-collisions with complexity 2%°. All our
attacks are independent of the number of rounds in the compression func-
tion. We illustrate the first two attacks by showing examples of collisions
and near-collisions.

1 Introduction

The recent cryptanalytical results on the cryptographic hash functions following
the attacks on MD5 and SHA-1 by Wang et al. [I7/I6/15] have seriously under-
mined the confidence in many currently deployed hash functions. Around the
same time, new generic attacks such as multicollision attack [7], long message
second preimage attack [9] and herding attack []], exposed some undesirable
properties and weaknesses in the Merkle-Damgard (MD) construction [I2/5].
These developments have renewed the interest in the design of hash functions.
Subsequent announcement by NIST of the SHA-3 hash function competition,
aiming at augmenting the FIPS 180-2 [13] standard with a new cryptographic
hash function, has further stimulated the interest in the design and analysis of
hash functions.
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The hash function family LAKE [I], presented at FSE 2008, is one of the
new designs. It follows the design principles of the HAIFA framework [23] — a
strengthened alternative to the MD construction.

As the additional inputs to the compression function, LAKE uses a ran-
dom value (also called salt) and an index value, which counts the number of
bits/blocks in the input message processed so far.

The first analysis of LAKE, presented by Mendel and Schléffer [I1], has shown
collisions for 4 out of 8 rounds. The complexity of their attack is 2°9. The
main observation used in the attack is the non-injectivity of one of the in-
ternal functions. This property allows to introduce difference in the message
words, which is canceled immediately, when the difference goes through the
non-injective function.

Our contributions. Our attacks focus on finding collisions for the compression
function of LAKE. Let f(H, M, S,t) be a compression function of a HAIFA hash
function using chaining values H, message block M, salt S and the block index ¢.
We present the following three types of collision attacks. The first attack uses dif-
ferences in the chaining values H and block index ¢, so we are looking for collisions
of form f(H,M,S,t) = f(H', M, S,t'). We call it a (H,t)-type attack. The com-
plexity of this attack is 233 compression calls. The second attack deals with the
differences injected in the chaining values and salt S, we call it a (H, S)-attack.
We present how to find near-collisions of the compression function with the com-
plexity 23° of compression calls and extend it to full collisions with the complexity
242 The final attack, called a H-type attack, uses only differences in the chaining
values and finds near-collisions for the compression function with the complexity
299 The success of our collision attacks relies on solving the systems of equations
that originate from the differential conditions imposed by the attacks. We present
some efficient methods to solve these systems of equations.

Our attacks demonstrate that increasing the number of rounds of LAKE does
not increase its security as they all aim at canceling the differences within the
first ProcessMessage function of the compression function.

2 Description of LAKE

In this section, we provide a brief description of the LAKE compression function,
skipping details that are not relevant to our attacks. See [I] for details.

Basic functions — LAKE uses two functions f and g defined as follows
fla,b,c,d) =(a+ bV Cy)+ ((c+(anCh))>T)+
(b+ (cvd) > 13) ,
g(a,bc.d) =((a+b)> 1)@ (c+d) ,
where each variable is a 32-bit word and Cy, C; are constants.

The compression function of LAKE has three components: SaltState,
ProcessMessage and FeedForward. The functionality of these components are



158 A. Biryukov et al.

Input: H = H()H - ||f[77 S = S()” - ||Sd, t= toHt1
Output: F = F()” e HF15
for i=0,...,7do
F; = Hy;
end
Fs = g(Ho, So @ to, Cs,0);
Fy = g(Hl,Sl @tl,Cg,O);
for i =10,...,15 do
Fi :g(Hi,Si,Ci,O);
end

Algorithm 1. LAKE’s SaltState

Input: F = Fo” e ||F15, M = MoH - ||M15, g
Output: W = W()H N ||W15
for i =0,...,15 do

Li = f(Li—1, Fi, My, Ci);

end
Wo = g(Las, Lo, Fo, L1);
Lo = Wo;

fori=1,...,15 do
Wi = g(Wi_1, Li, Fi, Lit1);
end

Algorithm 2. LAKE’s ProcessMessage

Input: W = W()H e HW15, H = H()H . H]{77 S = S()” . HSs, t= toHt1
Output: H = Ho||... | Hr
Hy = f(Wo, Ws, So @ to, Ho);
Hy = f(W1, Wy, 51 t1, H1);
fori=2,...,7do
H; = f(Wi, Wiys, Si, Hi);
end

Algorithm 3. LAKE’s FeedForward

Input: H = H()H - ||f[77 M = M()H - ||]\4157 S = S()H N ||Sd, t= toHt1
Output: H = Ho||...||H~
F = SaltState(H, S, t);
for i=0,...,r—1do
F = ProcessMessage(F, M, 0;);
end
H = FeedForward(F, H, S, t);

Algorithm 4. LAKE’s CompressionFunction

described in Algorithms [Il 2 and Bl respectively. The whole compression func-
tion of LAKE is presented as Algorithm [l Our attacks do not depend on the
constants C; for ¢ = 0,...,15 and hence we do not provide their actual values
here.
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3 Properties and Observations

We first present some properties of the f function used in our analysis.

Observation 1. Function f(z,y,z,t) is non-injective with respect to the first
three arguments x,vy, 2.

For example, for = there exist two different values x and 2’ such that f(z,y, 2, t)
= f(2',y, 2,t) for some y, z,t. The same property holds for y and z. This obser-
vation was mentioned by Lucks at FSE’08. Mendel and Schléffer independently
found and used this property to successfully attack four out of eight rounds of
LAKE-256. Non-injectivity of the function f can be used to cancel a difference
in one of the first three arguments of f, when the rest of the arguments are fixed.

The following observation of the rotation on the modular addition allows us
to simplify the analysis of f.

Lemma 1 ([6]). (a +b) >k = (a > k)+(b> k) +a— 5-2"F where
a = 1[alt +bl* > 2%] and B = 1[af + bE + o > 277K,

Using Lemma (), the function f can be written as

fla,bye,d)=a+bVCo+(e>>T)+((anCy)>>T)+ (b>>13)
+((c®d) > 13) 41 +as— B2 — 5.2, (1)

where
) = 1[0% + (a/\C’1)$ > 27], B = 1[C7R + (a N C’l)]; 4+ aq > 225],
a =1+ (codfy >2"%,  B=1pf+ (codd)f +ar > 2"

Note that as and (5 are independent of a. Consider now the difference of the
outputs of f induced by the difference in the variable a, i.e.

Af = f(a/a b7 C, d) - f(Cl, ba c, d)
=[d 4+ (@ ANC)+ ) —B1-22] —[a+ (aACL)+ay — By -2%]
=a'+ (@' AC)>>T) = [a+ (@A C1) 3> T)] + (o) —a1) = (B — Br) - 2%
= fa(d') = fala) + (&) — 1) = (B] = Br) - 2%,

where f,(a) Lot ((anCp)>>T).

A detailed analysis (cf. Lemmal]) shows that given random a, o’ and ¢, P(a; =
oy, b1 =p1) = 37 so with the probability é, a collision for f, is also a collision of
f when the input difference is in a only. Let us call this a carry effect. However,
if we have control over the variable ¢, we can adjust the values of a1, af, 81, 5]
and always satisfy this condition. From here we can see that (a + b) >> k is not
a good mixing function when modular differences are concerned.

