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show the flexibility of the non-conforming coupling, the solid part was moved slightly to the right and the deformed
configuration is given in Fig. 34. The same discretisation for the plate is used. This should serve as a prototype for
model adaptivity analyses to be presented in a forthcoming contribution.

Figure 33: Square plate enriched by a solid: transverse displacement plot on deformed configurations of plate model
(left) and solid-plate model (right).

Figure 34: Square plate enriched by a solid: transverse displacement plot where the solid part was moved slightly to
the right .

7. Conclusions

We presented a Nitsche’s method to couple (1) two dimensional continua and beams and (2) three dimensional
continua and plates. A detailed implementation of those coupling methods was given. Numerical examples using low
order Lagrange finite elements and high order B-spline/NURBS isogeometric finite elements provided demonstrate the
good performance of the method and its versatility. Both classical beam/plate theories and first order shear beam/plate
models were addressed. Conforming coupling where the continuum mesh and the beam/plate mesh is not overlapped
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Figure 5 Two main trivariate NURBS patches with parametric directions: a) brick to represent beam; b) cylinder to represent 
added mass 

 
Modelling the six patches with their own dimensions to represent the beams and the added masses, rigid roto-translation 
of the control points allow the patches to be oriented and repositioned in order to compose the desired configuration of 
the assembly (Figure 6). The same roto-translation process will be used to orient the second beam to represent the 
different parametric configurations. 
 

 
Figure 6 IGA model 

 
In Figure 7 is intended to underline the geometrical comparison among the CAD model, the LUPOS model and the IGA 
model, to check for geometric consistency. 

single element through the thickness and one element along the width are enough, while for the length five elements are 
the minimum number for representing with enough accuracy the bending of higher modes. The functions are cubic in all 
the three parametric dimensions. 
For the added masses, a single element would be enough, considering that the they can be considered infinitely rigid with 
negligible contribution to the elasticity. Due to Nitsche coupling, a finer discretization is necessary for better let the 
method distribute the coupling entries on more elements. The patches have cubic functions for all the parametric 
dimensions. 
 

 
Figure 9 Refined model used to perform the simulation 

 
In Figure 10 it is shown the comparison of Mode 3 and Mode 6 using LUPOS, a tri-dimensional standard FEM and IGA, 
for the 30° configuration. 
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above calculations are thus multiplied by
Npr,max

M
times. In summary, for the offline stage, the

operation counts depend on N and hence, its computational cost is very expensive.
In the online stage – performed many times, for each new parameter µ – we first assemble the

RB primal matrices in (53), this requires O
(
N2

pr(Qm +Qc +Qa)
)
operations. We then solve the RB

primal equation (51), the operation counts are O(N3
pr +KN2

pr) as the RB matrices are generally full.

Finally, we evaluate the output displacement sN (µ, tk) from (52) at the cost of O(KNpr). Therefore,
as required in real-time context, the online complexity is independent of N , and since Npr ! N we
can expect significant computational saving in the online stage relative to the classical FE approach.

5 Numerical example

In this section, we will verify both POD–Greedy algorithms by investigating an numerical example
which is a three-dimensional dental implant model problem in the time domain. This model problem
is similar to that in the work of Hoang et al. [5]. The details are described in the following.

5.1 A 3D dental implant model problem

(a)

Z

Y

X

X

Y

Z

(b)

Figure 1: (a) The 3d simplified FEM model with sectional view, and (b) meshing in ABAQUS.

We consider a simplified 3D dental implant-bone model in Fig.1(a). The geometry of the simplified
dental implant-bone model is constructed by using SolidWorks 2010. The physical domain Ω consists
of five regions: the outermost cortical bone Ω1, the cancellous bone Ω2, the interfacial tissue Ω3, the
dental implant Ω4 and the stainless steel screw Ω5. The 3D simplified model is then meshed and
analyzed in the software ABAQUS/CAE version 6.10-1 (Fig.1(b)). A dynamic force opposite to the
x−direction is then applied to a prescribed area on the body of the screw as shown in Fig.2(a). As
mentioned in Section 3.3, all computations and simulations will be performed for the unit input loading
case, since other input loading cases can be easily inferred from the Duhamel’s convolution. We show
on Fig.2(b) the time history of an arbitrary loading case which we will show its Duhamel’s convolution
later. The output of interest is defined as the average displacement responses of a prescribed area on
the head of the screw (Fig.2(a)). The Dirichlet boundary condition (∂ΩD) is specified in the bottom-
half of the simplified model as illustrated in Fig.2(a). The finite element mesh consists of 9479 nodes
and 50388 four-node tetrahedral solid elements. The coinciding nodes of the contact surfaces between

