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Associative functions

Let X be a nonempty set

G : X 2 → X is associative if

G (G (a, b), c) = G (a,G (b, c))

Examples: G (a, b) = a + b on X = R
G (a, b) = a ∧ b on X = L (lattice)



Associative functions

G (G (a, b), c) = G (a,G (b, c))

Extension to n-ary functions

G (a, b, c) = G (G (a, b), c) = G (a,G (b, c))

G (a, b, c , d) = G (G (a, b, c), d) = G (a,G (b, c), d) = · · ·
etc.



Associative functions with indefinite arity

Let
X ∗ =

⋃
n∈N

X n

F : X ∗ → X is associative if

F (x1, . . . , xp, y1, . . . , yq, z1, . . . , zr )
= F (x1, . . . , xp,F (y1, . . . , yq), z1, . . . , zr )

Example: F (x1, . . . , xn) = x1 + · · ·+ xn on X = R
F (x1, . . . , xn) = x1 ∧ · · · ∧ xn on X = L (lattice)



Notation

We regard n-tuples x in X n as n-strings over X

0-string: ε
1-strings: x , y , z , . . .
n-strings: x, y, z, . . .

X ∗ is endowed with concatenation

Example: x ∈ X n, y ∈ X , z ∈ Xm ⇒ xyz ∈ X n+1+m

|x| = length of x

F (x) = ε ⇐⇒ x = ε



Associative functions with indefinite arity

F : X ∗ → X is associative if

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Equivalent definitions

F (F (xy) z) = F (xF (yz)) ∀ xyz ∈ X ∗

F (xy) = F (F (x)F (y)) ∀ xy ∈ X ∗



Associative functions with indefinite arity

F : X ∗ → X is associative if

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Theorem

We can assume that |xz| 6 1 in the definition above

That is, F : X ∗ → X is associative if and only if

F (y) = F (F (y))

F (xy) = F (xF (y))

F (yz) = F (F (y)z)



Associative functions with indefinite arity

F (yz) = F (F (y)z)

Fn = F |X n

Fn(x1 · · · xn) = F2(Fn−1(x1 · · · xn−1) xn) n > 3

Associative functions are completely determined
by their unary and binary parts

Proposition

Let F : X ∗ → X and G : X ∗ → X be two associative functions such
that F1 = G1 and F2 = G2. Then F = G .



Associative functions with indefinite arity

Link with binary associative functions ?

Proposition

A binary function G : X 2 → X is associative if and only if there
exists an associative function F : X ∗ → X such that F2 = G .

Does F1 really play a role ?

F1(F (x)) = F (x)

F (xyz) = F (xF1(y)z)



Associative functions with indefinite arity

F1(F (x)) = F (x)

F (xyz) = F (xF1(y)z)

Theorem

F : X ∗ → X is associative if and only if

(i) F1(F1(x)) = F1(x), F1(F2(xy)) = F2(xy)

(ii) F2(xy) = F2(F1(x) y) = F2(x F1(y))

(iii) F2(F2(xy) z) = F2(x F2(yz))

(iv) Fn(x1 · · · xn) = F2(Fn−1(x1 · · · xn−1) xn) n > 3



Associative functions with indefinite arity

Theorem

F : X ∗ → X is associative if and only if

(i) F1(F1(x)) = F1(x), F1(F2(xy)) = F2(xy)

(ii) F2(xy) = F2(F1(x) y) = F2(x F1(y))

(iii) F2(F2(xy) z) = F2(x F2(yz))

(iv) Fn(x1 · · · xn) = F2(Fn−1(x1 · · · xn−1) xn) n > 3

Suppose F2 satisfying (iii) is given. What could be F1 ?

