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Delay-dependent exponential stability criteria for
stochastic systems with polytopic-type uncertainties
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Abstract: This paper considers the problem of delay-dependent exponential stability in mean square for stochas-
tic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and
introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix
inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independent/rate-
dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than
existing ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing

ones.
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1 Introduction

Recently, delay-dependent stability criteria for stochas-
tic delay systems have attracted extensive attention (see
[1~8]). In view of the robustness of stochastic stability,
the linear and semilinear systems were studied in [1, 2], re-
spectively. [3] investigated the stability of linear and semi-
linear stochastic differential equation by means of the ex-
ponential stability. Verriest [4] presented stability of linear
stochastic differential equation via Riccati equations. Based
on the LMI approach, [5~8] gave the delay-dependent ro-
bust stability criteria of uncertain stochastic systems, re-
spectively. However, the criteria in [5] involved the param-
eterized model transformation. To determine the stability of
system, [6] and [8] used some inequality constraint. [7] used
a descriptor integral inequality constraint, and the criteria in
[7, 8] with matrix constraint P < af (o > 0 is a scalar,
P is the product of Lyapunov matrix). These results show
considerable conservativeness.

This paper presents some new delay-dependent exponen-
tial stability criteria for stochastic system with polytopic-
type uncertainties and time-varying delay. First, apply-
ing descriptor model transformation [9], we set de-
scriptor stochastic system and construct a new type of
Lyapunov-Krasovskii functional. Second, based on the
idea of [10], some free weighting matrices are intro-
duced to exclude constraint conditions in [6~8]. Finally,
using LMI algorithm, we obtain delay-dependent and
delay-independent exponential stability criteria for stochas-
tic system with polytopic-type uncertainties and time-
varying delay. These criteria include delay-dependent/rate-
independent and delay-independent/rate-dependent expo-
nential stability criteria. In contrast with the existing stabil-
ity criteria, these new criteria are less conservative. Numeri-
cal simulation examples show that these results are effective
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and an improvement over existing ones.

For convenience, we adopt the following notations:
tr(A)(AT) denotes trace(transpose) of the matrix 4; A > 0
(A > 0) denotes positive semidefinite (positive definite)
matrix A; L# ([-7,0);R™) is the family of R™—valued
stochastic processes 7(s), —7 < s < 0 such that 7(s) is

0
F o— measurable for every second and I_T E|n(s)||* ds <

oo; and F{-} denotes mathematical expectation operator
with respect to the given probability measure P.

2 Preliminaries
Consider the robust stability of system (1) with polytopic-
type uncertainties, that is, assume that system (1) has the
following form:
dz(t) = [Az(t) + Aqz(t — h(t))]dt
+ [Cz(t) + Caz(t — h(t))]dB(t),
l‘(t) = Sp(t)? vt e [_Tv 0] )
where z(¢t) € R™ is the state vector, the system matrices
A, Ag, C, and Oy are assumed to be uncertain but belong to
a known convex compact set of polytopic type, namely
(Aa Ada 07 Cd) c 97 2
where (2 is a given convex bounded polyhedral domain de-
scribed by ¢ vertices as follows:

q
=14, Ay, C, Ca¥'= o608 Ara i, Crar)
=t

)

freamibslolehgoy
k=1

The time delay h(t) is a time-varying continuous function
that satisfies

G

0<h(t) <™ “
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and
h) <p< 1, 5)
where 7 and 1 are constants, o(¢) is a continuous vector-
valued initial function, and ¢ := {p(s) : —7 < s < 0} €
L% ([-7,0],R™). It is well known that (1) has a unique so-
lution, denoted by z(t, ¢), which is square integrable. So (1)
admits a trivial solution z(¢,0) = 0. Ak, Agg, Ci, Cka are
known constant matrices with appropriate dimensions. The
variables ((t) are an m-dimensional Brownian motion de-
fined on a complete probability space (§2, F, P) with a nat-
ural filtration {F ¢}, (ie., F; = o {w(s) : 0 < s < t}).
Definition 1 System (1) is said to be exponentially sta-
ble in mean square if there exists a positive constant cig such
that