This reasoning can be repeated for differences in the variable b and similarly
for differences in a pair of the variables ¢, d. It is easy to see that also for those
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cases, with a high probability, collisions in f happen when the following functions
collide

F0) L bV Co+ (> 13)

fed(e,d) def (c>T7)+ ((cdd) > 13) .

So, when we follow differences in one or two variables only, we can consider those
variables without the side effects from other variables. We summarize the above
observations below.

Observation 2. Collisions or output differences of f for input differences in
one variable can be made independent from the values of other variables.

We denote the set of solutions for f, and f, with respect to input pairs and
modular differences as

Sta © (@) ful@) = fu@)} . Sfu E {z —a/|fa(@) = ful@)}
def

def
Srp = {(z,2")|fo(2) = fo(a)} , St S {z — 2| fo(x) = frl)} .
Choose the odd elements from S]‘ﬁlb and define them to be S}“bodd. Note that we
can easily precompute all the above solution sets using 232 evaluations of the

appropriate functions and 232 words of memory (or some more computations
with proportionally less memory).

4 (H,t)-Type Attack

First, let us try to attack only the middle part of the compression function, i.e.
ProcessMessage function. It consists of 8 rounds (10 rounds for LAKE-512). In
every round, first all of the 16 internal variables are updated by the function f,
and then all of them are updated by the function g.

Our differential trail is as follows:

1. Introduce a carefully chosen difference in Fjp.

2. After the first application of the function f from all L;, only Ly has a non-
zero difference.

3. After the first application of the function g none of W; have any difference.

Let us show that this differential is possible. First let us prove that Step 2 is

achievable. Considering that L; = f(Li_1, Fi, My@;y,Ci), we get that in L; a

difference can be introduced only through L;_; and F; (message words do not

have differences, C; are simply constants). Note that in the first round o (i) is

defined as the identity permutation hence we can write M; instead of M, ;.
For ALy we require a non-zero difference

ALy = f(Fis, Fy, Mo, Co) — f(Fis, Fo, Mo, Co) # 0. 2)
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For AL; we require the zero difference
ALy = f(Ly, F1, My,C1) — f(Lo, F1, My, C1) = 0. (3)

From Observation [l it follows that it is possible to get zero for AL;. For all
the other AL;,i = 2..15 we require the zero difference. This is trivially fulfilled
because there are no inputs with difference. Now, let us consider Step 3. Note
that W; = g(W;_1, L;, F;, Li+1), so we can introduce a difference in W; by any
of Wifl, LZ'7 Fi and Li+1.

For AW, we require the zero difference, so we get

AWy = g(Las, Lo, Fy, L1) — g(Las, Lo, Fo, L1) = 0. (4)

Note that there are differences in two variables, Lo and Fy, hence the above
equation can be solved. For the indexes i = 1,..., 14, we obtain

AW; = g(Wi—1, Li, Fy, Liy1) — g(Wi1, Li, F;, Lit1) = 0. (5)

All the above equations hold as there are no differences in any of the arguments.
For Wi5, we have

AWis = g(Wha, Lis, Fis, Wo) — g(Wia, L1s, Fi5, Wo) = 0.

Notice that the last argument is not Ly but rather W, because there are no
temporal variables that store the previous values of L; (see ProcessMessage).
This non-symmetry in the ProcessMessage, which updates L registers stops the
flow of the difference from Ly to Wis.

So, after only one round, we can obtain an internal state with all-zero differ-
ences in the variables. Then the following rounds can not introduce any difference
because there are no differences in the internal state variables or in the message
words. So, if we are able to solve the equations that we have got then the attack
s applicable to any number of rounds, i.e. increasing the number of rounds in
the ProcessMessage function does not improve the security of LAKE.

Let us take a closer look at our equations. Equation () can be written as

ALg = f(F15, Fy, Mo, Co) — f(F15, Fo, Mo, Co) =
= (Fy v Co) — (Fy V Co) + [Fo + (Mo ® Cp)] 3> 13 — [Fy + (Mo @ Co)] >> 13.

Hereafter we will use that (A4 B) >> r = (A >> r) 4+ (B >> r) with the prob-
ability }l (see [6]). The same holds when rotation to the left is used. Therefore,
the above equation can be rewritten as

ALy = (Fy V Co) — (Fo V Co) + Fy 3> 13— Fy 3> 13, (6)
Equation (@) can be written as
ALl :f(L;)’Fl’Ml’Cl) - f(L07F17M1701) =
=Ly — Lo+ [My+ (Ly ACY)] 3> 7 —[My+ (Lo ACL)] 3> 7 =
=Ly— Lo+ (LyACy) 3> T — (Lo ACy) >> 7 =0.
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Equation () can be written as

AWy =g(Ls, Ly, Fy, L1) — g(Ls, Lo, Fo, L1) =
Z[(ng) + LE)) > 1] D (F(; + L1) — [(L15 + Lo) > 1} &) (Fo + Ll) =0.

Let us try to extend the collision attack on the ProcessMessage function to
the full compression function. First, let us deal with the initialization (function
SaltState).

From the initialization of LAKE, it can be seen that the variables Hy through
H; are copied into Fy through F7. The variable Fg depends on Hy and tg.
Similarly, Fy depends on H; and t;. The rest of the variables do not depend
on either ¢y or t;. Since we need a difference in Fy (for the previous attack on
ProcessMessage function), we will introduce difference in Hy. Further, we can
follow our previous attack on the ProcessMessage block and get collisions after
the ProcessMessage function. The only difficulty is how to deal with Fy since it
does depend on Hy, which now has a non-zero difference. As a way out, we use
the block index ¢y. By introducing a difference in ¢y we can cancel the difference
from Hy in Fg. So we get the following equation

AFS = g(H(l)vso @ té)vc’O?O) - g(H07 SO @ t070070) =
= ((Hy + (So @ tg)) 3> 1@ Co) — ((Ho + (So @ o)) >> 1@ Cp) = 0.

Let tz) = té) @® So and ty = to ® Sp. Then, the above equation gets the following
form ~
AFg ZHO—Ho-i-tE)—to:O.

Now, let us deal with the last building block of the compression function, the
FeedForward function. Note that we have differences in Hy and ¢y only. If we take
a glance at the FeedForward procedure, we can see that Hy and ¢y can be found
in the same equation, and only there, which defines the new value for Hy. Since
we require the zero difference in all of the output variables, we get the following
equation

AHy = f(Fy, Fs, Hy, So ® ty) — f(Fo, Fs, Ho, So @ to) =
=1 3> T— 103> T+ (ty & Hy) > 13 — (fy & Hy) >> 13 = 0.

This concludes our attack. We have shown that if we introduce a difference
in the chaining value Hy and the block index tg only, it is possible to reduce
the problem of finding collisions for the compression function of LAKE to the
problem of solving a system of equations.

