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Abstract. The stream cipher SNOW 3G designed in 2006 by ETSI/SA-
GE is a base algorithm for the second set of 3GPP confidentiality and
integrity algorithms. In this paper, we investigate the resynchronization
security of a close variant of SNOW 3G, in which two modular additions
are replaced by xors and which is called SNOW 3G⊕. It is shown that
the feedback from the FSM to the LFSR is crucial for security. Given
a pair of known IVs, the cipher without such a feedback is extremely
vulnerable to differential known IV attacks with practical complexities
(257 time and 233 keystream). With such a feedback, it is shown that 16
out of 33 initialization rounds can be broken by a differential chosen IV
attack. This is the first public evaluation result for this algorithm.
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1 Introduction

The SNOW 3G stream cipher is the core of the 3GPP confidentiality and
integrity algorithms UEA2 and UIA2, published in 2006 by the 3GPP
Task Force [3]. Compared to its predecessor, SNOW 2.0 [2], SNOW 3G
adopts a finite state machine (FSM) of three 32-bit words and 2 S-Boxes
to increase the resistance against algebraic attacks by Billet and Gilbert
[1]. Full evaluation of the design by the consortium is not public, but a
survey of this evaluation is given in [4]. SNOW 3G⊕ (in which the two
modular additions are replaced by xors) is also defined and evaluated
in [4]. The designers and external reviewers show that SNOW 3G has
remarkable resistance against linear distinguishing attacks [5, 6], while
SNOW 3G⊕ offers much better resistance against algebraic attacks.

In this paper, we present the first attempt of cryptanalysis of SNOW
3G in the public literature. We show that the feedback from the FSM to
the LFSR during the key/IV setup phase is vital for the security of this
cipher, since we can break a version without such a feedback with two
known IV’s in 257 time, 233 data complexity and for an arbitary number of



the key/IV setup rounds! We then restore the feedback and study SNOW
3G⊕ against differential chosen IV attacks. We show attacks on SNOW
3G⊕ with 14, 15 and 16 rounds of initialization with complexities 242.7,
292.2 and 2124.2 respectively.

This paper is organized as follows. We give a description of SNOW
3G and SNOW 3G⊕ in Section 2. The known IV attack on SNOW 3G⊕

without the FSM to LFSR feedback is presented in Section 3 and the dif-
ferential chosen IV attack on SNOW 3G⊕ with the feedback is presented
in Section 4. Finally, some conclusions are given in Section 5.

2 Description of SNOW 3G and SNOW 3G⊕

SNOW 3G is a word-oriented synchronous stream cipher with 128-bit key
and 128-bit IV, each considered as four 32-bit words vector. It consists
of a linear feedback shift register (LFSR) of sixteen 32-bit words and a
finite state machine (FSM) with three 32-bit words, shown in Figure 1.
Here ’⊕’ denotes the bit-wise xor and ’¢’ denotes the addition modulo
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Fig. 1. Keystream generation of SNOW 3G

232. The feedback word of the LFSR is recursively computed as

st
15 = α−1 · st−1

11 ⊕ st−1
2 ⊕ α · st−1

0 ,

where α is the root of the GF (28)[x] polynomial x4 + β23x3 + β245x2 +
β48x + β239 with β being the root of the GF (2)[x] polynomial x8 + x7 +



x5 + x3 + 1. The FSM has two input words st
5 and st

15 from the LFSR
and is updated as

Rt
1 = Rt−1

2 ¢ (Rt−1
3 ⊕ st−1

5 ) Rt
2 = S1(Rt−1

1 ) Rt
3 = S2(Rt−1

2 ) ,

with the output word F t = (st
15 ¢ Rt

1) ⊕ Rt
2, where S1 and S2 are 32-

bit to 32-bit S-boxes defined as compositions of 4 parallel applications of
two 8-bit to 8-bit small S-boxes, SR and SQ, with a linear diffusion layer
respectively. Here SR is the well known AES S-box and SQ is defined as
SQ(x) = x ⊕ x9 ⊕ x13 ⊕ x15 ⊕ x33 ⊕ x41 ⊕ x45 ⊕ x47 ⊕ x49 ⊕ 0x25 for
x ∈ GF (28) defined by x8 + x6 + x5 + x3 + 1. If we decompose a 32-bit
word B into four bytes B = B0‖B1‖B2‖B3 with B0 being the most and
B3 the least significant bytes, then for i = 1, 2, the S-boxes are

Si(B) = MCi · (SR(B0), SR(B1), SR(B2), SR(B3))T ,

where MC1 is the AES mix-column for S1 over GF (28) defined by x8 +
x4 + x3 + x + 1 and MC2 is the similar operation for S2 over GF (28)
defined by x8 + x6 + x5 + x3 + 1.

