Differential Resynchronization Attacks on
Reduced Round SNOW 3G®

Alex Biryukov, Deike Priemuth-Schmid and Bin Zhang

University of Luxembourg
{alex.biryukov,deike.priemuth-schmid,bin.zhang }Quni.lu

Abstract. The stream cipher SNOW 3G designed in 2006 by ETSI/SA-
GE is a base algorithm for the second set of 3GPP confidentiality and
integrity algorithms. In this paper, we investigate the resynchronization
security of a close variant of SNOW 3G, in which two modular additions
are replaced by xors and which is called SNOW 3G®. It is shown that
the feedback from the FSM to the LFSR is crucial for security. Given
a pair of known IVs, the cipher without such a feedback is extremely
vulnerable to differential known IV attacks with practical complexities
(2°7 time and 233 keystream). With such a feedback, it is shown that 16
out of 33 initialization rounds can be broken by a differential chosen IV
attack. This is the first public evaluation result for this algorithm.

Key words: Stream ciphers, SNOW 3G, Differential, Resynchronization
attack

1 Introduction

The SNOW 3G stream cipher is the core of the 3GPP confidentiality and
integrity algorithms UEA2 and UTA2, published in 2006 by the 3GPP
Task Force [3]. Compared to its predecessor, SNOW 2.0 [2], SNOW 3G
adopts a finite state machine (FSM) of three 32-bit words and 2 S-Boxes
to increase the resistance against algebraic attacks by Billet and Gilbert
[1]. Full evaluation of the design by the consortium is not public, but a
survey of this evaluation is given in [4]. SNOW 3G® (in which the two
modular additions are replaced by xors) is also defined and evaluated
in [4]. The designers and external reviewers show that SNOW 3G has
remarkable resistance against linear distinguishing attacks [5,6], while
SNOW 3G® offers much better resistance against algebraic attacks.

In this paper, we present the first attempt of cryptanalysis of SNOW
3G in the public literature. We show that the feedback from the FSM to
the LFSR during the key/IV setup phase is vital for the security of this
cipher, since we can break a version without such a feedback with two
known IV’s in 257 time, 233 data complexity and for an arbitary number of

the key/IV setup rounds! We then restore the feedback and study SNOW
3G® against differential chosen IV attacks. We show attacks on SNOW
3G® with 14, 15 and 16 rounds of initialization with complexities 247,
2922 and 2'242 respectively.

This paper is organized as follows. We give a description of SNOW
3G and SNOW 3G® in Section 2. The known IV attack on SNOW 3G®
without the FSM to LFSR feedback is presented in Section 3 and the dif-
ferential chosen IV attack on SNOW 3G® with the feedback is presented
in Section 4. Finally, some conclusions are given in Section 5.

2 Description of SNOW 3G and SNOW 3G®

SNOW 3G is a word-oriented synchronous stream cipher with 128-bit key
and 128-bit IV, each considered as four 32-bit words vector. It consists
of a linear feedback shift register (LFSR) of sixteen 32-bit words and a
finite state machine (FSM) with three 32-bit words, shown in Figure 1.
Here '@®’ denotes the bit-wise xor and B’ denotes the addition modulo

N
N>

515 S11 S5 52 S0
M M FSM L E VA 2
(] U M N AN
|

Fig. 1. Keystream generation of SNOW 3G

232 The feedback word of the LFSR is recursively computed as

1 t—1

sy =a” ‘sﬁl@sé_l@a-so ,
where a is the root of the GF(2%)[z] polynomial z* 4 2323 + 324522 +
B8x + 323 with 3 being the root of the GF(2)[z] polynomial 28 + 27 +

2% + 23 + 1. The FSM has two input words s{ and s!; from the LFSR
and is updated as

Rtl — R;_l H (Ré_l [any sg_l) Rg = 51<R§_1) Rt = SQ(RE_I) ;

with the output word F' = (s{5 B R}) & R}, where Sy and Sy are 32-
bit to 32-bit S-boxes defined as compositions of 4 parallel applications of
two 8-bit to 8-bit small S-boxes, Sg and Sg, with a linear diffusion layer
respectively. Here Sg is the well known AES S-box and Sg is defined as
So(z) =z@2° @B @2 @ 23 @ 24! @ 2 @ 247 @ 24 @ 0225 for
r € GF(28) defined by 2® + 25 + 25 + 22 + 1. If we decompose a 32-bit
word B into four bytes B = B°||B!||B?||B? with B" being the most and
B? the least significant bytes, then for i = 1,2, the S-boxes are

Si(B) = MC; - (Sp(B°), Sr(B"), Sr(B?), Sr(B*))T |

where MC} is the AES mix-column for S; over GF(2%) defined by 28 +
2t + 23 4+ 2 + 1 and MOy is the similar operation for Sy over GF(2%)
defined by 28 + 26 + 2° + 23 + 1.