Example: F2(xy) = x + y

⇒ F1(x + y) = F1(F2(xy))
(i)
= F2(xy) = x + y

⇒ F1(x) = x



Associative functions with indefinite arity

Theorem

F : X ∗ → X is associative if and only if

(i) F1(F1(x)) = F1(x), F1(F2(xy)) = F2(xy)

(ii) F2(xy) = F2(F1(x) y) = F2(x F1(y))

(iii) F2(F2(xy) z) = F2(x F2(yz))

(iv) Fn(x1 · · · xn) = F2(Fn−1(x1 · · · xn−1) xn) n > 3

Example: Fn(x1 · · · xn) =
√
|x1|2 + · · ·+ |xn|2

F1(x) = x

F1(x) = |x |



Preassociative functions

Let Y be a nonempty set

Definition. We say that F : X ∗ → Y is preassociative if

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Examples: Fn(x) = x21 + · · ·+ x2n (X = Y = R)
Fn(x) = |x| (X arbitrary, Y = N)



Preassociative functions

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Equivalent definition

F (x) = F (x′) and F (y) = F (y′)

⇓
F (xy) = F (x′y′)



Preassociative functions

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Fact. If F : X ∗ → X is associative, then it is preassociative

Proof. Suppose F (y) = F (y′)
Then F (xyz) = F (xF (y)z) = F (xF (y′)z) = F (xy′z)



Preassociative functions

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Proposition

F : X ∗ → X is associative if and only if it is preassociative and
F1(F (x)) = F (x)

Proof. (Necessity) OK.
(Sufficiency) We have F (y) = F (F (y))
Hence, by preassociativity, F (xyz) = F (xF (y)z)



Preassociative functions

Proposition

If F : X ∗ → Y is preassociative, then so is the function

x1 · · · xn 7→ Fn(g(x1) · · · g(xn))

for every function g : X → X

Example: Fn(x) = x21 + · · ·+ x2n (X = Y = R)



Preassociative functions

Proposition

If F : X ∗ → Y is preassociative, then so is

g ◦ F : x 7→ g(F (x))

for every function g : Y → Y such that g |ran(F ) is one-to-one

Example: Fn(x) = exp(x21 + · · ·+ x2n ) (X = Y = R)



Preassociative functions

Proposition

Assume F : X ∗ → Y is preassociative
If Fn is constant, then so is Fn+1

Proof. If Fn(y) = Fn(y′) for all y, y′ ∈ X n, then
Fn+1(xy) = Fn+1(xy′) and hence Fn+1 depends only on its first
argument...



Preassociative functions

We have seen that F : X ∗ → X is associative if and only if it is
preassociative and F1(F (x)) = F (x)

Relaxation of F1(F (x)) = F (x) :

ran(F1) = ran(F )

ran(F1) = {F1(x) : x ∈ X}
ran(F ) = {F (x) : x ∈ X ∗}



Preassociative functions

Preassociative functions

Preassociative functions
ran(F1) = ran(F )

Associative functions



Preassociative functions

We now focus on preassociative functions F : X ∗ → Y satisfying
ran(F1) = ran(F )

Proposition

These functions are completely determined by their unary and binary
parts



Preassociative functions

Theorem

Let F : X ∗ → Y . The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F1) = ran(F )

(ii) F can be factorized into

F = f ◦ H

where H : X ∗ → X is associative
f : ran(H)→ Y is one-to-one.



Axiomatizations of function classes

Theorem (Aczél 1949)

H : R2 → R is

continuous

one-to-one in each argument

associative

if and only if
H(xy) = ϕ−1(ϕ(x) + ϕ(y))

where ϕ : R→ R is continuous and strictly monotone

Hn(x) = ϕ−1(ϕ(x1) + · · ·+ ϕ(xn))



Axiomatizations of function classes

Theorem

Let F : R∗ → R. The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F1) = ran(F ),
F1 and F2 are continuous and one-to-one in each argument

(ii) we have
Fn(x) = ψ

(
ϕ(x1) + · · ·+ ϕ(xn)

)
where ϕ : R→ R and ψ : R→ R are continuous and strictly
monotone



Axiomatizations of function classes

Recall that a triangular norm is a function T : [0, 1]2 → [0, 1]
which is nondecreasing in each argument, symmetric, associative,
and such that T (1x) = x

Theorem

Let F : [0, 1]∗ → R be such that F1 is strictly increasing.
The following assertions are equivalent:

(i) F is preassociative and ran(F1) = ran(F ),
F2 is symmetric, nondecreasing, and F2(1x) = F1(x)

(ii) we have
F = f ◦ T

where f : [0, 1]→ R is strictly increasing and
T : [0, 1]∗ → [0, 1] is a triangular norm



Strongly preassociative functions

Definition. We say that F : X ∗ → Y is strongly preassociative if

F (xz) = F (x′z′) ⇒ F (xyz) = F (x′yz′)

Theorem

F : X ∗ → Y is strongly preassociative if and only if
F is preassociative and Fn is symmetric for every n ∈ N



Open problems

(1) Find new axiomatizations of classes of preassociative functions
from existing axiomatizations of classes of associative
functions

(2) Find interpretations of preassociativity in fuzzy logic, artificial
intelligence,...