1l
tlim sup ~ log E ||z(t)|?
2.1 Delay-dependent robust exponential stability

To discuss the stability of system (1), first, we introduce
the descriptor system approach, set

q(t) = Az(t) + Aqz(t — h(?)), (6)

9(t) = Cx(t) + Caz(t — h(?)). ()
Then system (1) becomes the following descriptor stochas-
tic system

dz(t) = q(6)dt + g(t)dB(2). ®)
Moreover, equations in (6) and (7) ensure the following zero
equations

2 [2T )Ny + 2T (t — h(t)) N2 + ¢ (¢ )N3+g (t) N4
x [Ax(t) + Adw(t —h(t)) —q(t)] = (€
2 [z ()T + 2T (¢ - () Ta + 4" (¢ )T3+g (t)Ts]
X [Cz(t) + Caz(t — h(t)) — g(t)] =0, (10)
where IV, and T,. (r = 1,2, 3,4) are appropriately dimen-

sioned matrices. On the other hand, the Newton-Leibniz for-
mula provides

2(t) — 2(t — h(2)) =Lt_h(t):'v(s)ds= d; t_h(t)q(s)ds-l-q,
(11)

where ¢T

=[], 9B by (1), et
Sy 2(5)ds = 2(2) — ot — h(e)) —

then, we obtained the following Theorem.

Theorem 1 Consider system (1) with polytopic-type
uncertainties (3) and a time-varying delay satisfying (4) and
(5). Given scalars 7 > 0 and p < 1, system (1) is robust
exponentially stable in mean square, if there exist symmet-
ric positive definite matrices P, > 0, Qr = 0, Z; > 0, and

i (4,7 = 1,2,3) and appropriately dimensioned matri-

12)

ces Ny and T, (r = 1,2,3,4) such that R(;?) = and
the following LMISs hold for k = 1, -
o® o) g S15<Ic> R(k)
k) 5(k) (k) pik
. o) ot o) R
W =1 » x Pl o [ <0 (13
S ¢£;4) 0
*  ® % o —Zu
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and
k) k) pk

Rg )R12 R§3)
2 R(k) Ré’;) =0,
' " R(k)

where an asterisk * denotes a block induced easily by sym-
metry and

WL A UINT L T O FEITE gy 4.7 BY
+R® 4 gWT

O =gk AT NS B e 1T
_RM) 4 BT

&%) = P, — Ny + AENF + CFTT,

&) = ATNF - T + CFTF
B = Ny Ay + AGNT + TyCai — (1 — p)Qi + CRTT
bRy - R - R

@é’;) =—N; + AL Ng + CLTY,

oLy = ATNT — T, + CLTF,

&%) = _Ny — NT +rRD,

oU e NIp oWl BN

Proof Choose a Lyapunov-Krasovskii functional for
system (1) to be

R —

I TRY;)

V(t) = 3 Vile),

i=1
in which
g
Vi(t) = 3 z(t)T Pex(t),
k=1
gl |t
it
Val(t) kglj; h(t)x (s)Qrx(s)ds
B 6
fae (k)
Vs(t) = kglj e (s)R34 q(s)dsdd,
Vo= VAR
‘k;f T t+9 kg(s)lds
q t ra
- T
%0 =3 jo L_h(a 5T Ryddsda,
where 6T = [zT(a), xT( )]
(k) Rg’;)
R® — (k) R
% Rg’;)
Pk,Qk,Zk,R( ) = 1,2,3) are positive definite ma-

trices with approprlate d1mens1ons Let L be the weak in-
finitesimal operator of (8), then, by It6 differential formula,

Ly—oVh = Z {227 (t) Peg( )+tr[ (t)Peg(®)] },(14)
silyee éjl{mT(t)Qkx(t)

