AT

securityandtrust.lu

Automated Detection and Resolution of Legal Cross References:

Approach and A Study of Luxembourg’s Legislation

By: Morayo Adedjouma, Mehrdad Sabetzadeh, Lionel Briand

Software Verification and Validation Laboratory
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg

February 18, 2014

UNIVERSITE DU
LUXEMBOURG

Automated Detection and Resolution of
Legal Cross References: Approach and
A Study of Luxembourg’s Legislation

Morayo Adedjouma, Mehrdad Sabetzadeh, Lionel Briand
SnT Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg
{morayo.adedjouma, mehrdad.sabetzadeh, lionel.briand}@uni.lu

Abstract—When identifying and elaborating compliance re-
quirements, analysts often need to follow the cross references in
the underlying legal texts and consider the additional information
in the cited provisions. To enable easier navigation and handling
of cross references, automation is necessary for recognizing the
natural language patterns used in cross reference expressions
(cross reference detection), and for interpreting these expressions
and linking them to the target provisions (cross reference resolu-
tion). Numerous approaches have been developed over the years
to automate the detection and resolution of cross references in
legal texts; however, certain facets, e.g., the natural language
patterns used in cross references, remain under-explored. Salient
gaps also remain towards a systematic understanding of the
cross reference resolution process. In this paper, we propose a
flexible solution for automated detection and resolution of cross
references in legal texts, aimed at addressing the observed gaps.
We ground our work on Luxembourg’s legislative texts, both
for studying the natural language patterns in cross reference
expressions and for evaluating the effectiveness of our solution.

Keywords-Legal Compliance, Cross References, Natural Lan-

guage Processing
I. INTRODUCTION

Legal compliance is a key concern for many software appli-
cations. Information systems in domains such as government,
healthcare and finance are, for example, subject to a host of
laws and regulations aimed at protecting security and privacy.
Systems used by governments for public administration further
need to comply with public regulatory frameworks such as
tax and social welfare laws. In all cases, non-compliance can
have serious consequences, including fines, lawsuits, damage
to public trust, loss of business, and even criminal prosecution.

To identify and elaborate compliance requirements, analysts
need to review and analyze the relevant legal texts. An impor-
tant complexity that arises in so doing is that legal provisions
are interrelated and cannot be considered in isolation. The
relationships between provisions in legal texts are captured
using cross references. To illustrate, consider the excerpt in
Fig. 1 from Article 2 of Luxembourg’s Income Tax Law [1]:

Art. 2. [...] Individuals are considered non-resident taxpayers if they do not reside
in Luxembourg but have a local income as per the definition of Art. 156.

Fig. 1. Using cross references for relating legal provisions

The excerpt (translated from French) has a cross reference
to Art. 156. To understand what a non-resident taxpayer is,
one needs knowledge of what local income is. This example

shows only one usage of cross references, i.e., specifying a
dependency for a definition — in this case, the definition of
local income. Cross references may be used, among other
reasons, for adding exceptions and constraints, specifying
priority between provisions, and making amendments [2].

Many Requirements Engineering activities concerned with
legal compliance need to account for cross references in legal
texts. For example, Breaux et al. [3], [4] and Maxwell et al. [5],
[6] follow cross references and analyze the cited provisions for
identifying constraints, priorities, exceptions, refinements, and
conflicts between compliance requirements; Ghanavati et al.
[7] analyze cross referenced provisions while building models
of compliance requirements.

To perform these activities in a more thorough and efficient
manner, it is useful to have legal texts structured as markup
documents, e.g., in an XML format, with cross references
represented as (navigable) links [8], [9]. Doing so requires
the ability to first recognize natural language expressions that
denote cross references (cross reference detection), and then
to interpret and link these expressions to the target provisions
(cross reference resolution). The resulting links on the one
hand enable easier and more structured exploration of legal
texts by analysts, and on the other hand, provide a basis
for further analysis, e.g., traceability and impact analysis.
A typical legal text can contain hundreds and sometimes
thousands of cross references. Automated support is thus
necessary for cross reference detection and resolution.

The objective of this paper is to develop a flexible frame-
work for automated detection and resolution of cross refer-
ences in legal texts. Several approaches already exist for this
purpose [10], [11], [9], [12], [13]; but, as we argue in more
detail in Section III, important gaps remain. Most notably:

« Cross reference detection and resolution necessarily require
knowledge of the internal structure of legal texts, i.e., how
these texts are organized into sections, articles, paragraphs,
and so on. Typically, an explicit schema is defined to char-
acterize this structure [9], [8]. However, significant manual
work is necessary to transform a non-markup legal text (e.g.,
in PDF or plain text format) into a markup document (e.g.,
in XML format) that conforms to the schema.

« In several countries, best practices exist on how to phrase
and use cross references in legal texts. For example, in the

US, the Bluebook [14] and the US Association of Legal
Writing Directors” (ALWD) Citation Manual lay down spe-
cific conventions for cross references. These best practices,
as already observed by others [12], are often inadequate for
accurate detection of cross references, particularly in older
legal corpora, e.g., public law. Grounded Theory studies
of actual legal texts, e.g., as done by Breaux [9] and
de Maat et al. [11], provide valuable insights about the
flexible natural language patterns used for specifying cross
references; however, further investigations of actual legal
texts is required to understand commonalities between legal
texts in different countries and developing reusable natural
language patterns for cross reference detection.

« The majority of the existing work does not clearly distin-
guish cross reference detection and the more complex task
of cross reference resolution. Consequently, important sub-
tleties that arise during resolution have not been adequately
addressed, e.g., disambiguation when the cross reference
patterns are ambiguous.

To address these gaps, we make the following contributions:

1) We describe how a schema for the structure of legal
texts can be used to automatically transform non-markup
texts into texts with structural markup (Section V). This task
is a prerequisite for cross reference resolution and, if done
manually, is effort-intensive for large legal texts.

2) We report on a study of Luxembourg’s Income Tax Law
[1] aimed at identifying the natural language patterns used in
this law for cross references (Section VII-A). This law, first
drafted in 1967, is written in French and has a total of 1223
cross reference expressions. We conclude from this study that
the resulting patterns closely resemble those identified in a
similar study of the Dutch laws [11], lending support to these
patterns being reusable across different legal jurisdictions. In
addition, our study identifies natural and important variations
of these patterns that were not previously seen.

3) We provide a systematic treatment of cross reference res-
olution addressing, in an algorithmic way, subtleties that one
needs to take into account with regards to the interpretation of
complex cross reference expressions (Sections VII-B). While
our treatment is applicable to both intra- and inter-document
cross references, only the former category (commonly referred
to as internal cross references) is considered in this paper.

4) Building on a Natural Language Processing (NLP) platform,
GATE [15], and an efficient first-order logic interpreter, Cro-
copat [16], we develop tool support for (1) transformation of
non-markup legal texts into legal texts with structural markup,
(2) automated detection and resolution of cross references, and
(3) conducting cross reference analysis (Section IX).

5) We report on an empirical evaluation of our approach,
arguing about the generalizability of the identified cross ref-
erence patterns, the quality of automated resolution, and the
scalability of our approach (Section X).

The illustrative examples in the paper are real and drawn
from Luxembourg’s Income Tax Law. To improve readability,

we use English translations while preserving the essence of the
structure of the original cross reference expressions in French.

