Associative and preassociative aggregation functions

Erkko Lehtonen ${ }^{(*)}$ Jean-Luc Marichal ${ }^{(* *)}$ Bruno Teheux ${ }^{(* *)}$
(*) University of Lisbon
(**) University of Luxembourg

Associative functions

Let X be a nonempty set
$G: X^{2} \rightarrow X$ is associative if

$$
G(G(a, b), c)=G(a, G(b, c))
$$

Examples: $G(a, b)=a+b$ on $X=\mathbb{R}$

$$
G(a, b)=a \wedge b \quad \text { on } \quad X=L \text { (lattice) }
$$

Associative functions

$$
G(G(a, b), c)=G(a, G(b, c))
$$

Extension to n-ary functions

$$
\begin{aligned}
G(a, b, c) & =G(G(a, b), c)=G(a, G(b, c)) \\
G(a, b, c, d) & =G(G(a, b, c), d)=G(a, G(b, c), d)=\cdots
\end{aligned}
$$

etc.

Associative functions with indefinite arity

Let

$$
X^{*}=\bigcup_{n \in \mathbb{N}} X^{n}
$$

$F: X^{*} \rightarrow X$ is associative if

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{p}, \quad y_{1}, \ldots, y_{q}, \quad z_{1}, \ldots, z_{r}\right) \\
= & F\left(x_{1}, \ldots, x_{p}, F\left(y_{1}, \ldots, y_{q}\right), z_{1}, \ldots, z_{r}\right)
\end{aligned}
$$

Example: $F\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}$ on $X=\mathbb{R}$

$$
F\left(x_{1}, \ldots, x_{n}\right)=x_{1} \wedge \cdots \wedge x_{n} \text { on } X=L \text { (lattice) }
$$

Notation

We regard n-tuples \mathbf{x} in X^{n} as n-strings over X
0 -string: ε
1-strings: x, y, z, \ldots
n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots$
X^{*} is endowed with concatenation
Example: $\mathbf{x} \in X^{n}, y \in X, z \in X^{m} \quad \Rightarrow \quad x y z \in X^{n+1+m}$

$$
\begin{gathered}
|\mathbf{x}|=\text { length of } \mathbf{x} \\
F(\mathbf{x})=\varepsilon \quad \Longleftrightarrow \quad \mathbf{x}=\varepsilon
\end{gathered}
$$

Associative functions with indefinite arity

$F: X^{*} \rightarrow X$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Equivalent definitions

$$
\begin{array}{cc}
F(F(\mathbf{x y}) \mathbf{z})=F(\mathbf{x} F(\mathbf{y z})) & \forall \mathbf{x y z} \in X^{*} \\
F(\mathbf{x y})=F(F(\mathbf{x}) F(\mathbf{y})) & \forall \mathbf{x y} \in X^{*}
\end{array}
$$

Associative functions with indefinite arity

$F: X^{*} \rightarrow X$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Theorem

We can assume that $|\mathbf{x z}| \leqslant 1$ in the definition above

That is, $F: X^{*} \rightarrow X$ is associative if and only if

$$
\begin{aligned}
F(\mathbf{y}) & =F(F(\mathbf{y})) \\
F(x \mathbf{y}) & =F(x F(\mathbf{y})) \\
F(\mathbf{y} z) & =F(F(\mathbf{y}) z)
\end{aligned}
$$

Associative functions with indefinite arity

$$
\begin{gathered}
F(\mathbf{y z})=F(F(\mathbf{y}) z) \\
F_{n}=F \mid x^{n} \\
F_{n}\left(x_{1} \cdots x_{n}\right)=F_{2}\left(F_{n-1}\left(x_{1} \cdots x_{n-1}\right) x_{n}\right) \quad n \geqslant 3
\end{gathered}
$$

Associative functions are completely determined by their unary and binary parts

Proposition

Let $F: X^{*} \rightarrow X$ and $G: X^{*} \rightarrow X$ be two associative functions such that $F_{1}=G_{1}$ and $F_{2}=G_{2}$. Then $F=G$.

