
Moving Towards a Distributed Network of Proactive, Self-Adaptive and
Context-Aware Systems

Remus-Alexandru Dobrican, Denis Zampunieris
Computer Science and Communication Research Unit, University of Luxembourg
 Luxembourg, Luxembourg

Email:{remus.dobrican, denis.zampunieris}@uni.lu

Abstract—Instead of being static and waiting passively for
instructions, software systems are required to take a more
proactive approach in their behavior in order to anticipate and
to adapt to the needs of their users. To design and develop such
systems in an affordable, predictable and timely manner is a
great engineering challenge. Even though there have been
notable steps towards distributed self-adaptive and context-
aware systems, there is still a lack of methodologies on how to
model and implement applications which have to distribute
and to manage large amounts of information. In this work-in-
progress, we address this issue by proposing a self-adaptive
and context-aware model with a structure that allows the
system to learn from the user’s behavior by using Proactive
Computing. The novelty comes from the possibility of having a
distributed network of Proactive Engines in which the
exchange of contextual information would help each system to
take smart decisions.

Keywords—self-adaptive systems; context-aware systems;
proactive computing; distributed network.

I. INTRODUCTION
The demand for devices and applications that are able to

adapt their behavior at run-time, as a response to the
increasing demands of users, has risen considerably in the
last couple of years [1]. Giving instructions to complex
software systems is becoming quite a difficult task for users,
as it requires their continuous involvement, a set of advanced
technical skills and a lot of knowledge about the system. As
a consequence, our model is leading the users towards new
ways of interacting with smart systems that will be able to
perform a variety of automated tasks on users’ behalf.

Three main properties are to be distinguished when
speaking about systems that dynamically adapt themselves
according to the context variation or the requirements
change: self-adaptation, proactivity and context-awareness.

Self-adaptation in software systems comes in many
different aspects. Self-adaptive systems can be characterized
by their operating mode which easily permits them to fulfill
their goals in a modified context. Feedback loops provide an
architectural solution for self-adaptation. Brun et al. [2]
indicate that feedback loops usually include four key
activities: collecting, analyzing, deciding and acting. These
activities are essential for achieving self-adaptability. In
Figure 1, a generic model of a unidirectional feedback loop
is given. It shows the inputs or the outputs of each state but
the data flow between the states is omitted.

Context-aware systems are designed to continuously
analyzing contextual information, which is a key feature for
determining the occurrence or the lack of events.

Events play a central role in the lifecycle of software
systems. They range from simple request for different
services to serious incidents that prevent the well-functioning
of a system. Events can be divided into three main
categories: foreseen (taken care of), expected (planned for)
and unexpected (not planned for) [4].

Tennenhouse [5] firstly introduced Proactive Computing
as a new mode of operation that was crucial for moving
towards human-supervised computing. The essential features
of proactive systems, as seen in [6], are taking decision for
their users and acting on their own initiative. Proactive
Computing is a solution for foreseeable events, while
context-awareness and self-adaptiveness handle unforeseen
events, which are seen as deviations from the normal
situations.

The contribution of this paper is two-fold. First, it offers
an infrastructure for software systems capable of performing
automated tasks for the user, of analyzing large quantities of
data and making decision in different contexts. Second, it
provides an analysis of a distributed network of systems that
are implementing our model.

The rest of the paper is organized as follows: Section 2
describes the main characteristics of a Proactive Engine.
Section 3 investigates the possibility of having a distributed
network of Proactive Engines. Section 4 provides an
example of application for our model; other applications are
proposed. Section 5 conclusions about the potential of
Proactive Engines.

Figure 1. Autonomic control loop [3]

II. PREVIOUS WORK
Zampunieris developed the concept and the structure of

the first Proactive Engine in 2006 [7]. It was designed as a
complex mechanism for running Proactive Rules. A
Proactive Rule is a structure conceived to perform specific
actions in case a special situation was detected or in case of
the lack of an event. The detection of students that did not
submit their online assignment and the notification of their
professor as a consequence, is a concrete example of a rule
which was used in a real-case scenario, when the initial
Proactive Engine was deployed aside a Learning
Management System (LMS) [8]. Results showed that major
limitations of a LMS such as the restricted interaction and
limited collaboration between learners and educators inside
courses could be overcome with the help of a Proactive
Computing [9]. Previous work, [10] and [11], focused until
now on applying Proactive Computing on a single system,
thus exploring only the scenario of having only one
centralized Proactive Engine. But, a centralized solution can
become quite fast non-scalable in many scenarios where a
Proactive Engine handles a big number of devices and
applications. The possibility of having an entire network of
Proactive Engines exchanging data and learning from each
other was not yet explored.

