Towards a Language-Independent Approach for
Reverse-Engineering of Software Product Lines

Tewfik Ziadi

UPMC LIP6

Paris, France
tewfik.ziadi@lip6.fr

Mikal Ziane
LIP6
Paris, France

mikal.ziane@lip6.fr

ABSTRACT

Common industrial practices lead to the development of sim-
ilar software products. These products are usually managed
in an ad-hoc way which gradually results in a low product
quality. To overcome this problem, it is essential to migrate
these products into a Software Product Line (SPL). Towards
this direction, this paper proposes a language-independent
approach capable of reverse-engineering an SPL from the
source code of product variants. A prototype tool and a
case study show the feasibility and the practicality of the
proposed approach.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering

General Terms

Algorithms, Experimentation, Languages

Keywords

Reverse-engineering, Software Product Lines

1. INTRODUCTION

Software Product Line Engineering (SPLE) [18] is a soft-
ware development paradigm designed to handle software
products variants that share a common set of features. While
objects and components enhance the reuse of software, SPLE
performs a step further by allowing the reusability and the
management of software features. The benefits of SPLE in-
clude the reduction of both the maintenance effort and the
time to market [9]. SPLE involves the creation and the man-
agement of a Software Product Line (SPL). The products of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’14 March 24-28, 2014, Gyeongju, Korea.

Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Christopher Henard
SnT, University of Luxembourg SnT, University of Luxembourg
Luxembourg, Luxembourg
christopher.henard@uni.lu michail.papadakis@uni.lu

Mike Papadakis

Luxembourg, Luxembourg

Yves Le Traon

SnT, University of Luxembourg

Luxembourg, Luxemb_ourg
yves.letraon@uni.lu

an SPL are usually represented by a variability model called
Feature Model (FM) [5] which allows building tailored prod-
ucts by combining the features [14].

SPLE can be implemented as a top-down approach. In
that case, features and variability are first specified at the
design stage and then software products are built. The top-
down process is useful when SPLE is adopted from the be-
ginning. However, current practices are different. Indeed,
as reported by Berger et al. 7], most of the industrial prac-
titioners first implement several software products and then
try to manage them. These product variants are created
using ad-hoc techniques, e.g., copy-paste-modify. This is a
bad practice leading to a complex management and a low
product quality. Thus, migrating such products to an SPL
is the challenge faced by extractive approaches in SPLE [16].

Over the past decade, several studies have investigated
such approaches. Some of them deal only with the extrac-
tion of features from textual requirements |3|, architectural
artifacts |1} |15, [20], or product descriptions [2]. We advocate
that these techniques can go beyond the feature identifica-
tion step. Indeed, they can refactor and migrate a set of
software products into an SPL. In other words, a full imple-
mentation of an SPL can be reverse-engineered. Therefore,
not only features but also their associated assets, e.g, code
units, should be identified and extracted.

Towards this direction, this paper introduces an auto-
mated technique, called ExtractorPL, capable of performing
a reverse-engineering of an SPL. ExtractorPL infers a full
implementation of an SPL given the source code of prod-
uct variants. The main challenge of this task is to analyze
the source code of the products in order to (a) identify the
variability among the products, (b) associate them with fea-
tures, (c) regroup the features into a variability model, and
(d) map the code units to each feature. The proposed ap-
proach is language-independent and only uses as input the
source code of the product variants. In addition, Extrac-
torPL is implemented as a publicly available prototype tool
and a case study performed on existing SPL assesses the
feasibility and the practicality of the introduced technique.

The remainder of this paper is organized as follows. Sec-
tion |2| and [3| respectively present the ExtractorPL approach
and a case study to evaluate it. Section [4] discusses the ben-
efits and the limitations of the approach. Then, Section
presents work related to the present one. Finally, Section [
concludes the paper and present our future work.

FSTs
[1]
- []
) []
Product variants
source code
Parser
1)

Abstraction of the
product variants

FSTs to
SoCPs

Features as

SoCPs SoCPs
\
Features Features to
Identification FSTs
(2

Automatic identification of
the SPL features

Features as

Full SPL
FSTs implementation
assets
‘ C, Java, C++, ...
™
[

e o =0
Pr_etty Feature Model
Printer

Feature code
generation

Figure 1: The ExtractorPL approach for the reverse-engineering of Software Product Lines (SPLs). First, the
product variants are abstracted. Then, their features are automatically identified. Finally, the code units
corresponding to the features are generated and a variability model (Feature Model) is extracted.

