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An Overview



The problems and my 
research

Mesh distortion in 
hyperelastic 

problems

Numerical 
locking in 

incompressible 
elasticity, plates and 

shells, Cosserat 
elasticity

Enriched 
implicit 

boundary 
methods

Meshfree 
methods

Mixed 
variational 

forms

Patch projection techniques

Direct image-
analysis transition 

for surgical 
simulators.



Project 1: Direct image to 
mesh analysis for 
surgical simulation



Surgical Simulation

Model-order  
reduction

Enriched and implicit  
boundary methods

High Performance 
Computing

Real-time simulation



RealTCut and  
SHACRA Inria





COLONIX, OSIRIX

How can we move from an image…  



…or perhaps a series of images…

Source: COLONIX, OSIRIX



Pipelines to analysis

Acquire images

Segment images

Mesh Surfaces

Mesh Volume

Perform analysis

Traditional

Acquire images

Segment images

Perform analysis

Implicit Boundary

NURBS

Implicit

Explicit }}

{ Implicit



Nested Octree

OgOd

M

Discretisation Geometry



How to transfer geometric information 
back to the discretisation?

V pd

hd
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hg
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hd > hg pg = 1

Enrichment

V pd

hd
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Octree Level 5/Level 3



Surface6a2e86c



Features
• 2D and 3D problems on the same code-path. 

• parallel hybrid MPI/TBB assembly and solution. 

• fast and robust computational geometry using CGAL. 

• automatic Delaunay tessellation of integration subdomains. 

• completely separate representation of discretisation and geometry via 
nested octree data structures. 

• constructs to represent soft and hard segmentations of image data. 

• implicit representation via level-sets, inside-outside functions. 

• independent hpe-type adaptivity on discretisation and geometry. 

• fast refinement and coarsening operations.



Outlook

• We are developing a cartesian grid implicit 
boundary/enriched finite element method toolkit 
within deal.ii. 

• By uncoupling discretisation and geometry we 
hope to produce a method particularly suited to 
image-based analysis. 

• Many challenges ahead, particularly with 
imposition of Dirichlet boundary conditions on 
hyperelastic soft-tissue model.



Project 2: Mesh-based 
and Meshfree Partitions 

of Unity



Partition of Unity

uh(x) =
N�

i=1

�iui

N�

i=1

�i = 1



Finite elements
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Mesh-based Partition of 
Unity

Reference

Mesh



Finite Element Method

Reference

Mesh



Meshfree-based Partition of 
Unity



Meshfree partition of unity is 
constructed in global space

Good: 
• improved approximation 

properties. 
• high-order continuity. 
• less dofs for given accuracy. 

• less sensitive to poor quality 
node distributions.!

• eases mesh generation. 
!
!

Not so good: 
• expensive. 
• extra flexibility also means extra 

complexity: 
• integration.!
• adaptivity/error measures. 
• mathematical proof. 
• stability.!
• boundary conditions.



Maximum-entropy basis 
functions
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Maximum-entropy basis 
functions



Maximum-entropy basis 
functions

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.06

0.12

0.18

0.24

0.30

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.06

0.12

0.18

0.24

0.30

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0



Maximum-entropy basis 
functions

uh � H1
0 (�)

All basis functions associated 
with interior nodes vanish on 
the convex hull.

Vital for easy imposition of Dirichlet boundary conditions. 



The problem.



The problem: 
numerical locking

Problems with small parameters crop up nearly everywhere! 
Hyperelasticity 

Incompressible fluid flow 
Plates and Shells 
Cosserat elasticity 

and probably many more…



Nearly-incompressible 
elasticity

λ =
νE

(1 + ν)(1− 2ν)

Find uh � Uh such that

∫

Ω
Cϵ(uh) : ϵ(v) dΩ =

∫

Γ
f · v dΩ ∀v ∈ H1

0 (Ω)



Locking
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Locking
Inability of the basis functions to satisfy the 

constraint imposed whilst still having adequate 
approximation properties

||u � uh|| � C(�)hp||u��||



p-refinement



p-refinement
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Mixed variational formulation

Find uh � Ph and ph � Ph such that:

Looking better

2µ

�

�
�(uh) · �(v) d� +

�

�
ph� · v d� =

�

�
f · v d� �v � Uh

�

�
� · uh q d� � 1

�

�

�
phq d� = 0 �q � Ph



Great, so the problem is 
solved right?



LBB Stability

inf
q∈Ph

sup
v∈Uh

∫
Ω q∇ · vdΩ
||v||1||q||0/R

≥ βh > 0

A question of balance

PhUh



StabilityChapter 36. Automated testing of saddle point stability conditions 659

(a) Bad approximation (b) Good approximation

Figure 36.1: The scalar variable approximation uh for two choices of mixed finite element spaces
for the mixed Laplacian. The data are as defined immediately above (36.1). The element spaces are
[CG1]

2 × DG0 in (a) and RT1 × DG0 in (b). (The scales are less relevant for the current purpose and
have therefore been omitted.)

