
Triple Graph Grammars in the Large for
Translating Satellite Procedures –
Extended Version

Frank Hermann Université du Luxembourg / SnT, Luxembourg
Susann Gottmann Université du Luxembourg / SnT, Luxembourg
Nico Nachtigall Université du Luxembourg / SnT, Luxembourg
Hartmut Ehrig TU Berlin, Germany
Benjamin Braatz Université du Luxembourg / SnT, Luxembourg
Gianluigi Morelli SES, Luxembourg
Alain Pierre SES, Luxembourg
Thomas Engel Université du Luxembourg / SnT, Luxembourg
Claudia Ermel TU Berlin, Germany

Wednesday 23rd April, 2014

ISBN: 978-2-87971-128-7

Report No.: TR-SnT-2014-7

Triple Graph Grammars in the Large
for Translating Satellite Procedures –

Extended Version

Frank Hermann1, Susann Gottmann1, Nico Nachtigall1, Hartmut Ehrig2,
Benjamin Braatz1, Gianluigi Morelli3, Alain Pierre3, Thomas Engel1, and

Claudia Ermel2

1 Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, Luxembourg

firstname.lastname@uni.lu
2 Technische Universität Berlin, Germany
firstname.lastname@tu-berlin.de

Abstract. Software translation is a challenging task. Several require-
ments are important – including automation of the execution, main-
tainability of the translation patterns, and, most importantly, reliability
concerning the correctness of the translation.
Triple graph grammars (TGGs) have shown to be an intuitive, well-
defined technique for model translation. In this paper, we leverage TGGs
for industry scale software translations. The approach is implemented us-
ing the Eclipse-based graph transformation tool Henshin and has been
successfully applied in a large industrial project with the satellite oper-
ator SES on the translation of satellite control procedures. We evaluate
the approach regarding requirements from the project and performance
on a complete set of procedures of one satellite.

Keywords: model transformation, software translation, refactoring,
triple graph grammars, Eclipse Modeling Framework (EMF)

1 Introduction

Migration of software systems is an important but complex task, especially for
enterprises that are highly dependent on the reliability of their running systems.
The general problem is to translate the source code of a software that is cur-
rently in use into corresponding source code that shall run on the new system.
Up to now, this problem was addressed based on manually written converters,
parser generators, compiler-compilers or meta-programming environments using
term rewriting or similar techniques. Model transformation based on triple graph
grammars (TGGs) is a general, intuitive and formally well-defined technique for
the translation of models [28,29,15]. While previous concepts and case studies
were focused mainly on visual models of software and systems, this paper shows
that model transformation based on TGGs provides a powerful technique for
software translation as well. Since software systems are on average much larger

than visual models, we provide a general technique for efficiency improvement
and show its applicability within a large scale industrial project.

The general idea of TGGs is to specify a language of integrated models. Such
an integrated model consists of a model of the source domain, a model of the
target domain, and explicit correspondence structures in the middle component.
The source and target models in the present scenario are abstract syntax trees
of source code. The operational rules for executing the translation are gener-
ated from the specified TGG and executed via the graph transformation tool
Henshin [7]. TGGs are equivalent to a restricted class of plain graph transfor-
mation systems [8,15]. This restriction ensures the existence of the explicit cor-
respondence structures and formal properties concerning correctness and com-
pleteness [17]. In this paper, we use rather simple and intuitive but non-trivial
translation patterns. The full translation contains several more complex ones,
e.g., for the reordering and regrouping of blocks. Translation strategies that are
solely based on finding and replacing words (like e.g. Awk3) will fail due to the
highly context-sensitive structural dependencies in the source code.

Within the research project PIL2SPELL with the industrial partner SES
(Société Européenne des Satellites), we developed the general approach for soft-
ware translation in this paper. SES is operating a fleet of 56 satellites manu-
factured by different vendors that often use their own proprietary programming
language for automated operational satellite procedures. In order to reduce the
high complexity and efforts during operation caused by this heterogeneity, SES
developed the open source satellite language SPELL [30] (Satellite Procedure
Execution Language & Library), which is nowadays used by more and more op-
erators and may become a standard in this domain. The main aim of the project
was to provide a fully automated translation of existing satellite control proce-
dures written in PIL (Procedure Intermediate Language) of the satellite manu-
facturer ASTRIUM into satellite control procedures in SPELL.4 Since the PIL
procedures are already validated, the translation has to ensure a very high level
of reliability in terms of fidelity, precision and correctness in order to minimise
the efforts for revalidation. In our first contribution of this paper we propose and
validate the use of TGGs for software translation in the PIL2SPELL project.
Since the PIL2SPELL project is an industrial application of rather large size
(more than 200 translation rules were specified), a technique was needed to im-
prove the efficiency of the TGG rewriting method and tool. Hence, the second
contribution of this paper is a general approach for improving efficiency of graph
transformation systems applied to leverage TGGs for software translations in in-
dustry and we evaluate the implementation in Henshin [7]. This technical report
is an extended version of the corresponding conference article [19] and provides
full technical details on the formal constructions and full proofs.

Sec. 2 introduces our running example, Sec. 3 presents the general concept
and Sec. 4 describes the applied TGG techniques. Thereafter, Sec. 5 presents
results for improving the efficiency and scalability, and Sec. 6 evaluates the

3 Awk Community: http://awk.info/
4 In [18], we present a short overview of the PIL2SPELL project.

2

http://awk.info/

1 SELECT
2 CASE ($BATT = "HIGH")
3 CHECKTM(TEMP_C1)
4 CHECKTM(VOLT_D2 = 4)
5 ENDCASE
6 CASE ($BATT = "LOW")
7 SEND SWITCH_B1_B2
8 CHECKTM(VOLT3 = 5)
9 ENDSEND

10 ENDCASE
11 ENDSELECT

1 if (BATT == ’HIGH’):
2 GetTM(’T TEMP_C1’)
3 Verify([[’T VOLT_D2’, eq, 4]])
4 elif (BATT == ’LOW’):
5 Send(command = ’C SWITCH_B1_B2’,
6 verify = [[’T VOLT3’, eq, 5]])
7 #ENDIF

Fig. 1. Procedure written in PIL (left) and translated procedure in SPELL (right)

approach. Sec. 7 discusses related work and Sec. 8 provides a conclusion and
discusses aspects of future work.