package bs;

package bs;
public class Account {
private String id;
private double balance;
public void deposit(double amount) {
this.balance += amount;

public void withdraw(double amount) {
if (amount <= balance)
balance -= amount;

}

package bs;
public class Account {
private String id;
private double balance;
private double limit;
public void deposit(double amount) {
this.balance += amount;

public void withdraw (double amount) {
if (amount <= balance + limit)
balance -= amount;

}

public double getLimit() {
return limit;

3}

public class Account {

private String id;

private double balance;

private double limit;

private double currency;

public void deposit(double amount) {
this.balance += amount;

public void withdraw (double amount) {
if (amount <= balance + limit)
balance -= amount;

}

public double getLimit() {
return limit;

}

(a) The ProductiBank variant

(b) The Product2Bank variant

(¢) The Product3Bank variant

Figure 2: Example of three product variants of a banking system. Each variant has a specific implementation

of the Account class.

2. THE EXTRACTORPL APPROACH

ExtractorPL is a language-independent approach which
extracts an SPL from the source code of product variants.
The re-engineered SPL is a full implementation since it al-
lows (a) building specific products by composing the source
code units of the identified features and (b) managing the
resulting SPL and its products through an FM.

To achieve this re-engineering, three main steps are con-
sidered. These steps are depicted by Figure First, Ex-
tractorPL abstracts each product variant into a set of atomic
pieces called Set of Construction Primitives (SoCPs). Each
Construction Primitive (CP) represents a node in an ab-
stract syntax tree for features called Feature Structure Tree
(FST). Then, following the lines suggested in [26], features
are identified as SoCPs and translated to FSTs. Finally, the
code units are generated from the obtained features’ FSTs.

The following subsections introduce an example of prod-
uct variants from a banking system that can be migrated
into an SPL. Then, the three main steps of the ExtractorPL
approach are detailed through the example.

2.1 The Banking System Example

As a concrete example of software product variants, con-
sider a set of banking systems [26]. Each variant proposes
a simple banking application. The variability between these
product variants is related to the limit on the account and to
the currency exchange, which are optional features. These
banking products were manually developed using a copy-
paste-modify approach.

Figure[2]illustrates the source code of the Account class in
the three variants denoted as Product1Bank, Product2Bank,
and Product3Bank. Following this figure, consider the Prod-
uct1Bank product depicted by Figure In this product,
the Account class defines a basic banking account without
the limit and currency information. On the contrary, since
the Product2Bank of Figure supports an account limit
feature, its corresponding Account class defines the limit
field. In addition, the withdraw method is refined to check
the limit. Finally, in the Product3Bank variant of Figure
the Account class is defined with information related
to both the limit and currency exchange.

bs

Account

id balance| | deposit| withdraw

PIBank= {
CreateNonTerminal(bs, package, (Account)),
CreateNonTerminal (Account, Class, bs,

(id, balance, deposit, withdraw)),
CreateTerminal(id, field, Account),
CreateTerminal(balance, field, Account),
CreateTerminal (deposit, method, Account),
CreateTerminal(withdraw, method, Account),

}

(a) FST and SoCPs corresponding to the Product1Bank variant

bs
Account

id balance limit deposit | withdraw

PZBank= {
CreateNonTerminal(bs, package, (Account)),
CreateNonTerminal (Account, Class, bs,

(id, balance, deposit, withdraw)),
CreateTerminal(id, field, Account),
CreateTerminal(balance, field, Account),
CreateTerminal(limit, field, Account),
CreateTerminal(deposit, method, Account),
CreateTerminal(withdraw, method, Account),
CreateTerminal(getLimit, method, Account),

}

(b) FST and SoCPs corresponding to the Product2Bank variant

bs

Account

id balance limit

currency | deposit |\withdraw

P}Bank= {
CreateNonTerminal(bs, package, (Account)),
CreateNonTerminal(Account, Class, bs,

(id, balance, deposit, withdraw)),
CreateTerminal(id, field, Account),
CreateTerminal(balance, field, Account),
CreateTerminal(limit ,field, Account),
CreateTerminal(currency, field, Account),
CreateTerminal (deposit, method, Account),
CreateTerminal(withdraw, method, Account),
CreateTerminal(getLimit, method, Account),

}

(¢) FST and SoCPs corresponding to the Product3Bank variant

Figure 3: The left part represents the Feature Structure Trees (FSTs) abstracting the Account class of the
banking products variants. Each FST contains the software artifacts of the corresponding product. The Set
of Construction Primitives (SoCPs) corresponding to the FST is represented on the right part of this figure.