II. BACKGROUND AND TERMINOLOGY

A (legal) cross reference is a citation that links one legal
provision to another [5]. We distinguish cross references from
cross reference expressions. A cross reference expression is a
Natural Language (NL) phrase that represents one or more
cross references. For example, “Articles 30 and 102 of the law
of April 29, 1964 concerning family benefits” is a cross reference
expression. This expression embodies two cross references:
one to “Article 30” and another to “Article 102” of the respective
law. To avoid repetition, we abbreviate “cross reference” to
CR and “cross reference expression” to CRE in the rest of the
paper. We note that, with the distinction made between CR
and CRE, it would be more accurate to refer to CR detection
and CR resolution as CRE detection and CRE resolution,
respectively. We ignore this technicality when referring to
detection and resolution activities.

When a CRE points to provisions within the same legal
text as where the CRE appears, the CRE is called internal;
otherwise, when a CRE points to provisions in a different
legal text, it is called external [17]. In the example of Fig. 1,
“Art. 156” is an internal CRE. The example in the previous
paragraph (i.e., “Articles 30 and 102 of ..”) is an external CRE.

CREs can be further classified as explicit, implicit, or dele-
gating. If a CRE is defined in terms of the alphanumeric labels
of legal text elements, it is called explicit. All our examples
so far where articles were referred to by their numbers were
explicit. In contrast, an implicit CRE uses some adjective,
adverb, or anaphor to refer to the target provisions [11] , e.g.,
“this article” and “the following paragraphs”. The third class, namely
delegating, exclusively applies to external CREs. This class
of CREs is used when a legislative text delegates authority
to regulations for further elaboration. Regulations reside at a
lower level than legislation in the hierarchy of legal texts and
are usually subject to more frequent changes. Legislative texts
seldom refer to regulations in a precise way and typically only
indicate the nature of the regulations being cited. An example
delegating CRE is “Grand-Ducal regulation” in the following: “A
Grand-Ducal regulation shall provide the details for [...]".

Finally and with regards to implicit CREs, there are occa-
sions where legal texts use vague terms such as “provision”
(in French: “disposition” or “prescription”), e.g., ‘the above
provision”. We refer to these CREs as unspecific. Unspecific
CREs cannot be conclusively associated with specific struc-
tural elements, e.g., articles or paragraphs. They cannot thus
be resolved with reasonable accuracy through automation. All
CREs except for delegating and unspecific ones are in principle
resolvable through automation.

III. RELATED WORK

Breaux et al. [3], [9] identify natural language patterns for
CREs based on a study of 118 expressions across three US
regulations. They propose the use of an explicit schema for
modeling the structure of legal texts. Similar to this earlier
work, we study actual legal texts for identifying CRE patterns

and use an explicit model to characterize the structure of
legal texts. We consider a single but complete legal text
(Luxembourg’s Income Tax Law) with a total of 1223 CREs.
We observe new patterns, not seen in the US regulations
considered. Our study covers patterns for external CREs, not
considered in [3], [9]. We propose automation for text structure
markup, which is a manual process in [9].

The closest study to ours in terms of CRE patterns is de
Maat et al.’s study of Dutch laws [11]. The differences in
language aside, the patterns we observe in our investigation
of Luxembourgish laws (written in French) are closely aligned
with those in Dutch laws. In this sense, our study serves as
a confirmatory measure for the generalizability of previously-
observed patterns. In addition, we identify natural and impor-
tant variations of these patterns. The main contributions of our
work over De Maat et al.’s are: First, they assume that legal
texts are already in a markup format with adequate structure
to be transformed into the markup format required by their
approach (MetalLex [8]). Our approach, in contrast, does not
require pre-existing markup. Second, and more importantly, de
Maat et al. do not clearly distinguish detection and resolution
activities. They do not elaborate the resolution process, nor do
they address the effectiveness of resolution in their evaluation.
We instead provide a detailed treatment of resolution and
measure its effectiveness in our evaluation.

Palmirani et al. [10] define CRE patterns based one legal
writing guidelines for the Italian legal corpora. They tackle
only detection and not resolution. Their approach does not
address the generation of markup documents and their patterns
are insufficient for recognizing many of the patterns seen in
our study and that of the Dutch laws discussed above [11].

Hamdaqga et al. [12] propose an approach for resolving
external CRs and report on a case study of three US regulations
involving 122 (external) CREs. They use finite state machines
for defining CRE patterns, based on the recommendations
of the Bluebook [14] and ALWD’s Citation Manual [18].
Their patterns are limited first in that they apply only to
external CREs and second in that they are exclusively based
on best practices and thus insufficient for the richer citation
styles used in actual legal texts. Hamdaqa et al. consider
automated markup generation through manually-written reg-
ular expressions. Our approach provides a more thorough and
flexible framework than theirs. Our patterns encompass both
internal and external CREs, and further are based on studying
actual legal text. Our approach is parameterized by a schema,
which enables us to automatically derive the necessary regular
expressions for text markup generation.

Tran et al. [13] apply machine learning for CR detection and
resolution in Japanese legislative texts. Similar to them, we
distinguish CR detection and resolution. However, our detec-
tion and resolution strategies are algorithmic and rule-based.
Using machine learning can be advantageous in that it does
not require an a priori specification of CRE patterns. However,
Tran et al. do not consider advanced patterns with recursive
structures or multiple layers similar to those identified and
addressed in our study (Section VII-A). It is unknown how

Text schema from
recommendations

™
% Natural Language cross

reference patterns
Define schema for =] Tailored Q Q P

f, schema [Resolve cross Visualization &
gtructure of legal [\ 5 S references 5 Analysis
@ text

Markup text +

T u cross references links
& Transform into
% w markup text

Legal text (non-markup)

Text with structure markup (hierarchical)

Fig. 2. Approach Overview

such patterns can be handled through learning. Further, for the
patterns they do consider, they report an accuracy (F-measure)
of = 80% and ~ 86% for detection and resolution respectively,
with a combined accuracy of 67%. This, compared to rule-
based techniques, is low (see Section X).

IV. APPROACH OVERVIEW

In this section, we provide an overview of our approach.
The approach, shown in Fig. 2, has four main steps. The first
step is manual and the remaining three steps are automatic.

Step 1 is concerned with defining a schema (metamodel)
for expressing how a legal text is organized into subparts,
e.g., books, chapters, articles, paragraphs and so on. In many
jurisdictions, legal writing guidelines prescribe a generic and
unified schema for structuring legal texts. Actual legal texts
may nonetheless be only partially aligned with the generic
schema. Some tailoring of the generic schema may thus be
necessary in order to adapt it to a specific set of legal texts. The
aim of Step 1, discussed in Section V, is to do this tailoring.

Step 2, discussed in Section VI, is concerned with trans-
forming a non-markup text (e.g., in plain text or PDF format)
into a markup text (e.g., in XML format). The transformation
rules are automatically derived from the schema of Step 1.

The main step of the approach is Step 3. This step, discussed
in Section VII, addresses the detection and resolution of CREs.
Prerequisite to this step is knowledge of the NL patterns used
in the CREs. These patterns, combined with the schema from
Step 1, provide the syntactic and semantic basis for the CREs.
As we argued earlier, the NL patterns used in actual legal
texts can be richer and more versatile than what is prescribed
in best practices. This necessitates examining actual legal
texts for more accurate identification of the patterns.

Step 4, discussed in Section VIII, is concerned with using
the outcomes of resolution for visualization and analysis.