2 Case Study PIL2SPELL

We illustrate the methodology for software translation on some details of the
project PIL2SPELL. Fig. 1 presents a simplified PIL procedure for battery
maintenance and its translation in SPELL. Structures of the form SELECT-CASE-
ENDSELECT are translated into structures of the form if-elif-#ENDIF. SEND

instructions (lines 7-9) for sending telecommands to the satellite are mapped to
corresponding Send statements with the same command-id as argument prefixed
with a C (lines 5-6). Instructions for checking telemetry values (PIL instruction
CHECKTM) are handled in three ways:

1. CHECKTM(X) (line 3): parameter checks without condition are used to retrieve
and display a telemetry value from the satellite. They are translated into
GetTM statements, where prefix T is added to the parameter (line 2).

2. CHECKTM(X = Y) (line 4): parameter checks with additional condition are used
to verify telemetry values and are mapped to Verify statements with a
corresponding condition (line 3).

3. CHECKTM(X = Y) (line 8): parameter checks within a SEND instruction are
translated into a verify argument of the corresponding Send statement
(line 6). △

Note that the translation is context-sensitive as it treats e.g. a CHECKTM in-
struction inside a SEND instruction differently from a not nested CHECKTM in-
struction. Moreover, PIL and SPELL use different concepts for calling subrou-
tines. In order to respect the execution semantics, block structures of the form
STAGE..ENDSTAGE in PIL have to be translated into two SPELL structures. The
first one is a function call that remains in the main part and the second one is
a function definition containing the translated body of the block structure and
it is placed at the beginning of the SPELL procedure. This restructuring and
reordering of information motivates to perform a separation of concerns by split-
ting the translation into parsing, translation and serialisation instead of using
an integrated approach, where some of the phases are merged.

3

Fig. 2. Concept for software translation

:Send

:string_LST_Elem

entryS=C SWITCH_B1_B2
::sendEntry_LST_Elem

:atom

square_brackets=true
::testlist_comp

entryS=T VOLT3

:test_Or_star_exp_LST_Elem
eq:atom

atom_name=eq

:test_Or_star_exp_LST_Elem::atom
:integer

value=5

verifyL

entry

te
st

_O
r_

st
ar

_e
xp

next_exp

en
try

:string_LST_Elem

:Send_PIL

:TCId

SWITCH_B1_B2:TcIdentifier

nameTC=SWITCH_B1_B2

:CheckTM_List

:CheckTM

:TMCond

VOLT3:TMId

nameF=VOLT3

:Comparator

symb==

:unsigned_integer

value=5

tcID checkTM_list

nameT checkTM

checkTMCond

tmIdco
m

pa
ra

to
r

formula

command

te
st

lis
t_

co
m

p

next
en

try

nu
m

be
r

Fig. 3. Fragment of source AST (left) and target AST (right)

3 Concept for Software Translation

The general concept for software translation in Fig. 2 consists of the phases
parsing, AST conversion (main phase), and serialisation. It is executed using
the Eclipse Modeling Framework (EMF) tools Xtext [6] and Henshin [7]. Xtext
supports the syntax specification of textual domain specific languages (DSLs),
in particular of programming languages. Based on the EBNF (Extended Backus-
Naur Form) grammar specification of a DSL and an additional formatting config-
uration, the Xtext framework generates the corresponding parser and serialiser.
The parser checks that the input source code is well-formed and the serialiser en-
sures that the generated output source code is well-defined. The Xtext serialiser
enables us to check and ensure that the output conforms to the given EBNF for
the target language and that additional AST-specific formatting guidelines are
respected. SES explicitly required the conformance to the SPELL EBNF and to
SES formatting guidelines (e.g. alignment of list entries and semantic indenta-
tion), which goes beyond the power of generic template specification. Henshin
is an Eclipse plugin supporting the visual specification and execution of EMF
transformation systems, which is used for the main phase (AST conversion).

Example 1 (Parsing & Serialisation). Fig. 3 (left) shows a fragment of the
AST obtained by parsing the PIL source code example in Fig. 1 (left, lines

4

7-9). Root node ∶ Send PIL represents the SEND − ENDSEND structure (lines 7-
9) with telecommand-id (SWITCH B1 B2, left branch) and telemetry parameter
check (CHECKTM, right branch). Fig. 3 (right) shows the obtained SPELL AST
fragment after translation. The serialisation of the SPELL AST yields the corre-
sponding source code in Fig. 1 (right, lines 5-6). Root node ∶ Send represents the
Send statement with telecommand-id (C SWITCH B1 B2) in the left branch and
telemetry parameter verification argument (verify) in the right branch. △

The AST-conversion consists of three phases (see Fig. 2). The first and third
phases (initialisation and refactoring) are general in-place transformations and
are performed via plain graph transformation (GT) systems. The second phase
(translation) is performed using a triple graph grammar (TGG), which is pre-
sented in detail in Sec. 4. Note that TGGs can be fully encoded as plain graph
transformations [15]. The initialisation phase is used to extend the given AST of
the source language with additional structures that simplify the specification of
the translation rules in Phase 2. The refactoring phase refines the resulting AST
in order to satisfy certain coding guidelines required in the target domain. These
refactorings are specified by compact GT rules that also delete substructures.
Employing a TGG for the refactoring phase instead would drastically increase
the amount of rules.

To reduce the complexity of the translation rules, the initialisation phase is
used to pre-process information and to create additional helper structures that
store this information locally in the source AST. In our case study, the initialisa-
tion rules are used, e.g., to compute a global numbering for the subcomponents
of a satellite procedure that are needed in SPELL. Moreover, we create explicit
pointers from complex instructions to their subcomponents (see, e.g. Ex. 2).

As TGGs are non-deleting, the source model is preserved completely during
the translation. The translation markers ensure that each element is translated
exactly once. At each translation step, a substructure of the given AST is trans-
lated and trace links are created. The resulting fragments in the target domain
are connected according to the tree structure of the input AST. These properties
help to ensure that the resulting output graph has a tree structure and is in fact
an AST.

4 Triple Graph Grammars with Henshin

In the following, we briefly review main concepts for model transformation based
on TGGs [11]. A triple graph is an integrated model consisting of a source
model, a target model and explicit correspondences between them. More pre-
cisely, it consists of three graphs GS , GC , and GT , called source, correspondence,
and target graphs, respectively, together with two mappings (graph morphisms)
sG∶GC → GS and tG∶GC → GT . The two mappings in G specify a correspondence
relation between elements of GS and elements of GT .

