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Abstract
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issue of reconstructing a pseudo-Boolean function from prescribed influences
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1. Introduction

Let f ∶{0,1}n → R be an n-variable pseudo-Boolean function and let S be
a subset of its variables. Define the influence of S over f as the expected
value, denoted If(S), of the highest variation of f when assigning values
independently and uniformly at random to the variables not in S (see [12]
for a normalized version of this definition). That is,

If(S) =
1

2n−∣S∣
∑

T⊆N∖S
(max

R⊆S
f(T ∪R) −min

R⊆S
f(T ∪R)) ,

where N = {1, . . . , n}.1 This notion was first introduced for Boolean functions
f ∶{0,1}n → {0,1} by Ben-Or and Linial [2] (see also [10]). There the influence
If(S) was (equivalently) defined as the probability that, assigning values
independently and uniformly at random to the variables not in S, the value of
f remains undetermined. Since its introduction, this concept has found many
applications in discrete mathematics, cooperative game theory, theoretical
computer science, and social choice theory (see, e.g., the survey article [11]).

When the function f is nondecreasing in each variable, the formula above
reduces to

If(S) =
1

2n−∣S∣
∑

T⊆N∖S
(f(T ∪ S) − f(T )) . (1)

The latter expression has an interesting interpretation even if f is not nonde-
creasing. In cooperative game theory for instance, where f(T ) represents the
worth of coalition T in the game f , this expression is precisely the average
value of the marginal contributions f(T ∪ S) − f(T ) of coalition S to outer
coalitions T ⊆ N ∖ S. Thus, it measures an overall influence (which can be
positive or negative) of coalition S in the game f . In particular, when S = {i}
is a singleton it reduces to the Banzhaf power index

If({i}) =
1

2n−1
∑

T⊆N∖{i}
(f(T ∪ {i}) − f(T )) .

Thus, the expression in (1) can be seen as a variant of the original concept
of influence that simply extends the Banzhaf power index to coalitions. We

1Throughout we identify Boolean vectors x ∈ {0,1}n and subsets T ⊆ N by setting
xi = 1 if and only if i ∈ T . We thus use the same symbol to denote both a pseudo-Boolean
function f ∶{0,1}n → R and the corresponding set function f ∶2N → R interchangeably.
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call it the Banzhaf influence index and denote it by ΦB(f,S). Actually, this
index was introduced, axiomatized, and even generalized to weighted versions
in [13].

The Banzhaf interaction index [17], another index which extends the
Banzhaf power index to coalitions, is defined for a pseudo-Boolean function
f ∶{0,1}n → R and a subset S ⊆ N by

IB(f,S) =
1

2n−∣S∣
∑

T⊆N∖S
(∆Sf)(T ) , (2)

where ∆Sf denotes the S-difference (or discrete S-derivative) of f .2 When
∣S∣ ⩾ 2, this index measures an overall degree of interaction among the vari-
ables of f that are in S. When f is a game, it measures an overall degree of
interaction among the players of coalition S in the game f (see, e.g., [5, 6, 7]).

It is known that the Banzhaf power and interaction indexes can be ob-
tained from the solution of a standard least squares approximation problem
for pseudo-Boolean functions (see [6, 8]). Weighted versions of this approx-
imation problem recently enabled us to define a class of weighted Banzhaf
interaction indexes having several nice properties (see [14]). However, we
observe that there is no such least squares construction for the Banzhaf in-
fluence index in the literature.

In this paper we fill this gap in the following way. In Section 2 we first
show that the Banzhaf interaction index can be obtained from a different,
more natural (but still elementary) least squares approximation problem.
Specifically, IB(f,S) appears as the leading coefficient in the multilinear rep-
resentation of the best approximation fS of f by a pseudo-Boolean function
that depends only on the variables in S. We then prove that the Banzhaf
influence index ΦB(f,S) can be obtained from the same approximation prob-
lem simply by considering the difference fS(S) − fS(∅). In Section 3 we in-
troduce a class of weighted Banzhaf influence indexes from the solution of a
weighted version of this approximation problem. We show that these indexes
define a subclass of the family of generalized values, give their most impor-
tant properties, and point out similarities between the weighted Banzhaf
influence index and the corresponding weighted Banzhaf interaction index.
In Section 4 we discuss the issue of representing pseudo-Boolean functions

2The differences of f are defined as ∆∅f = f , ∆{i}f(x) = f(x ∣ xi = 1) − f(x ∣ xi = 0),
and ∆Sf =∆{i}∆S∖{i}f for i ∈ S.
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in terms of Banzhaf influence indexes. More precisely, we show that in the
generic weighted case any pseudo-Boolean function can be reconstructed, up
to an additive constant, from prescribed influences. By contrast, in the non-
weighted case only half of the information contained in the pseudo-Boolean
function can be reconstructed. This important observation fully motivates
the investigation of the weighted case, which therefore is not a straightfor-
ward extension of the non-weighted case. Finally, in Section 5 we present
an application of the weighted Banzhaf influence index in system reliability
theory and give a couple of concluding remarks.

2. Interactions, influences, and least squares approximations

In this section we recall how the Banzhaf interaction index can be ob-
tained from the solution of a standard least squares approximation problem
and we show how a variant of this approximation problem can be used to
define both the Banzhaf interaction and influence indexes.