SNOW 3G is initialized with the key K = (k0, k1, k2, k3) and the
IV = (IV0, IV1, IV2, IV3) as follows. Let 1 be the all-one word, the LFSR
is initialized as follows.

s15 = k3 ⊕ IV0 s14 = k2 s13 = k1 s12 = k0 ⊕ IV1

s11 = k3 ⊕ 1 s10 = k2 ⊕ 1⊕ IV2 s9 = k1 ⊕ 1⊕ IV3 s8 = k0 ⊕ 1
s7 = k3 s6 = k2 s5 = k1 s4 = k0

s3 = k3 ⊕ 1 s2 = k2 ⊕ 1 s1 = k1 ⊕ 1 s0 = k0 ⊕ 1

.

The FSM is initialized with R1 = R2 = R3 = 0. Then run the cipher 32
times with the FSM output F xored to the feedback of the LFSR and no
keystream generated. After this, the cipher is switched into the keystream
generation mode, but the first keystream word is discarded. Hence, there
are 33 initialization rounds. The keystream word generated at clock t is
zt = st

0 ⊕ F t. If we replace the two modulo additions in SNOW 3G by
xors, we get SNOW 3G⊕.

3 Known IV Attack on SNOW 3G⊕ without FSM to
LFSR Feedback

In this section, we consider a known IV attack on SNOW 3G⊕ without
the FSM to LFSR feedback, in which the attacker has access to two
keystreams corresponding to (K, IVa) and (K, IVb), where IVa and IVb



are arbitrary known IVs. This attack works for any number of key/IV
setup rounds.

Let Rt
i,a and Rt

i,b be the individual values in the FSM register Ri at
clock t, then we have

∆Rt
1 = Rt

1,a ⊕Rt
1,b Rt

2,a = S1(Rt−1
1,a ) Rt

2,b = S1(Rt−1
1,b )

∆Rt
2 = Rt

2,a ⊕Rt
2,b = S1(Rt−1

1,a )⊕ S1(Rt−1
1,b ) ,

out

∆ S1(∆Rt−1
1 ) .

During the keystream generation, we have the following equations for the
differences at clock t

∆zt = ∆st
15 ⊕∆Rt

1 ⊕∆Rt
2 ⊕∆st

0 ∆Rt
2 =

out

∆ S1(∆Rt−1
1 )

∆Rt
1 = ∆Rt−1

2 ⊕∆Rt−1
3 ⊕∆st−1

5 ∆Rt
3 =

out

∆ S2(∆Rt−1
2 ) .

The differences in the LFSR part propagate linearly and are completely
predictable.

The main procedures of our attack are: assume that at time t we
have ∆Rt

1 = 0. From the linear evolution of the difference in the LFSR
and the keystream difference equations, we deduce potential differences
in the other FSM registers at different times. Knowing the input-output
difference for the S-boxes, deduce the few possibilities for the actual values
of the FSM registers. Combine the knowledge of the FSM state with that
of the keystream to get linear equations on the LFSR state. Collect enough
equations to get a solvable linear system which will recover the state of
the LFSR. By the invertibility of the cipher, run it backwards to find the
128-bit secret key K.

Assume ∆Rt
1 = 0. If this is not true, we just take the next clock

and so on. If we try this step 232 times, then it will happen with a good
probability. Denote the time that ∆R1 = 0 by t = 1. Then ∆R1

1 = 0,
∆R2

2 = 0 and ∆R3
3 = 0. From the keystream equation at t = 1, we know

∆R1
2; similarly we know ∆R2

1, from which we can derive ∆R1
3, as shown

below. Hereafter, we denote the known difference value by ∆ki.

clock t ∆R1 ∆R2 ∆R3

1 0 ∆k1 ∆k3

2 ∆k2 0
3 0

At t = 3, we have

∆R2
3 ⊕∆R3

2 = ∆z3 ⊕∆s3
15 ⊕∆s2

5 ⊕∆s3
0 .