Triple graphs are related by triple graph morphisms m ∶ G → H [28,11]
consisting of three graph morphisms that preserve the associated correspon-
dences (i.e., left diagrams in Fig. 4 commute). Triple graphs are typed over a

5

(GS

mS

��

=G GCsGoo

mC

��

tG // GT
)

mT

��

(HS=H

m

��
HC

sH
oo

tH

// HT
)

graph morphism

L

m

��

� � tr // R

n

��

G
� �

t
// H

Step (formal)

(PO)

Step (example)

Fig. 4. Triple graph morphism and transformation step

triple type graph TG and attributed according to [11]. For a triple type graph
TG = (TGS ← TGC → TGT), we use L(TG), L(TGS), and L(TGT) to denote
the classes of all graphs typed over TG , TGS , and TGT , respectively.

A triple graph grammar TGG = (TG , S,TR) consists of a triple type graph
TG , a triple start graph S and a set TR of triple rules, and generates the triple
graph language of consistently integrated models L(TGG) ⊆ L(TG) with con-
sistent source and target languages L(TGG)S = {GS ∣ (GS ← GC → GT) ∈
L(TGG)} and L(TGG)T = {GT ∣ (GS ← GC → GT) ∈ L(TGG)}. TGC differ-
entiates the possible types of correspondences.

A triple rule specifies how a given consistently integrated model can be ex-
tended simultaneously on all three components yielding again a consistently inte-
grated model. It is non-deleting and therefore, can be formalised as an inclusion
from triple graph L (left hand side) to triple graph R (right hand side), repre-
sented by tr ∶ L↪ R with tr = (trS , trC , trT). Applying a triple rule tr means to
find a match morphism m ∶ L→ G and to perform a triple graph transformation

step G =
tr ,m
====⇒ H yielding triple graph H defined by the gluing construction5 in

Fig. 4 where the occurrence of L in G is replaced by the occurrence of R in H
and glued to the remaining graph elements) [29]. Moreover, triple rules can be
extended by application conditions for restricting their application to specific
matches [15].

The operational forward translation rules for executing forward model trans-
formations are derived automatically [15] from the TGG. A forward translation
rule trFT and its original triple rule tr differ only on the source component:
elements (nodes, edges or attributes) created by tr become elements that are
preserved and marked as “translated” by the forward translation rule.

Example 2 (Operational Triple Rules). Fig. 5 shows screenshots (tool Hen-
shin [7]) of some generated forward translation rules of the TGG for PIL2SPELL
in short notation. Left- and right-hand side of a rule are depicted in one triple
graph and the elements to be created have the label ⟨++⟩. Translation attributes
are indicated by label ⟨tr⟩. The depicted rules are typical operational rules of
average rule size. Rule (1) translates an existing Instruction LST Elem node
into its corresponding stmt LST Elem node. Both node types are containers for

5 Formally, this is a pushout diagram (PO) in the category of triple graphs.

6

Fig. 5. Forward translation rules (generated by Henshin)

specific instructions and statements. Rules (2) and (3) depend on rule (1) as
they use the stmt LST Elem nodes as context.

Rules (2)-(4) are some of the rules that translate CHECKTM instructions.
They depend on further rules for the translation of their parameters (TMCond
or TMReport). Depending on the parameter type, the respective SPELL state-
ment is created, i.e., telemetry conditions (TMCond) yield a Verify statement,
telemetry reports (TMReport - label without condition) yield a GetTM statement
and telemetry conditions within a SEND instruction become an argument in a
verify list of the corresponding Send statement. This corresponds to items 1–3
in Sec. 2. Rules (2) and (3) translate CHECKTM instructions that are not embedded
within a specific context while rule (4) translates CHECKTM instructions within a
SEND instruction.

Note that the node type SEND verify LST Elem is created in the initialisation
phase as helper structure and used to mark exactly those CheckTM elements that
handle a telemetry condition (TMCond). The remaining CheckTM elements of a
SEND instruction are translated to GetTM statements outside the scope of the
SPELL Send statement. △

7

A forward translation sequence (GS ,G0 =
tr∗FT====⇒ Gn,G

T) is given by an input

source model GS , a transformation sequence G0 =
tr∗FT====⇒ Gn obtained by executing

the forward translation rules TRFT on G0 = (GS ← ∅ → ∅), and the resulting
target model GT obtained as restriction to the target component of triple graph
Gn = (GS ← GC → GT). A model transformation based on forward translation
rules MT ∶ L(TGS) ⇛ L(TGT) consists of all forward translation sequences.
Note that a given source model GS may correspond to different target models
GT . In order to ensure unique results, we presented in [15] how to use the
automated conflict analysis engine of AGG for checking functional behaviour
of model transformations.

5 Leveraging TGGs for Software Translations in Industry

As described in the previous section, the basic execution algorithm for forward
translations based on TGGs does not use any kind of pre-defined order on
rules. For medium and large scale projects, the application of rules in a non-
deterministic way would result in poor efficiency. In this section, we present
a general approach for graph transformation systems, with which we leverage
TGGs for larger software translations. This concerns grammars containing more
than 200 rules, like the manually specified rules for the PIL2SPELL project that
were derived from a document of correspondence patterns (small corresponding
source code fragments). The approach is orthogonal to the analysis and reduc-
tion of conflicts via filter NACs for TGGs [15]. Both approaches can be combined
- the second one improves the rules directly while the first provides a structuring
technique on them.

The main observation is that the efficiency of the execution can be im-
proved significantly by analysing the potential dependencies. For example,
rules (2) and (3) in Fig. 5 can only be applied after rule (1) was applied to
translate the node of type Instruction LST Elem. Our strategy is partly in-
spired by several existing optimisations in TGG implementations [20] and de-
pendency analysis for graph transformation systems [14]. It generalises the idea
of precedence triple graph grammars [25] from node type dependencies towards
general rule dependencies and works also for TGGs with attributes. It uses the
general formal results on critical pair analysis [9,24] including the case of trans-
formation rules with application conditions. Practically, we use the critical pair
analysis engine of the tool AGG [31] for determining the dependencies and con-
flicts between the rules. Based on the results, we group those rules together
that show cyclic dependencies or conflicts. The resulting set of groups of rules
shows a partial order that we linearise to a complete order. Finally, we apply
this grouping and ordering technique to the set of forward translation rules.