Associative functions with indefinite arity

Link with binary associative functions?

Proposition

A binary function $G: X^{2} \rightarrow X$ is associative if and only if there exists an associative function $F: X^{*} \rightarrow X$ such that $F_{2}=G$.

Does F_{1} really play a role ?

$$
\begin{gathered}
F_{1}(F(\mathbf{x}))=F(\mathbf{x}) \\
F(\mathbf{x} \mathbf{z} \mathbf{z})=F\left(\mathbf{x} F_{1}(y) \mathbf{z}\right)
\end{gathered}
$$

Associative functions with indefinite arity

$$
\begin{gathered}
F_{1}(F(\mathbf{x}))=F(\mathbf{x}) \\
F(\mathbf{x} y \mathbf{z})=F\left(\mathbf{x} F_{1}(y) \mathbf{z}\right)
\end{gathered}
$$

Theorem

$F: X^{*} \rightarrow X$ is associative if and only if
(i) $F_{1}\left(F_{1}(x)\right)=F_{1}(x), \quad F_{1}\left(F_{2}(x y)\right)=F_{2}(x y)$
(ii) $F_{2}(x y)=F_{2}\left(F_{1}(x) y\right)=F_{2}\left(x F_{1}(y)\right)$
(iii) $F_{2}\left(F_{2}(x y) z\right)=F_{2}\left(x F_{2}(y z)\right)$
(iv) $F_{n}\left(x_{1} \cdots x_{n}\right)=F_{2}\left(F_{n-1}\left(x_{1} \cdots x_{n-1}\right) x_{n}\right) \quad n \geqslant 3$

Associative functions with indefinite arity

Theorem

$F: X^{*} \rightarrow X$ is associative if and only if
(i) $F_{1}\left(F_{1}(x)\right)=F_{1}(x), \quad F_{1}\left(F_{2}(x y)\right)=F_{2}(x y)$
(ii) $F_{2}(x y)=F_{2}\left(F_{1}(x) y\right)=F_{2}\left(x F_{1}(y)\right)$
(iii) $F_{2}\left(F_{2}(x y) z\right)=F_{2}\left(x F_{2}(y z)\right)$
(iv) $F_{n}\left(x_{1} \cdots x_{n}\right)=F_{2}\left(F_{n-1}\left(x_{1} \cdots x_{n-1}\right) x_{n}\right) \quad n \geqslant 3$

Suppose F_{2} satisfying (iii) is given. What could be F_{1} ?
Example: $F_{2}(x y)=x+y$

$$
\begin{aligned}
\Rightarrow \quad F_{1}(x+y)= & F_{1}\left(F_{2}(x y)\right) \stackrel{(i)}{=} F_{2}(x y)=x+y \\
& \Rightarrow \quad F_{1}(x)=x
\end{aligned}
$$

Associative functions with indefinite arity

Theorem

$F: X^{*} \rightarrow X$ is associative if and only if
(i) $F_{1}\left(F_{1}(x)\right)=F_{1}(x), \quad F_{1}\left(F_{2}(x y)\right)=F_{2}(x y)$
(ii) $F_{2}(x y)=F_{2}\left(F_{1}(x) y\right)=F_{2}\left(x F_{1}(y)\right)$
(iii) $F_{2}\left(F_{2}(x y) z\right)=F_{2}\left(x F_{2}(y z)\right)$
(iv) $F_{n}\left(x_{1} \cdots x_{n}\right)=F_{2}\left(F_{n-1}\left(x_{1} \cdots x_{n-1}\right) x_{n}\right) \quad n \geqslant 3$

Example: $F_{n}\left(x_{1} \cdots x_{n}\right)=\sqrt{\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}}$

$$
\begin{gathered}
F_{1}(x)=x \\
F_{1}(x)=|x|
\end{gathered}
$$

Preassociative functions

Let Y be a nonempty set
Definition. We say that $F: X^{*} \rightarrow Y$ is preassociative if

$$
F(\mathbf{y})=F\left(y^{\prime}\right) \Rightarrow F(x y z)=F\left(x^{\prime} y^{\prime} z\right)
$$