By the notations introduced before, we have

out

∆ S2(∆k1)⊕
out

∆ S1(∆k2) = ∆k4 . (1)

Here we have 228·228

232 = 224 pairs satisfying (1). (In the two 8-bit S-boxes,
there are at most 27 possible output differences for any fixed input dif-
ference.) To enumerate the possible pairs, we proceed as follows. First
rewrite (1) as

0
BBBBB@

out

∆ SR(∆k0
2)

out

∆ SR(∆k1
2)

out

∆ SR(∆k2
2)

out

∆ SR(∆k3
2)

1
CCCCCA

=

0
BBBBB@

out

∆ SQ(∆k0
1)

out

∆ SQ(∆k1
1)

out

∆ SQ(∆k2
1)

out

∆ SQ(∆k3
1)

1
CCCCCA
⊕

0
BB@

pmsb
0

pmsb
1

pmsb
2

pmsb
3

1
CCA ⊕ MC−1

1 ·

0
BB@

∆k0
4

∆k1
4

∆k2
4

∆k3
4

1
CCA ,

where pmsb
i (i = 0, 1, 2, 3) denotes a byte polynomial which contains only

the most significant bits of all the four
out

∆ SQ values. For a detailed ex-
planation, please see Appendix A. Thus we can fulfill the enumeration
byte by byte. For the first row, we need the value of

out

∆ SQ(∆k0
1), which

has 27 possibilities and three more bits for pmsb
0 . Then we check whether

the value computed at the right side of the equation is a correct value for
out

∆ SR(∆k0
2). This would cost 210 steps and we will obtain 29 solutions for

this equation. For the next three equations, since we already know the
leading bits, we only have 26 possibilities left in each byte equation, which
yields the same time complexity and 25 solutions. To get the solution of
the word equation, we have to combine the corresponding byte solutions
and get 29 · 25 · 25 · 25 = 224 solutions, which needs about 2 · 224 = 225

words of memory. Now, the states of the FSM are as follows.

clock t ∆R1 ∆R2 ∆R3

1 0 ∆k1 ∆k3

2 ∆k2 0 (224)
3 (224) (224) 0
4

next
part
→

reduction

clock t ∆R1 ∆R2 ∆R3

1 0 ∆k1 ∆k3

2 ∆k2 0 (220)
3 (220) (220) 0
4 (220) (220)

Each possible value of ∆R3
2 results in a possible value of ∆R4

1. At t = 4,
we have

∆R3
2 ⊕∆R4

2 = ∆z4 ⊕∆s4
15 ⊕∆s3

5 ⊕∆s4
0 .

Replacing the difference ∆R4
2 with the S-Box representation, we receive

∆R3
2⊕

out

∆ S1(∆R3
1) = ∆k5 .



Let ∆R3
1 = c0‖c1‖c2‖c3, ∆R3

2 = a0‖a1‖a2‖a3. Expanding this equation
to the byte form, we get

0
BBBBB@

out

∆ SR(c0)
out

∆ SR(c1)
out

∆ SR(c2)
out

∆ SR(c3)

1
CCCCCA

= MC−1
1 ·

0
BB@

a0

a1

a2

a3

1
CCA ⊕ MC−1

1 ·

0
BB@

∆k0
5

∆k1
5

∆k2
5

∆k3
5

1
CCA .

We have to insert all the 224 possible pairs of (∆R3
2,∆R3

1) and verify the

value
out

∆ SR for the single bytes. This results in a time complexity of
224. There are 224·228

232 = 220 entries satisfy this equation. This means we
have 220 sequences (∆R2

3,∆R3
1,∆R3

2, ∆R4
1,∆R4

2) left. For each of them,
we know the input-output difference of S1 at clock 2 and 3. Thus, we can
recover (2 · 126

127 +4 · 1
127)4 = 16.51 sorted pairs of values for S1. This means

that we have 16.51
2 = 8.255 possible values for ∆R4

3. Looking at clock 5, we

have ∆R4
2⊕∆R4

3⊕
out

∆ S1(∆R4
1) = ∆k6. We can rewrite this equation into

byte form and check the 220 remaining sequences by the byte equations.
There are 220·8.255·228