2.2 Abstraction of the Product Variants

ExtractorPL takes as input the source code of a set of
product variants. To analyze and compare these variants,
each product is first abstracted into a SoCPs. To this end,
ExtractorPL builds the SoCPs associated to each product
by using the general model proposed within FeatureHouse,
called Feature Structure Tree (FST) [4]. An FST represents
the essential software artifacts as a tree. Each node of an
FST has a name and a type.

The choice of FSTs is based on the following two criteria.
First, an FST is a language-independent model. Second,
FSTs include general composition operators. From the FST's
associated to each product variant, ExtractorPL represents
them as a SoCPs. The construction primitives (CPs) used
to decompose each FST depend on the type of nodes within
each FST. In this work, the following construction primitives
are used:

SoCPs = {CreateNonTerminal (name, type, child),
CreateTerminal (name, type, parent, body)}.

We distinguish two types of nodes within an FST: non-
terminal and terminal ones. A non-terminal node denotes
inner modules, e.g., packages and classes. Terminal nodes
store the module’s content, e.g., method bodies [4].

Each product variant is thus abstracted as a set of FST's.
For each node in each obtained FST, a CP is created and
added to the SoCPs. This means that each product variant
is defined as a set P; = {cp1, cp2, .., cpn}, where each cp; €
SoCPs. In the following, we consider AllP = {P1, Pa,.., Pn}
as the set of product variants available to perform the reverse-
engineering of the SPL, i.e., the input of the ExtractorPL
approach.

The left part of Figure [3] depicts the three FSTs obtained
from the source code of the banking products. For instance,
the Account class is represented by a node with the name
Account and the type Class.

The following subsection introduces the algorithm that
compares and analyzes the extracted SoCPs. Equivalence
between the construction primitives relies on the equivalence
between nodes in the corresponding FST 7 as defined be-
low.

1. A non-terminal node n; is equivalent to a non-terminal
node n2 if and only if n; and n2 have the same name,
the same type and the same node child.

2. A terminal node n; is equivalent to a terminal child
ng if and only if they have the same name, the same
type, the same parent and the same body.

2.3 Automatic Identification of the Software
Product Line Features

The second step of the reverse-engineering process per-
formed by our approach aims at comparing the SoCPs of the
product variants in order to identify their features. To this
end, ExtractorPL first uses the algorithm proposed in [26)
to represent features as sets of SOCPs. Then, these features
are transformed into F'STs.

The feature identification process is based on a formal
definition of a feature that uses the notion of interdependent
CPs. This notion is defined as follows.

DEFINITION 1 (Interdependent CPs). Given the set
of product variants that can be used by ExtractorPL, AllP,
two CPs (of products of AllP) cp1 and cpz2 are interdepen-
dent if and only they belong to exactly the same products of
AllP. In other words, cp1 and cp2 are interdependent if the
two following conditions are fulfilled.

1. 3P AllP cp1€P Ncp2 € P.

2. VPeAllP ¢p1 €P < cp2€P.

Since interdependence is an equivalence relation on the set
of CPs of AllP, it leads us to the following definition of a
feature.

DEFINITION 2 (Feature). Given AllP a set of prod-
ucts, a feature of AllP is an equivalence class of the in-
terdependence relation of the CPs of AllP.

The application of this algorithm to the SoCPs of the
banking products provides the features depicted by Figure
@ This includes one mandatory feature and three optional

Base= {
CreateNonTerminal(bs, package, (Account)),
CreateNonTerminal(Account, Class, bs,

(id, balance, deposit, withdraw)),
CreateTerminal(id,filed, Account),
CreateTerminal(balance,field, Account),
CreateTerminal(deposit,method, Account)

3

Fi= {
CreateTerminal(limit,,filed, Account),
CreateTerminal(withdraw,method, Account),
CreateTerminal(getLimitw,method, Account)

}

F2= {
CreateTerminal(currency,filed, Account)
}

F3= {
CreateTerminal(withdraw,method, Account)
}

Figure 4: The identified features for the banking
product variants. Base gathers the code common to
any banking system. F1 concerns the limit informa-
tion. F2 represents the currency exchange and F3
denotes the withdraw method without the account
limit checking.