V. DEFINING A LEGAL TEXT SCHEMA

A text schema defines the grouping concepts, e.g., Chapter,
Section and Article, used for organizing the content of a legal
text. Having a text schema is essential for CR detection and
resolution as both the syntax and interpretation of CRs depend
on the underlying schema. We define a text schema via a
UML class diagram. The classes in the diagram represent the
grouping concepts used in a legal text. These classes are linked
via aggregation associations representing the containment re-
lationships between the concepts.

Fig. 3 shows the text schema for Luxembourg’s Income
Tax Law. To build this schema, we first developed a generic
schema based on the legal writing guidelines published by the

<; 1..*
Law Title Chapter Section
date:Date |~ ofid:String >—2]id:String k>-+fid:String

name:String name:String name:String name:String
I_O head:Header| |head:Header
X 1.*

*
[Subsection] [Subpart
+lid:String l>-#fid: String
name:String name:String
head:Header head:Header

head:Header| head:Header|

Part = m
id:String Book Artide
N . *lid:Stri d:Strin, ¥
String [o=—]id:String - i 3 1. _
::::H:ggr name:String .Iulle._ln_Arl head:Header J Alinea
el head:Header | ~ [id:String LA id:String
ST namesString o, op h] [Number | |head:Header|
Numbering|l == head:Header - raragrap
envmeration —— id:Strin: k>—Jid:String d
alpha Delimiter Ghetradh g head:-Header
iphanum ol Hoad head:Header |'<> ead:Hea erj
arabic space startingDelimiters:Delimiter[] = n
roman dot conceptMarkers:String[] | I'e”er |§pe‘.|u|—le“er
ordinalText |[dash abbrevDelimiters:Delimiter[] #|id:String id:String R
ordinalNum ||bracket numberingFormat:Numbering head:Header| |head:Header M
closingDelimiters:Delimiter[]
Fig. 3. Text schema for Luxembourg’s Income Tax Law

State Council of Luxembourg [19]. The resulting schema was
then discussed with legal experts and enhanced with additional
grouping concepts specific to the tax legislation.

An individual legal text constitutes a Law. A Law may be
hierarchically organized into Parts, Books, Titles, Chapters,
Sections, and so on. Many levels in the hierarchy are optional,
e.g., if Part is not used, one can go directly from Law to Book,
Title, or Chapter. These (mutually exclusive) alternatives are
captured in the model of Fig. 3 through different aggregation
paths. The core grouping concept in a Luxembourgish legal
text is that of an Article. The most common groups used
under an article are Paragraphs and Alineas, and at a lower
level Numbers, and Letters. Certain other nuanced groups, e.g.,
Title_In_Art, can be used in certain cases within articles.

Each grouping concept has a
header (explained below) and an id.
There is only one instance of Law
per text, so the id is implicit in this :ﬁ)’;‘i:;gf;ﬁmm‘:[[jﬂ‘a"“m]
case. Nevertheless, each law is as- (a)
sociated with a publication date that

ArticeHeader
startingDelimiters=[split]
conceptMarkers=["Art", "Article"]
abbrevDelimiters=[dot]

o s
Qe 8
S i @

needs to be captured. Some grouping 2&:1’&‘&3;@16‘“&\&%\“""
AN
concepts, e.g., chapters, have both Art. 32ter.

an id and a name (chapter title). (b)

The header of a grouping concept C, Fig. 4. (a) Header class
called CHeader, provides information tfl.ocrl:rﬁggs (b) Example ar-
as to how the beginning of an instance

of C is recognized in the text. In the model of Fig. 3, only the
abstract header class is shown. Each grouping concept defines
a (static) specialization of this abstract class. As an example,
we show ArticleHeader in Fig. 4. Here, the starting delimiter is
a split (carriage return or linefeed), and the concept marker is
“Art” or “Article”. When the abbreviated concept marker is used,
it may be (optionally) followed by a dot. The numbering is
alphanumeric representing the identifier of the article in the
legal text. The article header closes with a dot.

VI. TRANSFORMING NON-MARKUP TO MARKUP TEXT

We automatically derive from a text schema, e.g., the one
in Fig. 3, regular expressions that transform non-markup legal
texts to texts with structural markup. The automation builds
on a simple observation: the natural structure of a textual
document is such that a particular segment of text terminates
only when we see a new grouping concept that is either at
the same level as the current segment or at a level above
the current segment. For example, assume that we have a

document structured according to the schema of Fig. 3, and
suppose that we are within a particular section, say Section 3.
For this section to terminate, we either have to reach the
beginning of Section 4, or, if there are no further sections,
the beginning of a new chapter, a new title, etc.

The containment relationships between grouping concepts
is never recursive. This means that we cannot have a grouping
concept, say Chapter, which logically contains another group-
ing concept, say Section, and at the same time have Sections
that contain Chapters. More precisely, a text schema, when
viewed as a graph, is always an Acyclic Direct Graph (DAG).
This in turn means that there is always some ordering of
the grouping concepts, known as a fopological ordering [20],
that respects the containment relationships between the con-
cepts. Computing this ordering is inexpensive and linear in
the size of the input DAG [20]. One topological ordering
for the schema of Fig. 3 in an ascending order is: [Letter,
Number, Special_Letter, Dash, Alinea, Paragraph, Title_In_Art, Article, Subpart,
Subsection, Section, Chapter, Title, Book, Part, Law]. Equipped with this
ordering and the information from the CHeader classes in
the text schema (Fig. 4), one can automatically generate the
regular expressions that recognize the hierarchical structure of
a legal text. The algorithm for generating and executing these
regular expressions is shown in Algorithm 1.

Algorithm 1 Build Markup for Legal Text

1: Let G be the DAG whose nodes are the grouping concepts in a text schema
and whose (directed) edges are the aggregations in the schema;

2: Let n be the number of nodes of G and let [Cy,---,C,] be an ascending
topological ordering of the nodes in G;

3: For 1 <i<n: Generate a regex HeadRegEx; to recognize C; headers;

4: For 1 <i< n: Generate a regex SegmentRegEX; to recognize C; segments,
i.e., a C; header followed by the header of any C; € [G;,---,C,];

5: Run all HeadRegEx; (in any order) on the input text;

6: Run all SegmentRegEX; (in any order) on the input text;

We illustrate the regular expressions for header identifi-
cation (HeadRegEx) and segmentation (SegmentRegEx) over the
Article grouping concept. Generating the regular expression
for marking the head of articles (line 3 of the algorithm) is
straightforward based on the information in the ArticleHeader
class (Fig. 4). In Fig. 5(a), we show a regular expression,
named MarkArticleHead and written in GATE’s regular ex-
pression language [15], for marking article heads. Intuitively
and in line with our previous discussion about ArticleHeader,
MarkArticleHead looks for the following sequence: a split, an
admissible concept marker, optionally a dot, an alphanumeric
number, and a final dot. Note that at the time this regular
expression is run, the text has already undergone lexical
analysis with information about its tokens available.

Fig. 5(b) shows a regular expression, MarkArticleSegment,
for marking article segments. This expression, also written in
GATE’s regular expression langauge, recognizes and annotates
the text between the head of a given article and the head of the
next grouping concept instance that is not logically containable
in that article. From the topological ordering, we know which
grouping concepts reside above Article and thus cannot be
contained in articles. The segment for an article starts when
its head is detected. The segment ends once the head of the

immediately following article or of a higher level grouping
concept, e.g., a chapter or a book, is detected. In the regular
expression, there is a special EOD (End Of Document) level
which has the largest topological order of all, meaning that
EOD terminates any segment at any other level.