SNOW 3G is initialized with the key K = (ko, k1, ke, k3) and the
IV = (IVy, IV, IV, IV3) as follows. Let 1 be the all-one word, the LFSR
is initialized as follows.

515 = k3 @ IV s14 = ko s13 = k1 s12 =ko ® IVq
511 =k3®1 s10=ko @1 DIVy s59=k1 ®1DIV3 sg=ko D1
s7 = ks 56 = ko s5 = k1 54 = ko
s3=k3®1 So=ko®1 s1i=k1d1 so=ko®1

The FSM is initialized with Ry = Ry = R3 = 0. Then run the cipher 32
times with the FSM output F xored to the feedback of the LFSR and no
keystream generated. After this, the cipher is switched into the keystream
generation mode, but the first keystream word is discarded. Hence, there
are 33 initialization rounds. The keystream word generated at clock ¢ is
2t = sh @ F'. If we replace the two modulo additions in SNOW 3G by
xors, we get SNOW 3G®.

3 Known IV Attack on SNOW 3G® without FSM to
LFSR Feedback

In this section, we consider a known IV attack on SNOW 3G® without
the FSM to LFSR feedback, in which the attacker has access to two
keystreams corresponding to (K, 1V,) and (K, IV}), where IV, and IV,

are arbitrary known IVs. This attack works for any number of key/IV
setup rounds.

Let Raa and R!, be the individual values in the FSM register R; at
clock t, then we have

ARS = Ri,a ® Rtl,b R;,a =5 (Ri;zl) Rg,b =5 (Rii)l)
ARy = Rh, @ Rh, = Si(RT) @ S1(R,) 2°A S1(ARY)

During the keystream generation, we have the following equations for the
differences at clock ¢

At = Ast @ AR @ AR, @ Asl, AR, =A Si(AR'Y)
out
AR, = ARS '@ ARCT @ Ast! ARL =A So(ARS) .

The differences in the LFSR, part propagate linearly and are completely
predictable.

The main procedures of our attack are: assume that at time ¢ we
have AR} = 0. From the linear evolution of the difference in the LFSR
and the keystream difference equations, we deduce potential differences
in the other FSM registers at different times. Knowing the input-output
difference for the S-boxes, deduce the few possibilities for the actual values
of the FSM registers. Combine the knowledge of the FSM state with that
of the keystream to get linear equations on the LFSR state. Collect enough
equations to get a solvable linear system which will recover the state of
the LFSR. By the invertibility of the cipher, run it backwards to find the
128-bit secret key K.

Assume AR! = 0. If this is not true, we just take the next clock
and so on. If we try this step 232 times, then it will happen with a good
probability. Denote the time that ARy = 0 by ¢t = 1. Then AR} = 0,
AR3 =0 and AR3 = 0. From the keystream equation at ¢ = 1, we know
AR}; similarly we know AR?, from which we can derive AR}, as shown
below. Hereafter, we denote the known difference value by Ak;.

clock t | ARy AR, ARj |

1 0 Ak Aks
2 Ako 0
3

0

At t = 3, we have

AR © ARS = A2® © As}; @ As2 @ Asj .

