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Abstract: This paper considers the problem of delay-dependent exponential stability in mean square for stochas-
tic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and
introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix
inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independenvrate-
dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than

:;t;.lr* 
ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing
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L Introduction
Recently, delay-dependent stability cirtellra for stochas-

tic delay systems have attracted extensive attention (see

t1-81). In view of the robustness of stochastic stability,
the linear and semilinear systems were studied rn f1,21, re-
spectively. [3] investigated the stability of linear and semi-
linear stochastic differential equation by means of the ex-
ponential stability. Verriest [4] presented stability of linear
stochastic differential equation via Riccati equations. Based
on the LMI approach, [5-8] gave the delay-dependent ro-
bust stability criteria of uncertain stochastic systems, re-
spectively. However, the criteria in [5] involved the param-
etenzed model transformation. To determine the stability of
system, [6] and [8] used some inequality consffaint. [7] used
a descriptor integral inequality constraint, and the criteria in
[7, 8] with matrix constraint P ( o1 (o > 0 is a scalar,
P is the product of Lyapunov matrix). These results show
considerable conservativeness.

This paper presents some new delay-dependent exponen-
tial stability criteria for stochastic system with polytopic-
type uncertainties and time-varying delay. First, apply-
ing descriptor model transformation [9], we set de-
scriptor stochastic system and construct a new type of
Lyapunov-Krasovskii functional. Second, based on the
idea of [10], some free weighting matrices are intro-
duced to exclude constraint conditions in [6-8]. Finally,
using LMI algorithm, we obtain delay-dependent and
delay-independent exponential stability criteria for stochas-
tic system with polytopic-type uncertainties and time-
varying delay. These criteria include delay-dependenVrate-
independent and delay-independent/rate-dependent expo-
nential stability criteria. In contrast with the existing stabil-
ity criteria, these new criteria are less conservative. Numeri-
cal simulation examples show that these results are effective

and an improvement over existing ones.
For convenience, we adopt the following notations:

tr(A)(,aT) denotes trace(transpose) of the matrix A; A 2 0
(A > 0) denotes positive semidefinite (positive definite)
matrix A; L2r^(l-r,0];R") is the family of lR'-valued
stochastic proiesses q(s), -r ( s ( jo such that 4(s) is

Fo- measurable for every second unu 
J_" 

.E lla(s)ll2 ds <

oo; and E{'} denotes mathematical expectation operator
with respect to the given probability measure P.

2 Preliminaries
Consider the robust stability of system ( 1) with polytopic-

type uncertainties, that is, assume that system (1) has the
following form:

dr(t) : lAr(t) + Aar(t - h(r))ldt
+ fcn(t) r car(t - h(t)))dB(t), (1)

r(t) : 9(t), Yt e l-r, 0l ,
where z(t) € IR.' is the state vector, the system matrices
A, Aa, C , and C a are assumed to be uncertain but belong to
a known convex compact set of polytopic type, namely

(A ,Aa,C,Ca)  e  A , (2)

where J-l is a given convex bounded polyhedral domain de-
scribed by q vertices as follows:

q

9,:  {(A, Aa, C, Ca) :  D €n(Ax, Apa, Cp, Cpa)
k:r

q

t n ) o ;  D  € r : 1 ) .  ( 3 )
k :1

The time delay h(t) is a time-varying continuous function
that satisfies

0 ( h ( t ) ( r
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h ( t )  < / - , < 1 , (s)
where r and p, are constants, cp(t) is a continuous vector-
valued initial function, and g ': {p(") : -r < s ( 0} e
L2so([-r,0] , R'). It is well known that (1) has a unique so-
lution, denotedby n(t, rp), which is square integrable. So (1)
admits a trivial solution r(t,O) : 0. Ap, Apy,C*,Cna arc
known constant matrices with appropriate dimensions. The
variables /ft) arc an rn-dimensional Brownian motion de-
fined on a complete probability space (A , F , P) with a nat-
ural filtration {F r}r>o (i.e., F t : o {o(s) : 0 ( s ( t}).