Examples: $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

$$
F_{n}(\mathbf{x})=|\mathbf{x}| \quad(X \text { arbitrary, } Y=\mathbb{N})
$$

Preassociative functions

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(x y z)=F\left(x^{\prime} y^{\prime}\right)
$$

Equivalent definition

$$
\begin{gathered}
F(\mathbf{x})=F\left(\mathbf{x}^{\prime}\right) \text { and } F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \\
\Downarrow \\
F(\mathbf{x y})=F\left(\mathbf{x}^{\prime} \mathbf{y}^{\prime}\right)
\end{gathered}
$$

Preassociative functions

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(\mathrm{xyz})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

Fact. If $F: X^{*} \rightarrow X$ is associative, then it is preassociative
Proof. Suppose $F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right)$
Then $F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z})=F\left(\mathbf{x} F\left(\mathbf{y}^{\prime}\right) \mathbf{z}\right)=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)$

Preassociative functions

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(\mathbf{x y z})=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)
$$

Proposition

$F: X^{*} \rightarrow X$ is associative if and only if it is preassociative and $F_{1}(F(\mathbf{x}))=F(\mathbf{x})$

Proof. (Necessity) OK.
(Sufficiency) We have $F(\mathbf{y})=F(F(\mathbf{y}))$
Hence, by preassociativity, $F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z})$

Preassociative functions

Proposition

If $F: X^{*} \rightarrow Y$ is preassociative, then so is the function

$$
x_{1} \cdots x_{n} \mapsto F_{n}\left(g\left(x_{1}\right) \cdots g\left(x_{n}\right)\right)
$$

for every function $g: X \rightarrow X$

Example: $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

Preassociative functions

Proposition

If $F: X^{*} \rightarrow Y$ is preassociative, then so is

$$
g \circ F: \mathbf{x} \mapsto g(F(\mathbf{x}))
$$

for every function $g: Y \rightarrow Y$ such that $\left.g\right|_{\operatorname{ran}(F)}$ is one-to-one

Example: $F_{n}(\mathbf{x})=\exp \left(x_{1}^{2}+\cdots+x_{n}^{2}\right) \quad(X=Y=\mathbb{R})$

Preassociative functions

Proposition

Assume $F: X^{*} \rightarrow Y$ is preassociative If F_{n} is constant, then so is F_{n+1}

Proof. If $F_{n}(\mathbf{y})=F_{n}\left(\mathbf{y}^{\prime}\right)$ for all $\mathbf{y}, \mathbf{y}^{\prime} \in X^{n}$, then $F_{n+1}(x \mathbf{y})=F_{n+1}\left(x \mathbf{y}^{\prime}\right)$ and hence F_{n+1} depends only on its first argument...

Preassociative functions

We have seen that $F: X^{*} \rightarrow X$ is associative if and only if it is preassociative and $F_{1}(F(\mathbf{x}))=F(\mathbf{x})$

Relaxation of $F_{1}(F(\mathbf{x}))=F(\mathbf{x})$:

$$
\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)
$$

$$
\begin{aligned}
\operatorname{ran}\left(F_{1}\right) & =\left\{F_{1}(x): x \in X\right\} \\
\operatorname{ran}(F) & =\left\{F(\mathbf{x}): \mathbf{x} \in X^{*}\right\}
\end{aligned}
$$

Preassociative functions

Preassociative functions

Preassociative functions

We now focus on preassociative functions $F: X^{*} \rightarrow Y$ satisfying $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$

Proposition

These functions are completely determined by their unary and binary parts

Preassociative functions

Theorem

Let $F: X^{*} \rightarrow Y$. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$
(ii) F can be factorized into

$$
F=f \circ H
$$

where $H: X^{*} \rightarrow X$ is associative

$$
f: \operatorname{ran}(H) \rightarrow Y \text { is one-to-one. }
$$

Axiomatizations of function classes

Theorem (Aczél 1949)