By the notations introduced before, we have

out out

A SQ(Ak’l) D A Sl(AkQ) = Aky . (1)
Here we have 22;%28 = 2% pairs satisfying (1). (In the two 8-bit S-boxes,
there are at most 27 possible output differences for any fixed input dif-
ference.) To enumerate the possible pairs, we proceed as follows. First
rewrite (1) as

out out

out out
A Ak} A So(Ak} msb _ Ak}
out R(z) = out Q(;) @ prlnsb @ MC1 ! : Ak%)
A Sr(Ak3) A Sq(AkT) g?“b Ak}l’
out out 4
A Sr(AKD) A So(AKD) ’
where p™sP (i = 0,1,2,3) denotes a byte polynomial which contains only

the most significant bits of all the four OX Sq values. For a detailed ex-
planation, please see Appendix A. Thus we can fulfill the enumeration

byte by byte. For the first row, we need the value of CK So(AKY), which
has 27 possibilities and three more bits for pg‘Sb. Then we check whether
the value computed at the right side of the equation is a correct value for

A S Rr(AKS). This would cost 219 steps and we will obtain 2 solutions for
this equation. For the next three equations, since we already know the
leading bits, we only have 26 possibilities left in each byte equation, which
yields the same time complexity and 2° solutions. To get the solution of
the word equation, we have to combine the corresponding byte solutions
and get 29 - 25 .25 .25 = 224 golutions, which needs about 2 - 2% = 22
words of memory. Now, the states of the FSM are as follows.

clock t ‘ AR AR, ARs ‘ clock t ‘ AR AR, ARs3 ‘

next
1 0 Aky Aks ¢ 1 0 Ak1 Aks
24 par 20
2 Ak 0 (2*%) - 2 Ako 0 (2%%)
3 (224) (224) 0 reduction 3 (220) (220) 0
4 4 (220) (220)

Each possible value of AR3 results in a possible value of AR}. At t = 4,
we have
AR @ ARy = At @ Asty © As3 @ As .

Replacing the difference ARj with the S-Box representation, we receive

AR® A S1(AR?) = Aks .

Let AR} = P|ct||c?||c®, ARS = a°||at||a?||a®. Expanding this equation
to the byte form, we get

out

A SR(CO

o) a® AR
1 1 1

ASr) _ yept |4 | e Mot | 2R

05 SR(CZ) a Akg,

out (3) a3 Akg
C

We have to insert all the 224 possible pairs of (AR3, AR?) and verify the

value CZt Sr for the single bytes. This results in a time complexity of
224 There are 22;%28 = 220 entries satisfy this equation. This means we
have 220 sequences (AR2, AR}, AR, AR}, AR3) left. For each of them,
we know the input-output difference of Sq at clock 2 and 3. Thus, we can
recover (2-120 +4- -3-)% = 16.51 sorted pairs of values for Si. This means
that we have 16 5l — 8.255 possible values for AR4 Looking at clock 5, we

have AR @ ARg@ A S1(AR}) = Akg. We can rewrite this equation into
byte form and check the 2?0 remaining sequences by the byte equations.
There are 82+5228 ~ 21905 hossible sequences left and the complexity
is about 220 . 8.255 = 22395, This identification of the individual values
in the FSM for both keystreams has to be repeated for the next 9 clocks.
Each step will have a lower time complexity than the one before and

will reduce the possible number of differences. The time complexity for

all 10 steps together is Y5_,2%0 - (%)Z : % = 22%1 and the number
of sequences left is 220 - (1222774)10 = 2195 Then we insert the individual

values of the FSM into the keystream generation equations and the FSM
update equations to get a linear system of the LFSR initial states. This
would need a time complexity of 2192 . 210 = 220-5 gteps. The overall time
complexity is

227 231

9
232 . [210 + 224 + 2(220 . ()z . 1274)] _ 957.1)
1=0

1274

225 233

The memory requirement is words and the keystream is of length

words.

4 Differential Chosen IV Attacks on Reduced-Round
SNOW 3G9

Now we look at the full SNOW 3G® (with the feedback). We consider
a differential chosen IV attack scenario. Assume that we have two 128-
bit IVs differing only in the most significant word IVj, which gives the

difference in si5 of the LFSR. As mentioned below in Section 4.2 and
Section 4.3, we can restrict the difference to a single byte of IVj in order
to reduce the complexity of our attacks. Denote this difference by Ad.
Then until round 10, this difference will not affect the FSM. In round 11,
the known Ad enters the FSM word Rj.

4.1 Reduced Initialization of 12 Rounds

Since all the differences in the FSM are 0, there are no differences fed
back into the LFSR. Thus the differences in the LESR are all known. Our
knowledge of differences in the FSM is shown below. We try to compute
the unknown values (”7”s) in this table.

round ‘ clock s ‘ AR1 AR2 AR3

11 -1 Ad 0 0
12 0 Ad ? 0
1 ? ?