In order to group the rules of a given rule set R, their sequential depen-
dencies and conflicts are represented by a dependency-conflict graph DCG(R)
containing the rules as nodes and rule dependencies/conflicts as edges. A pair of
rules (r1, r2) is in conflict if there exists a critical pair for (r1, r2) [9], i.e., there

8

:0r

:1r

:2r

:3r
<tr> <+> <+> <+> <+>

<+> <+> <+> <+>

<+><tr>

<+> <+> <+> <+>

<+><tr>

<tr>

<tr>

<tr> <+> <+> <+> <+>

:4r

:5r

<+><tr>

<+><tr>

Fig. 6. Forward translation rules (dependency-conflict graph)

are two parallel dependent transformation steps t1 = G0 =
r1==⇒ G1, t2 = G0 =

r2==⇒ G2.
A pair of rules (r1, r2) is sequentially dependent if there is a transformation

sequence t = (t1; t2) = G0 =r1==⇒ G1 =r2==⇒ G2, where t2 sequentially depends on t1
(produce-use or forbid-create dependency). Note that the order is relevant for
sequential dependencies. Both concepts can be analysed statically using the tool
AGG [31]. The graph DCG(R) may contain cycles. These cycles are used to de-
fine non-overlapping clusters of rules leading to the acyclic dependency-conflict
cluster graph CLGDC (R). By N(G) we denote the set of nodes of a graph G.

Definition 1 (Dependency-Conflict Cluster Graph). Let R be a set of
rules, then we define:

– dependency-conflict graph DCG(R) with nodes N(DCG(R)) = R and edges
EDCG = {(r → r′) ∣ (r, r′) is a sequentially dependent pair } ∪ {(r → r′),
(r′ → r) ∣ ∃ a critical pair for (r, r′)},

– for r ∈ R the dependency-conflict cluster [r]DC = {r} ∪ {r′ ∈ R ∣ ∃ a path
(r → . . . r′ . . .→ r) in DCG(R)},

– dependency-conflict cluster graph CLGDC (R) with
nodes N(CLGDC (R)) = {c ∣ c = [r]DC ∧ r ∈ R} and
edges E = {(c→ c′) ∣ ∃ r ∈ c, r′ ∈ c′∶ (r → r′) in DCG(R)}. △

Example 3 (Translation rules for dependency analysis). We use the set of trans-
lation rules in Fig. 6 to illustrate the construction of the dependency-conflict
cluster graph. For simplicity, the rules translate abstract geometrical forms (cir-
cles, triangles and rectangles) and their interconnections (the forms are con-
nected to sequences of alternating circles and triangles beginning with a circle
as root element where each circle and triangle may be connected with a rect-
angle). Nodes and edges marked with < tr > are translated by creating those
nodes and edges marked with < + > when applying a rule. Rule r0 translates the
circle root element and rules r1 and r2 the succeeding triangles and circles. The
remaining rules translate rectangles (rule r3) and their connections to circles
(rule r4) and triangles (rule r5). The rules can be easily adapted to rules for the
translation of abstract syntax trees with circles and triangles being succeeding
statements of different types and rectangles being comments of statements. △

9

Fig. 7. Forward translation rules r3 (top) and r4 (bottom) in AGG

Fig. 8. Dependencies (left) and conflicts (right) of translation rules in AGG

Example 4 (Analysis in AGG and Construction of Conflict-Cluster-Graph).
AGG is used to automatically analyse the dependencies and conflicts of the
rules. Fig. 7 illustrates rule r3 and r4 in their AGG syntax. Each rule contains a
left-hand-side that contains all elements that are matched and a right-hand-side
that illustrates the updated and created elements during the rule application.
Elements marked with < tr > have an attribute tr with value false that is
changed to true by their rule. This ensures that an element is translated only
once.

Fig. 8 depicts the result of the dependency and conflict analysis of all rules
of Fig. 6 with AGG. Each blue (dark) box in the left matrix highlights a depen-
dency and each red (dark) box in the right matrix highlights a conflict between
two rules. Since rules r0 and r2 translate circles, both rules are in conflict. More-

10

r3

d

��

d

r0
d //

d

��

c

��

r1

d

��
d

{{
r4 r2

ZZ

d

;;

d
oo r5

[r3]

d

��

d

��

[r0]

d

��

d

��

[r4] [r5]

with
[r0] = [r1] = [r2] =
{r0, r1, r2},
[r3] = {r3},
[r4] = {r4},
[r5] = {r5}

Fig. 9. Dependency-conflict graph (reflexive edges (r → r) are not shown) (left) and
cluster graph (right)

over, each rule is in conflict with itself. Rule r1 translates triangles that are
connected to already translated circles whereas rule r2 translates circles that
are connected to already translated triangles, i.e., both rules are (potentially)
sequentially dependent on each other. Furthermore, rule r1 depends on rule r0.
Rule r4 depends on rules r0, r2, r3, since, it uses the circles and rectangles created
by them. Analogously, rule r5 depends on rules r1 and r3. Fig. 9 (right) shows the
dependency-conflict-cluster graph derived via the analysis of the dependencies
and conflicts of the rules with AGG. △

A DC-Layered Transformation System (DC-LTS) linearises the partial order
on clusters of a given CLGDC (R) to a complete order where each cluster be-
comes a layer and the sequential order of the layers respects the dependencies
between the clusters. Formally, a layered transformation system LTS = (R,S)
consists of a set of rules R and a sequence S = (Si)i∈I of subsets of R as layers.
Given a graph G, then an execution of LTS is performed by applying each layer
consecutively according to the sequence S, where the rules in each layer Si are
applied exhaustively.