Legend:
SPL

., Mandatory

O/ Optional

Figure 5: The Feature Model (FM) built by Extrac-
torPL for the banking example. It represents the
variability between the extracted features of the re-
engineered SPL.

ones. The Base feature gathers all the CPs that are present
in all the product variants. The feature F1 concerns the
limit information. Indeed, it contains primitives to create
the 1imit field, its getter and the withdraw method with the
body defining limit checking. F2 is related to the currency
exchange since it contains the CPs related to the currency
field. The F3 feature is related to the withdraw method
without limit checking. Finally, ExtractorPL also organizes
the obtained features into a FM. This model is depicted by
Figure [5}

The algorithm for identifying the features of a given set
of products 26| is based on this definition. In brief, it takes
as input a set of SoCPs, i.e., one per input product variant
and returns a single mandatory feature called Base and a
set of optional features for these product variants. Finally,
once the features of the product variants have been identi-
fied, they are represented as FSTs in order to be useful for
generating the code of each feature.

2.4 Feature Code Generation

In addition to the feature identification, ExtractorPL aims
at extracting a full compositional implementation of an SPL
from the source code of product variants. It means that our
approach includes the generation of the code units associated
to each feature once the SPL is extracted. As a result, one
is able to build tailored software products by automatically
generating the source code of the features selected.

To perform the code generation, ExtractorPL uses the
FSTs of the features obtained in the previous step. Then, it
generates their code units by using the pretty printers pro-
posed by FeatureHouse. Indeed, the FeatureHouse frame-
work includes a set of pretty printers for different program-
ming languages such as C or Java. These printers produce
the code from FSTs. Using this framework within our ap-
proach allows ExtractorPL being a language-independent
technique.

Finally, to demonstrate the result of the code generation,
Figure [§] depicts the code units generated from the FSTs of
the features. Following this figure, the code associated with
the Base feature represents the common implementation of
the Account class. The code units of the remaining optional
features express the variability and refine the common code
by adding elements related to each feature. Given the code
of each feature, a product variant of the resulting SPL can be
built using the compositional operators between FSTs. The
following section evaluates ExtractorPL via a case study.

package bs;

public class Account {

private double limit;

public void withdraw (double amount) {
if (amount <= balance + limit)
balance -= amount;

package bs;
public class Account {
private String id;
private double balance;
public void deposit(double amount) {
this.balance += amount;
}

} }

}
public double getLimit() {
return limit;

package bs;

package bs;
public

}

public class Account {

class Account {

public void withdraw(double amount) {
private double currency; if (amount <= balance)
balance -= amount;

}

}

(a) The code generated for
the Base feature

(b) The code generated for
the F1 feature

(c) The code generated for
the F2 feature

(d) The code generated for
the F3 feature

Figure 6: The code units generated for each of the extracted features of the banking example.

3. CASE STUDY

In this section, ExtractorPL is assessed. The question
raised here is how this evaluation can be performed. Gen-
erally, an automated reverse-engineering task can be con-
sidered as successful when it provides similar results to a
manually performed one. Therefore, one way to measure the
accuracy of our approach is to compare its result with the
result from a developer. Another way is to measure whether
the extracted SPLs provide a minimum quality standard as
defined by the two following requirements.

1. The extracted SPL allows building the products that
have been used to perform the re-engineering.

2. The approach identifies the features that must appear
in all the possible variants of the SPL. These features
are usually called mandatory features.

If a re-engineered SPL cannot fulfill the first condition,
it is obviously an erroneous approach. Similarly, if the sec-
ond condition cannot be satisfied, then there is no hope to
identify optional features. Following the above-mentioned
concerns, a controlled experiment is conducted based on ex-
isting SPLs. We use products from existing SPLs in order
to establish a comparison basis between the existing SPLs
and the extracted ones. As a result, this case study aims at
answering the two following research questions:

e /[RQ1] How close the SPL re-engineered by Extrac-
torPL is to the original one?

e [RQ2] Does the re-engineered SPL has a minimum
quality standard?

The first research question amounts to evaluate whether
the SPL extracted with ExtractorPL conforms to the origi-
nal one. To this end, we manually compare the original SPL
with the extracted one. In particular, we check whether
extracted features correspond to those defined in the origi-
nal version of the SPL. The second research question aims
at checking whether the above-mentioned minimum require-
ments are fulfilled by the SPL extracted by our approach.

The evaluation of ExtractorPL is divided into two parts.
The first one is performed manually and aims at answering
to the RQ1. The second one performs automatically in order
to answer to the RQ2.

3.1 Relation Between the Re-Engineered SPL
and a Manually Produced One (RQ1)

In this section, we compare the SPL resulting from Ex-
tractorPL with the original one. This is a manual step and

thus it requires a lot of effort to be accomplished. There-
fore, in order to complete the experiments with reasonable
resources, the evaluation is limited to one benchmark.