16

	
  
[Hoang	
  et	
  al.,	
  2013]	
  



Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  

	
  

•  Introduc$on:	
  computa$onal	
  homogenisa$on	
  

•  Virtual	
  charts	
  for	
  parametrised	
  homogenisa$on	
  
in	
  linear	
  elas$city	
  

•  Reduced	
  order	
  modelling	
  in	
  nonlinear	
  
homogenisa$on	
  



Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  

• Bo`om-­‐up	
  view:	
  replace	
  heterogeneous	
  
subscale	
  model	
  by	
  an	
  equivalent,	
  smoother,	
  	
  
model	
  at	
  the	
  scale	
  where	
  predic$ons	
  are	
  	
  
required	
  (i.e.	
  macroscopic	
  scale)	
  

	
  

• When	
  is	
  scale-­‐bridging	
  necessary?	
  
§  Derive	
  predic$ve	
  macroscopic	
  models	
  that	
  	
  
are	
  difficult	
  to	
  obtain	
  using	
  phenomenological	
  
approaches	
  

§  Op$mise	
  subscale	
  proper$es	
  to	
  obtain	
  be`er	
  
overall	
  characteris$cs	
  

§  Observa$ons	
  at	
  microscale	
  but	
  approxima$ons	
  
required	
  away	
  from	
  region	
  of	
  interest	
  to	
  
remain	
  tractable	
  

Mul$scale	
  modelling	
  

[Chen	
  et	
  al.	
  2011]	
  



Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  Examples	
  

18 
 

 
Fig.12 Optimal distribution of reinforcing ingredients considering area of interest #2 (a), objective 

function versus iterations (b)  

 

 
Fig.13 Shear stress profile for area #2 considering homogeneous and optimal distribution of 

reinforcements 

 

In the next case, area of interest #3 is defined on the core of the beam and includes central 

elements of the core as illustrated in Fig.9.  The same types of results are presented in Fig.14 

(a) and 14(b).  

 
Fig.14 Optimal distribution of reinforcing ingredients considering area of interest #3 (a), objective 

function versus iterations (b)  
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�
i
↵i(µ) + uh,p(µ)

(�
i
,↵i)i2J1,n�K = argmin

✓
1

|P|

Z

P

��uh(µ)� ur(µ)
��
X

dµ

◆
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•  Subop$mal	
  surrogate	
  in	
  two	
  steps:	
  

§  Empirical	
  POD	
  “offline”:	
  
- Compute	
  sampling	
  (Snapshot):	
  

- Spectral	
  analysis	
  (SVD)	
  

	
  
§  “Online”	
  op5mal	
  coordinates	
  by	
  Galerkin	
  

Galerkin-­‐POD	
  with	
  QRandom	
  sampling	
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e
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• Key	
  issue	
  1:	
  Empirical	
  POD	
  
§  Hierarchical	
  sampling	
  too	
  expensive	
  (curse	
  of	
  dimensionality)	
  

→  Quasi-­‐random	
  sampling	
  

→  Error	
  evaluated	
  by	
  cross-­‐valida$on	
  es$mates	
  and	
  stagna$on	
  criteria	
  

Key	
  issue	
  1:	
  choice	
  of	
  samples	
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  Convergence	
  es$mate	
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• Greedy	
  sampling	
  (RBM)	
  (see	
  the	
  work	
  of	
  Maday,	
  Patera,	
  …)	
  