From the keystream equation Az° = As);, & AR & AR & Asf), where
ARY = Ad, we get ARY, which gives us immediately AR! and also AR}
from the next keystream equation. Therefore, we have only one known
sequence (ARfl = Ad, AR;l = ARgl =0, ARY = Ad, ARY, AR =0,
AR}, ARY). Now we know the input and output difference of S;: Ad =
ARt — S — ARY. Thus, we switch from the differences of the FSM
words to the individual values of them, similar to the procedures explained
in Section 3. The time complexity is 10 - 12;714 = 264 steps. Afterwards we
insert the individual values of the FSM into the keystream generation
equations and the FSM update equations to get a linear system of the
LFSR initial states with a complexity of 2'°. We use the keystream equa-
tion of clock 12 to check the candidates. The total time complexity is
26-4 1 910 — 910.1 gtens the memory complexity is small and the known
keystream is only 12 words for each IV.

4.2 Reduced Initialization of 13 Rounds

Here we extend the attack above by one more round. In the 13 round
case, since all the differences in the FSM until now are either 0 or the
known Ad, no unknown difference was fed back into the LFSR. Thus,
the differences in the LFSR values are known. We compute ”7”s in the
following table as follows.

round‘ clock s ‘ ARy ARy ARs3

11 -2 Ad 0 0
12 —1 Ad ? 0
13 0 ? ?

From Az% and ARY, we have
A0 = As) @ ARy @ Asgt @ ARY @ As) |

which is
AR;' @ ARY = A% @ Ay @ Asg ' @ As) .
Then we replace the differences at the left side with their S-Boxes de-

scription, denote the known part at the right side with kg and get the
equation

out out
A S1(Ad)® A S1(Ad) = Ak . (2)
Multiplying by MC 1 we get the byte form equation
out A 0 out A 0
Asa)) - (F sutat)
1 1 1

Gt || Bouan |y (3]
A Sr(Ad?) A Sr(Ad?) AR
A Sn(Ad?) A Sn(Ad?) ’

We can check these four byte equations in 4 - 27 = 29 steps. The number
of solutions will be 22;;;328 = 2% pairs of (AR, ', ARY). We have 224 sc-
quences (AR;2 = Ad, AR;Q = ARgZ =0, ARI1 = Ad, AR;l, ARgl =
0, AR?, ARY). Again, we switch from the differences of the FSM words
to the individual values of them by using the input and output difference
of S1: Ad = AR1_2 — 51 — ARQ_I. The time complexity of this step is
Z?:o 224 (%)’ . 1223714 = 22809 Tp the end, we have 2%*. (%)10 = 21445
difference sequences left. The memory complexity is 22° - 10 - 3 = 22991
words. We then insert the individual values of the FSM into the keystream
generation equations and the FSM update equations to get a linear sys-
tem of the LFSR initial states. This would need a time complexity of

1222;;10 - 210 = 92445 The overall time complexity is

9 ’ 24 227 3 231 2294 10 28.2
2 (924 . i) . 910 _ 928.
+ ; (o72)" " 1272 + 127w

steps. The memory complexity is 229! words and the keystream is of
length 12 words for each IV.

If we restrict the known arbitrary difference Ad to a word with three
bytes equal to zero and only one non zero byte, we can reduce our attack
complexity considerably. We then have only one pair (AR5 L ARY) of
difference left, as in the attack on 12 rounds explained in Section 4.1. In
this way, we will have the same time complexity 2'! and the memory
requirement is small. The keystream will be of 12 words for each IV.

4.3 Reduced Initialization of 14 Rounds

Nearly all the differences in the LFSR are known, the only unknown
difference is AR, 2 which was fed back into the LFSR, the remaining dif-
ferences are either 0 or the known Ad. We guess the individual value Ry 2

for the first pair (K, IV,) with complexity of 232. From the value Rii, we

get with ARI_?’ = Ad the value Rlb_3 for the second pair (K, IV;). Fur-
thermore we obtain Ri Z, Ry g, R?: Lll, Ry é. We denote the known difference

ARQ_Q with Ak, the linear dependent ARl_l with Ak, and ARgl with
Ako. This gives the following differences for the FSM.

round‘ clock s ‘ ARy AR> ARs

11 -3 Ad 0 0
12 -2 Ad Ak 0
13 -1 Aky ? Ako
14 0 ? ?