Rule: MarkArticleHead

(({Split})+ ({Token.string=="Art"} | {Token.string=="Article"})
({Token.string=="."})? {Token.kind=="alphanum"}
{Token.string=="."}):ref -->:ref.ArticleHead={}

(a

~—

Rule: MarkArticleSegment

(({ArticleHead}):start

({LawHead} | {PartHead} | {BookHead} | {TitleHead} | {ChapterHead} |
{SectionHead} | {SubsectionHead} | {SubpartHead} | {ArticleHead} |
{EOD}):end):ref -->:ref.ArticleSegment={}

Fig. 5.
Due to space reasons, we cannot present all the technical
details for generating these regular expressions. For example,
groups such as chapters that have both ids and names have
slightly more complex regular expressions that those for
articles which only have ids. The annotations produced over a
non-markup legal text by the regular expressions can be easily
turned into a markup format, e.g., XML. The resulting markup
text is the basis for the resolution process (Section VII).

(b

~—

Example of markup rules for Article

VII. DETECTING AND RESOLVING CROSS REFERENCES

We break this step into three sequential sub-steps. The first
sub-step addresses detection, and the second and third sub-
steps address resolution. In the first sub-step, we automatically
detect the CREs in a given legal text based on a set of prede-
fined NL patterns (Section VII-A). In the second sub-step, the
identified CREs are interpreted into a set of individual CRs
(Section VII-B). Finally, in the third sub-step the individual
CRs are linked to the target provisions (Section VII-C).

A. NL PFatterns for Cross References Expressions

Our NL patterns were derived from a study of (Luxem-
bourg’s) Income Tax Law [1]. The current edition of this
law, from January 2013, is 189 pages long and organized
into 3 titles that collectively contain 15 chapters. The law
has 236 articles, composed of 767 paragraphs. The large size
and complexity of this law provides a rich basis for our
investigation. Basing our work on the Income Tax Law was
further motivated by our access to legal experts who could help
us with understanding the structure and the content of this law.
We analyzed all the 1223 CREs in the Income Tax Law and
developed regular expressions to formalize the patterns we
observed. The patterns, shown in Fig. 6, are organized into
simple and complex. Complex patterns build on top of simple
patterns, providing certain advanced features which we discuss
over the course of this section.

We explain and illustrate our patterns, drawing on the
terminology defined in Section II. We have made minor
simplifications to the patterns for better readability. While the
patterns were developed over French text, they carry over to
English almost verbatim. With regards to the French grammar,
there is only one simplification to note: In French, ordinals can
appear both before and after nouns (e.g., “paragraphe premier”,
“premier paragraphe”); whereas in English, they can appear only

Line| Simple cross references patterns

(simple-ref-expr) (explicit-expr) | (implicit-expr)

(explicit-expr) internal-expr) | (external-expr)

3|(internal-expr) marker-term) (num-expr) |
ordinal-expr)(marker-term) |

generic-term) (num-expr)

“article” | “articles” | “art” | “paragraph” | ...
(NUMBER) | (LETTER) | (ALPHANUM)
(TEXT-ORDINAL) | (NUM-ORDINAL)

“sub” | “under”

(external-expry) | {external-expry)

(name-term) | {category-term)(link-term) (DATE)|
(adj-term)(category-term) (link-term) (DATE) |
(
(
{

N —

P

marker-term)
num-expr)
ordinal-expr)
generic-term)
external-expr)
external-expry)

© O OOul b
o~ o~ o~~~

name-term)(link-term) (DATE) | (delegating-expr)

10|{external-expr,) = (internal-expr){auxiliary-term){external-expry)
11|(delegating-expr) = (delegation-term) | (adj-term)(delegation-term)
12|(category-term) = “law” | “decree” | “directive” ...

13|(name-term) := “socialinsurance code”|“complementary pension law”| . ..
14|(adj-term) “modified” | “grand-ducal’ | “ministerial”
15\{auxiliary-term) = “as it was introduced by the” | ...

16|{(delegation-term) = *regulation” | “memorial” | ...

17{implicit-expr) = (implicit-term) (marker-term) |

implicit-term)(category-term)|
marker-term) (implicit-term) |
category-term)(implicit-term)|
internal-expr) (implicit-termy)|
implicit-term) (unspecific-term)|
implicit-term) (num-expr) (marker-termy |
unspecific-term) (implicit-term)

P N

18|(implicit-term)

“next” | “previous” | “this”| “in question” | “same”| ...
“provision”
nofn | uof then I nof an

19|(unspecific-term)
20|(link-term)

“above” | “below” | “preceding” | “following” | “that follows” |

Complex cross references patterns

21|(complex-ref-expr)
22|(multivalued-expr)
23|(multivalued-expry) ::

(multivalued-expr) | (multilayered-expr)
multivalued-expry) | (multivalued-exprs)
internal-expr) (sep-term) (num-expr) |

(
(
(
24((multivalued-expry) = (multivalued-expry) (sep-term) (num-expr) |
(multivalued-expr) (sep-term) (implicit-term)
(multilayered-expry) | (multilayered-expry)
(internal-expr) (sep-term) (internal-expr)
(multilayered-expr,) (sep-term) (internal-expr) |
(multilayered-expry) (link-term) (internal-expr) |
(multilayered-expry) (link-term) (multivalued-expr)
1| and’ | for’ [0" ...

25|(multilayered-expr) ::
26|(multilayered-expry) ::
2 7|(multilayered-expry) ::

28|(sep-term)

external-expr) (sep-term) (num-expr) (sep-term) (DATE)

Fig. 6. Grammar for NL cross reference patterns.

before (e.g., “first paragraph”). In Fig. 6, symbols in upper-case
letters, e.g., (NUMBER) denote terminals as identified by an
NL lexical analyzer. Non-terminals that end with ferm, e.g.,
(marker-term) and (name-term) denote elements in predefined
dictionaries (commonly known as gazetteers [15] in NLP).
These terms vary from one legal jurisdiction and language to
another and must be specified for a specific context.

Simple CREs. A simple CRE can be explicit or implicit
(L. 1 of Fig. 6). Among explicit CREs, we distinguish internal
and external (L. 2). Non-terminals (internal-expr) (L. 3) and
(external-expr) (L. 8) respectively capture explicit internal and
explicit external CREs.

An (explicit) internal CRE (L. 3-7) is either a concept
marker, e.g., article, followed by a numerical expression, or
an ordinal expression followed by a concept marker. The
numerical expression can be an arabic number (“article 17), a
roman number (“‘chapter IV”), an alphanumeric (“alinea 2bis”), a
number written out in text (“alinea four”), or a letter (“letter a”).
A numerical expression may optionally have brackets around

or at the end of it (“paragraph (2)”, “paragraph 2)”). An ordinal
expression can be a numerical ordinal (“1st article”) or a textual
ordinal (“first article”).

A new pattern observed in our study and not reported in
previous work is the case where a generic term, e.g., under,
replaces a concept marker, e.g., letter. For example, “under a)”
may be used in an article instead of “letter a)”.

An (explicit) external CRE (L. 8-16) can be as simple as
just the name of an external law, e.g., “social insurance code”.
Alternatively, an external CRE may be a phrase starting with
an optional auxiliary term (e.g., “modified”) followed by a legal
text category and a date, e.g., “modified law of 23 July 1993".
It is further possible for an external CRE to point to the
internal provisions of an external law, e.g., “article 54bis as it
was introduced by the Law of 23 July 1983”. Delegating references
(see Section II) also fall under external CREs.