Definition 2 (DC-Layered Transformation System). Let CLGDC (R) be
the derived dependency-conflict cluster graph for R, then LTS = (R,S) with
S = (Si)i∈I is a DC-layered transformation system, if the following conditions
hold

1. S is a permutation of the clusters in N(CLGDC (R)) (cluster compatibility)
2. ∀ edges (a→ b) in CLGDC (R)∶ a = Sk ∧ b = Sl ⇒ k < l (sequential order) △

Example 5 (DC-Layered Transformation System). Based on the dependency-
conflict cluster graph for the translation rules in Ex. 4, a DC-layered trans-
formation system can be derived by permutations of the clusters with r0 and
r3 being the two first elements in arbitrary order and clusters r4 and r5 being
the two last elements in arbitrary order, e.g., permutation S = (r3, r0, r5, r4) is
a valid linearisation of the clusters.

Definition 3 (Independence of Rules). A pair of rules (p1, p2) is called

sequentially independent, if any two transformation steps G0 =
p1==⇒ G1 =

p2==⇒ G2

are sequentially independent. △

11

Fact 1 (Characterization of Independent Rules) A pair of rules (p1, p2)
is sequentially independent if and only if there is no critical pair for (p−11 , p2),

where p−11 = ((R ←r− K −l→ L),ac′) denotes the inverted rule of the rule p = ((L ←l−
K −r→ R),ac) and ac′ is obtained by shifting application condition ac over rule
p. △

Proof. The proof is shown for rules with negative application conditions for
Fact 2 in [16] using the completeness result for critical pairs concerning rules
with NACs (Thm. 3.7.6 in [24]). According to Thm. 1 in [10] the result for
completeness of critical pairs was extended to the case of nested application
conditions. This implies that Fact 1 holds. ◻

Lemma 1 (Existence of Switch Equivalent Layered Sequence). Let s =
(G0 ⇒∗ Gn) be a transformation sequence via rules R and let LTS = (R,S) be
a DC-LTS for R. Then, there is a transformation sequence s′ = (G0 ⇒∗ Gn)
respecting the order S of rule clusters. △

Proof. By induction over the length of s. Base case: s = ∅ (empty sequence).
Then, s′ = s is a sequence respecting S. Inductive step: Assume that s = (G0 ⇒∗

Gn) via R and there is a switch equivalent sequence ŝ respecting the order
of S. Therefore, ŝ = (G0 ⇒∗ Gn), i.e. the last graph Gn in s coincides with
that in ŝ (up to isomorphism) due to switch equivalence. We show that for

s; sn+1 = (G0 ⇒∗ Gn =
pn+1====⇒ Gn+1) via R, there is a switch equivalent sequence

s′ respecting the order of S. Let Si be the cluster in S with pn+1 ∈ Si. Let

Gi−1 =
pi=⇒ Gi be the last step in ŝ via a rule in Si. Then, for each step Gk−1 =

pk==⇒ Gk

in ŝ with k > i we know that (pk, pi+1) is sequentially independent (note that the
order in a rule pair is important for sequential dependency). We can stepwise
apply the Local Church-Rosser Theorem for rules with application conditions
(Thm. 1 in [12]) for all steps k > i and switch the steps, which shifts the step via

pn+1 backward. If n > i, we start with step n and derive Gn−1 =
pn+1====⇒ G′

n =
pn==⇒ Gn+1.

We continue until rule pn+1 is applied right after step i yielding s′ = (G0 ⇒∗

Gi−1 =
pi=⇒ Gi =

pn+1====⇒ G′

i+1 ⇒∗ Gn+1). Now, step i + 1 is the last step via a rule in
Si such that the sequence of steps via Si in s′ is extended by one more step in
comparison to ŝ. Since ŝ respects S and ŝ is switch equivalent to s by induction
hypothesis, we derive that s′ respects S and s′ is switch equivalent to s; sn+1. ◻

Lemma 2 (Existence of exhaustive switch equivalent layered se-
quence). Let s = (G0 ⇒∗ Gn) be a terminated sequence via rules R and let
LTS be a DC-LTS for R. Then, there is a terminated sequence s′ = (G0 ⇒∗ Gn)
via LTS, which is switch equivalent to s. △

Proof. Let s be a terminated sequence via R. According to Lemma 1, we derive a
switch equivalent transformation sequence s′ that respects the order of S, such
that s′ is switch equivalent to s. Let S = (S1, . . . , Sn), then we can divide s′

in subsequences s′ = (s′1, . . . , s′n), where the applied rules in each subsequence
s′i all belong to cluster Si. We have to show that s′ is a sequence via LTS ,
i.e., each subsequence is exhaustive, i.e. no more rule of Si can be applied.

12

Let s′i = Gi,0 ⇒∗ Gi,k. Assume that there is a step Gi,k =
pi=⇒ Gi,k+1 via a rule

pi in Si. If i = n, we then know that step Gi,k =
pi=⇒ Gi,k+1 can be performed

at the end of s as well. Since s is terminated, this would be a contradiction.
Thus, i ≠ n. We consider the subsequent subsequence s′i+j with j > 0 that is

not empty. Thus, s′i+j = Gi,k = Gi+1,0 =
pi+1===⇒ Gi+1,1 ⇒∗ Gi+1,l. Thus, we have the

two steps Gi,k =
pi+1===⇒ Gi+1,1 and Gi,k =

pi=⇒ Gi,k+1. By definition of the dependency
conflict clusters, we know that for all rules p′i+1 ∈ R ∖ Si there is no critical
pair (pi, p′i+1). Therefore, the two steps are parallel independent according to
completeness of critical pairs (Thm. 1 in [10]). We can apply the Local Church-

Rosser Theorem (Thm. 1 in [12]) and can shift step Gi,k =
pi=⇒ Gi,k+1 forward.

This can be repeated for all successive steps and we derive the sequence s′; s′n+1
with s′n+1 = Gn =

pi=⇒ Gn+1. This means that Gn =
pi=⇒ Gn+1 is a step that extends

sequence s, which is a contradiction to the precondition that s is terminated.

Therefore, the assumption that there is a step Gi,k =
pi=⇒ Gi,k+1 via a rule pi in Si

is false, which means that s′ is exhaustive. ◻

The construction of a DC-layered transformation system LTS for a set of
rules R reduces the amount of rules to be checked for applicability at each
step. By definition, the execution of a layer in an LTS concerns only rules in
that layer. Thm. 1 below ensures preservation of the input-output behaviour. All
terminated sequences via R (i.e., no more rules are applicable) can be performed
via LTS .Each rule only depends on rules in a preceding layer and rules in the
same layer. The input-output relation IOTS of a transformation system TS
contains all pairs (GI ,GO) with a terminated transformation sequence GI ⇒∗

GO via TS .