Back to the factorization theorem

Theorem

Let F : X ∗ → Y . The following assertions are equivalent:

(i) F is preassociative and ran(F1) = ran(F )

(ii) F can be factorized into

F = f ◦ H

where H : X ∗ → X is associative
f : ran(H)→ Y is one-to-one.



String functions

A string function if a function

F : X ∗ → X ∗

F : X ∗ → X ∗ is associative (E. Lehtonen) if

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

(same equivalent definitions)



Associative string functions

F : X ∗ → X ∗ is associative if

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Examples

F = id

F = sorting data in alphabetic order

F = transforming a string of letters into upper case

F = removing a given letter, say ‘a’

F = removing all repeated occurrences of letters

F (mathematics) = matheics



Preassociative functions

Theorem

Let F : X ∗ → Y . The following assertions are equivalent:

(i) F is preassociative

(ii) F can be factorized into

F = f ◦ H

where H : X ∗ → X ∗ is associative
f : ran(H)→ Y is one-to-one.

We can add:

(i) ran(F ) = ran(F1) ∪ · · · ∪ ran(Fm)

(ii) H : X ∗ → X 1 ∪ · · · ∪ Xm



Preassociative functions

Preassociative functions

Associative string functions

Open question:
Find characterizations of classes of associative string functions



Barycentrically associative functions

Notation

xn = x · · · x (n times)

|x| = length of x

F : X ∗ → X is B-associative if

F (xyz) = F (xF (y)|y|z) ∀ xyz ∈ X ∗

Alternative names: decomposability, associativity of means.



Barycentrically associative functions
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Figure : Barycentric associativity

F (xyz) = F (xF (y)|y|z) ∀ xyz ∈ X ∗



Barycentrically associative functions

Theorem (Kolomogoroff-Nagumo, 1930)

F : R∗ → R is B-associative,
every Fn is

symmetric

continuous

idempotent (i.e., Fn(xn) = x)

str. increasing in each argument

if and only if

Fn(x) = ϕ−1

(
1

n

n∑
i=1

ϕ(xi )

)
where ϕ : R→ R is continuous and strictly monotone



B-preassociative functions

Let Y be a nonempty set

Definition. We say that F : X ∗ → Y is B-preassociative if

|y| = |y′| and F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Examples: Fn(x) = x21 + · · ·+ x2n (X = Y = R)
Fn(x) = |x| (X arbitrary, Y = N)

Fact. Preassociative functions are B-preassociative



B-preassociative functions

Proposition

F : X ∗ → X is B-associative if and only if it is B-preassociative and
F (F (x)|x|) = F (x)

F (F (x)|x|) = F (x) ⇐⇒ δFn ◦ Fn = Fn (n ∈ N)

δFn(x) = Fn(xn)

Relaxation:
ran(δFn) = ran(Fn) (n ∈ N)



B-preassociative functions

B-preassociative functions

B-preassociative functions
ran(δFn) = ran(Fn)

B-associative functions



B-preassociative functions

Theorem

Let F : X ∗ → Y . The following assertions are equivalent:

(i) F is B-preassociative and ran(δFn) = ran(Fn) for all n ∈ N
(ii) F can be factorized into

Fn = fn ◦ Hn

where H : X ∗ → X is B-associative
fn : ran(Hn)→ Y is one-to-one.

Open question:
Describe the class of B-preassociative functions



Extension of Kolmogoroff-Nagumo theorem

Theorem

F : R∗ → R is B-preassociative,
every Fn is

symmetric

continuous

strictly increasing in each argument

if and only if

Fn(x) = ψn

(
1

n

n∑
i=1

ϕ(xi )

)
where ϕ : R → R and ψn : R → R (n ∈ N) are continuous and
strictly increasing



Thank you for your attention !


