Preassociativity for aggregation functions

MARICHAL Jean-Luc and TEHEUX Bruno

Mathematics Research Unit - University of Luxembourg 6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg Luxembourg E-mail: jean-luc.marichal@uni.lu E-mail: bruno.teheux@uni.lu

Let X be an nonempty set and let $F : X^* \to X$ be a function with varying arity where $X^* = \bigcup_{n\geq 0} X^n$. For every $n \geq 0$ we denote by F_n the function defined as $F_n = F|_{X^n}$ (we convey that $F(\epsilon) = \epsilon$ where ϵ is the 0-tuple). For elements $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_m)$ of X^* we denote by $F(\mathbf{xy})$ the element $F(x_1, \ldots, x_n, y_1, \ldots, y_m)$ and similarly for more than two tuples. The function F is associative if it satisfies

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}), \qquad \mathbf{x}, \mathbf{y}, \mathbf{z} \in X^*.$$

Associative functions have been considered by different authors (see [1, 2, 3, 4, 5, 6]). An example of associative function is given by the function $F : \mathbb{R}^* \to \mathbb{R}$ defined by $F(\mathbf{x}) = \sum_{i=1}^n x_i$ for every n > 0 and every $\mathbf{x} \in X^n$.

In this talk, we investigate a generalization of associativity called *preassociativity* (see [7]). If X and Y are two non-empty sets, a function $F: X^* \to Y$ is *preassociative* if it satisfies

$$F(\mathbf{y}) = F(\mathbf{y}') \implies F(\mathbf{xyz}) = F(\mathbf{xy'z}), \qquad \mathbf{x}, \mathbf{y}, \mathbf{y}', \mathbf{z} \in X^*.$$

Preassociativity allows us to consider functions with varying arity $F: X^* \to Y$ with distinct domain X and co-domain Y. Any associative function is easily seen to be preassociative. Actually, associative functions can be characterized among preassociative ones as stated below.

Proposition 1 A function $F : X^* \to X$ is associative if and only if it is preassociative and $F_1 \circ F = F$.

If $f : \mathbb{R} \to \mathbb{R}$ is continuous and strictly increasing, the function $F : \mathbb{R}^* \to \mathbb{R}$ defined by $F(\mathbf{x}) = f(\sum_{i=1}^n x_i)$ for every n > 0 and every $\mathbf{x} \in X^n$ is an example of preassociative function which is not associative.

Under some conditions stated in the two next results, new preassociative functions can be constructed from existing ones by function composition.

Proposition 2 (Right composition) If $F : X^* \to Y$ is preassociative then, for every function $g : X \to X$, the function $H : X^* \to Y$ defined by $H(\mathbf{x}) = F(g(x_1), \ldots, g(x_n))$ for every $x \in X^n$ and every n > 0 is preassociative.

For instance, the squared distance function $F \colon \mathbb{R}^* \to \mathbb{R}$ defined by $F(\mathbf{x}) = \sum_{i=1}^n x_i^2$ for every n > 0 and every $\mathbf{x} \in X^n$ is preassociative.

Proposition 3 (Left composition) Let $F : X^* \to Y$ be a preassociative function and let $g: Y \to Y$ be a function. If $g|_{\operatorname{ran}(F)}$ is constant or one-to-one, then the function $H: X^* \to Y$ defined by $H(\mathbf{x}) = g(F(\mathbf{x}))$ for every $\mathbf{x} \in X^*$ is preassociative.

For instance, the function $F : \mathbb{R}^* \to \mathbb{R}$ defined by $F(\mathbf{x}) = \exp(\sum_{i=1}^n x_i)$ for every n > 0 and every $\mathbf{x} \in X^n$ is preassociative.

Among the proper subclasses of the class of preassociative functions $F : X^* \to X$ there is a class that contains properly the class of associative functions and that shares with the latter very interesting properties. It is the class of the preassociative functions $F : X^* \to X$ that satisfy $\operatorname{ran}(F) = \operatorname{ran}(F_1)$. The following factorization result allows us to generalize to this specific class some of the properties that are known for associative functions.

Theorem 4 Let $F: X^* \to Y$ be a function. The following assertions are equivalent.

- (i) F is preassociative and $ran(F) = ran(F_1)$.
- (ii) There exists an associative function $H: X^* \to X$ and a one-to-one function $f: \operatorname{ran}(H) \to Y$ such that $F = f \circ H$.

In the talk, we will also illustrate how this result can be used to give necessary and sufficient conditions for a preassociative function $F: X^* \to Y$ that satisfies $F_1 \circ F = F$ to be characterized by F_1 and F_2 (a property that holds for any associative function). We will also show with concrete examples (Aczélian semigroups, t-norms, Ling's class) how to derive axiomatizations of classes of preassociative functions from certain existing axiomatizations of classes of associative functions.

References

- Calvo, Tomasa and Mayor, Gaspar and Mesiar, Radko: Aggregation Operators: Properties, Classes and Construction Methods. In: Aggregation Operators: Properties, Classes and Construction Methods. Studies in Fuzziness and Soft Computing 97, Physica-Verlag HD, Heidelberg, Germany, 2002.
- [2] Couceiro, Miguel and Marichal, Jean-Luc: Associative Polynomial Functions over Bounded Distributive Lattices. Order 28 (2011) 1–8.
- [3] Couceiro, Miguel and Marichal, Jean-Luc: Aczélian n-ary semigroups. Semigroup Forum 85, 2012.
- [4] Grabisch, Michel, Marichal, Jean-Luc, Mesiar, Radko, and Pap, Endre: Aggregation functions. Encyclopedia of Mathematics and its Applications 127. Cambridge University Press, Cambridge, 2009.
- [5] Klement, Erich Peter, Mesiar, Radko and Pap, Endre: Triangular norms. In: Trends in Logic - Studia Logica Library 8, Kluwer Academic, Dordrecht, 2000.
- [6] Marichal, Jean-Luc, Aggregation operators for multicriteria decision aid., PhD thesis, Department of Mathematics, University of Liège, Liège, Belgium, 1998.
- [7] Marichal, Jean-Luc and Teheux, Bruno: Associative and preassociative functions, arXiv:1309.7303.