
A Library for Event-Processing and Adaptable
Component Interactions in Autonomous Robot

Software

Pouyan Ziafati, Holger Voos, Leendert van der Torre
SnT, University of Luxembourg

Email: {Pouyan.Ziafati, Holger.Voos, leon.vandertorre},@uni.lu

Mehdi Dastani, John-Jules Meyer
Intelligent Systems Group, Utrecht University

Email: {M.M.Dastani, J.J.C.Meyer}@uu.nl

Abstract—A light-weight framework-independent software li-
brary is introduced to facilitate a modular and systematic devel-
opment of sensory management components for an autonomous
robot. Such components are used to implement complex event-
processing tasks such as content-based filtering, integration and
transformation of sensory data. In addition, they can be used
as mediators to provide a number of high-level interaction
mechanisms among a robot’s software components. To this end,
they enable components with subscription to their events of
interest, asynchronous reception of events, maintaining necessary
histories of events and querying of the histories at runtime.

I. INTRODUCTION

The software of a service robot situated and interacting in a
natural human environment needs to integrate a large number
of components to provide the robot with various perception,
actuation and cognitive capabilities. The integration of such
components is hard due to the inherent heterogeneity in the
data representation and communication styles of the compo-
nents and their parallel and asynchronous executions.

State of the art robotic frameworks such as ROS1 facilitate
such integration by providing extendible data structures and
different interaction styles such as service-based and publish-
subscribe communication mechanisms. The next step which
could improve the robotic software engineering experience in
and among robotic frameworks is to identify, document and
support the implementation of architectural design patterns
beyond the current component interaction patterns [2], [4],
[3]. This may include high-level component structures, inter-
faces, communication patterns and corresponding development
tools to increase the usability, reuasability, observability and
comparability in the development of common robotic software
engineering tasks.

To this end, this paper introduces a sensory management
software library [7] which provides an efficient high-level lan-
guage with a formal semantics to support the implementation
of sensory management components (SMC) for an autonomous
robot. SMCs are used for the unified representation of sensory
events, detecting complex patterns of events, and as mediators
to support a number of high-level content-based interaction
mechanisms among the other components. The library supports
these functionalities by integrating and extending the Etalis
event-processing system [1] with so called dynamic subscrip-
tion, history management and on-demand query mechanisms.

1http://www.ros.org

The semantics and implementation of the library are described
in details in [7]. This paper presents an informal overview of
the library and our current research on its further development.
The rest of the paper is organized as follows. Sections 2
and 3 present its support of event-processing and component
interactions respectively. Section 4 presents its integration with
ROS. Sections 5 concludes the paper and presents future work.

II. EVENT-PROCESSING

The inputs of a SMC are streams of events. In our ap-
proach, an event is a data item represented as a Prolog fact
with an occurrence time interval. For atomic events where
occurrence times are single time points, the start and end of
their occurrence time intervals are the same time points.

Example 1. The face of Antonio recognized with the
reliability of 70% in an image taken at the system time 28
could be represented as face(“Antonio”, 70)〈28,28〉 and the
continuous recognition of Antonio from the time 28 to 49
could be represented as observed(“Antonio”)〈28,49〉. Please
note that the face(“Antonio”, 70) event is generated after the
time 28 due to the face recognizer processing, however it is
time stamped with the time of taking the picture in which the
Antonio face was recognized.

The event-processing tasks performed by a SMC are im-
plemented using Etalis event rules. Each event rule specifies
an event to be detected based on a pattern of the occurrences
of other events, and the SMC knowledge base represented as
a Prolog program. Etalis provides an expressive language for
specifying complex event patterns allowing the representation
of various temporal relationships between the occurrence time
intervals of events and also non-occurrence of an event be-
tween the occurrences of two other events.

The provided event-processing support facilitates a modu-
lar and efficient implementation of a wide variety of sensory
data processing tasks in SMCs. These include filtering, detec-
tion of complex patterns and integration and transformation of
data which are common in robotic applications [3], [6].

Example 2. objRec(O,Pos) events specify recognized ob-
jects and their relative positions to the camera. camTF (CTF)
and baseTF (BTF) events respectively specify the camera
position relative to the base and the base position relative to
the world over time. These events are received by a SMC
asynchronously. Whenever an object is recognized and it’s of

the type “soft drink”, the event rule 1 in the SMC2 calculates
and outputs its absolute positions by generating a new event of
the form softDrinkRec(APos). A drink’s absolute position
is calculated based on camera and base positions at the time the
drink was recognized using the equals operator which requires
two events to have happened at the same time. Please note
how, for example, ontological knowledge (knowledge of soft
and hard drinks) is seamlessly used in the event rule.

softDrinkRec(APos)← objRec(O,Pos) equals

camTF (CTF) equals baseTF (BTF) where

(softDrink(O), APos = BTF × CTF × Pos). (1)

Example 3. Rule 2 detects a face as a reliable one if within 5
seconds it is recognized 3 times with more than 60% reliability
in the increasing order.

relFace(F) < −
(face(F,R1) seq face(F,R2) seq face(F,R3)).5sec

where(R3 > R2 > R1 > 60). (2)

A SMC receives events asynchronously in an order which
does not necessarily correspond to their occurrence times. Re-
gardless of this, temporal relations in event rules are evaluated
based on event occurrence times and not the order of their
arrival to SMCs. Another point worth mentioning about Etalis
is its garbage collection mechanisms pruning events which can
no longer contribute in detecting any desirable event.