From

A2’ = Asls & AR} @ AR) @ Asp
we insert the update equations for AR} and AR and receive
AL =A@ A S (Ad) & Aky & Asg '@ A S1(Aky) & As) |
which gives

A S1(AD)D A S1(Aky) = A @ A% @ Aky ® AsTl @ AsD

We denote the known right part by Aksz, multiply the equation with
MCT 1 and rewrite it in byte notation as

out out

A Sr(Ad%) A Sr(AKY) AR
A Sr(AdY) A Sr(Ak}) | Ak
out 2 D out 9 = Mcl ! Ak’2
A Sr(Ad?) A Sr(AK?) o
out out 3
A Sr(Ad?) A Sr(AE})

Then we check this equation line by line for each byte in 4 x 27 = 29
steps. The number of solutions will be 22;%28 = 224 pairs of (AR ', ARY).
Again, we switch from the differences of the FSM words to the individual
values of them by using the input and output difference of Si: ARI2 —
S1 — AR, ! Since we start with 22* sequences, we have completely the
same procedure as in the attack on 13 rounds of initialization and thus

the same complexities. The overall time complexity is the same as that
in 13 rounds of initialization for each guess of Rll_S, which gives

231 2294

9
227)
932 . |99 (224) i) L 9l0| _ 9602
+ ; (1274) 1274 + 12740

The memory requirement is 22%°1 words and the keystream is of length
12 words for each IV.

If we restrict the known difference Ad to only one byte in IVj, we can
reduce our attack complexity to 2427 with similar procedures as above.
The corresponding memory complexity is 2° words and the keystream is
of 12 words for each IV.

4.4 Reduced Initialization of 15 Rounds and 16 Rounds

Nearly all the differences in the LFSR are known, only two unknown
differences AR, 3 and AR, 2 were fed back into the LFSR, the remain-
ing differences are either 0 or the known Ad. We guess the individual
values of Ri;l and Rl_g for the first pair (K, IV,) with complexity of

264 From the value Rl_é and ARl_4 = Ad, we get the values of Rl_jf,
R2—,2’ R;}g, Ri,:?l, R?:g. Denote the known difference ARQ_S by Ak, ARI_Q
by Ak; and AR;2 by Aks. From ng and Ang = Ad, we get the values
of Rig, R, 2, RQ_’ g, Ry é, R; ;. Again, we denote the now known difference
AR;Q by Aks, AR;1 by Ak4 and ARgl by Aks. This gives the following
differences for the FSM.

round‘ clock s ‘ AR1 AR2 AR3

11 —4 Ad 0 0
12 -3 Ad Akg 0
13 -2 Akr Aks Ake
14 -1 Aky ? Aks
15 0 ? ?

We have now the same starting point as that of the attack on 14 ini-
tialization rounds. We proceed in the way as explained there. Since we
guessed one more word in the beginning of the attack, the time complexity

becomes
932 960.2 _ 992.2

The memory complexity remains 229! words and the keystream is of
length 12 words for each IV.

In the 16 rounds case, we guess one more word and then proceed as
that of the attack on 15 rounds. The time complexity is

232 . 292.2 _ 2124.2

and the memory complexity remains 22991
length 12 words for each IV.

The summary of our results is given in Table 1.

words and the keystream is of

Table 1. The summary of our results on SNOW 3G®

attack keystream time memory
SNOW 3G® without feedback 233 2071 225
SNOW 3G® with feedback

12 rounds 24 2101 gmall

13 rounds with 1 byte difference Ad 24 2101 amall
14 rounds with 1 byte difference Ad 24 2427 99

15 rounds 24 9922 929.91
16 rounds 2 9l24.2 2991

5 Conclusions

In this paper, we have shown known IV and chosen IV resynchroniza-
tion attacks on SNOW 3G®. We can attack arbitrary many key/IV setup
rounds of SNOW 3G® if there is no feedback from FSM to LFSR. With
such feedback, we show key recovery attacks on up to 16 rounds of ini-
tialization and use only a few keystream words. Our results indicate that
about half of the initialization rounds of SNOW 3G® might succumb
to chosen IV resynchronization attacks. The remaining security margin
however is quite significant and thus these attacks pose no threat to the
security of SNOW 3G itself.