Theorem 1 (Completeness of DC-LTS). Let R be a set of rules and LTS
be a DC -layered transformation system for R, then: IOR = IOLTS , i.e.
(∃ terminated (G0 =⇒∗ Gn) via R) ⇔ (∃ terminated (G0 =⇒∗ Gn) via LTS). △

Proof. Direction ”⇐”: Let LTS = (R,S) If s′ is a terminated sequence via
LTS , then s = s′ is also a terminated sequence via R, because the rules in S are
also contained in R.
Direction ”⇒”: This is a direct consequence of Lemma 2. ◻

A DC-LTS can reduce the effort for backtracking. By Thm. 2 below, func-
tional behaviour of the layers eliminates the need for backtracking of transfor-
mation steps that are not in the current layer. A transformation system TS has
functional behaviour, if IOTS is right unique, i.e. for each input graph, there is
at most one output graph up to isomorphism. A layer Si of an LTS = (R,S)
has functional behaviour, if the induced transformation system with rules Si has
functional behaviour, which can be analysed statically with the tool AGG [15,31].

Theorem 2 (Reduction of Backtracking). Let LTS be a DC -layered trans-
formation system, where each layer has functional behaviour. Then, there is no
need to backtrack already completed layers during the computation of a termi-
nated sequence G0 =⇒∗ Gn via LTS. Moreover, LTS has functional behaviour. △

13

Proof. Assume we backtrack already completed layers, then we will obtain the
same output graphs for these layers due to functional behaviour and thus, we
derive the same input graph for the current layer. LTS = (R,S) has functional
behaviour, because each layer has functional behaviour and the layers are exe-
cuted via the fixed sequence S. ◻

The effect of Thm. 2 is that the effort for checking functional behaviour of
the whole system is reduced to the analysis of each layer separately. Note that
application conditions for rules are an appropriate method to ensure functional
behaviour [15]. Our approach can be combined with the generation of filter
NACs [15], which eliminates some types of rule conflicts, but not all.

We improve the performance of a model transformation MT by applying the
concept of a DC-LTS to the set of operational rules of MT . By TRAFOS(MT)
we denote the set of all model transformation sequences TRAFOS(MT) = {s ∣
s = (GS ,G0⇒∗Gn,G

T) is a model transformation sequence via MT} for a model
transformation MT .

Definition 4 (DC-optimised Model Transformation). Let LTS =
(TRFT , S) be a DC-layered transformation system for the forward transla-
tion rules TRFT of a TGG with induced model transformation MT . The DC-
optimised model transformation MTLTS ∶ L(TGS) ⇛ L(TGT) is obtained from
MT by restriction to the LTS-compatible model transformation sequences, i.e.,

TRAFOS(MTLTS) = {s ∈ TRAFOS(MT) ∣ s = (GS ,G′

0 =
tr∗FT====⇒ G′

n,G
T) and

G′

0 =
tr∗FT====⇒ G′

n is a transformation sequence via LTS}. △

By Thm. 3 below, we show that the execution of the DC-LTS does not
affect the existing results for TGGs concerning the notion of correctness and
completeness (see Def. 5 below according to [15]).

Definition 5 (Correctness and Completeness). A model transformation
MT is correct, if for each MT -sequence (GS ,G0⇒∗Gn,G

T) there is a triple
graph G = (GS ← GC → GT) ∈ L(TGG). It is called complete, if for each
GS ∈ L(TGG)S, there is an MT -sequence (GS ,G0⇒∗Gn,G

T). △

Theorem 3 (Correctness and Completeness). Each DC-optimised model
transformation MTLTS ∶ L(TGS) ⇛ L(TGT) is correct and complete. △

Proof. By Thm. 1 in [15], we know that model transformations MT based on for-
ward translation rules are correct and complete. By Thm. 1, we derive that MT
and MTLTS have the same input/output relation and thus, MTLTS is correct
and complete. ◻

6 Evaluation

Fig. 10 shows the evaluation of the efficiency improvement using a standard con-
sumer laptop (CPU: i7-2860QM, RAM: 8GB, Java: 1.7U25, OS: 64-bit version

14

Fig. 10. Measurements for satellite ASTRA 1N (logarithmic scale) using Henshin

Fig. 11. Measurements for satellite ASTRA 1N for DC-layered TGG (linear scale)

of Windows 7) for translating all control procedures (202 files, 199,853 lines of
code (LOC)) that were developed by ASTRIUM for the satellite ASTRA 1N.
The construction of the dependency conflict clusters is performed once statically
for the TGG and thus, not contained in the execution times. The left chart shows
the translation via the TGG without efficiency improvement for the smallest 126
files6 (<50KB) – file no. 127 reached a timeout of 10 hours. The amount of nodes
of an AST graph is on average about 4 times the amount of LOC of the file.
The execution of the DC-layered TGG (right chart) is faster (approximately 100
times as fast for graphs with 4,000 nodes) - mainly due to the massively reduced
amount of rule match computations at each step. Fig. 11 shows the execution
times for the translation via the TGG with efficiency improvement with linear
scale. Fig. 10 shows the execution times for translating each input file separately.
The effective translation of the full set of files at SES is performed by distribut-
ing the files to eight parallel Java threads (four physical cores). This leads to

6 A file contains the code for one satellite control procedure.

15

Table 1. Evaluation of requirements

Requirement Evaluation

Syntactical correctness
and completeness

Ensured for Phase 2 of the AST conversion by Thm. 3;
TGGs simplify the guarantee of a resulting tree structure

Precision/fidelity,
minimal efforts
for revalidation

TGG rules are obtained from DSL mapping document that
was specified by domain experts containing pairs of cor-
responding source and target code fragments

Complete automation Yes: no user interaction, no manual editing of output files.

Maintainability - Visual and intuitive GUI for TGG rules
- No complex control structures for execution
- Automated check of rule dependencies with AGG [31]

Readability - The output source code in SPELL is well aligned
- Output is compliant with SPELL coding guidelines
- All header entries and comments are generated adequately

Efficiency, scalability - Metamodels of generated Xtext plugins: >140 types
- Rules: 484 (TGG: 249, initialisation + refactoring: 235),
- Internal XML representation: ∼50,000 LOC (lines of code)
- Benchmark: ∼5:00 min. for satellite Astra 1N (see Fig. 10)

Direct savings 1–2 man years per satellite (estimated by SES, compared to
manual conversion and validation)

an additional average speed up factor of three such that the translation for one
satellite takes about five minutes. SES appreciated the obtained speed as it is
largely above what is needed for practical use.