4.1 Solving Equation Systems

To find a collision for the full compression function of LAKE, we have to solve
the equations that were mentioned in the previous sections. As a result, we get
the following system equations (note that Hy = Fp)
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Ly— Lo+ (Ly ACy) 3> 7— (Lo ACy) > 7 = 0; (7)
Ly — Lo = (Hy V Cy) — (Ho V Co) + Hy >> 13 — Hy >> 13; (8)
[(L1s + Lg) 3> 1] @ (Hy + L1) — [(L1s + Lo) >> 1] @ (Ho + L1) = 0;  (9)
H) — Hy+t), — o = 0; (10)
5S> T—fo > T+ (t) ® Hy) 3> 13 — (f & Ho) 3> 13 = 0. (11)

Let us analyze Equation (7). By fixing L;, — Lo = R and rotating to the left by
7 bits, this equation can be rewritten as

(X+AANC=XNC+B, (12)
where X = Lyg,A = R,B = (—R) < 7,C = C;. Now, let us analyze Equation
[®). Again, let us fix Ly — Lo = R and Hy, — Hyp = D. Then Equation(8)) gets the
following form

(X+AvC=XVv(C+B, (13)

where X = Hy,A = D,B =R — (D >> 13),C = Cy. In Equation (@), if we
regroup the components, we obtain

[(L1s 4 Lg) @ (L1s + Lo)] 3> 1 = (Hy + L1) ® (Ho + L1).
Then, the above equation is of the following form
(X+A)oX)>1=(Y+B)ay, (14)

where X = Li5 + Lo, A= Ly — Lo,Y = Ly + Hy, B = Hy — H,.
Now, let us analyze Equations (I0) and (II]). Let us fix Hy — Hy = D. Note

that from Equation (I{), we have t, — to = —D. If we rotate everything by 13
bits to the left in Equation (), we get

(—D) < 6+ (to @ Hy) — (io & Ho) = 0; (15)
fo=[(ty ® Hy) — D < 6] & Hy. (16)

If we substitute o in Equation (I0) by the above expression, then we have
D+t —[(ty® Hy) — D < 6] & Hy = 0; (17)
t) = [(t,® Hy) — D < 6] & Ho — D. (18)
If we XOR the value of Hy to the both sides, we get

th e Hy = ([(t, ® Hy) — D < 6| & Ho — D) & H,,. (19)
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Let us denote tz) @ Hy = X. Then we can write

X =[(X — D < 6)@® Hy — D] & Hy; (20)
X®H,=(X—-D<6)®Hy— D. (21)

Finally, we get an equation of the following form
(X®K))+A=(X+B)® K, (22)

where K1 = Hy,A=R,B=—R < 6, Ky = H.

Lemma 2. There exist efficient algorithms All,Al2,Al3,Al} for finding solu-
tions for equations of type (12),(13),(I4),(22).

The description of these algorithms can be found in Appendix B.

Now, we can present our algorithm for finding solutions for the system of
equations. With Al1 we find a difference R (and values for Lo, L;) such that
Equation () holds. Actually, for the same difference R many distinct solutions
(Lo, L) exist (experiments show that when Equation (7)) is solvable, then there
are around 2° solutions). Next, we pass as an input to Al2 the difference R and
we find a difference D (and values for Hy, Hy) such that Equation (§) holds.
Again for a fixed R and D, many pairs (H, H(')) exist. We verified experimen-
tally that for a random R and a “good” D, there are around 2'° solutions.
Using Algorithm Al3, we check if we can find solutions for Equation (@), i.e.
we try to find Ly and Li5. Note that the input of Al3 is the previously found
sequence (LO,LB, HO,H(/,). If Al3 can not find a solution, then we get another
pair (Ho, Hy) (or generate first a new difference D and then generate another
210 pairs (Hy, Hy)). If Al3 finds a solution to (@), then we use Algorithm Al4
and try to find solutions for Equations ([I0) and ({Il), where the input to Al4
is already found as the pair (Hy, Hy). If Al4 can not find a solution, then we
can take a different pair (Hy, H,) (or generate first a new difference D and then
generate (Ho, Hy)) and then apply first Al3 and then Al4.

4.2 Complexity of the Attack

Let us try to find the complexity of the algorithm. Note that when analyz-
ing the initial equations, we have used the assumption that (A+ B) >>r =
(A>>r)+ (B>>r), which holds with the probability }(see [6]). In total, we
used this assumption 5 times. In the equation for AFj, we can control the exact
value of Mi, so in total, we have used the assumption 4 times. Therefore, the
probability that a solution of the system is a solution for the initial equations
is 278, This means that we have to generate 2% solutions for the system. Let us
find the cost for a single solution.

The average complexity for both All and Al2 is 2! steps. We confirmed ex-
perimentally that, for a random difference R, there exists a solution for Equation
(@ with the probability 2727. So this takes 227 - 2! = 228 steps using All and it
finds 2° solutions for Equation (). Similarly, for a random difference D, there is
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a solution for Equation (8) with the probability 2727. Therefore, this consumes
227.21 = 228 steps and finds 20 pairs (Hy, Hy) for Equation (8). The probability
that a pair is a good pair for Equation (@) is 27! and that it is a good pair for
Equations (I0) and () is 27! (as explained in Appendix B). Thus, we need
21 . 212 = 213 pairs, which we can be generated in 228 . 23 = 23! steps. Since
we need 28 solutions, the total complexity is 237. Note that this complexity es-
timate (a step) is measured by the number of calls to the algorithms that solve
our specific equations. If we assume that a call to the algorithms is four times
less efficient than the call to the functions f or g (which on average seems to
be true), and consider the fact that the compression function makes a total of
around 28 calls to the functions f or g, then we get that the total complexity of
the collision search is around 233 compression function calls.

Note that when a solution for the system exists, then this still does not mean
that we have a collision. This is partially because we cannot control some of
the values directly. Indeed, we can control directly only Hy, H(')7 to, tz). The rest
of the variables, i.e. Ly, LE,, L1, L5, we can control through the message words
M; or with the input variables H;, where ¢ > 0. Since we pass these values as
arguments for the non-injective function f, we may experience situation when
we cannot get the exact value that we need. Yet, with an overwhelming prob-
ability, we can find the exact values. Let us suppose that we have a solution
(Ho, H(l)7 Ly, LE), Ly, L5, to, tz)) for the system of equations. First, we find a mes-
sage word My such that f(Fis, Ho, Mo,Co) = Lo. Notice that Fy5 can be pre-
viously fixed by choosing some value for H;. Then, f(Fls,H(l),Mo,Co) = L;,.
We choose M such that [M; + (Lg A C1)] 3> 7 — [My + (Lo ACy)] > 7 =
(Ly AC1) 3> 7 — (Ly ACy) 3> 7. This way the probability that the previous
identity holds becomes 1. Then we find Hy such that f(Lg, H1,M1,C1) = Lq.
At last, we find M15 such that f(L14,F157M157015) = L15. If such M15 does
not exist, then we can change the value of L4 by changing M4 and then try to
find M15.

5 (H,S)-Type Attack

The starting idea for this attack is to inject differences in the input chaining
variable H and the salt S and then cancel them within the first iteration of
ProcessMessage. Consequently, no difference appears throughout the compression
function until the FeedForward step. If the differences in the chaining and salt
variables are selected properly, we can hope they cancel each other, so we get no
difference at the output of the compression function.