References

1. Billet, O., Gilbert, H.,: Resistance of SNOW 2.0 Against Algebraic Attacks. In:
Menezes, A. J. (eds.) Topics in Cryptology-CT-RSA’2005. LNCS vol. 3376, pp.
19-28. Springer-Verlag 2005.

2. Ekdahl, P., Johansson T.;: A New Version of the Stream Cipher SNOW. In: Nyberg,
K., Heys, H. (eds.) Selected Areas in Cryptography-SAC 2002. LNCS vol. 1233,
pp- 37-46. Springer-Verlag 2002.

3. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UTA2. Document 2: SNOW 3G Specification, version 1.1, September 2006.
http://www.3gpp.org/ftp/.

4. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UTA2. Document 5: Design and Evaluation Report, version 1.1, September
2006. http://www.3gpp.org/ftp/.

5. Nyberg, K., Wallén, J.,: Improved Linear Distinguishers for SNOW 2.0. In: Rob-
shaw, M.J.B.,(eds.) Fast Software Encryption-FSE 2006, LNCS vol. 4047, pp. 144-
162. Springer-Verlag 2006.

6. Watanabe, D., Biryukov, A., De Canniére, Christophe, : A Distinguishing Attack
of SNOW 2.0 with Linear Masking Method. In: Matsui, M., Zuccherato, R., (eds.)
Selected Areas in Cryptography-SAC 2003, LNCS vol. 3006, pp. 222-233. Springer-
Verlag 2004.

A Appendix
We want to simplify the equation

A So(Aky) @ A Sy (Aks) = Aky .

The main difficulty is that S; and S5 use the same Mix-Column matrix
but over two different fields GF(2%). At first we rewrite this equation in
the byte notation as

out out

A SQ(Ak(l)) A SR(AkS) Akﬁ’
out 1 out 1 1
MGy | ASelAk) | oo | A Sr(AR2) | _ kg
A Sq(AkD) A Sr(Ak3) Akg
out out 4
A Sq(AkY) A Sr(Ak3)
Then multiplying this equation with the inverse matrix M Cy 1 we get
out 0 out 0
A Sq(AkY) A Sr(Aky) AKS
out 1 out 1 1
Mo | Mcy - | A Se(Ak) | | g A Sr(Aka) | _ proot ., ﬁz‘é
A Sq(Ak?) A Sr(AK3) Akg
out out 4
A Sq(AkY) A Sr(Ak3)

If we expand the matrix multiplications and have a look at the byte
vectors, it shows that the first entry of the first vector contains the byte

CZE So(AKY) and a byte polynomial containing only the most significant

out
bits of all four A Sg values. We denote this polynomial with pf)nSb. The
other three rows have similar structures, but with different polynomials
pzr-nSb (i = 1,2,3). Therefore we can rewrite the equation to

out out

0 0

A R(Aki) Aa SQ(Aki) pgnfz Ak%
Oet Sr(Ak3) _ o%t Sq(Aky) P psnsb ® MCl_l . 3:3
A Sp(Ak3) A Sq(Ak?) P2 Aké
out out p *
A Sr(AKD) A Sq(Ak?) ’

We denote by mg the most significant bit of the value A So(AKY)
and with m; the most significant bit of the value A So(Ak}) as well as
my for A So(Ak?) and mg for A So(Ak}). Then the polynomials pi™s"
1=0,...,3 are

Pt = (m1 @ m3)x” + (mo ® m1)z® + (m2 @ ms)z® + (m1 @ ma)x?

+(mo @ m2)x? + (m1 & ma2)x + (Mo & M1 & ma2 G m3)

Pt = (mo ® ma2)x” 4 (m1 & m2)z® + (mo © m3)z® + (M2 & ma)z*

+(m1 @ m3z)z? + (m2 ® m3)x + (Mo & m1 & ma2 © m3)

p5** = (m1 @ ma)z” + (ma2 ® ms)z® + (mo & ma)z® + (mo & ma)x*

+(mo @ m2)z? + (Mo & m3)x + (Mo & M1 ® M2 © m3)

PpTet = (mo ® ma)z” 4 (mo ® ma)z® + (m1 ® ma)z® + (mo ® my)z?

+(m1 ®ma)z? + (mo © m1)z + (mo ® m1 & ma & m3)