§  Evaluate	
  the	
  error	
  of	
  a	
  Galerkin-­‐surrogate	
  of	
  order	
  N	
  on	
  a	
  fine	
  grid	
  of	
  the	
  
parameter	
  domain	
  

§  Add	
  to	
  the	
  basis	
  the	
  sample	
  for	
  which	
  the	
  	
  
predic$on	
  error	
  (in	
  QoI)	
  is	
  the	
  largest	
  
→  Efficient	
  when	
  sharp	
  es$mate	
  available	
  
→  But	
  limited	
  to	
  small	
  number	
  of	
  

parameters	
  

• QRandom-­‐based	
  Greedy-­‐sampling	
  (see	
  [Rozza	
  et	
  al.	
  2011])	
  

• Op$misa$on-­‐based	
  Greedy	
  sampling	
  
	
  (work	
  of	
  Volkwein,	
  Willcox,	
  …)	
  
§  Look	
  for	
  a	
  new	
  sample	
  to	
  add	
  to	
  a	
  basis	
  N	
  	
  
such	
  that	
  the	
  error	
  of	
  the	
  surrogate	
  of	
  order	
  	
  
N+1	
  is	
  minimised	
  
→  Localisa$on	
  of	
  local	
  minima	
  is	
  difficult	
  

Alterna$ve	
  methods	
  for	
  snapshot	
  selec$on	
  

µ1

µ2

µ1

µ2



Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  

Kr(µ)↵(µ) = Fr(µ)

•  “online”	
  cost:	
  

But	
  assembly	
  cost	
  needs	
  to	
  be	
  small!	
  

	
  

• OK	
  if	
  data	
  is	
  separable:	
  

→  	
  	
  
	
  
	
  
	
  
→  Otherwise,	
  one	
  needs	
  further	
  approxima5ons	
  (force	
  data	
  separa$on)	
  

Key	
  issue	
  2:	
  efficient	
  assembly	
  of	
  ROM	
  

(↵i)i2J1,n�K = argmin
u?(µ)=

Pn�
i=1 �

i
↵i(µ)+uh,p(µ)

✓
kuh(µ)� u?(µ)kD

e
(µ)

◆

Pre-­‐computed	
  “offline”	
  

8µ, Kr(µ) =
nKX

i=1

⇣
�T K̄

i
�
⌘
�i(µ)

Kr(µ) = �T K(µ)�

8µ, K(µ) =
nKX

i=1

K̄
i
�i(µ)
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• Aim:	
  Bound	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  from	
  above	
  and	
  below	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

• Adjoint	
  problem	
  for	
  each	
  QoI:	
  
→  Galerkin-­‐POD:	
  

	
  

§  	
  	
  	
  	
  	
  	
  	
  is	
  minus	
  the	
  residual	
  of	
  the	
  forward	
  problem	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (computable)	
  	
  
§  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  error	
  in	
  the	
  ith	
  adjoint	
  problem	
  

•  Special	
  case:	
  	
  compliant	
  problem	
  (adjoint	
  and	
  forward	
  solu$ons	
  i	
  are	
  
collinear)	
  

→  	
  	
  

Goal-­‐oriented	
  error	
  es$ma$on	
  

Q̃i(e
r(µ)) = Q̃i(u

h(µ))� Q̃i(u
r(µ))

z(i),r(µ) ⇡ z(i),h(µ)

a(u?, z(i),h(µ);µ) = Q̃i(u
?)

z(i),r(µ)

�ker(µ)kD
e
(µ)kẽ(i)(µ)kD

e
(µ) + r(i)  Q̃i(e

r(µ))  ker(µ)kD
e
(µ)kẽ(i)(µ)kD

e
(µ) + r(i)

r(i)

ẽ(i)

Q̃i(e
r(µ)) = � ker(µ)k2D

e
(µ)
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• Upper	
  bound	
  in	
  energy	
  norm:	
  Error	
  in	
  the	
  cons$tu$ve	
  rela$on	
  
[Ladevèze	
  ’85][Ladevèze	
  and	
  Chamoin	
  ‘11]	
  

§  The	
  recovered	
  stress	
  must	
  be	
  sta$cally	
  
admissible	
  in	
  the	
  FE	
  sense	
  

	
  