5.1 Finding High-Level Differentials

To find a suitable differential for the attack, an approach similar to the one
employed to analyse FORK-256 [I0, Section 6] can be used. We model each of
the registers a, b, ¢, d, as a single binary value da, 0b, dc, dd that denotes whether
there is a difference in the register or not. Moreover, we assume that we are able
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to make any two differences cancel each other to obtain a model that can be
expressed in terms of arithmetics over Fo. We model the differential behavior of
function g simply as dg(da, db, dc, d) = da®Ib®dcHId, where da, db, dc, d € Fo,
as this description seems to be functionally closest to the original. For example,
it is impossible to get collisions for g when only one variable has differences and
such a model ensures that we always have two differences to cancel each other
if we need no output difference of g. When deciding how to model f(a,b,c,d),
we have more options. First, note that when looking for collisions, there are
no differences in message words and the last parameter of f is a constant, so
we need to deal with differences in only two input variables a and b. Since we
can find collisions for f when differences are only in a single variable (either a
or b), we can model f not only as df(da,db) = da @ §b but more generally as
df(da,0b) = vo(da) ® v1(0b), where 7g,y1 € Fa are fixed parameters. Let us call
the pair (70, 71) a y-configuration of § f and denote it by d f(,,,], As an example,
0 fi1,0) corresponds to d f(da,db) = da, which means that whenever a difference
appears in register b, we need to use the properties of f to find collisions in
the coordinate b. For functions f appearing in FeedForward, we use the model
0f =da®bd dcd dd.

With these assumptions, it is easy to see that such a model of the whole
compression function is linear over Fy and finding the set of input differences (in
chaining variables Hy, ..., H7 and salt registers Sy, ..., S3) is just a matter of
finding the kernel of a linear map. Since we want to find only simple differentials,
we are interested in those that use as few registers as possible. To find them,
we can think of all possible states of the linear model as a set of codewords of
a linear code over Fo. That way, finding differentials affecting only few registers
corresponds to finding low-weight codewords. So instead of an enumeration of
all 2'2 possible states of of Hy, ..., Hr,So,...,S3 for each v-configuration of f
functions, this can be done more efficiently by using tools like MAGMA [4].

We implemented this method in MAGMA and performed such a search for
all possible v-configurations of the 16 functions f appearing in the first Pro-
cessMessage. We used the following search criteria: (a) as few active f functions
as possible; (b) as few active g functions as possible; (c) non-zero differences ap-
pear only in the first few steps using function g as it is harder to adjust the values
for later steps due to lack of variables we control; (d) we prefer y-configurations
[1,0] and [0,1] over [1,1] because it seems easier to deal with differences in one
register than in two registers simultaneously.

The optimal differential for this set of criteria contains differences in regis-
ters Hy, Hy, Hy, Hs, Sy, S1 with the following y-configurations of the first seven f
functions in ProcessMessage: [0, 1], [1, 1], [0, 1], [, -], [0, 1], [1, 1], [0, 1] (Note a sim-
pler configuration (Hy, Hy, Sp) is not possible here). Unfortunately, the system
of constraints resulting from that differential has no solutions, so we introduced
a small modification of it, adding differences in registers Hs, Hg, So, ref. Fig-
ure [l After introducing these additional differences, we gain more freedom at
the expense of dealing with more active functions and we can find solutions for
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SALTSTATE
input: H(), e ,H7, S(), ey 53, to,tl

AFy — AHy

2? : 251 PROCESSMESSAGE

o input: Fo, ..., Fis, Mo, ..., Mis, &
AT — A Lo — f(Fis, AFo, My (o), Co) {p1}
AF5 +— AHs ALy — f(Lo, AFy, Moy, C1) {p2}
AF, — AHq ALz — f(AL1, Ay, Mo (3), Cz) {p3}
F7 — Hy L3 — [(ALz, F3, My (3),C3) {p4}

Ly « f(Ls, AFy, My(4y,Ca) {P5}
AL5 — f(L4, AF5, o(5) 05) {p6}
ALG — f(AL5, AFG, Ma(6)7 Ca) {p?}
L7 — f(AL(,', F7, MU(7), 07) {p8}

Ls — f(L7, Fs, M,(s),Cs)

Fg — g(AHo,ASo EBto,Cg,O) {Sl}
Fy «— g(AH1,A51 @tl,CQ,O) {82}
Fm «— g(AHg,ASg,Cm,O) {83}
Fi1 — g(Hs, S3,C11,0)

F12 — g(AH4,AS(),012, ) {84}
F13 (AH),AShCU, ) {85} :
Fiq — g(AF[&AbQ’C(M7 ) {56} Lis «— f(L14,F15,MU(15),015)
Fi5 «— g(Hz, Ss,C15,0)

output Fo,. .. ,F15 WO — g(L15,Lo,AFU,AL1) {pg}
W1 — g(Wo, ALl, AF[ ) ALQ) {plO}
FEEDFORWARD Wy — g(Wh, ALy, AF5, L) {p11}
input: Ro, ey R15, H(), ey H7, Ws g(W27 L3, F3,L4)
So,...,Ss, to, t1 W4(_9(W37L47AF47AL5) {plZ}
Hoy — f(R(), Rg, ASo@to, AH()) {f].} Ws — g(W47 AL57 AF57 ALG) {p13}
WG — g(W5, AL(,', AF@', L7) {p14}
Hi — f(Ri, Ry, AS1®t1, AHy) {2} W7 — g(Ws, L7, Fr, Ls)

Hy — f
H3<—f
Hy — f
Hs — f

Ra, Rio, AS2>, AH>) {3}
Rs, Ri1, Ss, H3)

R4, Ri2, ASo, AH,) {f4}
Rs, Ri3, AS1, AHs) {5}
HG — f RG,R14,ASQ,AH(;) {fﬁ}
H7 — f(R7, Ri5, 53, Hr)

output: Hy,..., Hr

Wis «— g(Wha, L1s, Fis, Wo)
output: Wy,..., Wis

—— 2 12

Fig. 1. High-level differential used to look for (H,S)-type collisions

the system of constraints. The labels for all constraints are defined by Figure [
we will refer to them throughout the text.

The process of finding the actual pair of inputs following the differential can be
split into two phases. The first one is to solve the constraints from ProcessMessage
to get the required F's (same as Hs used in SaltState). Then, in the second
phase, we look at the SaltState to find appropriate salts to have constraints in
FeedForward satisfied. We can do this because the output from ProcessMessage
has only a small effect on the solutions for FeedForward.
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5.2 Solving the ProcessMessage

An important feature of our differentials in ProcessMessage is that it can be sep-
arated into two disjoint groups, i.e. (F’o7 Fl, FQ, Ll7 L2) and (F’47 P’57 Fﬁ, Lg')7 Lﬁ)
Differentials for these two groups have exactly the same structure. Thanks to
that, if we can find values for the differences in the first group, we can reuse
them for the second group by making corresponding registers in the second
group equal to the ones from the first group. Following Observation 2] we can
safely say that the second group also follows the differential path with a high
probability. Algorithm [ gives the details of solving the constrains in the first
group of ProcessMessage.

: Randomly pick (Lo, L5) € Stq
: repeat
Randomly pick Fi, compute F{ = —1 — ALy — Fy
: until fo(F1) — fo(FY) € SHy, .
repeat
Randomly pick L1, F»
Compute L; = fo(F1) — fo(F1) + L1
Compute Fj so that f,(F3) = ALs + fo(L1) — fa(LY) + fo(F2)
: until pl1 is fulfilled
: Pick (Fo,F(;) < Sfb so that AFy + AL, =0

—_

Algorithm 5. Find solutions for the first group of differences of
ProcessMessage

Correctness. We show that after the execution of Algorithm [ it indeed finds
values conforming to the differential. In other words, we show that constraints
pl — p4 and p9 — p11 hold. Referring to Algorithm

Line [} (Lq, L}) is chosen in such a way that p4 is satisfied.