Definition L System (1) is said to be exponentially sta-
ble in mean square if there exists a positive constant os such
that

. l im sup ] roge l l*(t) l l '  (  -ao.
f * m - t

2.1 Delay-dependent robust exponential stability
To discuss the stability of system (1), first, we introduce

the descriptor system approach, set

s(t) :  Ar(t)  *  A6r(t  -  h(t)) , (6)

s(t) : Cr(t) + Car(t - h(t)). (7)
Then system (1) becomes the following descriptor stochas-
tic system

dz(t) : q(t)dt + g(t)dl3(t). (8)
Moreover, equations in (6) and (7) ensure the following zero
equations

z lrr (t)Nt + nr (t - h(t))N2 + sr(r)Ab + er(r)N4]
x [An(t) * Aar(t - h(t)) - s(r)] : o, (e)
z lrr (flrt + rr (t - h(t))72 + qr (t)rt + sr &)T4l
x lCn(t) * C6r(t - h(t)) - e(r)l : 0, (10)

where lI, andT, (r : 1,2,3,4) are appropriately dimen-
sioned matrices. On the other hand, the Newton-Leibniz for-
mula provides

r ( t \  -  r ( t  -  h ( t \ \ :  lL  
e t

' t ' - r1 ' ; i ( t )d t  
:  

J ' -  n ' ' 'o(s)ds *s '

(1  1 )

where sr : I f" . g(s)dp(s)]r by 1l r), get' J t - h t t \  "  '

J:-r,^q(s)ds 
: r(t) - n(t - h(t)) - s, G2)

then, we obtained the following Theorem.
Theorem 1 Consider system (1) with polytopic-type

uncertainties (3) aad a time-varying delay satisfying (4) and
(5). Given scalars r ) 0 and p, 1 1, system (1) is robust
exponentially stable in mean square, if there exist symmet-
ric positive definite matrices Pp ) 0,Q* 2 0, Zx ) 0, and
n[f {1,,i : 7,2,3) and appropriately dimensioned marri-

ces AI, andT, (r :1,2,3,4) suchthat Rl? : R!!) u"a
the following LMIs hold for k : L,. . . , ei

l- o\\' o\r,, ol!,) ofn) a\!)1
| - o"fr'o52'o!ri^' alr|) |

o ( k )  : l  *  *  o \ 2 )o \ \ )  o  l <o  (13 )
l -  . 7 " o f i '  o l
L *  *  *  i - z r )

and

Ia{t) n{f) n{{)l
RG) : l  )  a t i t a l t ) l ro ,

L . .- a55'.1
where an asterisk x denotes a block induced easily by sym-
metry and

al\) : NtAn *aTlrfl i Ttcx + cT:t + Qn + r Rl\)
+al!)+ R\Z)',

a\t) : NrAan + ATN; tT1c61" + cfrf + rn\!)
-nl!)+ Ry")',

@13) : Pn - Nr+ A;,^/f + CTr{,
an):A'*NI -Tr*c[r[,
ilfr) : NzAan + ArdkNf lT2C61" - (1 - tDQx + CTrr[

+rR$) - Ryr) -Rr?r)',

@fr) : -Nz r A'o*N? + CIIT{,
a*n) : dkvf - Tz-r chT[ ,
ar\!"r) : -AIB -.nrf + "a!!),
ilf) : -,^rf - Tr, af,n) : Px - rf, - rn * r21".

Proof Choose a Lyapunov-Krasovskii functional for
system (1) to be

v(t ) :  f  U(t ) ,
i : l

in which
q

v(t): I  r(t)rP1-n(t),
It: l

Q r t
v2ft) : p, J-o,,,zr(s)Q6z(s)ds,

t (

ftr

) ) ,
) 1
) t

t l g

d '
t )

t (cr',

Rli
Rti

r )

r(ct

Rli
Rti

v4(t) : fi,f,I,'*rt
v ( t \ :  i  f ' r

f l t JO  Ja -h (a

where dT : lrT (a), rT (a - h

lali' I
o , * , :  