It is well known (see, e.g., [9]) that any pseudo-Boolean function f ∶{0,1}n →
R can be uniquely represented by a multilinear polynomial function

f = ∑
T⊆N

a(T )uT ,

where uT (x) = ∏i∈T xi is the unanimity game (or unanimity function) for
T ⊆ N (with the convention u∅ = 1) and the set function a∶2N → R, called the
Möbius transform of f , is defined through the conversion formulas (Möbius
inversion formulas)

a(S) = ∑
T⊆S
(−1)∣S∣−∣T ∣ f(T ) and f(S) = ∑

T⊆S
a(T ) . (3)

By extending formally any pseudo-Boolean function f ∶{0,1}n → R to
the unit hypercube [0,1]n by linear interpolation, Owen [15, 16] introduced
the multilinear extension of f , i.e., the multilinear polynomial f̄ ∶ [0,1]n → R
defined by

f̄(x) = ∑
S⊆N

a(S)∏
i∈S

xi ,

where a is the Möbius transform of f .
Denote by FN the set of pseudo-Boolean functions on N (i.e., with vari-

ables in N). Recall that the Banzhaf interaction index [7, 17] is the mapping
IB∶FN × 2N → R defined in Eq. (2). Extending the S-difference operator ∆S
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to multilinear polynomials on [0,1]n, we can show the following identities
(see [6, 16])

IB(f,S) = (∆S f̄)(
1

2
) = ∫

[0,1]n
∆S f̄(x)dx ,

where 1
2
stands for (12 , . . . ,

1
2
). Since the S-difference operator has the same

effect as the S-derivative operator DS (i.e., the partial derivative operator
with respect to the variables in S) when applied to multilinear polynomials
on [0,1]n, we also have

IB(f,S) = (DS f̄)(
1

2
) = ∫

[0,1]n
DS f̄(x)dx . (4)

We now recall how the index IB can be obtained from an approximation
problem. For k ∈ {0, . . . , n} define

Vk = span{uT ∶ T ⊆ N, ∣T ∣ ⩽ k} ,

that is, Vk is the linear subspace of all multilinear polynomials g∶{0,1}n → R
of degree at most k, i.e., of the form

g = ∑
T⊆N
∣T ∣⩽k

c(T )uT , c(T ) ∈ R .

The best kth approximation of a function f ∶{0,1}n → R is the function
fk ∈ Vk that minimizes the squared distance

∑
x∈{0,1}n

(f(x) − g(x))2 = ∑
T⊆N
(f(T ) − g(T ))2 (5)

among all functions g ∈ Vk.
The following proposition, which was proved in [6] (see [8] for an earlier

work), expresses the number IB(f,S) in terms of the best ∣S∣th approximation
f∣S∣ of f .

Proposition 2.1 ([6]). For every f ∶{0,1}n → R and every S ⊆ N , the number
IB(f,S) is the coefficient of uS in the multilinear representation of the best
∣S∣th approximation f∣S∣ of f .
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An alternative (and perhaps more natural) approach to measure the in-
fluence on f of its ith variable consists in considering the coefficient of u{i}
in the best approximation of f by a function of the form

g = c(∅)u∅ + c({i})u{i}

(instead of a function in V1), as classically done for linear models in statistics.
More generally, for every S ⊆ N define VS = {uT ∶ T ⊆ S}, that is, VS is the
linear subspace of all multilinear polynomials g∶{0,1}n → R that depend only
on the variables in S, i.e., of the form

g = ∑
T⊆S

c(T )uT , c(T ) ∈ R .

The best S-approximation of a function f ∶{0,1}n → R is then the function
fS ∈ VS that minimizes the squared distance (5) among all functions g ∈ VS.

We now show that IB(f,S) is also the coefficient of uS in the multilinear
representation of fS. On the one hand, fS is the orthogonal projection of f
onto VS with respect to the inner product

⟨f, g⟩ = 1

2n
∑
T⊆N

f(T ) g(T ) . 3 (6)

On the other hand, it is well known and easy to prove that the 2n functions

vT (x) =∏
i∈T
(2xi − 1), T ⊆ N,

form an orthonormal set with respect to this inner product. Thus, the best
kth- and S-approximations of f are respectively given by

fk = ∑
T⊆N
∣T ∣⩽k

⟨f, vT ⟩ vT and fS = ∑
T⊆S
⟨f, vT ⟩ vT . (7)

These formulas enable us to prove the following simple but important re-
sult, which expresses the number IB(f,S) in terms of the best S-approximation
fS of f .

3Note that the multiplicative normalization of the inner product does not change the
projection problem.
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Proposition 2.2. For every f ∶{0,1}n → R and every S ⊆ N , the number
IB(f,S) is the coefficient of uS (i.e., the leading coefficient) in the multilinear
representation of the best S-approximation fS of f .

Proof. Since IB(f,S) is the coefficient of uS in the multilinear representation
of f∣S∣, from the first equality in (7) we obtain

IB(f,S) = 2∣S∣ ⟨f, vS⟩ . (8)

We then conclude by the second equality in (7).

Thus, combining Proposition 2.2 with Eq. (3), we immediately see that
the number IB(f,S) can be expressed in terms of the approximation fS as

IB(f,S) = ∑
T⊆S
(−1)∣S∣−∣T ∣ fS(T ) .

Recall that the Banzhaf influence index [13] is the mapping ΦB∶FN×2N →
R defined by

ΦB(f,S) =
1

2n−∣S∣
∑

T⊆N∖S
(f(T ∪ S) − f(T )) . (9)

Since the map f ↦ ΦB(f,S) is linear for every S ⊆ N , it can be ex-
pressed by means of the inner product (6). To this aim, consider the function
gS ∶{0,1}n → R defined by

gS(x) = 2∣S∣ (∏
i∈S

xi −∏
i∈S
(1 − xi)) . (10)

Proposition 2.3. For every f ∶{0,1}n → R and every S ⊆ N , we have
ΦB(f,S) = ⟨f, gS⟩.

Proof. Using (6), we obtain

⟨f, gS⟩ =
1

2n−∣S∣
(∑
T⊇S

f(T ) − ∑
T⊆N∖S

f(T )) ,

which is precisely the right-hand side of (9).

From Proposition 2.3 we can easily derive an explicit expression for ΦB(f,S)
in terms of the Banzhaf interaction index IB. This expression was already
found in [12]. We first consider a lemma.
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Lemma 2.4. For every S ⊆ N , we have gS = 2 ∑T⊆S, ∣T ∣odd vT .