Line B FY is computed in such a way that (F} + Lo) @ (Fj + L) = —1
Line @ AL, = Afy(F1) is odd together with (Fy + Lo) @ (F] + L}) = —1.
This implies that p10 could hold, which will be discussed later in Lemma [3l
The fact that ALy € S;ﬁlbodd makes it possible that pl and p9 hold.

Line [t L] is computed in such a way that p2 holds.

Line B F} is computed in such a way that p3 holds.

Line @ after exiting the loop p11 holds.

Line (Fy, F}) is chosen in such a way that pl,p9 hold.

Probability and Complexity Analysis. Let us consider the probability for
exiting the loops in Algorithm Bl We require f,(F1) — fo(F)) € S}‘lbodd and the
constraint p11 to hold. The size of the set S, is around 2''. By assuming that
fa(F1)— fo(FY]) is random, the probability to have it in S}‘lbodd is 2721, This needs
to be done only once. Now we show that the constraint pl1 is satisfied with the
probability 2724, We have sufficiently many choices, i.e. 264, for (L1, F3) to have
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pl1 satisfied. The constraint p11 requires that [(Wy + L2) >> 1] & (Fo + L3) =
[(W1+ L4]) >> 1)@ (Fy+ L3), which is equivalent to [(W1 + La) & (W1 + Lb)] >>
1= (Fy+L3)®(Fj+Ls), where Wy, Lo, L}, Fy, F are given from previous steps.
We have choices for L3 by choosing an appropriate Mg (3). The problem could
be rephrased as follows: given random A and D, what is the probability to have
at least one x such that x ® (x + D) = A?

To answer this question, let us note first that t Gy = (1,...,1) iff z+y = —1.
This is clear as y = x and always (x®x)+1 = 0. Now we can show the following
result.

Lemma 3. For any odd integer d, there exist exactly two x such that x®(x+d) =
(1,...,1). They are given by x = (=1 —d)/2 and x = (=1 — d)/2 + 2"~ L.

Proof. © @ (x +d) = —1 implies that x + x + d = —1 + k2" for an integer k, so
z = 174" Only when d is odd, z = %% + k2"~ an integer and a solution
exists. As we are working in modulo 2", k = 0,1 are the only solutions. (]

Following the lemma, given an odd ALy and (Fy + L2) @ (F{ + L) = —1, we can
always find two Wy such that (Wy+L1)® (Wo+ L)) = —1, then p10 follows. Such
Wy could be found by choosing an appropriate Lys, which could be adjusted by
choosing M, (15) (if such M, (15) does not exist, although the chance is low, we
can adjust Li4 by choosing M, (14)).

Coming back to the original question, consider A as “0”s and blocks of “1”s.
Following the lemma above, for A; = 0, we need D; = 0 (except “0” as MSB
followed by a “17”); for a block of “1”s, say Ay, = A1 = -+ = Ags = 1, the
condition that needs to be imposed on D is Dy = 1. By counting the number of
“0”s and the number of blocks of “1”s, we can get number of conditions needed.
For an n-bit A, the number is %" on average (cf. Appendix Lemma H).

For LAKE-256, it is 24, so the probability for p11 to hold is 2724. We will need
to find an appropriate L3 so that pl11 holds. Note that we have control over L3 by
choosing the appropriate M, 3). For each differential path found, we need to find
message words fulfilling the path. The probability to find a correct message is
1-— i for the first path by assuming f. is random (because for a random function
from n bits to n bits, the probability that a point from the range has a preimage
is1— i), and g for the second path because of the carry effect. For example, given
L()7 }7157 Fb7 Co, the probability to have MU(O) so that Lo = f(F15, F(), .2\4,,(0)7 Co)
is 1 — . The same M, satisfies L{, = f(F5, F{}, My(0), Co) (note for this case
F|; = Fi5 and Lo = L)) with the probability g. So for each message word, the
probability for it to fulfill the differential path is 272. We have such restrictions
on My oy — My 2y, My(4)y — My(g) (We don’t have such restriction on M3y and
M7y because we still have control over F3 and Fr), so overall complexity for
solving ProcessMessage is 5 - 236 in terms of calls to f, or f;. The compression
function of LAKE-256 calls functions f and g 136 times each and f,, f; contain
less than half of the operations used in f. So the complexity for this part of the
attack is 230 in terms of the number of calls to the compression function.
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Solving the second group of ProcessMessage. After we are done with the
first group, we can have the second group of differential path for free by assigning
Fi+4 = Fi7 Fi/+4 = Fi/ for ¢ = 071,2 and Li+4 = Li7L;+4 = L; for i = 1,2 In
this way, we can have the constrains p5 — p8 and pl2 automatically satisfied.
Similarly, for the constraints p13 and pl4, we will need appropriate Wy and L.
We have control over Wy by choosing F5 and L4 (note we need to keep L3 stable
to have pl11 satisfied, this can be achieved by choosing appropriate M,3)). We
also have control over L7 by choosing M, (7). That way we can force the difference
to vanish within the first ProcessMessage. Table[2lin Appendix shows an example
of a set of solutions.

5.3 Near Collisions

In this section we explain how to get a near collision directly from collisions
of ProcessMessage. Refer to SaltState and FeedForward in Fig. [Il Note that the
function g(a, b, ¢, d) with differences at positions (a, b) means Aa + Ab = 0, then
constraints (s1 — s6) in SaltState can be simplified to

sl: AHy+ ASy = 0; (23)
s2: AH, + AS, =0; (24)
s3: AHy + ASy = 0. (25)

Note that H;y4 = H;, H{ , = H] for i = 0,1,2 as required by ProcessMessage,
Let tg = t; = 0, then conditions s4 — s6 follow s1 —s3. Conditions in FeedForward
could be simplified to

J1: fcd(SoaHO) = fcd(S(l)vH[/))a (26)
f2:fcd(SlaH1):fcd(SivHi)a (27)
f3+ fea(S2, Ha) = fea(S3, Hy) (28)

and f4 — f6 follow f1 — f3. This set of constraints can be grouped into three
independent sets (si, fi) for i = 0, 1, 2 each one of the same type, i.e. AH+AS =
0 and feq(S, H) = fea(S',H').

To find near collisions, we proceed as follows. First we choose those S; with
Si = S; — AH; so that the Hamming weight of feq(S!, H!) — fea(S:, H;) is small
for i = 0,1,2. Thanks to that, only small differences are expected in the final
output of the compression function, due to the fact that inputs from a,b of
the function f have only carry effect to the final difference of f when inputs
differ in ¢, d only. We choose values of S; without going through the compression
function, so the number of rounds of the compression function does not affect our
algorithm. Further, the complexity for finding values of S; is much smaller than
that of ProcessMessage, so it does not increase the 230 complexity. Experiments
show that, based on the collision in ProcessMessage, we can have near collisions
with a very little additional effort. Table Bl in Appendix shows a sample result
with 16-bit of differences out of 256 bits of the output.
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5.4 Extending the Attack to Full Collisions

It is clear that finding full collisions is equivalent to solving Equations (26])- 28]).
The complexity to solve a single equation is around 2!? (as done for solving
Equations (I0) and (). Looking at Algorithm [ (s1, f1) can be checked when
Fy and F] are chosen, so it does not affect the overall complexity. The pair
(s0, f0) can be checked immediately after (L1,L}) is given as show in Line []
of Algorithm [l Similarly, (s2, f2) can be checked after (Fy, Fj) is chosen in
Line[B So the overall complexity for our algorithm to get a collision for the full
compression function is 2°4.