|  
*  l

L x

w(t) : P, J:, Ji*, o' {,) *!!)q(s)dsdd,

s)z7,9(s)ldsdd,

drft6ddsdo,

853)
Pr,,Q*,zr,R[? (i, i  : 7,2,3) are positive definite ma-
trices with appropriate dimensions. Let L be the weak in-
finitesimal operator of (8), then, by It6 differential formula,

s
Lo:oVr: D {2nr (t)p1"qft) + tr lor (t)p*.q(r)] } , tr+l

K - L

o

Lu:oVz4l{rr( t)gpn(t)
k :L

-( t  -  rD*'( t  -  h(t))Qpn(t  -  h(t)) \ ,  (15)

sr(

R'E)

q

Lo:ove( | {rqr(t) a5? qft) - x}, (16)
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T

t + sT Z*s.

which implies that system (1) is exponentially stable in
mean square. The proof of Theorem 1 is completed.

Remark I By constructing an output feedback con-
troller, we can obtain the stability criteria for system with
output feedback in the same methods. So, it is without loss
of generality for the discussion of system (1).

Note that a delay-dependent and rate-independent expo-
nential stability criterion for system (1) with polytopic{ype
uncertainties (3) and a delay satisfying (4) and (5) can be
derived from Theorem 1 by choosing Q* : 0 as follows.

Corollary I Given scalar r- ) 0, system (1) with
polytopic-type uncertainties (3) and a time-varying delay
satisfying (4) is exponentially stable in mean square if

there exist symmetric positive-definite P1,,Zk,R*) (k :

\,-.. ,S) and appropriately dimensioned matrices N" and

T, (r :7,2,J) such that Rl|) :  a!? {t, , i  :  L,2,3) and
the following LMI holds for k : I,2,. - . , q:

6 @ :

p(r) -

where

6\\) : NtAx -raTlrf * Ttc* + cf rl
+rRl\) +,q13) + R\!)',

6y) : NzAa* + ArdkN[ tTzCa* + CIIT;

+rnlrf;) - Ryr) -Ry]',

ataOl l  ( i  :7 ,2,3;  j  :2 ,3,4)  are def ined in (13) .

2.2 Delay-independent rate-dependent robust expo-
nential stability

If we set the matrices 21" and Al? Q' : i : 1,2,3)
to zere, then we can obtain a delay-independent and rate-
dependent exponential stability criterion for system (1) with
polytopic-type uncertainties (3) and a time-varying delay
satisfying (4) and (5). In this case, Theorem 1 becomes the
following corollary.

Corollary 2 Given scalar p < 1 and system (1) with
polytopic-type uncertainties (3) and a time-varying delay
satisfying (5) is robust exponentially stable in mean square,
if there exist symmetric positive-definite matrices P1" and

Qp and appropriately dimensioned matrices N" and T,
(r : I,2,3,4) such that the following LMI holds for
k : 1 , 2 , . . . , e 1

293

Lu:ovq< f 1"r, lor(t)zno|)l
b - 1

-  f :  - .nlor(s)zxs(s)l  as),
J t_ h( t )

where 1 : l.' .. . qt(")n!3)q(s)ds.
r t _ n \ t )

Substitute (12) inro (18), get

Lo:oVs

.,*'l;iAl -;fii] t+x-zt' l;fir],] ,,n,
By Lemma [11], for any matrix Zn ] 0,

-,,' [;i{]l ,. *
Obviously,

(r7)

L.-ovs: i {n(,)e' lfttfi|Eg,l,
*, Ii-^u,r' [;fi]] o(")a"+x], (18)

: -? {n,',*' lfifi Efr)1,

[;fir] ','l;l,)l
6l\) o\2) o$) o;?^) nl\)1
* ,6$t o$t 6a) P{xt 1
*  *<  o$ )E{n )  o  l<o  Q2)
*  r <  . " * f ^ '  0 1
* * r< * -zr)

Ia!!) al!) a!!)l
| - n\\) a{a\) l,
L * ft!:'j

(20)