Table 1 provides an overview of the evaluation of the translator concerning
the industrial requirements of SES. The implementation has been delivered to
SES and was successfully assessed and validated by SES and the satellite man-
ufacturer ASTRIUM. According to Thm. 3, the translation ensures syntactical
correctness and completeness for Phase 2 of the AST conversion via the TGG.
TGGs simplify the challenge to ensure that the resulting graph of the model
transformation forms an AST. The source model is always preserved and the
execution ensures that elements are translated exactly once. This reduces the
challenge of checking that the rules translate each path or subtree of the source
AST into a path or subtree in the target graph attached to the corresponding
parent node. The size of the TGG, the processed input files and the correspond-
ing execution times in Table 1 show that the presented approach is applicable
for large scale applications. Currently, the following six satellites are running
on the generated control procedures: Astra-1M, Astra-1N, Astra-2E, Astra-2F,
Astra-3B, and SES-6. Moreover, SES is validating two further TGG-translators
for the satellite control languages of the satellite manufacturers THALES and
BOEING.

16

7 Related Work

Other solutions for software translation include manually writing a converter,
using a compiler-compiler or meta-programming based on term rewriting or sim-
ilar techniques. In fact, a fully manual rewrite in the target language, using the
source language artefact only as a reference, is also feasible in some situations
and even has been the preferred approach for the mission-critical satellite control
procedures at SES, before the approach presented in this paper has been taken
into account.

Converters that are manually written in general-purpose programming lan-
guages are prone to errors and hard to maintain in the case of language changes
and new requirements that emerge during their lifetime. Maintainability requires
at least an extensive documentation of the converter source code, but even then
the converter can only be inspected by domain experts that have sufficient knowl-
edge of the programming language of the converter. In contrast to that, the
(visual) translation rules of our approach use the abstract syntax concepts of
source and target language and are, hence, open to be inspected and discussed
by domain experts without specific programming background.

Compiler-compilers or parser generators, such as ANTLR [27], can be used
to generate a parser based on the grammar of a source language. Then, the
generation of the target language has to be programmed either in annotation
to the source grammar or by traversing the generated abstract syntax tree. In
both cases, only the source language can be specified in an adequate way by its
grammar, while the target language is implicit in the manually written code.

Source transformation systems based on term rewriting include the DMS
system [2], TXL [4], the Rascal language [22] and the Spoofax language work-
bench [21] with the Stratego/XT engine [3]. Using these systems is quite similar
to our approach, which can be seen, e. g., in the Extract-Analyze-Synthesise
(EASY) Paradigm for Rascal [23]. Both, the source and the target language, are
specified in some form of grammar formalism and the transformation between
the languages is given by a set of transformation rules, where all the above-
mentioned systems use some sorts of rewriting rules, which are specified in a
textual syntax.

While these systems aim at providing integrated systems, we are using sepa-
rate building blocks that are already available in the EMF ecosystem – Xtext for
parsing and serialising and Henshin for transformation. Parsers and/or serialis-
ers can also be generated from XML Schema Definition (XSD) files by the core
EMF system if the language is an XML dialect. Source and/or target language
can also be visual languages implemented by EMF-based tools like the Graphical
Modeling Framework (GMF). This provides for a seamless integration of hetero-
geneous languages. Moreover, the basic language definitions – Xtext grammars,
XSD files, GMF projects – and the resulting plugins are reusable for all transla-
tion, refactoring and model transformation projects involving the same language.

The textual programming of a specific term rewriting language has quite
a steep learning curve [5], while we experienced that the visual specification
of pattern-based graph transformation rules on EMF models provides more in-

17

tuitive access. Our division of the conversion by graph transformation into the
three phases – initialisation, forward translation based on triple graph grammars,
and refactoring of the result – yields a separation of concerns that additionally
helps in keeping the solution comprehensible. Our example from Sec. 4 already
shows non-trivial structural differences between the abstract syntax structures
of source and target language. In our industrial case study, the visual represen-
tation provided a more intuitive access to those structural differences than a
textual, tree-oriented representation.

Several performance improvements for TGGs have been proposed for re-
stricted kinds of TGGs using dependency information on nodes only [25,13].
The present paper provides a general technique for arbitrary TGGs and yields a
layered transformation system, where functional input/output behaviour avoids
the need for backtracking of already executed layers. We use the general notion
of rule conflicts and dependencies - in particular, we take into account dependen-
cies on edges, attributes and application conditions. We are confident that the
existing approaches can be integrated in the new one by applying them locally
to each layer.

Regarding performance of model transformations in general, Mészáros et
al. [26] have proposed manual and automatic optimizations based on overlap-
ping of matches. Specifically for Henshin, Tichy et al. [32] have identified several
“bad smells”, i. e., features of transformation rules that possibly result in poor
transformation performance and should be avoided if possible. During the de-
velopment of the PIL2SPELL translation, in addition to our dependency-based
strategy, we followed the guidelines from [32].

8 Conclusion

In this article, we presented a formal and fully automated approach to industrial
software source code translation. We provided a general concept for efficiency
improvement of graph transformation systems (Thms. 1 and 2). In our main
result (Thm. 3), we have shown the correctness of the approach. We evaluated
the approach within a safety critical industrial application: the translation of
satellite control procedures. In particular, we evaluated the industrial require-
ments, including reliability, efficiency and code readability. Our approach consid-
erably improves the rewriting efficiency of the used triple graph transformation
approach while guaranteeing the correctness. As an effective result, six commu-
nication satellites are running on the generated procedures.

Regarding the Henshin tool, work is in progress to implement the critical
pair analysis directly instead of using AGG. The performance results achieved
by our proposed approach shall be further evaluated by making use of recently
developed benchmarks [20,1].

In future work, we will employ the rich formal foundation of TGGs and apply
them for the synchronisation between source code and possible visualisations of
software. We also plan to apply graph transformation techniques for analysing
test coverage and generating valid test cases.