This choice turns out to be a rather bad one: the finite element matrix associated with this pair will
be singular! Hence, there does not exist a discrete solution (σh, uh) with this choice of Σh × Vh .

As a second attempt, we keep the space of continuous piecewise linear vector fields for Σh, but
replace the previous space Vh by the space of piecewise constant functions. This pair might appear
to be a more attractive alternative: there does indeed exist a discrete solution (σh, uh). However, the
discrete solution is not at all satisfactory. In particular, the approximation of the scalar variable uh is
highly oscillatory, see Figure 36.1(a), and hence it is a poor approximation to the correct solution.

The above two alternatives give unsatisfactory results because the discretizations defined by the
element spaces are both unstable. A stable low order element pairing is the combination of the
lowest order Raviart–Thomas elements and the space of piecewise constants (Raviart and Thomas,
1977). The corresponding uh approximation is plotted in Figure 36.1(b). This approximation looks
qualitatively correct.

The reason for the instabilities of the first two choices, and the stability of the third choice, may
not be immediately obvious. The goal of this chapter is to construct a framework that automates
this stability identification procedure, by characterizing the stability properties of a finite element
discretization automatically and accurately. We will return to this example in Section 36.6 where we
give a more careful characterization of the stability properties of the above sample elements.

36.3 Discrete stability

In order to automatically characterize the stability of a discretization, we need a precise definition
of discrete stability and preferably conditions for such to hold. In this section, the Babuška and
Brezzi stability conditions are described and motivated in the general abstract setting. The material
presented here is largely taken from the classical references Babuška (1973); Brezzi (1974); Brezzi and
Fortin (1991).

For a Hilbert space W, we denote the norm on W by ∥ · ∥W and the inner product by ⟨·, ·⟩W .
Assume that c is a symmetric, bilinear form on W and that L is a continuous, linear form on W. We
will consider the following canonical variational problem: find u ∈ W such that

c(u, v) = L(v) ∀ v ∈ W. (36.3)

Assume that c is continuous; that is, there exists a positive constant C such that

|c(u, v)| ! C ∥u∥W∥v∥W ∀ u, v ∈ W. (36.4)

If additionally there exists a positive constant γ such that

c(u, u) " γ∥u∥2
W , (36.5)

Image: Marie E. Rognes



MINI element

Arnold, Brezzi, Fortin 1984

Uh Ph

Linear + Bubble Linear



The Volume Averaged 
Nodal Pressure Method 

(VANP)



Questions I will answer…
1. Can we produce a stable pair of spaces for the mixed 

formulation using meshfree approximation schemes? 

2. Can we eliminate the pressure space to produce a generalised 
displacement method? 

3. Can we produce a general scheme, which works for arbitrary 
spaces of meshfree basis functions and even finite element 
basis functions? 

4. How does enrichment, in the manner of the MINI bubble, affect 
the convergence and stability? 

5. Does it work in 3D?



Questions I can answer….

• Exactly how to construct meshfree basis functions, 
including high-order reproducing radial basis 
functions and maximum-entropy basis functions. 

• How to accurately integrate the weak form. 

• How to implement the method in algorithmic form. 

• And of course any other questions you may have…



1. Can we produce a stable pair of spaces for the 
mixed formulation using meshfree approximation 
schemes?



3.3. Volume-averaged nodal projection operator

The explicit form of the projection operator is derived from the volume-averaged

nodal pressure technique introduced in the work of Ortiz et al. [27]. To this end, let

the domain tessellation with simplices be denoted by T (Ω). The tessellation consists

of 3-node triangular or 4-node tetrahedral cells denoted by C. The vertices of the

tessellation, denoted by V(T ), are then used to define the standard node set N s. In

addition to the standard node set, we define a barycenter node set as N b with nodes

located at the barycenter of each cell C in the tessellation T (Ω). So, an enhanced

node set is defined as N+ = N s ∪ N b. A second enhanced node set is defined as

N ∗ = N s ∪ N b∗, where N b∗ is a node set with nodes located at the barycenter of

every other cell C in the tessellation T (Ω). Fig. 1 depicts a schematic representation

of a two-dimensional simplicial tessellation together with its corresponding cells and

node set definitions.

C T (Ω)

N s

N b

(a)

C T (Ω)

N s

N b∗

(b)

Fig. 1: Schematic representation of a two-dimensional simplicial tessellation for the VANP method.

(a) Enhanced node set N+, and (b) enhanced node set N ∗.