5.5 Reducing the Complexity

In this subsection, we show a better way (rather than randomly) to choose
(La, LY) so that the probability for the constraint pl1 to hold increases, which
reduces the complexity for collision finding to 242.

Note the constraint p11 is as follows. Given W1, Lo, L}, what is the probability
tohave Lg and (F», F3) sothat (W7 + L2) @ (W1 + LY)) >> 1 = (Fo+L3)®(Fy+
L3). We calculate the probability by counting the number of 0s and block of 1s in
(W1 4 Lo)® (W1 + L)) >> 1 (let’s denote it as a = #(((W1+L2)® (Wi +L}))
>> 1)). Now we show that the number « can be reduced within the first loop of the
algorithm, i.e. given only (L2, L}) and (Fy, FY), we are able to get o and hence, by
repeating the loop sufficiently many times, we can reduce « to a number smaller
than 24 (we don’t fix it here, but will give it later).

Note that to find «, we still need W1 besides (L2, L5). Now we show W; can be
computed from (Lg, L) and (Fy, FY) only. Wy ef (Wo+L1) > 1)@ (F1L + La),
where we restrict (Wo+ L1) ® (Wy+ L}) = —1. Denote S = (Wy + L1), then the
equation can be derived to S @ (S+ AL;) = —1, where AL, of fo(FY) — fo(F1).

So let’s make 2¥ more effort in the first loop so that « is reduced by y. The
probability for the first loop to exit becomes 2733~¥ and for the second loop, the
probability becomes 270*¥, Choosing the optimal value y = 13 (y must be an
integer), the probabilities are 2746 and 2747, respectively. Hence this gives final
complexity 242 for collision searching.

6 (H)-Type Attack

Let us introduce difference only in the chaining value Hy. Hence, this difference
after the SaltState procedure, will produce differences in Fy and Fg. In the first
application of the ProcessMessage procedure the following differential is used:

1. Let Fy has some specially chosen difference. Also, Fg has some difference
that depends on the difference in Fjp.

2. After the first application of the function f only Lg, L1, ..., Lg have non-zero
differences

3. After the first application of the function g all W; have zero differences
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Again, we should prove that this differential is possible. Basically, we should
check only for the updates with non-zero input differences and zero output dif-
ference (other updates hold trivially). Hence, we should prove that we can get the
zero difference in Ly and W;,7 = 0,...,8. Since f is non-injective, it is possible
to get the zero difference in Lg. For Wy, ..., Wy is also possible to get zero dif-
ferences because their updating functions g always have at least two arguments
with differences. Therefore, this differential is valid.

Now, let us write the system of equations that we require. Note that L; — L; =
d;,1=10,...,8. The system is as follows

(Fis, Lo, Mo, Co) = Lo, f(Fis, Ly, Mo, Co) = L,

(Lo, Fy, M;y,Ch) = Ly, f(Lé),Fl,Ml,Cl) = Lll,

(Li—1, F;, M;,C;) = Li,f(Lgfl,Fi,Mi,Ci) = Lg,i =2,...,6,
(L7, Lg, Mg, Cy) = Lg, f(L7, Lg, Mg, Co) =

(Lg, Fy, My, C) = Lo, f(Lg, Fo, Mg, Cy) = Lo,

(L1s, Lo, Fo, L) = Wo, g(L1s, Lo, Fy, L)) = W,

(W1, Li, Fy, Liy1) = Wi, g(Wi— 1,L/ F; L;Jrl) Wii=1,...,7,
(

f
f
f
f
f
g
g
g (Wr, Ls, Ls, Lo) = g(Wy, Ly, Ly, Lo).

AN N N N N N N/
w
w

D — o o T T

Let us focus on Equation ([B3)). It can be rewritten as
(Wici+Li) > 1@ (F;+ Liy1) = (Wi—1 + L;) > 16 (F;+ L;+1) (= Ws).
Similarly as in the previous attacks, we get the following equation
(X+A)eX)>»1=(Y+DB)aY, (37)

where X = W,;_; +L A=1L;— L Y =F; +LH_17B Litq — L;+1- In Al3 of
Appendix B, we have explained how to split this equation into two equations,
(X+A)@X)=-1,(Y + B) ® Y=-1, and solve them separately. The solution
X =A>1Y = B> 1 exists when LSB of A and B are 1. Hence, for W;_;
and F; we get

Wia=(Li—L)>1—L,=6>1—L;, (38)
Fy= (L1 — L) > 1= Ly =01 > 1— L 4. (39)

If we put these values in the equation for W; we obtain
Wi=Wia+L)>> 10 (F+Liy)=6>13 1086 >1. (40)

This means that we can split equations of the type (B3] into two equations and
solve them separately. Also, from [B8) and B9) we get that W; = F;.

Now let us explain how to get two pairs that satisfy the whole differential.
First, by choosing randomly Ly, Léh Fi5, My, F1, and M7, we produce a solution
for Equations (29),(30), (34) and (35). Actually, we need to satisfy only Equa-
tion (38), i.e. Wo = (L1 — L)) > 1 — L} = 6, > 1 — L}, because the values of
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L%,L{, J = 1,2 can be any, and finding a solution for (B4) is trivial. Then, by
taking some My and Fy we produces L} = f(L1, Fy, M>,C5),j = 1,2. Having
the values of 1 and o, we can find the new value of Fy

Fi=Wi=61>1>1dd>1.

Since we have changed the value of F7, then the values of Ly and L'1 might change.
Therefore, we find another value of M; such that the old values of L1, L'l stay the
same. Note, that is is not always possible. Yet, with the probability 272 this value
can be found. As a result, we have fixed the values of M1, F1, L, and L/2 Using
the same technique, we can fix the values of M, ..., Mg, Fa, Fg, L}, L1, j = 1,2
such that (33 would hold for ¢ = 2,...,6. In short, the following is done. Let the
values of W,;_1, M;, F;, L;, and L; be fixed. First we generate any L;;1 and L;H.
Then we find the value of F; from ([BY). Then, we change the value of M;. This
way, the values of L;, L, stay the same, but now Wi, 1, LI, M, F;, L] ,,j = 1,2
satisty (35l).

Now let us fix the right Lg, Lé such that
f(Ls, Fy, My, C9) = f(Lg, Fy, My, Cy). (41)

We try different Mg, Sy (notice that the values of Fy, Fé depend on Fy, F(;, and
Sp), and create different pairs (Lg, Lg). If this pair satisfies (@) and (38) then
we change M7 and F7 as described previously. Finally, we change Mg and Fy
so that B0 will hold. First, we find the good value of Lg from the equation
Ly = Ay > 1 — Lé and than change My and Fy to achieve this value. As a
result, we have fixed all the values such that all equations hold.