Proof. Since the functions vT (T ⊆ N) form an orthonormal basis for FN ,
we have gS = ∑T⊆N⟨gS, vT ⟩ vT . Using (8), (10), and then (4), we obtain

⟨gS, vT ⟩ = 2−∣T ∣ IB(gS, T ) = 2−∣T ∣ (DT ḡS)(
1

2
) .

The result then follows directly from the computation of the derivative DT ḡS.

Proposition 2.5 ([12, Proposition 4.1]). For every f ∶{0,1}n → R and every
S ⊆ N , we have

ΦB(f,S) = ∑
T⊆S
∣T ∣odd

(1
2
)
∣T ∣−1

IB(f, T ) .

Proof. By Proposition 2.3 and Lemma 2.4, we obtain

ΦB(f,S) = ⟨f, gS⟩ = 2 ∑
T⊆S
∣T ∣odd

⟨f, vT ⟩ . (11)

We then conclude by (8).

The following proposition gives an expression for ΦB(f,S) in terms of the
best S-approximation fS of f . This proposition together with Proposition 2.2
show that the indexes IB(f,S) and ΦB(f,S) are actually two facets of the
same construction, namely the best S-approximation of f .

Proposition 2.6. For every f ∶{0,1}n → R and every S ⊆ N , we have

ΦB(f,S) = fS(S) − fS(∅).

Proof. By (7), we have

fS(S) − fS(∅) = ∑
T⊆S
⟨f, vT ⟩(vT (S) − vT (∅)) = ∑

T⊆S
⟨f, vT ⟩(1 − (−1)∣T ∣) .

Using (11), we see that the latter expression is precisely ΦB(f,S).

Proposition 2.6 is actually one of the key results of this paper. Indeed,
as we will now see, it will enable us to define weighted Banzhaf influence
indexes from a weighted version of the approximation problem in complete
analogy with the way the weighted Banzhaf interaction index was defined in
[14].
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3. Weighted influences defined by least squares

In [14] we investigated weighted versions of the best kth approximation
problem for pseudo-Boolean functions (e.g., to allow nonuniform assignments
of the variables). This study enabled us to define a class of weighted Banzhaf
interaction indexes. In the present section we show that the corresponding
weighted version of the best S-approximation problem described in Section 2
not only yields the same weighted Banzhaf interaction index but also provides
a natural definition of a weighted Banzhaf influence index.

Given a weight function w∶{0,1}n → ]0,∞[ and a pseudo-Boolean func-
tion f ∶{0,1}n → R, we define the best S-approximation of f as the unique
multilinear polynomial in VS that minimizes the squared distance

∑
x∈{0,1}n

w(x)(f(x) − g(x))2 = ∑
T⊆N

w(T )(f(T ) − g(T ))2 (12)

among all functions g ∈ VS.
Assuming without loss of generality that ∑T⊆N w(T ) = 1, we see that

w defines a probability distribution over 2N . Considering the game theory
context, we can interpret w(T ) as the probability that coalition T forms,
that is, w(T ) = Pr(C = T ), where C represents a random coalition.

We also assume that the variables are set independently of each other. In
game theory, this means that the players behave independently of each other
to form coalitions, i.e., the events (C ∋ i) (i ∈ N) are independent.4 Setting
pi = Pr(C ∋ i) = ∑S∋iw(S), we then have

w(S) = ∏
i∈S

pi ∏
i∈N∖S

(1 − pi) , (13)

which implies 0 < pi < 1. Thus, the probability distribution w is completely
determined by the n-tuple p = (p1, . . . , pn) ∈ ]0,1[n.

We now provide an explicit expression for the best S-approximation of
a pseudo-Boolean function. On the one hand, the squared distance (12) is
induced by the weighted Euclidean inner product

⟨f, g⟩ = ∑
x∈{0,1}n

w(x)f(x) g(x) .

4In Section 5 we give a justification for this independence assumption.
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On the other hand, as observed in [3] the functions vT,p∶{0,1}n → R (T ⊆ N)
defined by

vT,p(x) = ∏
i∈T

xi − pi√
pi(1 − pi)

(14)

are pairwise orthogonal and normalized. This provides the following imme-
diate solution to the weighted approximation problem.

Proposition 3.1. The best S-approximation of f ∶{0,1}n → R is given by

fS,p = ∑
T⊆S
⟨f, vT,p⟩ vT,p . (15)

From Proposition 3.1 we immediately deduce that the coefficient of uS

(i.e., the leading coefficient) in the multilinear representation of fS,p is given
by

IB,p(f,S) =
⟨f, vS,p⟩

∏i∈S
√
pi(1 − pi)

, (16)

which is precisely the weighted Banzhaf interaction index introduced in [14]
by means of the corresponding kth approximation problem. In the non-
weighted case (i.e., when p = 1

2
), Eq. (16) reduces to (8).

By analogy with Proposition 2.6 we now propose the following definition
of weighted Banzhaf influence index.

Definition 3.2. Let ΦB,p∶FN × 2N → R be defined as ΦB,p(f,S) = fS,p(S) −
fS,p(∅).

We now provide various explicit expressions for ΦB,p(f,S) in terms of the
weighted Banzhaf interaction index, the Möbius transform of f , and the f
values.

We start with the following result, which is the weighted counterpart of
Proposition 2.5.