—(1 = W)z (¢ — h()Qealt — h(1))}, (15)
veoVs < 3 {rd" (R a(t) — x}, (16)
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Ly=oVa < Z{Ttr[ (t)Zrg(1)]
t
—~ ¥ tr[g" (s)Zkg(s)] ds}, a7
B g®
Ly=oVs = Z{h Rk)TR(k) 3
" 5’?
s)ds + 18
Lh(t)f R q(s)ds+x},  (18)
(k)
where x = jh(t) g% (s) Ry q(s)ds.
Substitute (12) into (18), get
Lv:O‘/5
4 R(k) R®
= s £
IR LIGISH o S
R® _g® R0
R o A B e K )
L g
By Lemma [11], for any matrix Z; > 0,
0
R® R® R®)
—2gF | Sl et B T | L s
Ry R R
Obviously,
L’U:O‘/S
g R®) R() RY _g®
& . 11 4 9¢T | flis
\k;{ & ng(k)R g R R”“’ ¢
1 1 R ol
xS Zps + 2y , (20
X kS + ¢ R(k) R® § (20)
where €T = [27(¢),2T(t — h(t))]. Combining Ly—oV;

(¢ = 1,2,3,4,5) and adding the terms on the left of (9)-

(10) to Ly—oV', we can express L,—oV as
L,—oV < Z {n" ()&@®)n(t)
it
B T [gT(s)Zkg(s)} ds + §TZk§},

where g ¥(E) =L (#);2T
(RIS, (B33)™,0,0],
k) (k) (k) =k
o9 62 ol ot
. o) gl g

(t i h(t))aqT(t)agT(t) ] 7UT =

(k) — =
e * % @(k) !15(k) FELE
SR o QSELIZ)
Since E (sTZys) = Ef (5)Zxg(s)] ds, it fol-
lows that

q
EL,—V(t) < 3 BEn"()&2®n@). @D
=t

By Schur’s complement, ) < 0 is equivalent to LMI
(13). From the proof of Theorem 1 [12], there exist a scalar

a such that

ik
lim sup - log E ||lz(t)|* < —a,
t—oo 1
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which implies that system (1) is exponentially stable in
mean square. The proof of Theorem 1 is completed.

Remark 1 By constructing an output feedback con-
troller, we can obtain the stability criteria for system with
output feedback in the same methods. So, it is without loss
of generality for the discussion of system (1).

Note that a delay-dependent and rate-independent expo-
nential stability criterion for system (1) with polytopic-type
uncertainties (3) and a delay satisfying (4) and (5) can be
derived from Theorem 1 by choosing Q) = 0 as follows.

Corollary 1 Given scalar 7 > 0, system (1) with
polytopic-type uncertainties (3) and a time-varying delay
satisfying (4) is exponentially stable in mean square if
there exist symmetric positive-definite Py, Z, Rg?) =
1,---,q) and appropriately dimensioned matrices N, and
T, (r = 1,2,3) such that RYY = R (4,5 = 1,2,3) and
the following LMI holds for k = 1,2,--- , ¢:

2 (k k k k) k
Err
@ 4523 24 R

60— | 4 4 a®e® o |<0 (@
* * ok @EJZ) 0
* x  *  x —J
and
k k k
R Ft g
R( ): * RéQ R%B )
* % R3§)
where

S = Ny Ay PATNT + T0Ch + CLTT
+rR® + RY® + RYT,

S = Nl RRT NT & o0, + ORTF
+rR® _ R® _ pIT

and (ﬁg.“) (t=1,2,315 =2, 3,4) are'defied 1n (13).

2.2 Delay-independent rate-dependent robust expo-
nential stability

If we set the matrices Z; and R( )(z — = 3}
to zero, then we can obtain a delay- 1ndependent and rate-
dependent exponential stability criterion for system (1) with
polytopic-type uncertainties (3) and a time-varying delay
satisfying (4) and (5). In this case, Theorem 1 becomes the
following corollary.