After the ProcessMessage procedure, there are no differences in any of the state
variables. The FeedForward procedure, which produces the new chaining value,
depends on the initial chaining value, the internal state variables, the salt, and
the block index. Since there is a difference only in the initial chaining value (only
in Hyp), it means that there has to be a difference in the new chaining variable Hy
(and only there). If we repeat the attack on ProcessMessage with different input
difference A, we can produce a near collision with a low Hamming difference.
If, in the truncated digest LAKE-224, the first 32 bits were truncated instead of
the last 32 bits, we could find a real collisions for the compression function of
LAKE-224.

Now, let us estimate the complexity of our attack. For finding good random
Lo, LE” Fy5, My, Fr, and M, that satisfies the first set of equations we have to
try 232 different values. For successfully fixing the correct Fj, M;,i = 1,...,7,
we have to start with (22)7 = 24 different 6;. For finding a good pair (Lg, Lg)
that satisfies (@) and ([B8)) we have to try 227-232 = 259 different Mg, Sg. Hence,
the total attack complexity is around 2'%° computations. If we apply the same
reasoning for computing the complexity in the number of compression function
calls as it was done in the two previous attacks, we will get that the near collision
algorithm requires around 2% calls to the compression function of LAKE-256.



174 A. Biryukov et al.

7 Conclusions

We presented three different collision attacks on the compression function of
LAKE-256. All of them make use of some weaknesses of the functions used to
build the compression function. The first two of them facilitate the additional
variables of salt and block counter required by the HAIFA compression functions.
Due to a weak mixing of those variables, we were able to better control diffusion
of differences.

All our attacks cancel the injected differences within the first ProcessMessage
and later only in the final FeedForward again and therefore are independent of
the number of rounds.

The SHA-3 first round candidate BLAKE, a successor of LAKE, uses a dif-
ferent ProcessMessage function. Hence, our attacks do not apply to BLAKE. We
believe that the efficient methods to solve the systems of equations and to find
high level differentials presented in this paper may be useful to analyse other
dedicated designs based on modular additions, rotations and XORs and con-
stitute a nice illustration of how very small structural weaknesses can lead to
attacks on complete designs.
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Collision Examples

Table 1. (H,t)-colliding pair for the compression function of LAKE

ho 63809228 6cc286da 00000000 00000000 00000000 00000000 00000000 00000540
’

hy ba3f5d77 6cc286da 00000000 00000000 00000000 00000000 00000000 00000540

M 55e07658 00000009 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000002 5c41able

Fp 0265e384 00000000
Fy aba71835 00000000

S 00000000 00000000 00000000 00000000
H 79725351 €61a903f 730aace9 756be78a b679b09d de58951b 5162345 14113165


http://magma.maths.usyd.edu.au/
http://theory.csail.mit.edu/~yiqun/shanote.pdf

176 A. Biryukov et al.

Table 2. Example of a pair of chaining values F', F’ and a message block M that yield
a collision in ProcessMessage

F 1E802CB8 799491C5 1FE58A14 07069BED 1E802CB8 799491C5 1FE58A14 74B26C5B
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

F’ C0030007 B767CESE 30485AE7 07069BED CO030007 B767CESE 30485AE7 74B26C5B
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M 683E64F1 9BOFC4D9 OE36999A A9423F09 27C2895E 1B76972D BEF24B1C 78F25F25
00000000 00000000 00000000 00000000 00000000 00000000 657C34F5 3A992294

L DOF3077A 31A06494 395A0001 10E105FC 82026885 31A06494 395A0001 10E105FC
ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L’ DOF3077A 901D9145 95A99FDB 10E105FC 82026885 901D9145 95A99FDB 10E105FC
ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L® 00000000 A1BDFSD1 ACF39FDA 00000000 00000000 A1BDF5D1 ACF39FDA 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

W 1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE
S5F868AC3 D8959978 EBF3FF4A E20AC1C3 8941COF8 EA8BC74E 6ECDD677 82CFFECE
1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE
S5F868AC3 D8959978 EBF3FF4A E20AC1C3 8941COF8 EA8BC74E 6ECDD677 82CFFECE

3

Table 3. Example of a pair of chaining values F, F’, salts S, S’ and a message block
M that yield near collision in CompressionFunction with 16 bits differences out of 256
bits output. Hs are final output.

F 7B2000C4 23E79FBD 73D102C3 88EOE02B 7B2000C4 23E79FBD 73D102C3 00000000
F’ 801FF801 18CO0O0SE 846FD480 8SEOE02B 801FF801 18COO0SE 846FD480 00000000
S 00010081 23043423 03C5BO3E D44CFD2C
S’ FB010944 2E2BD382 F326DES81 D44CFD2C
M 00000012 64B31375 CFAOA77E 8F7BE61F 1E30C9D3 6A9FBODA 290E506E 3AAE159C
00000000 00000000 00000000 00000000 00000000 00000000 00000000 1B89AA7S
H 261B50AA 3873E2BE BDD7EC4D 7CE4BFF8 007BB4D4 869473FF 833D9EFA 9DABEDDA
H' 361150AA 387BE23E FDD6E84D 7CE4BFF8 1071B4D4 869C737F C33C9AFA 9DABEDDA
H® 10040000 00080080 40010400 00000000 100A0000 00080080 40010400 00000000

B Lemmas and Proofs

Lemma 4. Given random x of length n, then the average number of “0”s and

“q : “n “q1» ;o 3n
block of “17s, excluding the case “0” as MSB followed by “17, is °)".

Proof. Denote C,, as the sum of the counts for “0”s and blocks of “1”s for all =
of length n, denote such z as x,,. Similarly we define P, as the sum of the counts
for all = of length n with MSB “0” (let’s denote such x as 2¥); and Q,, for the
sum of the counts for all © of length n with MSB “1” (denote such z as x,). It
is clearly that

Cn=Pn+Qn (42)
Note that there are 2"~! many z with length n — 1, half of them with MSB “07,
which contribute to P,_1 and the other half with MSB “1”, which contribute

to Qn—1. Now we construct x, of length n from x,_; of length n — 1 in the
following way:

— Append “0” with each x,_1, this “0” contribute to C,, once for each x,,_1
and there are 2"~2 many such z,_1.
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— Append “1” with each xn_l, this “1” does not contribute to C,,
— Append “0” with each :rn 1, this contributes 2"~2 to C,,
— Append “1” with each 20 _,, this contributes 2”2 to C,,

n—1

So overall we have Cp, = Py_1 + Pp1 +2" 24 Q1 +2" 24+ Q1+ 2" 2 =
3-2"72 4+ 2C,_1. Note Cy = 2, solving the recursion, we get C,, = 31 .27,

Exclude the exceptional case, we have final result f on average.

Lemma 5. Given random a,a’,x € Zon and k € [0,n), « f laf + 2t >
2% o/ 1[0l +2F > 28], 3 1[aF 4 2l + 0 > 2”"“},3 C e + 2R +a>

2=k as defined in Lemmall, then Pla =do,f =) =

Proof. Consider o and o first, P(a = o/ = 1) P(ak+al > 2% ajF 2k > 2F).
Th1s is equal to P(xf > (2k - mm{ak ,aill)) What in turns can be rewritten as

P(al > aff)P(ak > 2 — i)+ P(all > af)P(cf > 25— ag) =4 5+5 5=

Similarly we can prove P(a =a =0) = :1,), so P(a = o/) = 2. Note the
definitions of # and 3’ contain a and o, but o, o’ € {0,1}, which 1s generally

much smaller than 2" =%, so the effect of @ to 3 is negligible. We can roughly say

P(B=p)=3.S0 Pla=a,f=0)=Pla=d)P(=p)=

Lemma 6. There exist an algorithm (All) for finding all the solutions for the
equation of the form (X NC)+ A = (X+ B)AC. The complezity of All depends
only on the constant C.