A simple CRE may be implicit (L. 17-19), e.g., “this article”.
Among implicit CREs, there are some that cannot be resolved
in an accurate way because they use an unspecific term, e.g.,
‘the following provisions”. An interesting variation of implicit
CREs not previously reported are those that combine implicit
terms and numerical expressions, e.g., “first four alineas”.

Complex CREs. Complex CREs build on simple CREs, pro-
viding three additional features: enumerations, ranges, and
navigation through legal text grouping concepts. Our overall
classification of complex CREs follows de Maat et al.’s [11]:
multivalued and multilayered (L. 21). Multilayered CREs can
have multivalued parts (L. 27).

A multivalued CRE (L. 22-24) cites many provisions in the
same expression by specifying only once a concept marker
followed by a numerical expression. The numerical expression
may be (1) an AND/OR enumeration, e.g., “numbers 1, 1a, 2
and 3" and “articles 22bis or 102”; (2) a range, e.g., “numbers 1
to 3”; or (3) a combination of enumerations and ranges, e.g.,
“articles 119 to 121 and 124”. Similar to simple CREs, multivalued
CREs can use different numbering formats, e.g., ordinals as
in “second and third alineas”. Our grammar allows the repetition
of enumerations and ranges within a CRE to accommodate
cases seen in our study, e.g., “articles 144, 147, 148 to 150, 158
to 160, 161, 162, and 163”. We further allow multivalued CREs
to include implicit terms, e.g., “articles 26-2, 27 and the following”.
Neither of these featurs are captured by de Maat et al. [11].

A multilayered CRE (L. 25-27) describes a navigation path
through the hierarchy of a legal text. The navigation may
be from an upper to a lower level, e.g., “article 91, 1st alinea,
No 2”. Alternatively, the navigation can be from a lower to
an upper level, e.g., “second sentence of article 10 of the law
of 23 may 1964”. Finally, a navigation can be mixed-mode.
That is, a CRE may start at a convenient hierarchical level,
navigate upward or downward in the hierarchy, and then go
in the reverse direction. For example, consider the following
CREs: “article 3, paragraph (2) of the Law of 8 June 1999” and
“numbers 3 and 4 of article 22bis, alinea 2. The navigation in
the former is Article — Paragraph — Law and in the latter
Number — Article — Alinea. Multilayered CRE may further
use multivalued CREs in their makeup, e.g., “articles 59, alinea

3, 59bis, alinea 1, 170, alineas 2 and 3, 170bis, alineas 1 et 2, 170ter,
alineas 1 and 2, and 172, alineas 4 and 5”.

In Table 1, we provide a CREs INITI\I?ECI);EEITAX LAwW

breakdown of the 1223 CREs

in the Income Tax Law ac- | CRE Type | # of CREs
cross three different dimen- | Internal 928
sions: (1) Internal vs. Exter- — Unspecific 45
nal: 928 of the CREs are in- | External 295
ternal, of which 45 are unspe- — Delegating 169
cific, and 295 are external, of | Explicit 839
which 169 are delegating; (2) Implicit 384
Explicit vs. Implicit: 839 of | Simple 706
the CREs are explicit and the Complex 517
remaining 384 are implicit; — Mutlivalued 192
and (3) Simple vs. Complex: — Multilayered 325

709 of the CREs are simple
and the remaing 519 are complex. Among the complex ones,
192 are multivalued and 325 are multilayered.

We next present our approach for interpreting CREs into
individual CRs.

B. Interpreting Cross Reference Expressions

The aim of the interpretation step is to translate each CRE
into a set of individual CRs. The main complexity arising
during interpretation is that some of the NL patterns in
Section VII-A are ambiguous, i.e., several parse trees may
exist for the same CRE. While a regular expression recognizer
can delineate the start and end of each CRE even when
the grammar is ambiguous, without knowing the structural
makeup of the underlying legal text, one cannot choose the
parse tree that is suitable for the text. Parser generators such
as Yacc [21] require static priorities to be defined in order to
resolve ambiguities. This is inadequate for CREs, because the
admissible parse tree depends on the context, i.e., the actual
legal text under analysis. Custom interpretation rules are thus
necessary, as we detail in this section. To remain concise in our
descriptions, we assume that the legal text under analysis has
been already preprocessed. In particular, we assume that (1)
ordinals, roman numbers, and numbers spelled out in text have
been replaced with arabic numerals; alphanumerics remain
unchanged; and, (2) abbreviated concept markers (e.g., art.)
have been replaced with full labels (e.g., article).

Interpretting Simple CREs.
Among simple CREs, only
implicit ones and those using
generic terms (e.g., sub) need

Example 1

CRE: current article

Context: article 4 paragraph 2
Interp.: article 4

Example 2
CRE: following paragraphs

treatment. We distinguish two | Context: article 1 §22paragraph ;1
. .. . Interp.: paragrap , paragrap!
cases for implicit CREs: (1) |2a, paragraph 3, paragraph 4

The ones that are semantically
equivalent to current, previous,
or next followed by a concept

Example 3

CRE: same law

Prev. CRE: law of 8 june 1999
Interp.: law of 8 june 1999

marker: In the case of current, the CRE is interpreted as
pointing to the segment of the same type as concept marker
that contains the CRE (Example 1). In the case of previous
and next, the CRE is interpreted as pointing to segment(s) of
the same type as concept marker that precede or succeed the

CRE, respectively (Example 2). (2) Implicit CREs that are
semantically equivalent to same or this followed by a concept
marker. The interpretation of such a CRE is equivalent to that
of the CRE coming immediately before it (Example 3).

Interpreting generic terms such as
sub needs to be done according to the
conventions in the legal jurisdiction

Example 4
CRE: sub a, alinea 2
Interp.: letter a, alinea 2

to which the text belongs. In Luxembourg’s legislation, the
specific concept marker for a generic term can be inferred
based on what is seen after the generic term. If the generic
term is followed by a letter, the appropriate concept marker is
Letter; otherwise, the concept marker is Number (Example 4).

Interpreting multivalued CREs.

Example 5

CRE: articles 14, 61, 91 ou 95
Interp.: article 14, article 61, article
91, article 95

Example 6
CRE: articles 99ter to 102
Legal Text: Lux. Income Tax Law

A multivalued CRE that uses
an enumeration is interpreted
with the concept marker
added to each element of the

enumeration (Example 5). For | jerp.: article 99ter, article
interpreting CREs involving gzﬁcﬁgt%zartlcle 100, article 101,
ranges, we distinguish | gxample 7

grouping concepts that have | CRE: paragraphs f fo 3

unique numbering across an
entire legal text (e.g., Article)
and grouping concepts (e.g.,
Chapter, Paragraph) whose

Context: article 50bis, paragraph 4
Parent context: article 50bis
Interp.: paragraph 1, paragraph 2,
paragraph 3

Note: First interpretation attempt
in the context of article 50bis,
paragraph 4 fails. Second attempt at
the level of article 50bis succeeds.

numbering is reset when a
higher-level grouping concept is seen. For the former, we
browse the entire hierarchical structure of the legal text
to identify the elements in the range (Example 6). For
the latter (grouping concepts whose numbering is reset),
the interpretation depends on the context. We first attempt
to interpret the CRE within the innermost segment in the
hierarchy where the CRE appears. If the CRE cannot be
interpreted meaningfully within this context, we recursively
attempt to resolve the CRE in the immediate parent of the
current segment and then the parent’s parent and so on,
until we arrive at the right level for interpreting the CRE
(Example 7). It is important to emphasize that the actual
elements of a range cannot be deduced independently of
the legal text because alphanumerics may be used in the
numbering, as illustrated in Example 6. When multivalued
CREs include implicit terms, we apply the same process as
for simple CREs (see Example 4).