232 ≈ 219.05 possible sequences left and the complexity
is about 220 · 8.255 = 223.05. This identification of the individual values
in the FSM for both keystreams has to be repeated for the next 9 clocks.
Each step will have a lower time complexity than the one before and
will reduce the possible number of differences. The time complexity for
all 10 steps together is

∑9
i=0 220 · ( 227

1274 )i · 231

1274 = 224.1 and the number
of sequences left is 220 · ( 227

1274 )10 = 210.5. Then we insert the individual
values of the FSM into the keystream generation equations and the FSM
update equations to get a linear system of the LFSR initial states. This
would need a time complexity of 210.5 · 210 = 220.5 steps. The overall time
complexity is

232 · [210 + 224 +
9∑

i=0

(220 · ( 227

1274
)i · 231

1274
)] = 257.1 .

The memory requirement is 225 words and the keystream is of length 233

words.

4 Differential Chosen IV Attacks on Reduced-Round
SNOW 3G⊕

Now we look at the full SNOW 3G⊕ (with the feedback). We consider
a differential chosen IV attack scenario. Assume that we have two 128-
bit IVs differing only in the most significant word IV0, which gives the



difference in s15 of the LFSR. As mentioned below in Section 4.2 and
Section 4.3, we can restrict the difference to a single byte of IV0 in order
to reduce the complexity of our attacks. Denote this difference by ∆d.
Then until round 10, this difference will not affect the FSM. In round 11,
the known ∆d enters the FSM word R1.

4.1 Reduced Initialization of 12 Rounds

Since all the differences in the FSM are 0, there are no differences fed
back into the LFSR. Thus the differences in the LFSR are all known. Our
knowledge of differences in the FSM is shown below. We try to compute
the unknown values (”?”s) in this table.

round clock s ∆R1 ∆R2 ∆R3

11 −1 ∆d 0 0
12 0 ∆d ? 0

1 ? ?

From the keystream equation ∆z0 = ∆s0
15 ⊕ ∆R0

1 ⊕ ∆R0
2 ⊕ ∆s0

0, where
∆R0

1 = ∆d, we get ∆R0
2, which gives us immediately ∆R1

1 and also ∆R1
2

from the next keystream equation. Therefore, we have only one known
sequence (∆R−1

1 = ∆d, ∆R−1
2 = ∆R−1

3 = 0, ∆R0
1 = ∆d, ∆R0

2,∆R0
3 = 0,

∆R1
1,∆R1

2). Now we know the input and output difference of S1: ∆d =
∆R−1

1 → S1 → ∆R0
2. Thus, we switch from the differences of the FSM

words to the individual values of them, similar to the procedures explained
in Section 3. The time complexity is 10 · 231

1274 = 26.4 steps. Afterwards we
insert the individual values of the FSM into the keystream generation
equations and the FSM update equations to get a linear system of the
LFSR initial states with a complexity of 210. We use the keystream equa-
tion of clock 12 to check the candidates. The total time complexity is
26.4 + 210 = 210.1 steps, the memory complexity is small and the known
keystream is only 12 words for each IV.

4.2 Reduced Initialization of 13 Rounds

Here we extend the attack above by one more round. In the 13 round
case, since all the differences in the FSM until now are either 0 or the
known ∆d, no unknown difference was fed back into the LFSR. Thus,
the differences in the LFSR values are known. We compute ”?”s in the
following table as follows.

round clock s ∆R1 ∆R2 ∆R3

11 −2 ∆d 0 0
12 −1 ∆d ? 0
13 0 ? ?



From ∆z0 and ∆R0
1, we have

∆z0 = ∆s0
15 ⊕∆R−1

2 ⊕∆s−1
5 ⊕∆R0

2 ⊕∆s0
0 ,

which is
∆R−1

2 ⊕∆R0
2 = ∆z0 ⊕∆s0

15 ⊕∆s−1
5 ⊕∆s0

0 .