→ More	
  effec$ve	
  as	
  the	
  recovered	
  stress	
  approaches	
  the	
  FE	
  stress	
  

Error	
  bounding	
  by	
  duality	
  

b�(µ)

�h(µ) = D
e
(µ) : ✏(uh(µ))

�r(µ) = D
e
(µ) : ✏(ur(µ))

⌫up(µ)

ker(µ)kD
e
(µ)

⌫up(µ) := kb�(µ)� �h(µ)kD
e
(µ)�1 � ker(µ)kD

e
(µ)

8u? 2 Uh,0(⌦),

Z

⌦
b�(µ) : ✏(u?) d⌦ = 0
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• Construc$on	
  of	
  the	
  sta$s$cally	
  admissible	
  stress:	
  POD-­‐surrogate:	
  SVD	
  
from	
  stress	
  snapshot:	
  

§  “Offline:”	
  Empirical	
  POD	
  on	
  stress	
  samples	
  
→  Basis	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  such	
  that	
  average	
  projec$on	
  error	
  over	
  snapshots	
  is	
  

minimised.	
  

	
  
§  “Online:”	
  Minimisa$on	
  of	
  CRE	
  upper	
  bound:	
  

Local	
  error	
  es$ma$on	
  

8µ 2 P, b�(µ) =
ñ�X

i=1

e�
i
e↵i(µ)

(e�
i
)

(e↵i)i2J1,ñ�K = argmin
�?(µ)=

Pñ�
i=1

e�
i
e↵i(µ)

✓
k�h(µ)� �?(µ)kD

e
(µ)�1

◆
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  Schema$c	
  of	
  duality-­‐based	
  ROM	
  

and specific techniques such as the Successive Constraint Linear Optimization Method [21] have been
proposed to estimate this quantity whilst retaining the bounding property. However, coercivity lower
bounds can be pessimistic in the case of elasticity. In this paper, we propose to proceed di↵erently by
using the concept of the Constitutive Relation Error (CRE) [32], which only requires to manipulate
the concepts of displacement and stress admissibilities. In particular, no coercivity bound is required.

The CRE is a widely used technique to bound the error associated to a displacement-based approxi-
mation of elasticity problems. In particular, it has been applied to the evaluation of discretisation errors
in a finite element context [33], where it coincides in practical implementations with the Equilibrated
Residual approach (see for instance [52, 3, 50, 14]). Conceptually, the CRE proposes to construct a
recovered stress field that is statically admissible, or equilibrated. Applying the constitutive relation
to the kinematically admissible finite element solution that needs to be verified, one obtains a non-
equilibrated stress field, called finite element stress field. The distance (in energy norm) between the
recovered stress field and the finite element stress field is a bound for the discretisation error. All the
technical di�culty resides in the construction of the equilibrated stress field [45].
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Figure 1: Schematic representation of the Galerkin-POD error bounding method based on the Consti-
tutive Relation Error.

We extend this idea to the certification of the Galerkin-POD, which will provide a bounding tech-
nique that is conceptually simple to understand, implement and control. Here, the reference is the
finite element solution. Therefore, we first redefine the notion of statical admissibility, and require
the recovered stress field to verify the equilibrium in the finite element sense. Then, at any point of
the parameter domain, we can upper bound the reduced order modelling error by measuring a dis-

3
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•  Illustra$on	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (compliant	
  problem)	
  

	
  
→  Lower	
  bound	
  necessary	
  to	
  control	
  the	
  sharpness	
  of	
  the	
  upper	
  bound	
  

as	
  no	
  a	
  priori	
  convergence	
  es$mate	
  available	
  

Results	
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•  (Sub-­‐)	
  op$mal	
  virtual	
  charts	
  for	
  parametrised	
  homogenisa$on	
  
problems,	
  based	
  on	
  Galerkin-­‐POD	
  

• No	
  a	
  priori	
  assump5on	
  on	
  fluctua5on	
  fields:	
  smooth	
  transi$on	
  
between	
  approximate	
  RVE	
  problem	
  and	
  fully	
  resolved	
  (FEM),	
  by	
  just	
  
enriching	
  the	
  reduced	
  basis	
  

• Guaranteed	
  accuracy	
  

• We	
  are	
  working	
  on	
  op$mal	
  sampling	
  of	
  displacement	
  versus	
  stress	
  
surrogates	
  to	
  reach	
  the	
  desired	
  level	
  of	
  accuracy	
  on	
  QoI	
  