$H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is

- continuous
- one-to-one in each argument
- associative
if and only if

$$
H(x y)=\varphi^{-1}(\varphi(x)+\varphi(y))
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and strictly monotone

$$
H_{n}(\mathbf{x})=\varphi^{-1}\left(\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)\right)
$$

Axiomatizations of function classes

Theorem

Let $F: \mathbb{R}^{*} \rightarrow \mathbb{R}$. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$,
F_{1} and F_{2} are continuous and one-to-one in each argument
(ii) we have

$$
F_{n}(\mathbf{x})=\psi\left(\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)\right)
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and strictly monotone

Axiomatizations of function classes

Recall that a triangular norm is a function $T:[0,1]^{2} \rightarrow[0,1]$ which is nondecreasing in each argument, symmetric, associative, and such that $T(1 x)=x$

Theorem

Let $F:[0,1]^{*} \rightarrow \mathbb{R}$ be such that F_{1} is strictly increasing.
The following assertions are equivalent:
(i) F is preassociative and $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$,
F_{2} is symmetric, nondecreasing, and $F_{2}(1 x)=F_{1}(x)$
(ii) we have

$$
F=f \circ T
$$

where $f:[0,1] \rightarrow \mathbb{R}$ is strictly increasing and $T:[0,1]^{*} \rightarrow[0,1]$ is a triangular norm

Strongly preassociative functions

Definition. We say that $F: X^{*} \rightarrow Y$ is strongly preassociative if

$$
F(x z)=F\left(x^{\prime} z^{\prime}\right) \quad \Rightarrow \quad F(x y z)=F\left(x^{\prime} y z^{\prime}\right)
$$

Theorem

$F: X^{*} \rightarrow Y$ is strongly preassociative if and only if F is preassociative and F_{n} is symmetric for every $n \in \mathbb{N}$

Open problems

(1) Find new axiomatizations of classes of preassociative functions from existing axiomatizations of classes of associative functions
(2) Find interpretations of preassociativity in fuzzy logic, artificial intelligence,...

Back to the factorization theorem

Theorem

Let $F: X^{*} \rightarrow Y$. The following assertions are equivalent:
(i) F is preassociative and $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$
(ii) F can be factorized into

$$
F=f \circ H
$$

where $H: X^{*} \rightarrow X$ is associative

$$
f: \operatorname{ran}(H) \rightarrow Y \text { is one-to-one. }
$$

String functions

A string function if a function

$$
F: X^{*} \rightarrow X^{*}
$$

$F: X^{*} \rightarrow X^{*}$ is associative (E. Lehtonen) if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

(same equivalent definitions)

Associative string functions

$F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(\mathrm{xyz})=F(x F(y) z) \quad \forall x y z \in X^{*}
$$

Examples

- $F=\mathrm{id}$
- $F=$ sorting data in alphabetic order
- $F=$ transforming a string of letters into upper case
- $F=$ removing a given letter, say 'a'
- $F=$ removing all repeated occurrences of letters

$$
F(\text { mathematics })=\text { matheics }
$$

Preassociative functions

Theorem

Let $F: X^{*} \rightarrow Y$. The following assertions are equivalent:
(i) F is preassociative
(ii) F can be factorized into

$$
F=f \circ H
$$

where $H: X^{*} \rightarrow X^{*}$ is associative

$$
f: \operatorname{ran}(H) \rightarrow Y \text { is one-to-one. }
$$

We can add:
(i) $\operatorname{ran}(F)=\operatorname{ran}\left(F_{1}\right) \cup \cdots \cup \operatorname{ran}\left(F_{m}\right)$
(ii) $H: X^{*} \rightarrow X^{1} \cup \cdots \cup X^{m}$

Preassociative functions

Preassociative functions
Associative string functions

Open question:
Find characterizations of classes of associative string functions

Barycentrically associative functions

Notation

$$
\begin{gathered}
\mathbf{x}^{n}=\mathbf{x} \cdots \mathbf{x} \quad(n \text { times }) \\
|\mathbf{x}|=\text { length of } \mathbf{x}
\end{gathered}
$$

$F: X^{*} \rightarrow X$ is B-associative if

$$
F(\mathrm{xyz})=F\left(\mathrm{x} F(\mathbf{y})^{|y|} \mathbf{z}\right) \quad \forall \mathrm{xyz} \in X^{*}
$$

Alternative names: decomposability, associativity of means.