Then we replace the differences at the left side with their S-Boxes de-
scription, denote the known part at the right side with k0 and get the
equation

out

∆ S1(∆d)⊕ out

∆ S1(∆d) = ∆k0 . (2)

Multiplying by MC−1
1 , we get the byte form equation

0
BBBBB@

out

∆ SR(∆d0)
out

∆ SR(∆d1)
out

∆ SR(∆d2)
out

∆ SR(∆d3)

1
CCCCCA
⊕

0
BBBBB@

out

∆ SR(∆d0)
out

∆ SR(∆d1)
out

∆ SR(∆d2)
out

∆ SR(∆d3)

1
CCCCCA

= MC−1
1 ·

0
BB@

∆k0
0

∆k1
0

∆k2
0

∆k3
0

1
CCA ,

We can check these four byte equations in 4 · 27 = 29 steps. The number
of solutions will be 228·228

232 = 224 pairs of (∆R−1
2 ,∆R0

2). We have 224 se-
quences (∆R−2

1 = ∆d, ∆R−2
2 = ∆R−2

3 = 0, ∆R−1
1 = ∆d, ∆R−1

2 ,∆R−1
3 =

0, ∆R0
1,∆R0

2). Again, we switch from the differences of the FSM words
to the individual values of them by using the input and output difference
of S1: ∆d = ∆R−2

1 → S1 → ∆R−1
2 . The time complexity of this step is∑9

i=0 224 · ( 227

1274 )i · 231

1274 = 228.09. In the end, we have 224 · ( 227

1274 )10 = 214.45

difference sequences left. The memory complexity is 225 · 10 · 3 = 229.91

words. We then insert the individual values of the FSM into the keystream
generation equations and the FSM update equations to get a linear sys-
tem of the LFSR initial states. This would need a time complexity of
2294

12740 · 210 = 224.45. The overall time complexity is

29 +
9∑

i=0

(
224 · ( 227

1274
)i · 231

1274

)
+

2294

12740
· 210 = 228.2

steps. The memory complexity is 229.91 words and the keystream is of
length 12 words for each IV.

If we restrict the known arbitrary difference ∆d to a word with three
bytes equal to zero and only one non zero byte, we can reduce our attack
complexity considerably. We then have only one pair (∆R−1

2 ,∆R0
2) of

difference left, as in the attack on 12 rounds explained in Section 4.1. In
this way, we will have the same time complexity 210.1 and the memory
requirement is small. The keystream will be of 12 words for each IV.



4.3 Reduced Initialization of 14 Rounds

Nearly all the differences in the LFSR are known, the only unknown
difference is ∆R−2

2 , which was fed back into the LFSR, the remaining dif-
ferences are either 0 or the known ∆d. We guess the individual value R−3

1,a

for the first pair (K, IVa) with complexity of 232. From the value R−3
1,a, we

get with ∆R−3
1 = ∆d the value R1−3

b for the second pair (K, IVb). Fur-
thermore we obtain R−2

2,a, R
−2
2,b , R

−1
3,a, R

−1
3,b . We denote the known difference

∆R−2
2 with ∆k0, the linear dependent ∆R−1

1 with ∆k1 and ∆R−1
3 with

∆k2. This gives the following differences for the FSM.

round clock s ∆R1 ∆R2 ∆R3

11 −3 ∆d 0 0
12 −2 ∆d ∆k0 0
13 −1 ∆k1 ? ∆k2

14 0 ? ?

From
∆z0 = ∆s0

15 ⊕∆R0
1 ⊕∆R0

2 ⊕∆s0
0 ,

we insert the update equations for ∆R0
1 and ∆R0

2 and receive

∆z0 = ∆s0
15⊕

out

∆ S1(∆d)⊕∆k2 ⊕∆s−1
5 ⊕ out

∆ S1(∆k1)⊕∆s0
0 ,

which gives

out

∆ S1(∆d)⊕ out

∆ S1(∆k1) = ∆z0 ⊕∆s0
15 ⊕∆k2 ⊕∆s−1

5 ⊕∆s0
0 .