18

Acknowledgments. This project is part of the Efficient Automation of Satellite
Operations (EASO) project supported by the European Space Agency (ESA)7.

Supported by the Fonds National de la Recherche,
Luxembourg (3968135, 4895603).

References

1. Anjorin, A., Cunha, A., Giese, H., Hermann, F., Rensink, A., Schürr, A.: Bench-
marx. In: Bidirectional Model Transformations 2014. ECEASST, European Asso-
ciation of Software Science and Technology (2014), to appear.

2. Baxter, I., Pidgeon, P., , Mehlich, M.: DMS: Program transformations for practical
scalable software evolution. In: Software Engineering (ICSE’04). IEEE Press (2004)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. a lan-
guage and toolset for program transformation. Science of Computer Programming
72(1-2), 52–70 (2008)

4. Cordy, J.R.: The TXL source transformation language. Science of Computer Pro-
gramming 61(3), 190–210 (2006)

5. Cordy, J.R.: Excerpts from the TXL cookbook. In: Generative and Transforma-
tional Techniques in Software Engineering (GTTSE 2009). LNCS, vol. 6491, pp.
27–91. Springer (2011)

6. The Eclipse Foundation: Xtext – Language Development Framework – Version
2.2.1 (2012), http://www.eclipse.org/Xtext/

7. The Eclipse Foundation: EMF Henshin – Version 0.9.4 (2013), http://www.
eclipse.org/modeling/emft/henshin/

8. Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration
based on the algebraic approach to triple graph grammars. ECEASST 10, 14
(2008)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

10. Ehrig, H., Habel, A., Lambers, L., Orejas, F., Golas, U.: Local confluence for
rules with nested application conditions. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) Proceedings of Intern. Conf. on Graph Transforma-
tion (ICGT’ 10). LNCS, vol. 6372, pp. 330–345. Springer (2010), http://www.
springerlink.com/index/X273147851566804.pdf

11. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserv-
ing bidirectional model transformations. In: Fundamental Approaches to Software
Engineering. LNCS, vol. 4422, pp. 72–86. Springer (2007)

12. Ehrig, H., Habel, A., Lambers, L.: Parallelism and concurrency theorems for rules
with nested application conditions. ECEASST 26 (2010)

13. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1), 21–43 (2009)

14. Hegedüs, Á., Horváth, Á., Varró, D.: Towards guided trajectory exploration of
graph transformation systems. ECEASST 40 (2010)

15. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Model Driven Interoperability (MDI 2010). pp. 22–31. ACM (2010)

7 http://www.esa.int/ESA

19

http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/emft/henshin/
http://www.eclipse.org/modeling/emft/henshin/
http://www.springerlink.com/index/X273147851566804.pdf
http://www.springerlink.com/index/X273147851566804.pdf
http://www.esa.int/ESA

16. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Cor-
rectness of Model Synchronization Based on Triple Graph Grammars - Extended
Version. Tech. Rep. TR 2011-07, TU Berlin, Fak. IV (2011)

17. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal analysis of functional be-
haviour of model transformations based on triple graph grammars. In: Graph
Transformations (ICGT 2010). LNCS, vol. 6372, pp. 155–170. Springer (2010)

18. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A., En-
gel, T.: On an Automated Translation of Satellite Procedures Using Triple Graph
Grammars. In: Theory and Practice of Model Transformations, LNCS, vol. 7909,
pp. 50–51. Springer (2013)

19. Hermann, F., Gottmann, S., Nachtigall, N., Ehrig, H., Braatz, B., Engel, T.: Triple
Graph Grammars in the Large for Translating Satellite Procedures. In: Proc. of
Int. Conf. on Theory and Practice of Model Transformations 2014 (ICMT 2014).
LNCS, Springer (2014)

20. Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schäfer, W.,
Lauder, M., Anjorin, A., Schürr, A.: A survey of triple graph grammar tools. In:
Stevens, P., Terwilliger, J.F. (eds.) Bidirectional Transformations 2013. ECEASST,
vol. 57. European Association of Software Science and Technology (2013)

21. Kats, L.C.L., Visser, E.: The Spoofax language workbench. rules for declarative
specification of languages and IDEs. In: Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2010) (2010)

22. Klint, P., Vinju, J.J., van der Storm, T.: RASCAL: A domain specific language for
source code analysis and manipulation. In: Source Code Analysis and Manipula-
tion. pp. 168–177. IEEE Computer Society (2009)

23. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with Rascal.
In: Generative and Transformational Techniques in Software Engineering (GTTSE
2009). LNCS, vol. 6491, pp. 222–289. Springer (2011)

24. Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis, Technische Universität Berlin (2009)

25. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Bidirectional model transformation
with precedence triple graph grammars. In: Proc. Eur. Conf. on Modelling Foun-
dations and Applications (ECMFA’12), LNCS, vol. 7349, pp. 287–302. Springer
(2012)

26. Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated
performance optimization of model transformation systems. International Journal
on Software Tools for Technology Transfer 12(3-4), 231–243 (July 2010)

27. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. ACM
SIGPLAN Notices 46(6), 425–436 (2011)

28. Schürr, A.: Specification of graph translators with triple graph grammars. In:
Graph-Theoretic Concepts in Computer Science. LNCS, vol. 903, pp. 151–163.
Springer (1994)

29. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Graph Transformations
(ICGT 2008). LNCS, vol. 5214, pp. 411–425 (2008)

30. SES Engineering: SPELL - Satellite Procedure Execution Language & Library –
Version 2.3.13 (2013), http://code.google.com/p/spell-sat/

31. TFS-Group, TU Berlin: AGG (2014), http://www.tfs.tu-berlin.de/agg
32. Tichy, M., Krause, C., Liebel, G.: Detecting performance bad smells for Henshin

model transformations. In: Baudry, B., Dingel, J., Lucio, L., Vangheluwe, H. (eds.)
Proc. of the Second Workshop on the Analysis of Model Transformations (AMT
2013). CEUR Workshop Proceedings, vol. 1077 (2013)

20

http://code.google.com/p/spell-sat/
http://www.tfs.tu-berlin.de/agg

	Lecture Notes in Computer Science
	Introduction
	Case Study PIL2SPELL
	Concept for Software Translation
	Triple Graph Grammars with Henshin
	Leveraging TGGs for Software Translations in Industry
	Evaluation
	Related Work
	Conclusion