3.1.1 Setup

We use a notepad SPL written in Java |21]. This SPL is
detailed in Table [l It contains 14 Java classes for a total
of 806 lines of code. It proposes three optional features:
copy/cut/paste, undo/redo and find. By combining these
three features, up to 8 different notepad applications can be
built. These 8 product variants are used by ExtractorPL to
reverse-engineer an SPL. We manually compare the features
extracted by ExtractorPL using the 8 product variants with
the features of the notepad SPL.

3.1.2 Evaluation

ExtractorPL has extracted 4 features. The first one, Base,
contains the 7 classes related to the core of any notepad vari-
ant: About, Actions, Center, ExampleFileFilter, Fonts,
Notepad and Print. The three other features, F1, F2, and
F3 are related to the optional features of the original SPL. In-
deed, F1 contains the Notepad and Actions classes. This lat-
ter defines the copy, cut and paste methods. As a result, F1
is related to the copy/cut/paste feature. The second feature,
F2, encompasses the Notepad and Actions with the find
method and attributes. Finally, F3 contains the Notepad,
Redo and Undo actions. Finally, we manually checked that
the extracted SPL allows generating the code of all the prod-
ucts used as input and that they can be executed without
encountering any problem.

Table 1: The Notepad Software Product Line (SPL)
used to evaluate ExtractorPL towards RQ1.
Lines of code 806
Classes 14
Copy/Cut/Paste (CCP)
Undo/Redo (UR)
Find (F)
Basic Notepad (BN)
BN + CCP
BN + UR
BN + F
BN + CCP + UR
BN + CCP + F
BN + UR + F
BN + CCP + UR + F

Optional features

Product variants

Table 2: The Software Product Lines (SPLs) used for the evaluation of the approach towards RQ2.

Language | Features | Product variants | Classes/Files | Lines of code | Products used by ExtractorPL
E-Mail C 23 5,632 39 816 1, 5, 10, 50 and 100
GPL Java 38 840 55 1929 1, 5, 10, 50 and 100

3.1.3 Answering RQ1

The extracted SPL conforms with the original one. We
compared the obtained features and variants and found that
our approach is able to accurately retrieve the features and
to re-generate the products used as input. As a result, given
a set of product variants ExtractorPL is able (a) to retrieve
the variability among these products and (b) to extract a
SPL that is representative of the original one.

3.2 Minimum Quality Standard Evaluation of
the Re-Engineered SPL (RQ2)

The second part of this study aims at evaluating whether
the re-engineered SPL achieves a minimum level of quality.

3.2.1 Setup
We use the two following SPLs from FeatureIDE [21]:

1. E-Mail. This SPL gathers a family of systems manag-
ing mails. Examples of optional features in this SPL
include encryption or the address book.

2. GPL. The Graph Product Line is a family of graph
manipulation algorithms [17].

We choose these particular SPLs as they are considered to
be standard benchmarks. Table [2| gathers detail regarding
these two SPLs. In particular, for each SPL, it presents
the programming language in which it is implemented, the
number of features of the corresponding FM, the number
of possible product variants that can be built according to
the FM and the number of input products that have been
used by ExtractorPL to extract the SPL. Indeed, we used
a sample of products to extract the SPL since hundreds of
products can be build from these SPLs.

The configuration of the products used as input by our ap-
proach are configurations randomly selected from the space
of all the possible configurations that can be generated from
the FM [11]. For each configuration randomly generated,
we use FeatureHouse to construct the corresponding soft-
ware product variant. The resulting products variants are
then used by ExtractorPL to reverse-engineer the SPL.

For each SPL and for each number of products used by
our approach, the extraction of the SPL has been indepen-
dently performed 10 times. In the following, we present two
approaches to automatically evaluate the resulting SPL. The
first one compares the products generated by ExtractorPL
with the ones used to extract the SPL. We expect the result-
ing SPL to be able to build the products that were used as
input. The second steps automatically evaluates the manda-
tory features. Here, we expect the mandatory features of the
original SPL to be included in the mandatory features of the
extracted SPL.