Interpreting multilayered CREs For multilayered CREs that
do not contain multivalued CREs, interpretation is performed
by harmonizing the navigation order so that it is strictly
upward or downward. For example, all the following four
CREs point to the same provision: (1) “article 131, 1st alinea,
sub d)”, (2) “sub d) of article 131, 1st alinea”, (3) “1st alinea, sub d)
of article 1317, (4) “article 131 sub d) of 1st alinea”. Only (1) is in
a harmonized form. The harmonized form is easy to compute
based on the topological order discussed in Section VI. The
most complex form of CREs arises when layers are combined
with ranges and enumerations. The regular expressions that
detect such CREs are ambiguous.

To illustrate, consider the
CRE in Example 8. With-
out knowing the structural
makeup of the underlying
text, one cannot know if the
“127 and 154ter” fragment in

Example 8
CRE: articles 109, 1st alinea, num-
bers 1to 3, 127 and 154ter

Interp.: article 109 paragraph 1 num-
ber 1, article 109 paragraph 1 num-
ber 1a, article 109 paragraph 1 num-
ber 2, article 109 paragraph 1 num-
ber 3, article 127, article 154ter

this CRE refers to articles, paragraphs, or numbers. One could
take cues from punctuation and the singular vs. plural concept
markers to rule out the fragment referring to paragraphs. One
could further deduce that either 127 or 154ter has to be an
article because the article concept marker is in plural form.
Unfortunately, such reasoning is unreliable as punctuation and
the use of singular vs. plural are not consistently followed in
legal texts. For example, the distinction between singular and
plural disappears when abbreviations (e.g., art.) are used.

We interpret multilayered CREs with ranges and enumera-
tions in a similar manner to Example 7. When faced with a
CRE fragment whose type is unknown, an attempt is made to
interpret that fragment in the deepest context previously used
for interpretation. In the case of the CRE in Example 8, this
means that first, we take the numerical expression “127” (whose
type is unknown) to be the continuation of “numbers 1 to 3”. An
attempt is made to interpret “127” in the context of “article[s]
109,1st alinea”, i.e., the same context where “numbers 1 to 3”
was interpreted. After this attempt fails, we recursively switch
to the upper-level context in the CRE, i.e., “article[s] 109” (the
same context where “1st alinea” was interpreted). This second
attempt also fails. The third attempt tries to interpret “127” in
the context of all articles. This attempt succeeds. Now that
“127” has been interpreted as an article, the CRE will be seen
as if the concept marker article appeared just before “127” in
the legal text. The remainder of the enumeration, i.e., “154ter”,
is interpreted as if the CRE is “articles 109, 1st alinea, numbers 1
to 3, article 127 and 154ter”.

C. Linking Cross Reference Expressions to Target Provisions

In the final step, we link each CRE to all the provisions
resulting from its interpretation. Like the interpretation phase,
the linkage phase requires knowledge of the hierarchy of the
legal text in which the target provisions are located. The details
of the linkage phase are straightforward. An example of how
the resulting links are rendered is provided in Section VIII
when discussing visualization and navigation.

VIII. APPLICATIONS

In this section, we outline some important use cases that
build on the results of CR detection and resolution.

Visualization and Navigation. CR detection and resolution is
a prerequisite for generating navigable views of legal texts.
In Fig. 7, we show a small excerpt of an HTML view of
Luxembourg’s Income Tax Law. In this view, resolved CREs
appear as hyperlinks. Clicking on a CRE brings up a tooltip
box, allowing the user to navigate to any of the CRs entailed
by the CRE. A view like this is useful during the elaboration of
compliance requirements, where analysts often need to follow
the CRs in search of additional relevant information.

Art. 157.

. 2 Leslartlcles 109, alinéa 1er . numéros 1 a 3, 127 et 154terlle sont p '
1 contri mntbn b

‘.rumqf‘.i-.&quedu‘k\.L‘S&- huf oua lnog Article 109 Alinea 1 Numero 1
Article 109 Alinea 1 Numero 1a

Article 109 Alinea 1 Numero 2
Article 109 Alinea 1 Numero 3
Article 127

Article 154ter

—

Fig. 7. A hyper-linked view of Luxembourg’s Income Tax Law

Identifying Anomalous CREs. A natural byproduct of the
resolution process are diagnostics about CREs that cannot be
resolved. Failure to resolve a CRE may be due to it being non-
well-formed, or due to the CRE targets being non-existing.
In either case, it is important for both legal experts and
requirements analysts to be made aware of anomalous CRE:s.

Trace Link Analysis. Trace link analysis is concerned with
identifying the set of provisions that refer to a particular
provision. To illustrate the usefulness of this type of analysis,
consider the following example from Luxembourg’s Income
Tax Law: “Art. 24” of this law elaborates the pension schemes
recognized for taxation. A natural query for a requirements
analyst who is elaborating the compliance requirements for
taxation of pensioners is: Where is “Art. 24” referred to? A
naive string search, e.g., “Art. 24”7, over the text of the law
yields no results, despite the article being internally cited in
four places. On all occasions, the article is cited within ranges:
“Art. 4 to 155bis”, “Art. 14 to 108bis”, “Art. 16 to 60” and “Art. 106 to
60”. Without automated support, identifying where the article
is cited requires a manual scan of the entire law (189 pages).

To automate trace link analysis, we need a logical represen-
tation of the structure of the legal text(s) in question along with
their CR links. This information is conveniently expressed as a
typed graph [22] — intuitively, a graph whose nodes and edges
are typed. In our problem, graph nodes represent instances of
the grouping concepts in a legal text, e.g., individual chapters,
sections, articles, and paragraphs. Each node type is thus one
of the classes of the text schema. For Luxembourg’s Income
Tax Law, this is the schema of Fig. 3. Edges may represent two
types of relationships: first, that a grouping concept instance
contains another, e.g. Article 4 contains Article 4 Paragraph 2;
and second, that a grouping concept instance (directly) cites
another, e.g. Article 4 Paragraph 2 cites Article 46 Number 3.

Given such a logical representation, one can infer links
between any pair of grouping concept instances. For example,
one can identify all citations to a given article. We show
the logical queries for this computation in the snippet of
Fig. 8. The snippet is written in the Relational Manipulation
Language (RML) — the query language for a first-order logic
interpreter, named Crocopat [16]. In the snippet, we compute a
relation, Contains(x,y), that holds for all (x,y) where y is a child
of x in the legal text’s hierarchy tree. TrContains(x, y) computes
the reachability relations via containment using the transitive
closure operator (TC). TrContains(x, y) thus holds for all (x,y)
where y is a descendant of x. Cites(x,y) computes (x,y) where
x directly cites y via a CR. Finally, LinkedToArt(x, y) computes
all (x,y) where y (i.e., the link target) is of type Article, and
where x cites some element z that is transitively contained in
y (e.g., a paragraph of y, or a letter in a paragraph of y).