→  Goal-­‐oriented,	
  hybrid	
  reduced	
  basis	
  strategy	
  

Par$al	
  conclusions	
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  Reduced	
  basis	
  sampling	
  technique	
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•  Interpreta$on	
  of	
  error	
  bound	
  as	
  uncertainty	
  on	
  QoI	
  

•  Illustra$on	
  for	
  a	
  compliant	
  problem	
  (if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ):	
  

	
  
→  uncertainty	
  reduced	
  by	
  error	
  reduc$on	
  (increase	
  displacement	
  

accuracy)	
  or	
  increase	
  in	
  bound	
  effec$vity	
  (increase	
  accuracy	
  of	
  stress)	
  
→  Hybrid	
  reduced	
  basis	
  

GO	
  hybrid	
  reduced	
  basis	
  approach	
  

Q̃i(u
r(µ))

�
�
⌫up(µ)

�2

Uncertainty	
  

� > 0

Q̃i(u
r(µ))  Q̃i(u

h(µ))  Q̃i(u
r(µ)) + �

�
⌫up(µ)

�2
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•  Start	
  with	
  one	
  random	
  sample	
  at	
  	
  	
  	
  	
  	
  	
  	
  and	
  ini$alise	
  the	
  surrogates	
  
§  KA	
  Displacement:	
  

§  Equilibrated	
  stress:	
  
	
  

• Max	
  uncertainty	
  over	
  parameter	
  domain	
  detected	
  at	
  
§  Check	
  which	
  of	
  the	
  enrichments	
  create	
  maximum	
  reduc$on	
  in	
  uncertainty	
  

§  Proceed	
  un$l	
  max	
  uncertainty	
  is	
  small	
  enough	
  

GO	
  hybrid	
  reduced	
  basis	
  approach	
  

8µ 2 P, b�(µ) = e�
1
e↵1(µ)

8µ 2 P, ur(µ) = �
1
↵1(µ) + uh,p(µ)

µ0

fluctua$on	
  at	
  µ0

stress	
  at	
   µ0

µ1

ur(µ) =
2X

i=1

�
i
↵i(µ) + uh,p(µ) or	
  

fluctua$ons	
  at	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  µ1µ0 stresses	
  at	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  µ1µ0

b�(µ) =
2X

i=1

e�
i
e↵i(µ)
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  Illustra$on	
  for	
  compliant	
  problem	
  

Worst	
  uncertainty,	
  best	
  reduced	
  by	
  
enriching	
  stress	
  surrogate	
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• Guaranteed	
  accuracy	
  limited	
  to	
  ellip$c	
  and	
  parabolic	
  (e.g.	
  
viscoelas$city)	
  problems,	
  with	
  a	
  priori	
  separa$on	
  of	
  variables	
  
(problems	
  with	
  parametrised	
  geometry	
  or	
  nonlineari$es	
  rarely	
  respect	
  
this	
  condi$on)	
  

• Open	
  ques$ons	
  /	
  remarks	
  
§  Error	
  bounds	
  can	
  be	
  obtained	
  for	
  “smooth”	
  problems,	
  in	
  which	
  case	
  
empirical,	
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  results.	
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Figure 5: Two realisations of the random distribution of the material properties. The inclusions
are spherical, and their projection onto the lattice structure is represented in black. The grey bars
correspond to the matrix of the particulate composite, while the light grey ones define the weak
interface between aggregates and matrix.

In order to describe the randomness of the model formally, we introduce the probability space
H = (⇥, F , P ) for the random distribution of the material properties of the lattice network. ⇥ is the
ensemble of outcomes of the random generation, F is the corresponding Sigma-algebra of subsets of ⇥
and P is the associated probability measure. Any random distribution is characterised by distribution
function (26), a fixed maximum inclusion diameter D

Max

, a fixed phase ratio, fixed material properties
for each of the phases, and a given lattice network.