Corollary 2 Given scalar x4 < 1 and system (1) with
polytopic-type uncertainties (3) and a time-varying delay
satisfying (5) is robust exponentially stable in mean square,
if there exist symmetric positive-definite matrices P and
Q@ and appropriately dimensioned matrices N, and T
(r = 1,2,3,4) such that the following LMI holds for
k=102, -9 g

5 85 80 oy
- a9 8l ot
x % &8 &P

x &

a9 —

<0, @3)

* *
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where

& = NiAy + ATNT + 110y + CTTT + Q4

&) = Ny Ay + ATNT + T1Cpa + CTTT,

B =Py ~ Ny + AENE +CFTE,

80 — ATNT - 73 + OFI],

933“) = NoAga + AggNT + ToCra — (1 — 1) Qs

+CdeTéTa

53 = —Nz + ALNT + CLIf,

50 = ALNT —Tp + OLTF, ) = —Ny — N,

$H = N, &) Lop, 7T T,

In addition, if there is no stochastic uncertainty in system
(1), that is, 3 (t) is assumed to be zero, system (1) degener-
ate into system [10]. We obtain the following corollary.

Corollary 3 Given scalars 7 > 0, and p < 1, sys-
tem (1) with 3(t) = 0 and with time-varying delay satis-
fying (4) and (5) is asymptotically stable, if there exist sym-
metric positive-definite matrix P, > 0,Q; > 0, and Rg-“)
(4,7 = 1,2, 3) and appropriately dimensioned matrices N,
(r = 1,2,3,4) such that RZ(;-“) = Rg-’;) and the following
LMIs hold for k = 1,2,--- ,¢:

k) (k) s(k
[ 5y 5
(k) —

w0 2t I | <0 24)
* * Zég)
and
i | e
4 = * Ry Ryg | >0,
* * Rgg)
where

T =N A+ ATNT + Qu + 7R + RY + BT,
25 = NiAgk + AENF +7R® — R{) + RYT,
Zis =P — Ny + ATNY,
T4 = NaAak + AZNT — (1 - p)Qs + 7RY)
k E)T
~RY) ~ R,
B0 & =1y AT NE, ol ey B s UL
Remark 2 Corollary 3 is equivalent to Theorem 2 [10].
Moreover, because the new Lyapunov-Krasovskii func-

tional is different from that in [10], the results obtained from
Corollary 3 are less conservative than existing ones [10].

Besides, if we assumeA g, = Cy, = 0, system (1) turns
into a stochastic system without time delay, the following
corollary can be acquired.

Corollary 4 Given scalars 7 > 0 and p < 1, system
(1) with time-varying delay satisfying (4) and (5) and with
Agk = Cgr, =
there exist symmetric positive-definite matrix P, > 0, and
appropriately dimensioned matrices N, and 7. (=83}
such that the following LMI holds for k = 1,2, - - - ,q:
£ 5 £

. 5B | g
x o« 5P

A~

ket (25)

0 exponentially stable in mean square, if -

Y. Ll et al. /J Control Theory Appl 2009 7 (3) 291-296

where

I = WA ATNT LT\ Ch CFTE,

E®) = P, — N+ ATNE + OFTT,

P =AINF -7+ CFTT, 20 = —n, — B,

3= NT Oqyp M g

Remark 3 When p = 0, the delay is time invariant.
From Theorem 1 and Corollary 2, we can easily obtain
the delay-dependent and delay-independent robust expo-
nential stability criteria for continuous-time linear stochas-
tic system with polytopic-type uncertainties and with time-
invariant state delay, respectively.

3 Numerical simulation

In this section, for the purpose of illustrating the useful-
ness and flexibility of the methods in this paper, we present
some simulation examples.