In our approach, the simplicial tessellation T (Ω) that connects the standard node

set N s is generated using a meshing software and the Gauss points locations are
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Spaces

Uh := [ME(Ω;Nh, ρ)]
2

Ph := CG1(Ω; Th)
For simplicity of the exposition, not required

uh(x) =
N∑

i=1

φiui

ph =
M∑

i=1

Nipi



Saddle-point problem
∫

Ω
BTDB dΩ u+

∫

Ω
BTmNp dΩ p =

∫

Ω
ΦT

uf dΩ
∫

Ω
NT

p m
TB dΩ u− 1

λe

∫

Ω
NT

p Np dΩ p = 0

B =

⎡

⎢⎣

∂φux
∂x1

0

0
∂φuy

∂x2
∂φux
∂x2

∂φuy

∂x1

⎤

⎥⎦ m =
{
1 1 0

}T D =

⎡

⎣
2µ 0 0
0 2µ 0
0 0 µ

⎤

⎦



2. Can we eliminate the pressure space to produce a 
generalised displacement method?



Saddle-point problem

[
A B
BT −C

]{
u
p

}
=

{
f
0

}

How can we get rid of p?





Projection



Many methods include a 
projection or ‘softening’

Enhanced Assumed Strains (EAS)

Reduced Integration

Mixed Interpolation of Tensorial Components

Smoothed Finite Element Method (SFEM)



N∑

b=1

∫

Ω
Npam

TBb dΩ ub −
1

λ

M∑

a=1

∫

Ω
Npa dΩ pa = 0

N∑

b=1

∫

Ωa

Npam
TBb dΩ ub −

1

λ

M∑

a=1

∫

Ωa

Npa dΩ pa = 0

For every pressure node:

Restrict integration domain to local domain:

Re-arrange to get equation for every pressure dof:

pa = −λ
N∑

b=1

{∫
Ωa

NpamTBb dΩ∫
Ωa

Npa dΩ

}
ub



Results



1. Can we produce a stable pair of spaces for the 
mixed formulation using meshfree approximation 
schemes?



Timoshenko Beam
y

x
P100 mm

200 mm

Fig. 5: Cantilever beam: Model geometry and boundary conditions

for linear displacements and 2 for quadratic displacements [64]. From Fig. 6(a), it is

observed that both the MINI element and the first-order max-ent VANP approaches

deliver the optimal rate of convergence, but the latter one is more accurate than

the former one. In Fig. 6(b), the second-order max-ent and RPIM VANP approaches

are compared. Here only the VANP-T+
2 /T1-m and VANP-T ∗

2 /T1-m schemes deliver

the optimal rates, whereas VANP-T2/T1-m slightly loses the optimal convergence

due to the absence of bubble enrichment. On the other hand, the RPIM schemes

VANP-T+
2 /T1-r, VANP-T ∗

2 /T1-r and VANP-T2/T1-r only exhibit linear convergence.

Hence, from these convergence plots the superiority of the second-order max-ent

basis functions over their RPIM counterparts is evident.

Finally, the convergence rates in the L2-norm of the error are presented in Fig. 7.

The optimal convergence rates in the L2-norm of the error are 2 for linear displace-

ments and 3 for quadratic displacements [64]. Once again, both the MINI element

and the first-order max-ent VANP approaches deliver the optimal rate of convergence,

but the latter one is more accurate than the former one. On the other hand, all the

second-order VANP approaches exhibit the optimal rate of convergence in the L2-norm

33



Timoshenko Beam
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Fig. 6: Cantilever beam: Energy norm of the error for (a) MINI element and VANP method with

first-order max-ent basis functions, and (b) VANP method with second-order max-ent and RPIM

basis functions.

34



Leaky-lid cavity flow
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3. Can we produce a general scheme, which works 
for arbitrary spaces of meshfree basis functions?



Timoshenko Beam
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Fig. 6: Cantilever beam: Energy norm of the error for (a) MINI element and VANP method with

first-order max-ent basis functions, and (b) VANP method with second-order max-ent and RPIM

basis functions.
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4. How does enrichment, in the manner of the MINI 
bubble, affect the convergence and stability?



MINI* element

Kim and Lee, 2000, 10.1023/A:1018973303935

Uh Ph



3.3. Volume-averaged nodal projection operator

The explicit form of the projection operator is derived from the volume-averaged

nodal pressure technique introduced in the work of Ortiz et al. [27]. To this end, let

the domain tessellation with simplices be denoted by T (Ω). The tessellation consists

of 3-node triangular or 4-node tetrahedral cells denoted by C. The vertices of the

tessellation, denoted by V(T ), are then used to define the standard node set N s. In

addition to the standard node set, we define a barycenter node set as N b with nodes

located at the barycenter of each cell C in the tessellation T (Ω). So, an enhanced

node set is defined as N+ = N s ∪ N b. A second enhanced node set is defined as

N ∗ = N s ∪ N b∗, where N b∗ is a node set with nodes located at the barycenter of

every other cell C in the tessellation T (Ω). Fig. 1 depicts a schematic representation

of a two-dimensional simplicial tessellation together with its corresponding cells and

node set definitions.