Two realisations of the random distribution of material properties are illustrated in figure 5.

2.4 Discretisation

We now present briefly the discretisation technique of the lattice balance equations (15). The displace-
ment of a point of the neutral fibre of beam (b) is approximated using a unique finite element, of first
order degree for the normal displacement, and third order degree for the deflection:
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where t is the depth of the continuous structure, which is not necessarily equal to the depth of the
beams t(b).

Unfortunately, this theory, as far as the authors know, has not been extended to damage mechanics.
It su↵ers the limitation of classical homogenisation to non-softening behaviours. In the literature, the
elastic constants are used as a starting point for a phenomenological damage model, whose parameters
then need to be fitted to experimental results. We follow the same approach. The damage model used
in our simulations is described in the next subsection.

2.2.3 Elastic-damage law

The model presented here is based on classical damage mechanics [37], applied to lattice structures.
We introduce two di↵erent damage mechanisms, one acting in traction and the other one acting in
bending. This assumption is consistent with the model used in [5], where it is argued that damage
in traction corresponds to damage due to hydrostatic deformations, while damage due to bending
corresponds to shear damage.

We postulate the following Helmholtz free energy per unit length of beam (b):
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d
n

and d
t

are two damage variables ranging from 0 to 1. They account for the non-reversible softening
of the beam with increasing load, in respectively tension and bending. Compression in this model does
not dissipate energy, which is mathematically introduced by making use of the positive part extractor
< . >

+

. We introduce the compact notation d = (d
n

d
t

)T .
The relationship between generalised stress and strain in beam (b) is obtained as follows:
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This state law is the nonlinear counterpart of the linear state law (19).
The second state law, which links the damage variables to dual driving thermodynamic forces,

reads:
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At last, an evolution law is defined to fully define the damage evolution:
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This damage law is inspired by the model described in [1] for composite laminates. We refer to
this work for a comprehensive interpretation of the di↵erent parameters. We will just notice that Y
is an equivalent damage energy release rate which governs the evolution of damage with traction and
banding. The critical value Y

c

is therefore the “strength” of the beam section.

2.3 Randomly distributed material properties

The damageable lattice model is used to derive a three-phase model for concrete. Such models consider
three di↵erent entities: matrix (cement), inclusions (hard particles, assumed spherical) and an interface
between these two entities (see [6] for an evidence of the existence of such interface). Plane (O, x, y)
is a section of the three dimensional particulate composite structure. A projection of the material
properties onto the lattice model is performed as follows:
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4 System Approximation

Constraining the displacement in a low-dimensional space does not provide a significant computational
gain, even if the systems to be solved are of smaller dimension. This is because the material of study
is nonlinear and history-dependent, and its sti↵ness varies not only in di↵erent areas of the material
but also with time. This requires to evaluate the sti↵ness everywhere in the material and this at
each time step of the simulation. This means that the numerical complexity remains despite the
simplification on the displacement. Hence, to decrease the numerical complexity, the domain itself
need to be approximated. Several authors have looked into that. Notable contributions include the
Hyperreduction method [15], the missing point estimation [16], or system approximation [17]. Those
methods share the idea that the material properties will be evaluated only at a small set of points
or elements within the material domain. They di↵er in the way of selecting those points and in the
treatment of that reduced information. In this paper, we will use the ”gappy” method, very much like
in [17, 18].

4.1 Gappy Method

The internal forces generated by the reduced displacement Fint(�↵) will be evaluated only in a small
subset of the degrees of freedom I of the domain ⌦. All the elements in contact with those degrees
of freedom have to be considered. We refer to those as the controlled elements. The internal forces
will then be reconstructed by writing the internal forces as a linear combination of a few basis vectors
themselves (just like it was made for the displacement).

Fint(�↵) ⇡
ngapX

1

 i�i

=  �, (29)

where
h
 1, · · · , ngap

i
=  is the forces basis of size ngap and � the associated scalar coe�cients.