Example 1 Consider the following time-varying delay
system J; with polytopic-type uncertainties ([10] Example
2), where ;

_ |10 =0.12 4+ 12p o (=0 —0.35}
- [1 —0.465—;)]’ R [ 0 03
and ||p|| < 0.035 [12]. Let p,,, = 0.035 [10] and set

—0.12+1
Alz[o 012 4 2pmJ7

1 0465 — p,.,
BRI 19},
T L 0465100, [

—0.1 —-0.35
A1d=A2d=Ad=[ }

0= =053

When 1 = 0, the upper bound on the time delay obtained
in [10] is 0.863. However, by Corollary 3, the system Y, is
robustly stable for delay 7 = 0.8758, which is better than
the values in [10]. Table 1 shows a comparison of the up-
per bounds for 1 # 0 obtained by Fridman and Shaked’s
method [13], He’s method [10], and our methods (Corollary
3). Itis clear that the upper bounds obtained by Corollary 3
are larger than those given in [13] and [10].
Table 1 Calculation results for Example 1.

/i) 0 0.1 0.9 any u
Fridman [13] 0.782 0.736 0454 0.454
He [10] 0.863 0.786  0.454 0.454
Corollary 3  0.8758 0.8041 0.603 0.4548

Example 2 Consider the robust stability of the uncer-
tain stochastic delay system X, with the following parame-
ters:

e —1" =0:3p S it 0.3p

B e B O T
oo [01 —0.1+03p L T ey
0 014080 |7 2 10 01 e

and [p| < 1, o] < 1.

The parameter uncertainty can be represented by a four-
vertex polytope and the upper bound of the time delay 7,
which guarantees that the given system is exponentially sta-
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ble in mean square, as given in Table 2. Set the initial con-
ditions as 2(0) = [0.04,0]T; Figs.1 and 2 show the state
response of polytopic model with four-vertex systems (each
system has two states), as i = 0.5, Tmax = 0.5598, and p
is any value, Timax = 0.3893, respectively.

Table 2 The upper bound of 7 for Example 2, as a

function of the bound p.
" 0 0.1 0.5 0.9 any [
Tmax 0.7498 0.7093 05598 0.4223 0.3893
0.05 T 0.05 ol ]
88;} P : QoL 4 s %
002 _ oS 0,03-'-,_‘ st e
= 0.01 A ol =t 0.02 ]
H . R 5
0 Z\ﬁ/“— 0.01 1
-0.01 i : s O 7
_0.02 1 1 1 1 70‘02 1 1 1 L
0 200400 600 8001000 0 200 400 600 8001000
t/s
0.05 i e
0.04 1
o~ 003 ' """ xl il
= 002 =
= 0.01 .
: =001 - .
_0‘02 1 1 1 1 —] 02 1 1 1 1
0 200400 600 8001000 0 200400 600 8001000
t/'s t/s
Fig. 1 The state response of system with 4 vertices (as u = 0.5,
Tmax = 0.5598).
0.05 o G 0.05 g e e
004 b | 004y X
= 003 S e Hd
B 0,02 e (e %
< 001 1 < 001 Z\ 3
0 Z\,--s__--——---—— 0 :
S001 = T =001 ]
_0.02 1 1 1 1 _0.02 1 1 Il 1
0 200400 600 8001000 0 200 400 600 8001000
t/s t/s
0.05 T T T T 0.05 T T T T
QO e =1 (0% ] ) 9
L 003 S O B 1 )
= 0.02F A g
= 0.01 g s 0.01 . =
0 Z\,—-......._—.. 0 Z W SN G|
=001 = = —0.01 - 1
= 02 1 1 1 L __0'02 1 1 1 1
0 200400 600 8001000 0 200 400 600 8001000
tls tls

Fig. 2 The state response of system with 4 vertices (as u is any value,
Tmax = 0.3893).

4 Conclusions

This paper presents some new stability criteria for
stochastic time-varying delay systems with polytopic-type
uncertainties. Based on the equivalent descriptor stochas-
tic system and some free weighing matrices, a new type
of Lyapunov-Krasovskii functional is constructed, and new
techniques are developed to make the criteria less conserva-
tive. Finally, numerical examples demonstrate that the cri-
teria presented here perform much better than the existing
stable one.
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