Proposition 3.3. For every f ∶{0,1}n → R and every S ⊆ N , we have

ΦB,p(f,S) = ∑
T⊆S

IB,p(f, T )(∏
i∈T
(1 − pi) − (−1)∣T ∣∏

i∈T
pi) . (17)

Proof. Using Definition 3.2 and Eqs. (15) and (14), we obtain

ΦB,p(f,S) = ∑
T⊆S
⟨f, vT,p⟩ (∏

i∈T

1 − pi√
pi(1 − pi)

− (−1)∣T ∣∏
i∈T

pi√
pi(1 − pi)

) . (18)

We then conclude by (16).
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Using the expression of the weighted Banzhaf interaction index in terms
of the Möbius transform of f , that is,

IB,p(f,S) = ∑
T⊇S

a(T ) ∏
i∈T∖S

pi (19)

(see [14]), we can obtain the corresponding expression for the weighted Banzhaf
influence index. To this extent, recall the binomial product formula

∑
T⊆N
∏
i∈T

ai ∏
i∈N∖T

bi = ∏
i∈N
(ai + bi) . (20)

Proposition 3.4. For every f ∶{0,1}n → R and every S ⊆ N , we have

ΦB,p(f,S) = ∑
T⊆N

T∩S≠∅

a(T ) ∏
i∈T∖S

pi . (21)

Proof. Combining (17) with (19), we obtain

ΦB,p(f,S) = ∑
R⊆S
∑
T⊇R

a(T ) ∏
i∈T∖R

pi (∏
i∈R
(1 − pi) −∏

i∈R
(−pi))

= ∑
T⊆N

T∩S≠∅

a(T ) ∏
i∈T∖S

pi ∑
R⊆T∩S

∏
i∈(T∩S)∖R

pi (∏
i∈R
(1 − pi) −∏

i∈R
(−pi)) .(22)

Using the binomial product formula (20), we see that the inner sum in (22)
becomes 1−∏i∈T∩S(pi − pi) = 1. This completes the proof of the proposition.

Interestingly, Eqs. (19) and (21) show that both IB,p(f,S) and ΦB,p(f,S)
are independent of those pi such that i ∈ S.

A generalized value [13] is a mapping G∶FN × 2N → R defined by

G(f,S) = ∑
T⊆N∖S

pST (f(T ∪ S) − f(T )) , (23)

where the coefficients pST are real numbers for every S ⊆ N and every T ⊆
N ∖ S.

The following lemma gives an expression for G(f,S) in terms of the
Möbius transform of f . The proof is given in Appendix Appendix A.

11



Lemma 3.5. A mapping G∶FN × 2N → R of the form

G(f,S) = ∑
R⊆N

R∩S≠∅

qSR a(R) , (24)

where a is the Möbius transform of f , defines a generalized value if and only
if the coefficients qSR depend only on S and R∖S. In this case, the conversion
between (23) and (24) is given by

qSR = ∑
T ∶R∖S⊆T⊆N∖S

pST and pST = ∑
R∶T⊆R⊆N∖S

(−1)∣R∣−∣T ∣ qSR∪S .

The following proposition shows that the weighted Banzhaf influence in-
dex ΦB,p is a particular generalized value.

Proposition 3.6. For every f ∶{0,1}n → R and every S ⊆ N , we have

ΦB,p(f,S) = ∑
T⊆N∖S

pST (f(T ∪ S) − f(T )) ,

where the coefficients

pST = ∏
i∈T

pi ∏
i∈N∖(S∪T )

(1 − pi) (25)

satisfy the conditions pST ⩾ 0 and ∑T⊆N∖S p
S
T = 1.

Proof. Proposition 3.4 and Lemma 3.5 show that ΦB,p is a generalized value
with qSR =∏i∈R∖S pi. By Lemma 3.5 we then have

pST = ∑
R∶T⊆R⊆N∖S

(−1)∣R∣−∣T ∣∏
i∈R

pi = ∏
i∈T

pi ∑
R∶T⊆R⊆N∖S

∏
i∈R∖T

(−pi).

The result then follows from the binomial product formula (20).

The coefficients pST given in (25) coincide with those of the corresponding
expression for the weighted Banzhaf interaction index (see [14, Theorem 10]).
Therefore, we immediately derive the following interpretations of these coef-
ficients (see [14, Proposition 11]). For every S ⊆ N and every T ⊆ N ∖ S, we
have

pST = Pr(T ⊆ C ⊆ S∪T ) = Pr(C = S∪T ∣ C ⊇ S) = Pr(C = T ∣ C ⊆ N ∖S) ,
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where C denotes a random coalition.
For every S ⊆ N , define the linear operator σS for functions on {0,1}n or

[0,1]n by

σSf(x) = f(x ∣ xi = 1∀i ∈ S) − f(x ∣ xi = 0∀i ∈ S) .

For instance, when applied to the unanimity game uT (T ⊆ N), we obtain

σSuT =
⎧⎪⎪⎨⎪⎪⎩

uT∖S , if S ∩ T ≠ ∅ ,
0 , otherwise .

(26)

The next result gives various expressions for ΦB,p(f,S) in terms of the
function σSf . Recall first that, for every function f ∶{0,1}n → R, we have

f̄(p) = ∑
x∈{0,1}n

w(x) f(x) = E[f(C)] , (27)

where C denotes a random coalition (see [16] or [14, Proposition 4]).

Proposition 3.7. For every f ∶{0,1}n → R and every S ⊆ N , we have

ΦB,p(f,S) = (σS f̄)(p) = ∑
x∈{0,1}n

w(x)σSf(x) = E[(σSf)(C)] , (28)

where C denotes a random coalition.

Proof. The first equality immediately follows from Eqs. (21) and (26). The
other equalities immediately follow from (27).

Interestingly, (28) shows a strong analogy with the identities (see [14,
Propositions 4 and 9])

IB,p(f,S) = (DS f̄)(p) = ∑
x∈{0,1}n

w(x)∆Sf(x) = E[(∆Sf)(C)] . (29)

We also have the following expression for ΦB,p(f,S) as an integral. We
omit the proof since it follows exactly the same steps as in the proof of the
corresponding expression for IB,p(f,S) (see [14, Proposition 12]).