Lemma 7. There exist an algorithm (Al2) for finding all the solutions for the
equation of the form (XVC)+A = (X+ B)VC. The complezity of Al2 depends
only on the constant C'.

Proof. The proofs for the two facts are very similar with some minor changes,
so we will prove only Lemma [6l

Let X = r31 - - .Jflx(),A = asy - - .alao,B = b31 . .blbo,c = C31...C1Cp- Then
for each ¢ we have:

(xiNe) Da;®F; = (2, Db ®ry) Ay, (43)

where F; = m(xi—1 A ¢i—1,a;—1, Fi—1) is the carry at the (¢ — 1)th position of
(XANC+ A), 1, = m(x;—1,bi_1,7;—1) is the carry at the (i — 1)th position of
X + B, and m(z,y,2) = 2y ® xz ® yz.

Equation ([£3), simplifies to a; & F; = 0 when ¢; = 0 and when ¢; = 1 we get
a; ®F; = b; & ;.

Let us assume that we have found the values for F; and r; for some i. We find
the smallest 7 > 0 such that c;4; = 0. Then from the fact that a; ® F; = 0 and
the definition of F; we get:

Qitj =Fiy; = m(Tiyj-1,itj-1, Fiyj-1) =
=M Tigj—1, Qi1 M Tigj—2, Qigj—2, Fiyj2)) =
=m(Titj—1, CGitj—1, M(Tigrj—2, AGitj—2, m(. .., m(z;, as, F3)) .. .))



178 A. Biryukov et al.

In the above equation, only z;, Zit1,...%iyj—1 are unknown. So we can try all
the possibilities, which are 27, and find all the solutions. Let us denote by X the
set of all solutions.

Now, let us find the smallest [ > 0 such that c¢;;j4; = 1. Notice that we can
easily find Fi4 ;41 if considering ¢;1 j4+r, = 0 for Fy € (0,1) and using a; & F; = 0:

Fiyjr1 =m(0, i, Fivj) = m(0, aitj, aitj) = aitj

Fitji2 =m(0,aivjt1, Firjr1) = m(0, Figjir, Figjr1) = m(0,aitj, aivj) = @it j

Fiyjrr =m(0,aiqj11-1, Fitjri-1) = @iy

From the relationship a; & F; = b; ® r; and definition of r; we get:

i jr1 D Figjt ® bigjpt = rigjpt = M(Tigpjpi—1, Digjpi—1,Tigjri—1) =
=M Titjti—15 Dijri—1, M(Tit -2, big jpi—2, Titj41-2)) = .-
= Titjti-1,bitjpi—1,m(. .., m(zi, bi,7i) .. .))

In the above equation, only =;, Ziy1,. .., Titj4+i—1 are unknown. So we check all
the possibilities by taking (x;, zit1,...,%itj—1) from the set X and the rest of
the variables take all the possible values. If the equation has a solution, then
this means we have fixed another Fi{j;, 7i4,41, and we can continue searching
using the same algorithm.

The complexity of the algorithms is 29, where g is size of the longest consec-
utive sequence of ones followed by consecutive zero sequence (in the case above
q = j+1) in the constant C. Taking into consideration the value of the constant
C1 used in the compression function of LAKE-256, we get that complexity of
our algorithm for this special case is 28. Yet, the average complexity can be de-
creased additionally if first the necessary conditions are checked. For example,
if we have two consecutive zeros in the constant C'; at positions ¢ and i + 1 then
it has to hold a;y1 = a;. If we check for all zeros, then only with probability of
2710 a constant A can pass this sieve. Therefore, the math expectancy of the
complexity for a random A is less than 2'. Note that when V function is used
instead of A, than 0 and 1 change place. Therefore, our algorithm has a com-
plexity of 26 when Cj is used as a constant. Yet, same as for A, early break-up
strategies significantly decrease these complexities for the case when solution
does not exist. Again, the average complexity is less than 2'. O

Lemma 8. There exist an algorithm (Al3) for finding a solution for the follow-
ing equation: (X +A)®X)>1=(Y +B)aY.

Proof. Instead of finding a solution w.r.t. X and Y we split the equation into a
system

(X+A)sX=-1, (Y+B) oY =-1. (44)

We can do this because the value of —1 is invariant of any rotation. We may
loose some solutions, but further we will prove that if such a solution exist then
our algorithm will find it with probability 22.
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We will analyze only left equation of ([44)); the second one can be solved anal-
ogously. Let X = x31...20,A = az1...ap. Then for ith bit we get: (z; ® a; B
¢i) ® x; = 1, where ¢; is the carry at (i — 1) position of X + A, ie. ¢ =
m(x;—1,a;—1,c;—1). Obviously, this equation can be rewritten as a; = ¢; ® 1. For
the (¢4 1)th bit we get a;+1 = ;101 = m(x;, a4, ¢;) D1 = m(x;, 05,0, 1) D1 =
zia; ®xi(a; ®1)Da(a;®1)d1 = z; B 1. So, we can easily find the value of z; for
each i. When 7 = 31, x3; can be arbitrary. For the case when ¢ = 0, considering
that ¢g = 0, from a; = ¢; ® 1 we get ap = 1. Therefore, if ag = 1 then ) is
solvable in constant time. The solutions are X = A > 14232, = 0, 1. Finally,
for the whole system, we have that solution exist if ag = bg = 1, which means
with probability 272. a

Lemma 9. There exists an algorithm (Al4) for finding all the solutions for
equations of the type (X @ C)+ A= (X+B) o K.

Proof. We base our algorithm fully on the results of [I4]. There, Paul and Preneel
show, in particular, how to solve equations of the form: (z+y)® (z @ a)+ (y ®
B)) = 7. Let us XOR to the both sides of the initial equation the expression
A® B®C and denote K = K ® A @ B @ C. Then, the equation gets the
following form: (X @ C)+ A)® A® B® C = (X + B) @ K. For the (i+ 1)th bit
position, we have /~€i+1 = $i+1 D F11, where s; is the carry at the ith position of
(X® )+ A, and F; is the carry at ith position of X 4+ B. From the definition of
s; we get sip1 = (2 D ci)a; (2 D ci)si Dagsi = (2 D ci)a; © (2 D c; D ag)s; =
(2; @ ci)a; @ (x; ®c; ®ay)(k; ®F;).

From the definition of F; we get F;11 = x;b; ® x; F; @ b; F;. This means that
]’%iJr] can be computed from x;,a;,b;,¢;,F;, and k;. Further, we apply the algorithm
demonstrated in [T4]. The only difference is that for each bit position we have
only two unknowns z; and F;, whereas in [14] have three unknowns. Yet, this
difference is not crucial, and the algorithm can be applied.

Our experimental results (Monte-Carlo with 232 trials), show that the proba-
bility that a solution exists, when A, B, C' and K are randomly chosen is around
2712, O
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