Lu:oVs

. E {"' [#iJ, fg,],-,,' [;ii] ifill
+y* sr zxs-,' [;ii]l,r,lti'i.]'*] ,

and

where {r : [zr(t), rr(t - h(t))]. Combining L,:sVi
(i : I,2,3,4,5) and adding the terms on the left of (9)-
(10) to Lr:sV, we can express Lo:oV as

q

Lu:sV < I {q"(r)qrotn)q1t1
k : 1

- 
Ji-rurtt lsr (s)zns(s)] ds + sr znsj'

where 4r (t) : lrr (t) , *r (t - h(t)), qr (t),.st (t) ] , or :

[(Rl3) )', 1a!!) ;r, o, 01,
lo\\) o\P o\\) o\?1
I  r  I  f -  |

|  - / r " \  - /a \  - rk )  I

4i(r . r  -  |  
x * i i * i ,?, ,* i f , l *oz;1or.

I  x  *  @| . ] J 'Q \ \ ' l
I  " "  y r . l

L x * r< Ofn'J

Since E (sr zxs) : 
" fr_n,utr lor (s)zt s(s)] ds, it fol-

lows that

EL,:ov(t)a i tn'(r1qro{x)nQ). Qr)
K:L

By Schur's complement, 6t@) I 0 is equivalent to LMI
(13). From the proofofTheorem 1 [12], there exist a scalar
o such that

,]jg'"p Tnsn ll"(t)l l '( -o,

6l\t Eat af,) 6li)l

: 
'*' u_rff',-r\,',| ., (23)

* * ." agt)

6 & ) :
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where

6l? : NrAn r A'rNl *Trcn + c[r[ + en,
6ly : NtAna+ ATNI tTycl,a+ qrf,
ot? : P* - Nt + Ark N? + CTr?,
6\rn):aTw[ _ Tr*cfrf ,
'6y) : NzAxa + ATdNI *T2caa - (r - der"

+c[dT;,
619") :-lh + AT'N? + CTdT{,
6n) : AT.NI - Tz * c[oTf, 6tt) : -t/, - nJ,
6yn) : -,^/f - rr, 6f,) :2pn - TI - rn.
In addition, if there is no stochastic uncertainty il system

(l),.that is, B(t) is assumed ro be zero, system 1i; degener_
ate into system [10]. We obtain the following corollary.

Corollary 3 Given scalars r ) 0, and p < 1, sys-
pm (1) with l3(t) : 0 and with time-varying delay saiis-
fying (a) and (5) is asymptorically stable, iithJre exiit sym-
metric positive-definite matrix p1a ) O,ex 2 0, and Rff)
(i, j : I,2,3) and appropriately dimensioned matrices N'
(, : I,2,3,4) such thar RIP : A!!) anathe foltowing
LMIs  ho ld  fo r  k  :  I ,2 , .  . . ,  q :

T r'(ft) \-(k) \-(k) I
|  - 1 , 7  2 1 2  2 1 3  |

r ( A ) : l *  z ! , 9 2 \ ? l < o
L - .' ,!'')

(24)

and

R&) : ) 0 ,

where

'{t) : NrA* * eTul *Ttcn + c[r[,
i{!) : Pr" - Nr+.4TNf + cTr{,
tll) : aTtt - rt * c[rf , i[t) : -r/, ; Nf ,
i[? :-.^rf - rr, D[1) - Pk - rf, - rn.
Remark 3 When p : 0, the delay is time invariant.

From Theorem 1 and Corollary 2, we can easily obtain
the delay-dependent and delay-independent robuit expo-
nential stability criteria for continuous-time linear stochas-
tic system with polytopic-type uncertainties and with time-
invariant state delay, respectively.

3 Numerical simulation
In this section, for the purpose of illustrating the useful-

ness and flexibility of the methods in this paper, we present
some simulation examples.