Barycentrically associative functions

Figure: Barycentric associativity

$$
F(\mathrm{xyz})=F\left(\mathrm{x} F(\mathrm{y})^{|\mathrm{y}|} \mathrm{z}_{\mathrm{z}} \quad \forall \mathrm{xyz} \in X^{*}\right.
$$

Barycentrically associative functions

Theorem (Kolomogoroff-Nagumo, 1930)

$F: \mathbb{R}^{*} \rightarrow \mathbb{R}$ is B-associative, every F_{n} is

- symmetric
- continuous
- idempotent (i.e., $F_{n}\left(x^{n}\right)=x$)
- str. increasing in each argument
if and only if

$$
F_{n}(\mathbf{x})=\varphi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)\right)
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and strictly monotone

B-preassociative functions

Let Y be a nonempty set
Definition. We say that $F: X^{*} \rightarrow Y$ is B-preassociative if

$$
|\mathbf{y}|=\left|\mathbf{y}^{\prime}\right| \text { and } F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \quad \Rightarrow \quad F(x y z)=F\left(x^{\prime} \mathbf{z}\right)
$$

Examples: $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

$$
F_{n}(\mathbf{x})=|\mathbf{x}| \quad(X \text { arbitrary, } Y=\mathbb{N})
$$

Fact. Preassociative functions are B-preassociative

B-preassociative functions

Proposition

$F: X^{*} \rightarrow X$ is B -associative if and only if it is B -preassociative and $F\left(F(\mathbf{x})^{|\mathbf{x}|}\right)=F(\mathbf{x})$

$$
\begin{gathered}
F\left(F(\mathbf{x})^{|\mathbf{x}|}\right)=F(\mathbf{x}) \quad \Longleftrightarrow \quad \delta_{F_{n}} \circ F_{n}=F_{n} \quad(n \in \mathbb{N}) \\
\delta_{F_{n}}(x)=F_{n}\left(x^{n}\right)
\end{gathered}
$$

Relaxation:

$$
\operatorname{ran}\left(\delta_{F_{n}}\right)=\operatorname{ran}\left(F_{n}\right) \quad(n \in \mathbb{N})
$$

B-preassociative functions

B-preassociative functions

$$
\begin{aligned}
& \text { B-preassociative functions } \\
& \operatorname{ran}\left(\delta_{F_{n}}\right)=\operatorname{ran}\left(F_{n}\right) \\
& \quad \text { B-associative functions }
\end{aligned}
$$

B-preassociative functions

Theorem

Let $F: X^{*} \rightarrow Y$. The following assertions are equivalent:
(i) F is B-preassociative and $\operatorname{ran}\left(\delta_{F_{n}}\right)=\operatorname{ran}\left(F_{n}\right)$ for all $n \in \mathbb{N}$
(ii) F can be factorized into

$$
F_{n}=f_{n} \circ H_{n}
$$

where $H: X^{*} \rightarrow X$ is B -associative

$$
f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y \text { is one-to-one. }
$$

Open question:

Describe the class of B-preassociative functions

Extension of Kolmogoroff-Nagumo theorem

Theorem

$F: \mathbb{R}^{*} \rightarrow \mathbb{R}$ is B-preassociative, every F_{n} is

- symmetric
- continuous
- strictly increasing in each argument
if and only if

$$
F_{n}(\mathbf{x})=\psi_{n}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)\right)
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi_{n}: \mathbb{R} \rightarrow \mathbb{R}(n \in \mathbb{N})$ are continuous and strictly increasing

Thank you for your attention !