III. COMPONENT INTERACTIONS

SMCs as mediators between components enable two high-
level interaction mechanisms among them. By the first one,
components can subscribe themselves or the other components
to certain events of interest at runtime. For example when
the robot is having the goal of serving Antonio a drink, the
control component can subscribe itself (using its unique id)
to a SMC which processes face(F,R) events for events of
the reliable recognition of Antonio by sending the request
register(ID, s win〈now,+∞,<relFace(F),F=“Antonio′′>〉)
specifying its interest for such events from now on. Later, it
can unsubscribe from those events. Another example is when
the robot is seeing two moving objects and receives an order
from the user to follow the obj1 by its head. To this end, the
control component can subscribe the gaze control component
to events of the obj1 position over time. This helps to avoid
overloading the control component (with heavy cognitive
capabilities) with a large number of events unrelated to its
operational context.

The second interaction mechanism is provided by enabling
components to specify at runtime certain histories of events of
interest to be kept and maintained by SMCs and to query the
histories on-demand. A history of events of a certain type and
content can be maintained using one of the following policies:
1) the N most recent instances of such events, 2) such events
with occurrence time interval within the last l seconds, or 3)
such events of which occurrence times are within a certain
period of time. The management of history using such policies
in SMC supports to deal with the mismatch in communication
styles of components [3]. For example a component which

2For the sake of readability, the syntax of event rules in this paper might
be slightly different than the actual Etalis syntax

processes events of a certain type with a lower frequency than
the frequency at which those events are generated can ask a
SMC to keep the N most recent instances of such events to
access them on demand.

IV. INTEGRATION WITH ROS

The sensory management library is implemented in Prolog
and accessed through a Java interface. The only essential re-
quirement of a framework to integrate the library is supporting
a publish-subscribe communication mechanism. Although the
on-demand query mechanism of the library is naturally imple-
mented on top of a service-based communication mechanism,
in an asynchronous setting such interaction could be simulated
by a proper token passing among the interacting components.
We have developed a prototype integrating the library in ROS.
It provides a user-friendly interface (XML configuration file) to
subscribe a SMC to ROS topics as its input event streams. ROS
messages received on the subscribed topics are automatically
converted to the corresponding event formats to be consumed
by the SMC. ROS components can subscribe to, and query
the events processed and managed by SMCs at runtime. The
communication between SMCs and other ROS components are
realized using ROS communication mechanisms.

V. CONCLUSION

A light-weight software library is introduced which fa-
cilitates a systematic implementation of sensory management
components for an autonomous robot. The library integrates
the efficient language of Etalis to support the implementation
of complex event-processing tasks and extends it with dynamic
subscription and on-demand query mechanisms to support a
number of high-level inter-component interaction mechanisms.

We are currently preparing a setup to test our approach in
a knowledge-processing and interacting application scenario
for the NAO robot, validating it in terms of usability, re-
usability and efficiency. The future work is to extend its
functionalities with other types of history management and
querying to support the implementation of active memories
similar to [5].

REFERENCES

[1] Darko Anicic. Event Processing and Stream Reasoning with ETALIS.
PhD Thesis, Karlsruher Institute of Technology, 2011.

[2] Nick Hawes. Building for the Future: Architectures for the Next
Generation of Intelligent Robots. Proceedings of a Symposium held in
Honour of Aaron Sloman, 2011.

[3] I Lütkebohle. Facilitating re-use by design: A filtering, transformation,
and selection architecture for robotic software systems. Software Devel-
opment and Integration in Robotics conference, (section III), 2009.

[4] I Lütkebohle et al. Generic middleware support for coordinating robot
software components: The Task-State-Pattern. Journal of Software
Engineering for Robotics (JOSER), 2(1):20–39.

[5] Sebastian Wrede and Marc Hanheide. An active memory as a model for
information fusion. on Information Fusion, 2004.

[6] Pouyan Ziafati et al. Agent Programming Languages Requirements for
Programming Cognitive Robots. Proceedings of the Tenth International
Workshop on Programming Multi-Agent Systems, ProMAS @ AAMAS,
pages 39–54, 2012.

[7] Pouyan Ziafati et al. Event-Processing in Autonomous Robot Program-
ming. Proceedings of the 12th International Conference on Autonomous
Agents and Multiagent Systems, 2013.