Proposition 3.8. Let F1, . . . , Fn be cumulative distribution functions on
[0,1]. Then

ΦB,p(f,S) = ∫
[0,1]n
(σS f̄)(x)dF1(x1)⋯dFn(xn)

for every f ∶{0,1}n → R and every S ⊆ N if and only if pi = ∫
1

0 xdFi(x) for
every i ∈ N .
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We now generalize Proposition 2.3 to the weighted case. To this aim,
consider the function gS,p∶{0,1}n → R defined by

gS,p(x) = ∏
i∈S

xi

pi
−∏

i∈S

1 − xi

1 − pi
.

Proposition 3.9. For every f ∶{0,1}n → R and every S ⊆ N , we have

ΦB,p(f,S) = ⟨f, gS,p⟩ = ∑
x∈{0,1}n

w(x) f(x)(∏
i∈S

xi

pi
−∏

i∈S

1 − xi

1 − pi
) (30)

and

ΦB,p(f,S) = ∑
x∈{0,1}n

f(x) gS(x)
2∣S∣

∏
i∈N∖S

pxi
i (1 − pi)1−xi . (31)

Proof. On the one hand, by substituting (14) into (18), we obtain ΦB,p(f,S) =
⟨f, g′S,p⟩, where

g′S,p(x) = ∑
T⊆S
(∏

i∈T

xi − pi
pi
− (−1)∣T ∣∏

i∈T

xi − pi
1 − pi

) .

Using the binomial product formula (20), we immediately see that g′S,p = gS,p,
which proves (30).

On the other hand, for every x ∈ {0,1}n we have

gS,p(x)w(x) = gS,p(x)∏
i∈N

pxi
i (1 − pi)1−xi = gS(x)

2∣S∣
∏

i∈N∖S
pxi
i (1 − pi)1−xi ,

which, when combined with (30), immediately leads to (31).

We end this section by giving an interpretation of the Banzhaf influence
index ΦB as a center of mass of weighted Banzhaf influence indexes ΦB,p.

As already mentioned, the index ΦB can be expressed in terms of ΦB,p

simply by setting p = 1
2
. However, by Proposition 3.6 we also have the

following expression

ΦB(f,S) = ∫
[0,1]n

ΦB,p(f,S)dp . (32)

This formula can be interpreted in the game theory context in the same way
as the corresponding formula for the interaction index (see [14, §5.1]). We
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have assumed that the players behave independently of each other to form
coalitions, each player i with probability pi ∈ ]0,1[. Assuming further that
this probability is not known a priori, to define an influence index it is then
natural to consider the average (center of mass) of the weighted indexes over
all possible choices of the probabilities pi. Eq. (32) then shows that we obtain
the non-weighted influence index ΦB.

The Shapley generalized value [12, 13] for a function f ∶{0,1}n → R and a
coalition S ⊆ N is defined by

ΦSh(f,S) = ∑
T⊆N

T∩S≠∅

a(T )
∣T ∖ S∣ + 1

,

where a is the Möbius transform of f . Using (21) we obtain the following
expression for ΦSh in terms of ΦB,p, namely

ΦSh(f,S) = ∫
1

0
ΦB,(p,...,p)(f,S)dp . (33)

Here the players still behave independently of each other to form coalitions
but with the same probability p. The integral in (33) simply represents the
average of the weighted indexes over all the possible probabilities.

4. Weighted influences as alternative representations of pseudo-
Boolean functions

It is well known that the values IB(f,S) (S ⊆ N) of the non-weighted
Banzhaf interaction index for a function f ∶{0,1}n → R provide an alternative
representation of f (see [6]). This observation still holds in the weighted
case. Indeed, combining the Taylor expansion formula with (29) yields (see
[14, Eq. (16)])

f(x) = ∑
S⊆N

IB,p(f,S)∏
i∈S
(xi − pi) . (34)

Thus, for every p the map f ↦ {IB,p(f,S) ∶ S ⊆ N} is a linear bijection.
In this section we discuss the issue of representing pseudo-Boolean func-

tions in terms of Banzhaf influence indexes. In fact, we compare the non-
weighted and weighted versions of the Banzhaf influence indexes and show
that they have different behaviors in terms of reconstruction of the original
pseudo-Boolean function from prescribed influences. In the non-weighted
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version we show that the index is degenerate: roughly speaking, the val-
ues ΦB(f,S) (∅ ≠ S ⊆ N) encode only half of the information contained in
the function f . In contrast, in the weighted version, for a generic weight p
the values ΦB,p(f,S) (∅ ≠ S ⊆ N) allow to reconstruct f up to an additive
constant.

The degeneracy of the non-weighted influence index ΦB follows from lin-
ear relations among the linear functionals ΦB( ⋅ , S) (S ⊆ N) on the space
FN . For instance, for every i, j ∈ N we have g{i,j} = g{i} + g{j}, which, by
Proposition 2.3, translates into

ΦB( ⋅ ,{i, j}) = ΦB( ⋅ ,{i}) +ΦB( ⋅ ,{j}) , i, j ∈ N .

The following result generalizes this linear dependence relation.

Proposition 4.1. For every f ∶{0,1}n → R and every S ⊆ N , we have

IB,p(f,S) (vS,p(S) − vS,p(∅))∏
i∈S

√
pi(1 − pi) = ∑

T⊆S
(−1)∣S∣−∣T ∣ΦB,p(f, T ) .

(35)

Proof. Just apply the Möbius inversion formula to (17).

Formula (35) shows that if p is such that (vS,p(S)−vS,p(∅)) = 0 for some
S ∈ 2N ∖ {∅}, the linear functional ΦB,p( ⋅ , S) on the space FN is a linear
combination of the functionals ΦB,p( ⋅ , T ) for T ⊊ S. Moreover, by definition
we always have ΦB,p( ⋅ ,∅) = 0.