3.2.2 Regeneration of the Input Products

The objective is to check whether the extracted SPL al-
lows building the products that were used by ExtractorPL.
To this end, we check whether the SoCPs of a given input

product (of the original SPL) matches the SoCPs of the cor-
responding product built from the re-engineered SPL. More
formally, if AllP;, denotes the set of N input products used
as input and if AllP,,: denotes the set of N products gen-
erated from the extracted SPL, we check that:

(VP € AllP;in)(3P" € AllPyy:) | P = P,

where P and P’ are products represented as a SoCPs. The
equivalence between two products P and P’ is defined as
an equivalence between their SoCPs. For each of the two
SPL of Table 2] and for each number of input products, all
the 10 runs of the approach produced an SPL which allows
regenerating the inputs products, thus validating the above-
mentioned condition.

3.2.3 Evaluation of the Mandatory Features

ExtractorPL extracts one mandatory feature called Base
and a set of optional features. In this section, we evaluate
whether the mandatory features of the original SPL are in-
cluded in the mandatory feature of the SPL extracted with
ExtractorPL. To this end, we check whether the SoCPs of
the original mandatory features are included in SoCPs of
the mandatory feature of our extracted SPL. More formally,
if SoC Ps;y denotes the SoCPs of the input mandatory fea-
tures and if SoC Psy.: denotes the SoCPs of the extracted
mandatory feature, we check that:

SoCPs;n € SoCPsoyt.

The evaluation has been performed 10 times indepen-
dently per SPL. For each SPL and for each number of ran-
dom products used as an input by the approach, we ob-
served that the original mandatory features are included in
the mandatory feature of the extracted SPL. It is noted that
all the mandatory features are always validated on both the
E-Mail (C) and GPL (Java) SPLs, fact which demonstrates
the ability of ExtractorPL to retrieve the mandatory fea-
tures.

3.2.4 Answering RQ2

From the results presented in the previous sections, we
found that (a) the extracted SPL allows building the prod-
ucts used to extract this SPL, and (b) all the mandatory fea-
tures of the original SPL are included in our extracted SPL.
It means that our approach does not miss any information,
thus fulfilling the minimum quality requirements defined in
the beginning of this section.

3.3 Threats to Validity

The conducted study involves three existing SPLs. As a
consequence, there is a threat regarding the generalization
of the results. Indeed, using different SPLs might lead to dif-
ferent results. To both reduce this threat and to provide a
good sample of applications, we used three SPLs considered
as standard benchmarks. These three SPLs are of differ-
ent size and programming languages. Other threats can be

identified due to the employed evaluation metrics. In other
words, there is a risk that the quality measures are irrelevant
towards the “real” quality of an SPL. To reduce this threat,
we evaluate the approach using manual and automatic met-
rics. Additional threats can be due to our implementation.
Indeed, potential errors in it might affect the presented re-
sults. To overcome this issues, we divided our implementa-
tion into modules to minimize the potential errors. We also
make the prototype tool publicly available. Finally, there is
a threat regarding results that could happen by chance. To
minimize the risks attributed to random effects, we repeated
the experiments 10 times independently.

4. DISCUSSION

This section first discusses the reasons to migrate existing
product variants to an SPL. In this respect, several profits
are provided by our tool. Then, some limitations regarding
the proposed approach are highlighted.

4.1 Benefits

Migrating a set of existing products to an SPL can lead
to the following profits. First, in can reduce the develop-
ments costs. Indeed, an SPL allows building tailored soft-
ware products by combining the features. It thus allows
reusing existing code within different products. This can be
performed automatically and without adapting the code.

Second, it can bestow a faster time to market. A full im-
plementation of an SPL as proposed by our approach easily
allows building the products by only selecting the desired
features. The products are then generated by composing
the code of the selected features. This allows configuring
easily the products depending on the targeted market. It
also greatly decreases the time to build these products and
enables a flexible productivity.

Another outcome is the higher quality in the products.
Migrating existing products to an SPL leads to a reduced
risk to introduce errors when new products are created. In-
deed, creating product variants with ad-hoc techniques like
copy-paste-modify can lead to an introduction of errors in
some variants. If the code of each feature is centralized
within the SPL and shared in all the product proposing these
features, it allows testing each feature independently. This
allows using SPL testing techniques which aim at testing the
whole SPL in an efficient way |13 [12].

Finally, moving products to a SPL provides a higher qual-
ity in the products developed, thus leading to an easier man-
agement and maintenance of the products. In particular, the
variability model such as the FM allows managing and tailor-
ing the products. Besides, the code contains less redundancy
and is refactored according to the underlying model.