III. PROACTIVE ENGINES
We propose a new version of the Proactive Engine, where

processes are divided between the sub-parts of the model.
Before, Proactive Rules were taking care of data acquisition,
activation guards, conditions, actions and rules generation;
now, each step is assigned to a specific structure. A major
benefit of separating these processes is that they are handled
by structures that are focusing only on particular tasks.

In order to develop a proactive context-aware adaptive
system, an infrastructure that combines and uses all three
properties is required. The LPE is an advanced mechanism
that could be easily integrated into new software systems

because it provides means for gathering data from the
internal and external sensors, for detecting context changes,
for processing and modeling contextual information, for
executing adaptive tasks and for providing an adequate
system behavior in any situation. The term “sensor” refers
not only to the hardware parts being able to sense but also to
the various data sources that may give contextual
information.

Thus, the architecture of a LPE is composed of a set of
interconnected components, including a Context-Manager, a
Rules Engine connected to a set of Queues and a local
database, and a Notification Manager (as seen in Figure 2).

A. The Context-Manager
The Context-Manager is mainly responsible for detecting

and handling context changes that appear, and as a result,
taking the proper actions. Another important task for the
Context-Manager is to acquire user input and to decide if it
is relevant or not. It is composed two elements: the
Awareness Engine and the Adaptation Engine.

1) The Awareness Engine
This component is managing the data coming from

sensors, which are in charge of detecting possible context
changes. For smartphones, sensors are providing important
information about the user’s location, motion and
preferences. For PCs, the information would focus more on
the user’s interests, activities and set of used applications.
Accessing this kind of information should be limited to
some extend and controlled as it represents a privacy issue.

2) The Adaptation Engine
This component is crucial, as it is used for dealing with

unexpected events and for ensuring that adaptive actions are
performed in a smooth cooperation between the main sub-
parts of the Proactive Engine. Also, it has to check the
constraints and the conditions of the system before
adaptation and if the system will still behave according to its
policies.

Figure 2. The infrastructure of a Proactive Engine

B. The Rules Engine
The Rules Engine is responsible for maintaining a precise

overview of the system’s goals and for running Proactive
Rules. It keeps a list of required actions that would come as
a response in case an expected event shows up. It is also
used for storing the state of the system. Executing multiple
Proactive Rules in parallel is due to its integrated Queue
System and it is one of the great functionalities of the Rules
Engine. Proactive Rules can be used for serving multiple
purposes: for checking context situations, for detecting
special events, for analyzing contextual information, for
synchronizing sub-parts of the model, for saving useful data
into the Local Database, for sending rules and commands to
other PE and for sending content to the Notification
Manager. The Awareness Engine and the Adaptation Engine
have the ability to activate Proactive Rules.

C. The Notification Manager
The purpose of the Notification Manager is to deliver

informative content to the user. The content can take various
forms like hints, messages, notifications or alarm. This is a
crucial part of the entire model as it helps in achieving
his/her goals, guides him/her in multiple situations and
informs the user about certain events.

IV. A NETWORK OF PROACTIVE ENGINES
PEs are designed to work both offline and online. Having

a network of distributed LPEs that communicate and
exchange data provides a great opportunity for these
systems to gain useful information. This way, LPEs are not
only gathering data from their internal sensors but also from
other LPEs. By design, information sharing between devices
using LPEs is conceived to be done in a transparent way,
without the implicit command of the user.

Figure 3 shows a possible scenario of a network of
distributed LPEs. Three devices, with a running LPE,
located on the same LAN, are connected to the Internet
through a WiFi connection. A direct connection can be also
established via Bluetooth, via Near Field Communication
(NFC) techniques or via Android’s WiFiP2P library for
smartphones. The advantage of having a direct connection
between the devices, illustrated in figure 3 with a straight
line, is that Proactive Rules are exchanged immediately,
without having to be sent firstly to a server. This means that
each device with a LPE will be acting like a server, being
able to receive and send data to other devices with LPEs.

The most significant aspect to be taken into consideration
is the actual information that is gained by a LPE when it
gets data from other LPEs. One case is to find common
interest or preferences between users that are working with
applications having an integrated LPE. For example, a user
could be looking for a ride on a car-sharing web site.
Another user, which would be located nearby, maybe from
the same city, would be looking for a ride having the same
destination and exactly on the same dates. The LPEs would
notify both users and would propose to share a ride for

reducing the costs. Another case where data exchanging is
useful is when a LPE is not sure what action to take and
how to adapt its behavior when unexpected events are
appearing. Requesting feedback from other LPEs that have
more information is a possible solution for taking the right
decision.