We denote the known right part by ∆k3, multiply the equation with
MC−1

1 and rewrite it in byte notation as
0
BBBBB@

out

∆ SR(∆d0)
out

∆ SR(∆d1)
out

∆ SR(∆d2)
out

∆ SR(∆d3)

1
CCCCCA
⊕

0
BBBBB@

out

∆ SR(∆k0
1)

out

∆ SR(∆k1
1)

out

∆ SR(∆k2
1)

out

∆ SR(∆k3
1)

1
CCCCCA

= MC−1
1 ·

0
BB@

∆k0
3

∆k1
3

∆k2
3

∆k3
3

1
CCA .

Then we check this equation line by line for each byte in 4 × 27 = 29

steps. The number of solutions will be 228·228

232 = 224 pairs of (∆R−1
2 ,∆R0

2).
Again, we switch from the differences of the FSM words to the individual
values of them by using the input and output difference of S1: ∆R−2

1 →
S1 → ∆R−1

2 . Since we start with 224 sequences, we have completely the
same procedure as in the attack on 13 rounds of initialization and thus



the same complexities. The overall time complexity is the same as that
in 13 rounds of initialization for each guess of R1−3

1 , which gives

232 ·
[
29 +

9∑

i=0

(
224 · ( 227

1274
)i · 231

1274

)
+

2294

12740
· 210

]
= 260.2 .

The memory requirement is 229.91 words and the keystream is of length
12 words for each IV.

If we restrict the known difference ∆d to only one byte in IV0, we can
reduce our attack complexity to 242.7 with similar procedures as above.
The corresponding memory complexity is 29 words and the keystream is
of 12 words for each IV.

4.4 Reduced Initialization of 15 Rounds and 16 Rounds

Nearly all the differences in the LFSR are known, only two unknown
differences ∆R−3

2 and ∆R−2
2 were fed back into the LFSR, the remain-

ing differences are either 0 or the known ∆d. We guess the individual
values of R−4

1,a and R−3
1,a for the first pair (K, IVa) with complexity of

264. From the value R−4
1,a and ∆R−4

1 = ∆d, we get the values of R−4
1,b ,

R−3
2,a, R

−3
2,b , R−2

3,a, R
−2
3,b . Denote the known difference ∆R−3

2 by ∆k0, ∆R−2
1

by ∆k1 and ∆R−2
3 by ∆k2. From R−3

1,a and ∆R−3
1 = ∆d, we get the values

of R−3
1,b , R

−2
2,a, R

−2
2,b , R

−1
3,a, R

−1
3,b . Again, we denote the now known difference

∆R−2
2 by ∆k3, ∆R−1

1 by ∆k4 and ∆R−1
3 by ∆k5. This gives the following

differences for the FSM.

round clock s ∆R1 ∆R2 ∆R3

11 −4 ∆d 0 0
12 −3 ∆d ∆k0 0
13 −2 ∆k1 ∆k3 ∆k2

14 −1 ∆k4 ? ∆k5

15 0 ? ?

We have now the same starting point as that of the attack on 14 ini-
tialization rounds. We proceed in the way as explained there. Since we
guessed one more word in the beginning of the attack, the time complexity
becomes

232 · 260.2 = 292.2 .

The memory complexity remains 229.91 words and the keystream is of
length 12 words for each IV.



In the 16 rounds case, we guess one more word and then proceed as
that of the attack on 15 rounds. The time complexity is

232 · 292.2 = 2124.2

and the memory complexity remains 229.91 words and the keystream is of
length 12 words for each IV.

The summary of our results is given in Table 1.

Table 1. The summary of our results on SNOW 3G⊕

attack keystream time memory

SNOW 3G⊕ without feedback 233 257.1 225

SNOW 3G⊕ with feedback
12 rounds 24 210.1 small
13 rounds with 1 byte difference ∆d 24 210.1 small
14 rounds with 1 byte difference ∆d 24 242.7 29

15 rounds 24 292.2 229.91

16 rounds 24 2124.2 229.91

5 Conclusions

In this paper, we have shown known IV and chosen IV resynchroniza-
tion attacks on SNOW 3G⊕. We can attack arbitrary many key/IV setup
rounds of SNOW 3G⊕ if there is no feedback from FSM to LFSR. With
such feedback, we show key recovery attacks on up to 16 rounds of ini-
tialization and use only a few keystream words. Our results indicate that
about half of the initialization rounds of SNOW 3G⊕ might succumb
to chosen IV resynchronization attacks. The remaining security margin
however is quite significant and thus these attacks pose no threat to the
security of SNOW 3G itself.
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A Appendix

We want to simplify the equation
out

∆ S2(∆k1)⊕
out

∆ S1(∆k2) = ∆k4 .