Regarding ExtractorPL, it is the first approach to the
authors’ knowledge which allows building an SPL from a
set of product variants. Indeed, existing approaches require
additional information to perform the reverse-engineering,
like annotations in the code. On the contrary, our ap-
proach is fully automated and requires only the source code
of the products variants (Section gives more detail regard-
ing other techniques). In addition to the extraction of the
code units of the features, our approach also extracts a FM.
Such a model provides a high-level view of the variability
within the product line. It also allows visualizing the fea-
tures, their dependencies and paves the way to reasoning
and model-based testing of the SPL [11].

4.2 Limitations

ExtractorPL does not consider variability within the body
of methods or functions, i.e. the statement level. We are
working on the extension of the approach to remove this lim-
itation. The idea is to modify the FSTs grammar to allow
defining nodes for the statements of functions. Besides, the
current implementation of ExtractorPL only infers an FM
with a single mandatory feature and a set of optional fea-
tures. This model does not encompasses constraints among
the features, e.g. implications or exclusions. We are working
on an extension of the proposed approach to infer a possible
list of constraints from the features that are observed in the
product variants. These constraints will then be proposed
to the user to be accepted and added to the FM.

S. RELATED WORK

Whether extracting a product line is useful has been as-
sessed in [6]. In this work, Berger et al. investigated the as-
sessment of product variants to extract a product line. They
propose a set of metrics that enable the software architects
and project managers to estimate whether it is beneficial or
not to construct a product line. This work is complementary
to our and can be done as a prior step to our approach.

There are few work related to the extraction of an SPL
from the source code of product variants. Yoshimura et al.
|24] propose an algorithm to detect variability across the
source code of a collection of existing products. This method
only extracts factors to specify the variability. In |15], Klatt
et al. propose ay reverse-engineering process for variabil-
ity. This work also abstracts input product variants using
Abstract Syntax Tree (AST) models. The extraction of the
SPL implementation is not considered in these work.

Zhang et al. [25] present a framework for re-engineering
variability. However, this work only focus on the extraction
of variability from the source code with conditional compi-
lation directives. Xi et al. |23] propose an approach based
on Formal Analysis Concept (FCA) for the identification of
code units that are associated with a set of existing features.
Indeed, in addition to the source code of product variants,
this approach also takes as input data the list of features
associated to each product variant. It then tries to locate
the code units associated to each feature. The difference be-
tween this work and our approach is that ExtractorPL only
considers the source code of the product variants as input
data, without any additional information.

Extracting the variability from other assets than source
code has been investigated in several work, e.g., [§]. In [19],
Rubin et al. propose an approach to extract a product line
from architectural artifacts. Frenzel et al. [10] use the re-
flexion method to refactor a collection of product architec-
tures into an SPL architecture. In their work, variability is
specified using annotations. In 1], FMs are extracted from
plugin dependencies and architecture fragments of product
variants. Yssel et al. [20] consider the extraction of FMs
from a set of similar models that represent function blocks, a
kind of architectural models for embedded systems. Extrac-
torPL can be modified to use architectural artifacts. Indeed,
FSTs can be employed to abstract architectural models [4].

Finally, while ExtractorPL extracts an SPL from the source
code of a set product variants, Valente et al. |22| propose a
semi-automatic approach where an SPL is extracted from a
single software product.

6. CONCLUSION

Automatically migrate a set of software product variants
to an SPL is not an easy task. It requires to perform several
non-trivial steps including (a) the identification of the fea-
tures in the source code of the products, (b) the extraction
of the features as code units, (c) the extraction of a vari-
ability model and (d) once the SPL is extracted, the cor-
rect composition of these features in order to build tailored
software products. We tackled this problem with Extrac-
torPL, a language-independent approach which provides a
quick automatic front-end to refactor a set of similar prod-
uct variants into a SPL. ExtractorPL has been implemented
in a prototype tool based on which several experiments have
been conducted. Our technique bestows two main outcomes.

e It is a full extractive approach. From the source
code of a set of product variants, ExtractorPL extracts
a full implementation of an SPL. This includes the
features, their code units, and a variability model.

e It is a language-independent approach. Extrac-
torPL only manipulates FSTs to extract a SPL. To in-
tegrate new languages or artifacts, it only requires to
implement a parser for FST's related to this language.

Finally, to enable reproducibility of our results, our imple-
mentation of ExtractorPL is publicly available at:

http://pagesperso-systeme.lip6.fr/Tewfik.Ziadi/sac14/.

7. REFERENCES

[1] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien,
and P. Lahire. Extraction and evolution of
architectural variability models in plugin-based
systems. In SoSyM, pages 1-28, 2013.