If we take, for example, two LPEs, one which was offline
for a long period of time and one which was online during
the same period of time. And now, both of the LPEs would
be able to share information because they would be have
access to a communication channel between them. The LPE
that was offline could learn a lot from the online LPE that
stored information about its previous tasks and about the
older state of the system, without using the Adaptive
Engine, the Awareness Engine and the Rules Engine to
process similar data and to go through the same adaptation
process. As a consequence, local resources and time could
be saved.

V. CASE STUDY
To better illustrate the behavior of a LPE and the

usefulness of having a network of LPEs, we created an
example of a possible scenario for its practical
implementation. For simplicity, we focused more on
describing the possible situations that highlight the benefits
of having a network of LPEs and not on the implementation
details.

All around the world, students are using online e-learning
platforms, like Moodle™ [12], for accessing educational
content, completing assignments and participating in
discussion related to their courses. These e-learning
platforms are quite static as they are waiting for instructions
or commands from their users. This is why an e-learning
application for PCs and for smartphones, with an integrated
Proactive Engine, would come in hand. We assume that the
application would be directly connected with the web
platform and would have access to all the data from the
student’s account on the LMS.

Figure 3. A possible network of distributed LPEs

Global Meta-Scenario (GMS) 001
Description: This Rule is designed to run on each
LPE in order to check for new connections in the
same network with which the current LPE could
share information if they are working on the same
assignment.

data acquisition

conn [] = getConnectionsOnSameNetwork()
activation guards
 conn.size != 0
conditions
 conn.assignment.isStillValid()
actions
 foreach connection in conn []

if(usersWorkOnSameAssignment(
connection.assignemnt.ID))

 sendMessageToLPE(conn.ID, message)
inviteOtherLPEforCollaborativeWork(
connection.assignemnt.ID)

 end if
 end foreach
rules generation
 if(!activationGuard)
 createGMS002(conn.ID, conn.assignemnt.ID)
 end if
 cloneRule (GMS 001)

The application would include basic actions like
displaying notifications and questions for the user, provide
hints and trigger alarms. Hints would be used for guiding the
user, questions for asking for specific instructions,
notifications as short messages to inform the user and alarm
to alert him/her in case of extraordinary situations or/and
events.

Even though these actions are quite elementary, they are
already addressing some of the major issues when using an
online e-learning platform. These issues appear because of
the lack of an immediate notification channel between the
students or between the students and the professors in case
extraordinary situations appear. Certain online platform have
an online mechanism for enrolling to an exam, and students
often miss these deadlines, resulting in a big problem both
for the student and the administration of universities and
schools. More issues include missing deadlines for
assignments and nonparticipating in forums.

For example, if an instructor were to give an exam on a
specific date, at a specific hour, and is late due to traffic,
he/she could post a short message, via his/her smartphone,
on the forum of the course announcing that he/she will be
late. Not only will the students be notified of this, but a
person from the administration could also alert the students
in person if they would not have their device with them. The
sensors of the LPE would sense that he is moving and so
would adjust the graphical user interface for writing
messages.

More advance actions would include setting an alarm for
deadlines, putting the events into an integrated calendar,
proposing to students to collaborate on solving assignments
with other classmates which are close to their location or
even more, automatically download documents or course
material directly to the private PCs or smartphones of the
students. The majority of these actions are not currently
provided by any existing LMS and, adding plugins or third
party applications will not change the overall behavior of the
system.

In Figure 4, an example of a Proactive Rule, which
would be used for this case study, is illustrated in pseudo-
code. More specifically, it is a Global Meta-Scenario
because it runs at each iteration of the Proactive Engine and
because it is used only when there are at least two LPEs on
the same network. Its purpose is to invite the users of the
LPEs, in case they are working on the same assignment, to
collaborate and share their knowledge. The Proactive aspect
comes from the fact that this situation is anticipated by the
Global Meta-Scenario, without any specific intervention or
command from the users of the LPEs.

There are five main parts that compose a Proactive Rule:
data acquisition, activation guards, conditions, actions and
rules generation. The first part is used for gathering useful
data, in this case if there are new connections or LPEs
available on the same network, the second and the third part
are used for checking for special conditions and constraints,
like if the users of the LPEs have common assignments, and
the fourth and the fifth parts are used to take specific actions,
like sending a personalized messages to the users of the
LPEs, and to generate other Proactive Rules.