C T (Ω)

N s

N b

(a)

C T (Ω)

N s

N b∗

(b)

Fig. 1: Schematic representation of a two-dimensional simplicial tessellation for the VANP method.

(a) Enhanced node set N+, and (b) enhanced node set N ∗.

In our approach, the simplicial tessellation T (Ω) that connects the standard node

set N s is generated using a meshing software and the Gauss points locations are
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Constrained Block

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14: Plane strain compression of a constrained block: Nodal pressure variable for (a) MINI

element, (b) VANP-T+
1 /T1-m, (c) VANP-T ∗

1 /T1-m, (d) VANP-T+
2 /T1-m, (e) VANP-T ∗

2 /T1-m, (f)

VANP-T2/T1-m, (g) VANP-T+
2 /T1-r, (h) VANP-T ∗

2 /T1-r, and (i) VANP-T2/T1-r. In these plots the

unstructured background mesh depicted in Fig. 12(c) is used.

42

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14: Plane strain compression of a constrained block: Nodal pressure variable for (a) MINI

element, (b) VANP-T+
1 /T1-m, (c) VANP-T ∗

1 /T1-m, (d) VANP-T+
2 /T1-m, (e) VANP-T ∗

2 /T1-m, (f)

VANP-T2/T1-m, (g) VANP-T+
2 /T1-r, (h) VANP-T ∗

2 /T1-r, and (i) VANP-T2/T1-r. In these plots the

unstructured background mesh depicted in Fig. 12(c) is used.
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MINI First-order MaxEnt Full Bubbles



Constrained Block
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Fig. 14: Plane strain compression of a constrained block: Nodal pressure variable for (a) MINI

element, (b) VANP-T+
1 /T1-m, (c) VANP-T ∗

1 /T1-m, (d) VANP-T+
2 /T1-m, (e) VANP-T ∗

2 /T1-m, (f)

VANP-T2/T1-m, (g) VANP-T+
2 /T1-r, (h) VANP-T ∗

2 /T1-r, and (i) VANP-T2/T1-r. In these plots the

unstructured background mesh depicted in Fig. 12(c) is used.
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MINI First-order MaxEnt Half Bubbles
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14: Plane strain compression of a constrained block: Nodal pressure variable for (a) MINI

element, (b) VANP-T+
1 /T1-m, (c) VANP-T ∗

1 /T1-m, (d) VANP-T+
2 /T1-m, (e) VANP-T ∗

2 /T1-m, (f)

VANP-T2/T1-m, (g) VANP-T+
2 /T1-r, (h) VANP-T ∗

2 /T1-r, and (i) VANP-T2/T1-r. In these plots the

unstructured background mesh depicted in Fig. 12(c) is used.
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Fig. 14: Plane strain compression of a constrained block: Nodal pressure variable for (a) MINI

element, (b) VANP-T+
1 /T1-m, (c) VANP-T ∗

1 /T1-m, (d) VANP-T+
2 /T1-m, (e) VANP-T ∗

2 /T1-m, (f)

VANP-T2/T1-m, (g) VANP-T+
2 /T1-r, (h) VANP-T ∗

2 /T1-r, and (i) VANP-T2/T1-r. In these plots the

unstructured background mesh depicted in Fig. 12(c) is used.
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Fig. 14: Plane strain compression of a constrained block: Nodal pressure variable for (a) MINI

element, (b) VANP-T+
1 /T1-m, (c) VANP-T ∗

1 /T1-m, (d) VANP-T+
2 /T1-m, (e) VANP-T ∗

2 /T1-m, (f)

VANP-T2/T1-m, (g) VANP-T+
2 /T1-r, (h) VANP-T ∗

2 /T1-r, and (i) VANP-T2/T1-r. In these plots the

unstructured background mesh depicted in Fig. 12(c) is used.
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5. Does it work in 3D?



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 17: Compression of a constrained block: Nodal pressure variable for (a) MINI element, (b)

VANP-T+
1 /T1-m, (c) VANP-T ∗

1 /T1-m, (d) VANP-T+
2 /T1-m, (e) VANP-T ∗

2 /T1-m, (f) VANP-T2/T1-

m, (g) VANP-T+
2 /T1-r, (h) VANP-T ∗

2 /T1-r, and (i) VANP-T2/T1-r.
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Summary
• Stable meshfree methods are developed by 

mimicking existing inf-sup stable finite element 
methods. 

• The auxiliary pressure variable is eliminated using 
a volume-averaged nodal pressure technique. 

• Currently extending to hyperelasticity, where the 
robust nature of the meshfree shape functions will 
be a great advantage.
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