Therefore replacing a pseudo-Boolean function f with the values ΦB,p(f,S)
(S ⊆ N) results in a loss of information which depends on p. Assuming a
total order on 2N , we may regard ΦB,p as the linear map ΦB,p∶FN → R2n

defined by
f ↦ (ΦB,p(f,S) ∶ S ⊆ N).

We can measure the degree of dependence among the functionals ΦB,p( ⋅ , S)
(S ⊆ N) by computing the rank rk(ΦB,p) of ΦB,p. Similarly, the resulting
loss of information corresponds to the kernel ker(ΦB,p) of ΦB,p.

Proposition 4.2. We have

ker(ΦB,p) = span{vS,p ∶ S ⊆ N and vS,p(S) = vS,p(∅)}

and
rk(ΦB,p) = 2n − ∣{S ⊆ N ∶ vS,p(S) = vS,p(∅)}∣.
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Proof. Combining (14) with (18), we obtain

ΦB,p(vT,p, S) =
⎧⎪⎪⎨⎪⎪⎩

0, if T ⊈ S,
vT,p(T ) − vT,p(∅), otherwise.

Thus, if vT,p(T ) − vT,p(∅) = 0, then vT,p ∈ ker(ΦB,p). For the converse inclu-
sion, take f ∈ FN . By (34), we have

f = ∑
S⊆N

IB,p(f,S)∏
i∈S

√
pi(1 − pi) vS,p .

If f ∈ ker(ΦB,p), then IB,p(f,S) (vS,p(S) − vS,p(∅)) = 0 for every S ⊆ N by
(35). This provides the converse inclusion. The value of rk(ΦB,p) immedi-
ately follows.

We observe that the condition vS,p(S) = vS,p(∅) also reads

∏
i∈S
(1 − pi) = (−1)∣S∣∏

i∈S
pi .5 (36)

Since we have p ∈ ]0,1[n, this condition cannot be fulfilled when ∣S∣ is odd.
Therefore by Proposition 4.2 the rank of ΦB,p ranges within the interval
[2n−1,2n − 1]. This motivates the following definition.

Definition 4.3. A tuple p ∈ ]0,1[n is nondegenerate if for every S ∈ 2N ∖{∅}
we have vS,p(S) ≠ vS,p(∅), i.e., if rk(ΦB,p) = 2n − 1. Otherwise, it is said to
be degenerate. A tuple p is maximally degenerate if rk(ΦB,p) = 2n−1.

Proposition 4.4. The set of nondegenerate tuples is an open dense subset
in ]0,1[n. For n ⩾ 3 there is a unique maximally degenerate tuple, namely
p = 1

2
.

Proof. For S ≠ ∅, Eq. (36) is a nontrivial polynomial equation on the compo-
nents of the tuple p. This proves the first statement. To see that the second
statement holds we note that p is maximally degenerate if Eq. (36) holds for
every S such that ∣S∣ is even. In particular it must hold for S = {i, j}, so that
pi + pj = 1 for all i, j ∈ N . This implies p = 1

2
whenever n ⩾ 3. Finally, we can

easily check that for this tuple we have rk(ΦB,p) = 2n−1.

In the following two subsections we further analyze both the maximally
degenerate and nondegenerate cases.

5Or equivalently, ∏i∈S(1 − 1/pi) = 1.
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4.1. Behavior of the non-weighted Banzhaf influence indexes

By Proposition 4.4 the non-weighted Banzhaf influence index ΦB is max-
imally degenerate. Let us now interpret its kernel.

Definition 4.5. Let ∗∶FN → FN be the operator that carries f into f∗

defined by f∗(S) = −f(N ∖ S). Set also S = {f ∈ FN ∶ f∗ = f} and A = {f ∈
FN ∶ f∗ = −f}.

The spaces S and A can be described in terms of the functions vS as
follows.

Proposition 4.6. We have ker(ΦB) = A = span{vS ∶ ∣S∣ even} and S =
span{vS ∶ ∣S∣ odd}. The space FN is the direct sum of the orthogonal subspaces
S and A. For every S ⊆ N , we have gS ∈ S. Finally, {gS ∶ ∣S∣ odd} is a basis
of S.

Proof. On the one hand, by Proposition 4.2, we have ker(ΦB) = span{vS ∶
∣S∣ even}. On the other hand, we clearly have v∗S = (−1)∣S∣+1 vS for every
S ⊆ N . Therefore we have

span{vS ∶ ∣S∣ even} ⊆ A and span{vS ∶ ∣S∣ odd} ⊆ S. (37)

It follows that dim(A) ⩾ 2n−1 and dim(S) ⩾ 2n−1. But since we have A ∩ S =
{0}, we must have dim(A) = dim(S) = 2n−1 and this proves the converse
inclusions in (37). This description of A and S proves the second assertion.
The last assertions follow easily from Lemma 2.4.

Combining Proposition 2.3 and Eq. (8) with Proposition 4.6 shows that
the linear functionals ΦB( ⋅ , S) with S ⊆ N and IB( ⋅ , S) with ∣S∣ odd are
combinations of the functionals ΦB( ⋅ , T ) with T ⊆ N and ∣T ∣ odd. These
relations are given explicitly in the next proposition.

Let En(x) denote the nth Euler polynomial and En = 2nEn(12) the nth
Euler number.

Proposition 4.7. For every f ∶{0,1}n → R and every S ⊆ N , we have

ΦB(f,S) = − ∑
T⊆S
∣T ∣odd

E∣S∣−∣T ∣(0)2∣S∣−∣T ∣ΦB(f, T ) , if ∣S∣ is even , (38)

and
IB(f,S) = 2∣S∣−1 ∑

T⊆S
∣T ∣odd

E∣S∣−∣T ∣ΦB(f, T ) , if ∣S∣ is odd . (39)
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Proof. By Proposition 2.3 we can prove (38) by showing that

gS = − ∑
T⊆S
∣T ∣odd

E∣S∣−∣T ∣(0)2∣S∣−∣T ∣ gT , if ∣S∣ is even , (40)

or equivalently (using the basic properties of Euler polynomials),

∑
T⊆S

E∣S∣−∣T ∣(0)2−∣T ∣ gT = 0 . (41)

To see that (41) holds, we show that

∑
T⊆S

E∣S∣−∣T ∣(0)2−∣T ∣ ⟨gT , vK⟩ = 0 , K ⊆ N.