A. Other fields of applications for LPEs
The previous case study indicated that LPEs could be used

in education. In hospitals for example, LPEs could share
information and create very accurate and useful reports for
doctors. They could also be implemented in other domains,
which have to handle big amounts of data coming from
sensors, like other areas of medicine, transportation,
engineering, aviation and many social networks platforms.

VI. A SHORT IMPLEMENTATION OVERVIEW
We are currently working on the implementation of LPEs

for smartphones and tablets, with an Android Operating
System, as they allow direct data exchange between devices
which are on the same Wi-Fi network, without having an
intermediate access point. Frameworks like Android’s WiFi-
P2P, SQLite™ [13] and ORMLite™ [14] will be used for
creating the prototype. The Proactive Engine will run as a
background service.

VII. CONCLUSION AND FUTURE WORK
In this work-in-progress, we have identified and

described a few of the important features and characteristics
of a model that achieves to integrate proactive, self-adaptive
and context-aware features into software systems. With the
proposed model, the user is focusing more on how to interact

Figure 4. An example, in pseudo-code, of a Proactive Rule

with the application and not how to manage and configure
the system.

A. Challenges Ahead
Two of the most challenging points are to ensure the

communication between the components of a LPE and to
design proactive scenarios, while taking in account
important factors like user mobility, different computing
capabilities of various devices and privacy issues.

B. Future work
A case-study based evaluation will follow for validating

all the characteristics of the presented model and for
answering to some research questions such as whether or
not the model is correctly providing routines in a context-
adaptive manner, or if the parts of the model are really
taking into account the user’s preferences, or if the model
has self-adaptive properties that allow it to modify its
behavior.

REFERENCES
[1] M. Salehie and L. Tahvildari, “Self-adaptive software:

Landscape and research challenges”. ACM Transactions on
Autonomous and Adaptive Systems, 2009, vol. 4, pp. 1-42.

[2] Y. Brun et al., “Software Engineering for Self-Adaptive
Systems: A Research Roadmap” in Software Engineering for
Self-Adaptive Systems, Lecture Notes In Computer Science,
Springer, 2009, vol. 5525, pp. 48-70.

[3] S. Dobson et al., “A survey of autonomic communications”.
ACM Trans. Auton. Adapt. Syst., 2006, vol. 1, pp. 223-259.

[4] B.H.C. Cheng et al., “Engineering Self-Adaptive Systems
through Feedback Loops” in Software Engineering for Self-

Adaptive Systems, Lecture Notes In Computer Science,
Springer, 2009, vol. 5525, pp. 1-26.

[5] D. Tennenhouse, “Proactive Computing”. Communications
of the ACM, 2000, vol. 43, issue 5, pp. 43-50.

[6] A. Oulasvirta and A. Salovaara, “Six modes of proactive
resource management: a user-centric typology for proactive
behaviors”, in Proc. NordiCHI 2004, ACM Press, pp. 57-60.

[7] D. Zampunieris, “Implementation of a Proactive Learning
Management System”, in Proc. E-learn 2006, AACE Press,
pp. 3145-3151.

[8] S. Coronado and D. Zampunieris, “Towards a proactive
learning management system using early activity detection”.
In SITE08, AACE Publishing, 2008, vol. 1, pp. 306-311.

[9] R. Dobrican and D. Zampunieris, “Supporting collaborative
learning inside communities of practive through proactive
computing”, in Proc. EDULEARN13, 2013, pp. 5824-5833.

[10] R. Dobrican, S. Reis, and D. Zampunieris, “Empirical
Investigations on Community Building and Collaborative
Work inside a LMS using Proactive Computing” in Proc. E-
learn 2013, vol. 1, pp. 1840-1852.

[11] D. Shirnin, S. Reis, and D. Zampunieris, “Experimentation of
Proactive Computing in Context Aware Systems: Case Study
of Human-Computer Interactions in e-Learning
Environment”. IEEE CogSIMA, Feb. 2013, pp. 269-276.

[12] Moodle - Modular Object-Oriented Dynamic Learning
Environment. [retrieved: April, 2014]. Available from:
https://moodle.org/

[13] SQLite Framework. [retrieved: April, 2014]. Available from:
http://www.sqlite.org/

[14] ORMLite - Lightweight Object Relational Mapping (ORM)
Java Package. [retrieved: April, 2014]. Available from: http://
http://ormlite.com/