The main difficulty is that S1 and S2 use the same Mix-Column matrix
but over two different fields GF (28). At first we rewrite this equation in
the byte notation as

MC2·

0
BBBBB@

out

∆ SQ(∆k0
1)

out

∆ SQ(∆k1
1)

out

∆ SQ(∆k2
1)

out

∆ SQ(∆k3
1)

1
CCCCCA
⊕ MC1·

0
BBBBB@

out

∆ SR(∆k0
2)

out

∆ SR(∆k1
2)

out

∆ SR(∆k2
2)

out

∆ SR(∆k3
2)

1
CCCCCA

=

0
BB@

∆k0
4

∆k1
4

∆k2
4

∆k3
4

1
CCA .

Then multiplying this equation with the inverse matrix MC−1
1 , we get

MC−1
1 ·

0
BBBBB@

MC2 ·

0
BBBBB@

out

∆ SQ(∆k0
1)

out

∆ SQ(∆k1
1)

out

∆ SQ(∆k2
1)

out

∆ SQ(∆k3
1)

1
CCCCCA

1
CCCCCA
⊕

0
BBBBB@

out

∆ SR(∆k0
2)

out

∆ SR(∆k1
2)

out

∆ SR(∆k2
2)

out

∆ SR(∆k3
2)

1
CCCCCA

= MC−1
1 ·

0
BB@

∆k0
4

∆k1
4

∆k2
4

∆k3
4

1
CCA .

If we expand the matrix multiplications and have a look at the byte
vectors, it shows that the first entry of the first vector contains the byte
out

∆ SQ(∆k0
1) and a byte polynomial containing only the most significant

bits of all four
out

∆ SQ values. We denote this polynomial with pmsb
0 . The

other three rows have similar structures, but with different polynomials
pmsb

i (i = 1, 2, 3). Therefore we can rewrite the equation to
0
BBBBB@

out

∆ SR(∆k0
2)

out

∆ SR(∆k1
2)

out

∆ SR(∆k2
2)

out

∆ SR(∆k3
2)

1
CCCCCA

=

0
BBBBB@

out

∆ SQ(∆k0
1)

out

∆ SQ(∆k1
1)

out

∆ SQ(∆k2
1)

out

∆ SQ(∆k3
1)

1
CCCCCA
⊕

0
BB@

pmsb
0

pmsb
1

pmsb
2

pmsb
3

1
CCA ⊕ MC−1

1 ·

0
BB@

∆k0
4

∆k1
4

∆k2
4

∆k3
4

1
CCA .



We denote by m0 the most significant bit of the value
out

∆ SQ(∆k0
1)

and with m1 the most significant bit of the value
out

∆ SQ(∆k1
1) as well as

m2 for
out

∆ SQ(∆k2
1) and m3 for

out

∆ SQ(∆k3
1). Then the polynomials pmsb

i

i = 0, . . . , 3 are

pmsb
0 = (m1 ⊕m3)x

7 + (m0 ⊕m1)x
6 + (m2 ⊕m3)x

5 + (m1 ⊕m2)x
4

+(m0 ⊕m2)x
2 + (m1 ⊕m2)x + (m0 ⊕m1 ⊕m2 ⊕m3)

pmsb
1 = (m0 ⊕m2)x

7 + (m1 ⊕m2)x
6 + (m0 ⊕m3)x

5 + (m2 ⊕m3)x
4

+(m1 ⊕m3)x
2 + (m2 ⊕m3)x + (m0 ⊕m1 ⊕m2 ⊕m3)

pmsb
2 = (m1 ⊕m3)x

7 + (m2 ⊕m3)x
6 + (m0 ⊕m1)x

5 + (m0 ⊕m3)x
4

+(m0 ⊕m2)x
2 + (m0 ⊕m3)x + (m0 ⊕m1 ⊕m2 ⊕m3)

pmsb
3 = (m0 ⊕m2)x

7 + (m0 ⊕m3)x
6 + (m1 ⊕m2)x

5 + (m0 ⊕m1)x
4

+(m1 ⊕m3)x
2 + (m0 ⊕m1)x + (m0 ⊕m1 ⊕m2 ⊕m3)