[2] M. Acher, A. Cleve, G. Perrouin, P. Heymans,

C. Vanbeneden, P. Collet, and P. Lahire. On
extracting feature models from product descriptions.
In VaMoS, pages 45-54, 2012.

[3] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,
P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An
exploratory study of information retrieval techniques
in domain analysis. In SPLC, pages 67-76, 2008.

[4] S. Apel, C. Kistner, and C. Lengauer. Featurehouse:
Language-independent, automated software
composition. In ICSE, pages 221-231, 2009.

[5] D. Benavides, S. Segura, and A. R. Cortés.
Automated analysis of feature models 20 years later:
A literature review. Inf. Syst., 35(6):615-636, 2010.

[6] C. Berger, H. Rendel, and B. Rumpe. Measuring the
ability to form a product line from existing products.
In VaMoS, volume 37, pages 151-154, 2010.

[7] T. Berger, R. Rublack, D. Nair, J. M. Atlee,

M. Becker, K. Czarnecki, and A. Wasowski. A survey
of variability modeling in industrial practice. In
VaMoS, page 7, 2013.

[8] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher,

J. Cleland-Huang, and P. Heymans. Feature model
extraction from large collections of informal product
descriptions. In ESEC/FSE, pages 290-300, 2013.

[9] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel.

An empirical study of the effect of time constraints on

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

(26]

the cost-benefits of regression testing. In F'SE, pages
71-82, 2008.

P. Frenzel, R. Koschke, A. P. J. Breu, and

K. Angstmann. Extending the reflexion method for
consolidating software variants into product lines. In
WCRE, pages 160-169, 2007.

C. Henard, M. Papadakis, G. Perrouin, J. Klein,

P. Heymans, and Y. L. Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize t-wise test suites for large software
product lines. CoRR, abs/1211.5451, 2012.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Multi-objective test generation for
software product lines. In SPLC, pages 62—71, 2013.
C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Pledge: a product line editor and test
generation tool. In SPLC Workshops, pages 126-129,
2013.

K. Kang, J. Lee, and P. Donohoe. Feature-oriented
product line engineering. Software, IEEE, 19(4):58 —
65, jul/aug 2002.

B. Klatt and M. Kiister. Respecting Component
Architecture to Migrate Product Copies to a Software
Product Line. In WCOP’12, June 2012.

C. W. Krueger. Easing the transition to software mass
customization. In PFE, volume 2290, pages 282-293,
2001.

R. E. Lopez-Herrejon and D. S. Batory. A standard
problem for evaluating product-line methodologies. In
GCSE, volume 2186, pages 10-24, 2001.

K. Pohl, G. Bockle, and F. J. v. d. Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. 2005.

J. Rubin and M. Chechik. Combining related products
into product lines. In FASE, volume 7212, pages
285-300, 2012.

U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic
variation-point identification in function-block-based
models. In GPCE, pages 23-32, 2010.

T. Thiim, C. Késtner, F. Benduhn, J. Meinicke,

G. Saake, and T. Leich. Featureide: An extensible
framework for feature-oriented software development.
Science of Computer Programming, 2012.

M. T. Valente, V. Borges, and L. T. Passos. A
semi-automatic approach for extracting software
product lines. IEEE Trans. Software Eng.,
38(4):737-754, 2012.

Y. Xue, Z. Xing, and S. Jarzabek. Feature location in
a collection of product variants. In WCRE, pages
145-154, 2012.

K. Yoshimura, F. Narisawa, K. Hashimoto, and

T. Kikuno. Fave: factor analysis based approach for
detecting product line variability from change history.
In MSR, pages 11-18, 2008.

B. Zhang and M. Becker. Recovar: A solution
framework towards reverse engineering variability. In
Proc. PLEASE, pages 45-48, 2013.

T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane.
Feature identification from the source code of product
variants. In CSMR, pages 417-422, 2012.

http://pagesperso-systeme.lip6.fr/Tewfik.Ziadi/sac14/

	Introduction
	The ExtractorPL Approach
	The Banking System Example
	Abstraction of the Product Variants
	Automatic Identification of the Software Product Line Features
	Feature Code Generation

	Case Study
	Relation Between the Re-Engineered SPL and a Manually Produced One (RQ1)
	Setup
	Evaluation
	Answering RQ1

	Minimum Quality Standard Evaluation of the Re-Engineered SPL (RQ2)
	Setup
	Regeneration of the Input Products
	Evaluation of the Mandatory Features
	Answering RQ2

	Threats to Validity

	Discussion
	Benefits
	Limitations

	Related work
	Conclusion
	References