Example 1 Consider the following time-varying delay

llrteT 11 with polyropic-type uncerrainties ([10] Example
2), where

4: 19 
-o^'?!"r1 

.  o,:  f  -o' t  -0'351
L 1  - 0 . 4 6 5 - p ) '  L  0  0 . s I

and llpll < 0.035 tt2l.I_,et p^:0.02b [10] and ser

, .  _  l o  -0 .12+12p^ j
" '  -  

l t  -0 .465 -  p*  l '

a , :  f o  
-o l2 - t zP^ f

-  
L 1  _ 0 . 4 6 5  *  p ^  ) ,

Ata :  Azd: A, :  l -9j-9 i t l-  
L o 0.3 I

!!en p : 0, the upper bound on the time delay obtained
in [10] is 0.863. However, by Corollary 3, the syitem X1 is
robustly stable for delay r : 0.8758, which is better than
the values in [10]. Table I shows a comparison of the up-
per bounds for p, I 0 obtained by Fridman and Shaked s
method [13], He's merhod [10], and our methods (Corollary
3). It is clear that the upper bounds obtained by Corollary i
are larger than those given in tl3l and t101.

Tbble 1 Calculation results for Example 1.

f nff) nl!) a{!).1
| - af,, nLE, I
L * - ft53,-]

where

El? : NrAr" * ATNI ]- en-r "n\l +al3) + R\?' ,
t!t) : NtAan + ATN; + "afl 

- Rl? + RtE)' ,
tff) : Pn - Nt+ ATNI ,
tt ) : NzAan + AT'NI - (1 - u)e* + rR\9

-Ry') - Ryr)',
E ? :-A& + ATrN{, E[? : -AiB -,^'f + 'n[!).

Remark 2 Corollary 3 is equivalenr ro Theorem 2 tl}l.
Moreover, because the new Lyapunov-Krasovskii func-
tional is different from that in [10], ihe results obtained from
Corollary 3 are less conseryative than existing ones [10].

Besides, if we assume Aak : Can :0, system (l) turns
into a stochastic system without time delay, the followins
corollary can be acquired.

Corollary 4 Given scalars r ) 0 and tt I 1, system
(1) with time-varying delay satisfying (4) and (5) ani with
4o* 

: 
_Cat" 

: 0 exponentially itable in mean square, if
there exist symmetric positive-definite matrix pr" j O, ana
appropriately dimensioned maffices AL and f, (, : 1,8,4)
such that the following LMI holds for k : 1,2,. . . ,q:

0.1 0.9 any p

Fridman [13] 0.782 0.736
He [10] 0.863 0.786

Corollary 3 0.8758 0.8041

0.454 0.454
0.454 0.454
0.603 0.4548

T i ( / ' )  i ( /c)  n(k) l
|  " ] t  - 1 3  2 1 4  |

r ( f t )  :  I  *  r j f ) i j f )  l<0.
L . . tti))

Example 2 Consider the robust stabiliff of the uncer-
tain stochastic delay system 12 with the foilbwing parame-
ters:

and lp l  (  1 ,  la l  (  1 .
The parameter uncertainty can be represented by a four-

vertex polytope and the upper bound of the time delay r,
whichguarantees that the given system is exponentially sta-

': i;'-,1Tr"] ' Ad: l;', -, fitr'] '

": [%' ;:,'._'r:;y] , cd: l-3'0,1'f r,] ,

(2s)
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t3l

t4l

i5l

t61

vl

t8l

li

>l

ble in mean square, as given in Table 2. Set the initial con-
ditions as z(0) : 10.04,0]r; Figs.l and 2 show the state
response of polytopic model with four-vertex systems (each
system has two states), as p - 0.5, z-* : 0.5598, and pl
is any value, rmax : 0.3893, respectively.

Table 2 The upper bound of r for Example 2, as a
function of the bound p.

1-r O 0.1 0.5 0.9 anY P

rnax 0.7498 0.7093 0.5598 0.4223 0.3893
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Fig. 1 The state response of system with 4 vertices (as p : 0.5,

t.max : 0.5598).
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Fig. 2 The state response of system with 4 vertices (as p is any value,

Tmax : 0.3893)'

4 Conclusions
This paper presents some new stability criteria for

stochastic time-varying delay systems with polytopic-type
uncertainties. Based on the equivalent descriptor stochas-
tic system and some free weighing matrices, a new type
of Lyapunov-Krasovskii functional is constructed, and new
techniques are developed to make the criteria less conserva-
tive. Finally, numerical examples demonstrate that the cri-
teria presented here perform much better than the existing
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