If ∣K ∣ is even, then ⟨gT , vK⟩ = 0 since gT ∈ S and vK ∈ A by Proposition 4.6.
If ∣K ∣ is odd, then by Lemma 2.4 we have ⟨gT , vK⟩ = 2 if K ⊆ T , and 0,
otherwise. Thus, it remains to show that

∑
T ∶K⊆T⊆S

E∣S∣−∣T ∣(0)21−∣T ∣ = 0, for odd ∣K ∣.

Using the classical translation formula for Euler polynomials, we can rewrite
this sum as

21−∣K ∣
∣S∣−∣K ∣

∑
t=0
(∣S∣ − ∣K ∣

t
)(1

2
)
t

E∣S∣−∣K∣−t(0) = 21−∣K∣E∣S∣−∣K∣(
1

2
)

and the latter expression is zero since ∣S∣ − ∣K ∣ is odd. This completes the
proof of (38). Eq. (39) can be proved similarly.

According to the results above, the influences ΦB(f,S) (S ⊆ N) of a
function f ∈ FN determine only the orthogonal projection of f onto S. On
the other hand, due to Eq. (40), not all vectors in R2n−1 are influences of a
function in FN : the best we can do is to build a unique function in S with
prescribed “odd” influences. This is done in the following result.

Proposition 4.8. For every set {iT ∈ R ∶ ∣T ∣ odd}, the unique function fS ∈ S
such that ΦB(fS , T ) = iT for every T ⊆ N , ∣T ∣ odd, is given by

fS =
1

2
∑
S⊆N
∣S∣odd

⎛
⎝ ∑T⊆S
∣T ∣odd

E∣S∣−∣T ∣ iT
⎞
⎠
vS .
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Proof. By Proposition 2.3, the conditions required on fS ∈ S reduce to the
equalities ⟨fS , gT ⟩ = iT for odd ∣T ∣. Proposition 4.6 then ensures existence
and uniqueness of fS . Since the set {vS ∶ ∣S∣ odd} is an orthonormal basis for
S we can write

fS = ∑
S⊆N
∣S∣odd

⟨fS , vS⟩ vS .

For odd ∣S∣, by (8) we have ⟨fS , vS⟩ = 2−∣S∣ IB(fS , S) and then we compute
IB(fS , S) by using (39).

4.2. Behavior of the weighted Banzhaf influence indexes

The properties of the weighted influence index ΦB,p for a nondegenerate
p are completely different from those of the non-weighted influence index
ΦB. By Proposition 4.2, for a nondegenerate p the kernel of ΦB,p is one-
dimensional and reduced to the constant functions. Moreover, the functionals
ΦB,p( ⋅ , S) for S ≠ ∅ are linearly independent. Therefore, we can build a
function f from its influences ΦB,p(f,S) for S ≠ ∅, up to an additive constant.
Requiring a prescribed value of f on the empty set, or a prescribed interaction
IB,p(f,∅), allows us to build a unique function. This is the aim of the next
result.

Proposition 4.9. Assume that p ∈ ]0,1[n is nondegenerate and consider a
set function i∶2N → R. There exists a unique function f ∈ FN such that
ΦB,p(f,S) = i(S) for every nonempty S ⊆ N and IB,p(f,∅) = i(∅). It is
given by

f = i(∅) + ∑
S≠∅

vS,p
vS,p(S) − vS,p(∅)

∑
T⊆S
(−1)∣S∣−∣T ∣ i(T ) .

There exists a unique set function g ∈ FN such that ΦB,p(g,S) = i(S) for
every nonempty S ⊆ N and g(∅) = i(∅). It is given by

g = i(∅) + ∑
S≠∅

vS,p − vS,p(∅)
vS,p(S) − vS,p(∅)

∑
T⊆S
(−1)∣S∣−∣T ∣ i(T ) .

Proof. We compute f by substituting (35) in (34). Then we have immediately
g = f − f(∅) + i(∅).
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5. Application and final remarks

We now end our investigation with an application of the concept of
weighted Banzhaf influence index in reliability engineering. We also give
a justification for our independence assumption, introduce a normalized in-
fluence index, and derive tight upper bounds on influences.

5.1. An application in system reliability theory

Consider a system made up of n interconnected components. Let C =
{1, . . . , n} be the set of components and let ϕ∶{0,1}n → {0,1} be the struc-
ture function which expresses the state of the system in terms of the states of
its components. We assume that the system is semicoherent, i.e., the struc-
ture function ϕ is nondecreasing in each variable and satisfies the conditions
ϕ(0, . . . ,0) = 0 and ϕ(1, . . . ,1) = 1. We also assume that, at any time, the
component states X1, . . . ,Xn are statistically independent. The reliability of
every component i ∈ C is then defined as the probability pi = Pr(Xi = 1).
For general background on system reliability theory, see, e.g., Barlow and
Proschan [1].

According to the definition given by Ben-Or and Linial [2] (as recalled in
the introduction), for every subset S of components, the index

Iϕ(S) = ΦB(ϕ,S) =
1

2n−∣S∣
∑

T⊆C∖S
(ϕ(T ∪ S) − ϕ(T ))

measures, at a given time, the probability that the state of the system is
undetermined once the state of each component i not in S is set to one or
zero with probability pi = 1/2.