Contains(x,y) := Node(x) & Node(y) &
EX(e, Edge(e) & Type(e, "Contains”) & Source(e, x) & Target(e, y));
= TC(Contains(x,y)) | (x =Y);
= Node(x) & Node(y) &
EX(e, Edge(e) & Type(e "Cites”) & Source(e, x) & Target(e, y));
LinkedToArt(x, y) := Node(x) & Type(y, "Article”) & EX(z, Cites(x, z) & TrContains(y, z));

TrContains(x, y)
Cites(x, y)

Fig. 8. Logical queries for trace link analysis
Text Legal Domain-
S chema Text Specific
Lists
L
; —>
. GATE NLP Logical
Ec"Pse Workbench | Markup & Analysis
* Results

Resolution
f Diagnostics

CR Detection and 1 Hyperlinked !
Resolution H

HES
£

\
\
H
H
H
H
1
'
H
H
H
H

Concept Structure
Markers Markup
List Scripts / Scripts Legal Text

Fig. 9.

LeCA tool archltecture

Circularity Analysis. Cyclic citations are common in legal
documents. A frequent usage is when a provision X refers to
a provision Y to state that X depends on Y for a definition; and
Y refers back to X to state that Y provides a definition required
by X. While cycles seldom indicate errors, they need to be
investigated carefully to verify absence of circular reasoning,
e.g., cases where provisions X and Y both depend on one
another for a definition. Circularity analysis is performed using
similar logical queries to what we illustrated in Fig. 8. We do
not elaborate the queries due to space constraints.

IX. TooL SUPPORT

We implement our approach in a tool named LeCA (Legal
Cross Reference Analyzer). LeCA provides automated support
for (1) generation of text structure markup (Section VI), (2) CR
detection and resolution (Section VII), and (3) visualization
and CR analysis (Section VIII). LeCA builds on the GATE
Workbench [15] — a mature open-source NLP framework.

Fig. 9 shows an overview of LeCA. Eclipse’s model-to-text
transformation facilities are used in order to derive, from a
text schema, JAPE scripts for text structure markup. These
scripts are then executed by GATE, followed by those for
CR detection and resolution. The CR detection and resolution
scripts rely on several keyword lists (gazetteers), e.g., concept
markers, names of legal texts, and implicit terms. The list for
concept markers is derived from the text schema. The remain-
ing lists are domain-specific and depend on the language of
the legal text and the specific jurisdiction to which the legal
text belongs. These lists thus need to be provided by the user.

As output, LeCA produces an HTML view of the input
legal text with CRs represented as hyperlinks. Diagnostics are
provided for any unresolved CRs. LeCA additionally generates
a logical representation of the input text’s structure and CRs,
which is in turn fed to a first-order logic interpreter, Crocopat
[16], for analysis. Our analysis rules currently cover traceabil-
ity link generation and identification of circular citation paths.

LeCA is written in GATE’s regular expression language,
JAPE (Java Annotation Patterns Engine). JAPE allows direct
use of Java to specify the actions to take when a particular

regular expression is recognized. This enables us to seamlessly
integrate CR detection and resolution activities. In total, LeCA
implements 113 JAPE scripts with approximately 10,000 lines
of JAPE code, excluding comments and third-party libraries.

X. EVALUATION

In this section, we describe an evaluation of our approach,
aimed at answering the following Research Questions (RQs):

RQ1. Is our approach effective at detecting CREs? Our
natural language patterns for CREs were gleaned from Luxem-
bourg’s Income Tax Law. RQ1 aims at verifying the complete-
ness of the patterns by analyzing their accuracy for detecting
CREs in legislative texts other than the Income Tax Law.

RQ?2. Is our approach effective at resolving CREs? RQ2 aims
at measuring how accurate our approach is in resolving CREs
that have been already detected.

RQ3. Is our approach scalable? 1egal texts can be hundreds
and sometimes thousands of pages long. RQ3 aims at estab-
lishing whether our approach runs within reasonable time.

Results and Discussion

RQI. To answer RQI1, we selected 13 legislative texts with
a total of 1640 pages from Luxembourg’s legal corpora. Our
main selection criteria were to cover (1) a diverse set of texts,
and (2) a large timespan in terms of when the texts were
first drafted. The selected texts were drawn from civil laws,
criminal and penal laws, social welfare, pensions, housing,
commerce, and healthcare. The oldest text in our selection
dates back to 1808 and the newest one to 2011.

We randomly chose 10% of the pages in each selected text.
If a randomly-chosen page coincided with the preface, table of
contents, document history, or index, the page was discarded
and another random page was considered. In total, we consid-
ered 164 pages of text containing actual legal provisions. We
conducted a manual inspection of these pages and highlighted
the CREs found. This inspection yielded 1852 CREs.

Following the inspection, we applied our tool for detecting
the CREs in these pages. The tool was applied exclusively
for detection, i.e., structural markup generation and resolution
were not performed. For detection, we used the concept
markers (line 4 of the patterns in Fig. 6) prescribed for
legislative texts by Luxembourg’s legal writing best practices
that are in effect today [19]. For generic terms, law names
and auxiliary terms (respectively, lines 7, 13 and 15 of the
patterns), we exploited the lists built from our investigation of
the Income Tax Law. Table II summarizes the results for RQ1.
In the table, we classify the identified CREs across the same
dimensions as those used in Table I for the Income Tax Law.

The results indicate that our patterns miss only one CRE
amongst the ones investigated (less than one tenth of a
percent). This CRE was at (1) (in French, au (1)), which referred
to paragraph 1 of the article in question. The CRE can be
detected by adding “at” to the generic terms (line 7 of the
patterns). 38 CREs (= 2%) were only partially identified. All
cases were attributed to incompleteness in the lists of concept

TABLE 11
RESULTS FOR RQ1

CRE Type # of CREs Correctly Partially Missed
Identified Identified
Internal 857 848 8 1
External 995 965 30 0
Explicit 1389 1350 38 1
Implicit 1852 463 0 0
Simple 1031 1029 1 1
Complex 821 784 37 0
— Mutlivalued 373 372 1 0
— Multilayered 448 412 36 0

markers, law names, and auxiliary terms. Detection further
yielded 5 false positives (not shown in the table).

Without addressing the incompleteness in the lists, detection
has a precision of 99.7%, recall of 97.9% and F-measure of
98.8%. If the lists are completed, these measures will respec-
tively be: 99.7%, 100% and 99.8%. No new patterns emerged
from our investigation in RQ1, providing confidence about the
completeness of our patterns for Luxembourg’s legislation.

RQ2. We answer RQ2 based on the resolution of internal
CREs in Luxembourg’s Income Tax Law. Although this law
is the same legal text from which we drew our CRE patterns,
we believe that using this text towards answering RQ2 is
justified in the light of the following: First, from our analysis
of RQI, one can be reasonably confident that our patterns
achieve high coverage in detection. Second, our resolution
algorithm is instantiated based on only the text schema and
the CREs patterns, irrespectively of the actual legal text. We
thus anticipate little bias resulting from using the Income Tax
Law in RQ2. Our decision to use this law for resolution was
necessitated by the fact that we had access only to legal
experts in the area of taxation. Measuring the effectiveness
of resolution requires a precise text schema, for which we
needed to interact closely with legal experts. We further need
to note that although our patterns address both internal and
external CREs, our evaluation of RQ2 is exclusively concerned
with internal ones. A detailed resolution of external CREs
requires the text schema for the external legal texts. One
could perform a coarse-grained resolution for external CREs
by merely linking them to the target legal texts, as opposed to
the specific provisions being cited within these texts. This is
rather unfruitful from an evaluation standpoint.