(a) Original structure (b) Example of a surrogate structure

Figure 5: Example of a surrogate structure. The sti↵ness of the structure is evaluated on controlled
elements only, while the other ones are just like ghosts

The coe�cients � of the expansion are found so that to minimise the norm of the di↵erence between
the linear expansion and the nonlinear term over the subset I:

argmin
�?

kFint(�↵)� �?kP, (30)
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  at	
  an	
  order	
  such	
  that	
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  and	
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errors	
  are	
  of	
  the	
  same	
  order	
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  magnitude	
  

•  Interpola$on	
  points	
  minimise	
  reconstruc$on	
  error	
  (EIM	
  [Barrault	
  ‘04],	
  
MPE	
  [Astrid	
  ‘08])	
  

Choosing	
  the	
  parameters	
  of	
  the	
  Gappy	
  approx	
  

Fint (↵(t) + �↵)

Mode 1

Mode 2

Figure 9: Regions of interest selected by the system approximation procedure. Those regions (circled in
the Figure) are matching the areas of higher displacement found in the POD bases. This is intuitively
good, since those elements have to give enough information to be able to reconstruct the internal forces
over the entire domain. Those are the elements whose behaviour vary the most when changing the
loading path (which is the parameter of the reduced model), hence containing the core information
necessary to build up an accurate reconstruction.

5.4 Numerical results

In this section, we will test the performance of the method by comparing the relative error between the
”truth“ solution of the RVE problem, which is the solution obtained when using the full order model,
and the reduced model. We will focus on the simulation of the RVE problem only, and not consider
the complete computational homogenisation framework (the macroscale problem will not be solved).

For the first test, the load path is set using the following e↵ective strain: ✏M(t) = t

T

.


1 1
1 1

�
. Note

that this case is not in the snapshot. First, the relative error is plotted with various numbers of POD
basis vectors. See Figure 10.
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5.2 POD basis

The basis � is selected using the POD method explained in section 3.2. The first few modes are
displayed in Figure 7. We will test the results using various number of basis vectors. Procedures to
select the optimal number of modes according to a robust cross-validation procedures can be found in
[11].

(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 7: First 3 modes obtained through the POD. The damage localises between pairs of inclusions.

5.3 System approximation

We follow the procedure described in 4. The basis  is extracted from the same snapshot space
as used for the displacement basis �. The set of controlled elements is selected using the DEIM
[18]. The amount of vectors in the basis  is chosen so that the system approximation does not
increase the global error of the reduced order model. The error ⌫tot between the exact solution and
the reduced model solution with system approximation can be decomposed in the following way (with
uex(t) the exact solution, ur(t;�), the reduced order solution without the system approximation using
the dynamic basis �, and ur,sa(t;�, ) the complete reduced order model with system approximation
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Figure 10: Relative error when using the reduced model without system approximation. As the number
of POD basis vectors increases, the error decreases. Using more than 4 basis vectors does not have a
strong e↵ect. The error reaches a threshold. That threshold corresponds to the projection error of the
exact solution onto the snapshot space.
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Figure 11: Evolution of the error varying the number of displacement and static basis vectors.

Several remarks can be made:
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• Numerical	
  solu$on	
  of	
  RVE	
  problems	
  avoids	
  assump$ons	
  on	
  microscale	
  
fields,	
  but	
  too	
  expensive	
  

• Reduced	
  order	
  modelling	
  permits	
  to	
  alleviate	
  this	
  problem,	
  but	
  
providing	
  error-­‐controlled	
  approxima$ons	
  that	
  seamlessly	
  span	
  from	
  	
  
full-­‐FE	
  solu$on	
  to	
  highly-­‐reduced	
  RVE	
  problems	
  

• Open-­‐ques$on:	
  mul$scale	
  modelling	
  and	
  reduced	
  order	
  modelling	
  do	
  
the	
  same	
  thing:	
  look	
  for	
  and	
  use	
  invariances	
  in	
  solu$on	
  sets.	
  Is	
  there	
  a	
  
more	
  formal	
  way	
  to	
  couple	
  them?	
  

Conclusions	
  