We attempted automated resolution for all internal CREs
except unspecific ones, i.e., a total of 883 CREs (see Table I in
Section VII-A). This resulted in 1736 CR links plus 9 warnings
for the CRs whose target provision could not be found. We
then conducted a walkthrough of the resulting CR links and
the warnings. All the 1736 automatically-generated links were
deemed correct. Of the 9 warnings, 8 arose due to CREs that
were indeed anomalous in the text of law. When combined,
the CR links and the 8 warnings fully covered the internal
CREs over which resolution was attempted.

The last warning was due to our algorithm incorrectly
interpreting an external CRE as an internal one. The CRE
in question is paragraph 11bis in the following excerpt: “The
modified fiscal adjustment law of 16 October 1934 is amended with the
following provision, inserted into the law as paragraph 11bis: [...]". Since

our approach does not analyze the semantics of sentences, it
interprets paragraph 11bis as being internal although the correct
treatment is paragraph 11bis of the law of 16 October 1934.

With regards to the accuracy of resolution over the Income
Tax Law, we get a precision of 99.9%, recall of 100%, and F-
measure of 99.9% when we exclude unspecific CREs. From
a practical standpoint, since we rely on a human expert to
resolve the unspecific CREs, it seems more reasonable to treat
these CREs as false negatives. This treatment provide a better
reflection of the amount of manual work saved by automated
resolution. Under this treatment, we obtain a precision of
99.9%, a recall of 97.5%, and F-measure of 98.7%.

RQ3. The execution time of our approach is dominated by
the resolution phase. For the Income Tax Law, interpreting
CREs into individual CRs took ~ 151 seconds. Linking the
CRs to the target provisions took a further ~ 139 seconds.
The interpretation step has embedded into it the time spent for
transforming the Income Tax Laws from plain text to XML.
The execution time associated with the identification of CREs
using regular expressions was == 15 seconds for the Income
Tax Law and ~ 34 seconds for the selected pages in RQI.
Execution times were measured on a standard laptop with a 2.3
GHz Intel CPU and 8GB of memory. Given the short overall
running time of our approach, we expect it to be scalable to
larger legal corpora with thousands of pages.

XI. CONCLUSION

We presented an approach for automatic detection and
resolution of cross references in legal texts. Our approach
complements existing work in a number of ways. In particular,
the approach is parameterized by a text schema, making it
possible to tailor the approach to different legal texts and juris-
dictions. This text schema further allowed us to automatically
enhance non-markup legal texts with the structural markup that
is necessary for resolving cross references. Through a study of
legislative texts in Luxembourg, we extended existing natural
language patterns for cross reference expressions and provided
a systematic way to interpret these expressions. We outlined
the implementation of our approach in a Natural Language
Processing environment. Our evaluation of the approach indi-
cates that it is scalable and accurate in detecting and resolving
cross references in Luxembourg’s legislation.

Our work in this paper is part of a collaborative effort
with the Government of Luxembourg on legal compliance
in eGovernment. An important challenge in this context is
managing the continuous evolution of government IT systems
as well as the laws and regulations that apply to these systems.
Cross references provide important cues not only about the
relationships between legal provisions but also about the
relationships between the compliance requirements derived
from these provisions. Consequently proper handling of cross
references is essential for automated traceability and change
analysis over compliance requirements.

In future work, we plan to conduct larger-scale evaluations
of our approach and analyze the effectiveness of resolution for
external cross references. We would further like to investigate

how changes in legal provisions bring about changes in com-
pliance requirements. Another interesting topic for future work
is to generalize our approach beyond legislative texts, and
to regulations, circular letters, and parliamentary proceedings.
Being able to automatically link and navigate these different
types of legal texts makes it easier to analyze the rationale
behind compliance requirements and the way they need to be
operationalized.

Acknowledgments. Financial support for this work was pro-
vided by Luxembourg’s National Centre of Information Tech-
nologies (CTIE) and Luxembourg’s National Research Fund
(FNR) under grant number FNR/P10/03. We are grateful
to members of Luxembourg Inland Revenue Office (ACD)
and CTIE, particularly, Thierry Prommenschenkel, Ludwig
Balmer, Marc Blau, and Michael Masseroni for sharing their
valuable knowledge and insights with us.

REFERENCES

Govt. of Luxembourg, “Modified Law of Dec. 4, 1967 (Income Tax)
(Loi modifiée du 4 déc 1967 concernant 1’imp6t sur le revenu),” 2013.
J. Maxwell and A. Antén, “The production rule framework: Developing
a canonical set of software requirements for compliance with law,” in
Ist ACM Intl. Health Informatics Symp., 2010, pp. 629-636.

[3] T. Breaux and A. Ant6n, “Analyzing regulatory rules for privacy and
security requirements,” I[EEE TSE, vol. 34, no. 1, pp. 5-20, Jan. 2008.
T. Breaux, A. Antén, K. Boucher, and M. Dorfman, “Legal requirements,
compliance and practice: An industry case study in accessibility,” in RE,
2008, pp. 43-52.

J. Maxwell, A. Antén, P. Swire, M. Riaz, and C. McCraw, “A legal cross-
references taxonomy for reasoning about compliance requirements,”
REJ, vol. 17, no. 2, pp. 99-115, Jun. 2012.

J. Maxwell, A. Antén, and J. Earp, “An empirical investigation of
software engineers’ ability to classify legal cross-references,” in RE,
2013, pp. 24-31.

[7]1 S. Ghanavati, “Legal-URN framework for legal compliance of business
processes,” Ph.D. dissertation, 2013.

R. Hoekstra, “The metalex document server,” in /0th Intl. Conf. on The
Semantic Web, 2011, pp. 128-143.

[9] T. Breaux, “Legal requirements acquisition for the specification of
legally compliant information systems,” Ph.D. dissertation, 2009.

M. Palmirani, R. Brighi, and M. Massini, “Automated extraction of
normative references in legal texts,” in 9th Intl. Conf. on Al and Law,
2003, pp. 105-106.

E. de Maat, R. Winkels, and T. van Engers, “Automated detection of
reference structures in law,” in 19th Annual Conf. on Legal Knowledge
and Information Systems, 2006, pp. 41-50.

M. Hamdaga and A. Hamou-Lhadj, “An approach based on citation
analysis to support effective handling of regulatory compliance,” Future
Generation Computer Systems, vol. 27, no. 4, pp. 395-410, 2011.

O. Tran, M. Le Nguyen, and A. Shimazu, “Reference resolution in legal
texts,” in /4th Intl. Conf. on Al and Law, 2013, pp. 101-110.

The Bluebook: A Uniform System of Citation, 19th ed. Harvard Law
Review, 2010.

Cunningham et al, “Developing Language Processing Components with
GATE Version 7 (a User Guide).” [Online]. Available: http:/gate.ac.uk
D. Beyer, A. Noack, and C. Lewerentz, “Efficient relational calculation
for software analysis,” IEEE TSE, vol. 31, no. 2, pp. 137-149, 2005.
A. Massey, P. Otto, and A. Antdn, “Prioritizing legal requirements,” in
RELAW, 2009, pp. 27-32.

Association of Legal Writing Directors and D. Dickerson, The ALWD
Citation Manual, 4th ed. Aspen Publishers, 2010.

M. Besch, “Traité de 1égistique formelle,” 2005.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. MIT Press, 2009.

J. Levine, T. Mason, and D. Brown, Lex & Yacc. O’Reilly, 1992.

G. Rozenberg, Ed., Handbook of graph grammars and computing by
graph transformation (Vol. 1): Foundations. World Scientific, 1997.

[1
[2

[

[4

flnar

[5

[ty

[6

—

[8

—

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]

[19]
[20]

(21]
[22]