In practice, however, the probabilities Pr(Xi = 1) and Pr(Xi = 0) need
not be equal. The weighted version ΦB,p of the Banzhaf influence index then
provides a straightforward generalization of Ben-Or and Linial’s definition
to the general case of arbitrary reliabilities p1, . . . , pn. More specifically, the
weighted index

ΦB,p(ϕ,S) = ∑
T⊆C∖S

pST (ϕ(T ∪ S) − ϕ(T )) ,

where
pST = ∏

i∈T
pi ∏

i∈C∖(S∪T )
(1 − pi),
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(as described in Proposition 3.6) precisely measures, at a given time, the
probability that the state of the system remains undetermined once the state
of each component i not in S is set to one with probability pi and to zero
with probability 1− pi. In a sense this probability measures, at a given time,
the influence of the subset of components in S over the system. When S
reduces to a singleton {i} and pi = 1/2, we retrieve the classical Banzhaf
power index, also known in reliability theory as the Birnbaum structural
measure of component importance.

5.2. On the independence assumption

We have made the important assumption that the variables are set inde-
pendently of each other. From this assumption we derived condition (13).
Let us now show that this assumption is rather natural.

For every probability distribution w such that pi = ∑S∋iw(S) ∈ ]0,1[, the
best {i}-approximation of f ∶{0,1}n → R with respect to the squared distance
(12) associated with w is given by

f{i} = ⟨f, v{i},p⟩ v{i},p + ⟨f,1⟩ ,

where v{i},p(x) = (xi−pi)/
√
pi(1 − pi).6 Therefore, we can define the power/influence

index associated with w by

Iw(f,{i}) =
⟨f, v{i},p⟩√
pi(1 − pi)

= ∑
T⊆N∖{i}

(w(T ∪ {i})
pi

f(T ∪ {i}) − w(T )
1 − pi

f(T )) .

However, we know from the literature on cooperative game theory (see, e.g.,
[4, 18]) that “good” power indexes should be of the form

I(f,{i}) = ∑
T⊆N∖{i}

ciT ∆{i}f(T ) , ciT ∈ R . (42)

It follows that the index Iw( ⋅ ,{i}) is of the form (42) if and only if w(T∪{i})
pi

=
w(T )
1−pi for every T ⊆ N ∖ {i}. Thus, we have proved the following result.

Proposition 5.1. The index Iw( ⋅ ,{i}) is of the form (42) for every i ∈ N if
and only if (13) holds.

6Indeed, the functions 1 and v{i},p form an orthonormal basis for V{i}.
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5.3. Normalized index and upper bounds on influences

Since the index ΦB,p is a linear map, it cannot be considered as an abso-
lute influence index but rather as a relative index constructed to assess and
compare influences for a given function.

If we want to compare influences for different functions, we need to con-
sider an absolute, normalized influence index. Such an index can be defined
as follows. Considering again 2N as a probability space with respect to the
measure w, we see that, for every S ⊆ N the number ΦB,p(f,S) is the covari-
ance cov(f, gS,p) of the random variables f and gS,p. In fact, denoting the
expectation of f by E[f] = f̄(p) (see (27)), we have

ΦB,p(f,S) = ⟨f, gS,p⟩ = ⟨f −E[f], gS,p −E[gS,p]⟩ = cov(f, gS,p)

since E[gS,p] = ḡS,p(p) = 0 and ⟨E[f], gS,p⟩ = ΦB,p(E[f], S) = 0.
To define a normalized influence index, we naturally consider the Pearson

correlation coefficient instead of the covariance.7 First observe that, for every
nonempty subset S ⊆ N , the standard deviation of gS,p is given by

σ(gS,p) =
√
∏
i∈S

1

pi
+∏

i∈S

1

1 − pi
. (43)

In fact, since gS,p ∈ VS, we have

σ2(gS,p) = cov(gS,p, gS,p) = ΦB,p(gS,p, S) = gS,p(S) − gS,p(∅) ,

which immediately leads to (43).

Definition 5.2. The normalized influence index is the mapping

r∶{f ∶{0,1}n → R ∶ σ(f) ≠ 0} × (2N ∖ {∅})→ R

defined by

r(f,S) =
cov(f, gS,p)
σ(f)σ(gS,p)

=
ΦB,p(f,S)
σ(f)σ(gS,p)

.

By definition the normalized influence index remains unchanged under
interval scale transformations, that is, r(af + b, S) = r(f,S) for all a > 0 and

7This approach was also considered for the interaction index (see [14, §5]).
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b ∈ R. Thus, it does not depend on the “size” of f and therefore can be used
to compare different functions in terms of influence.

Moreover, as a correlation coefficient, the normalized influence index sat-
isfies the inequality ∣r(f,S)∣ ⩽ 1, that is,

∣ΦB,p(f,S)∣
σ(f)

⩽ σ(gS,p) .

The equality holds if and only if there exist a, b ∈ R such that f = agS,p + b.
Interestingly, this property shows that (43) is a tight upper bound on the

influence of a normalized function f/σ(f). Thus, for every nonempty subset
S ⊆ N , those normalized functions for which S has the greatest influence are
of the form f = (± gS,p + c)/σ(gS,p), where c ∈ R.
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Appendix A. Proof of Lemma 3.5

Proof of Lemma 3.5. Using the definition of the Möbius transform in (23),
we obtain

G(f,S) = ∑
T⊆N∖S

pST ( ∑
R⊆T∪S

a(R) − ∑
R⊆T

a(R))

= ∑
R⊆N

a(R)( ∑
T ∶R∖S⊆T⊆N∖S

pST − ∑
T ∶R⊆T⊆N∖S

pST) ,

which shows that G has the form (24) with the prescribed qSR.
Conversely, substituting (3) into (24) and assuming S ≠ ∅, we obtain

∑
R⊆N

R∩S≠∅

qSR a(R) = ∑
R⊆N

R∩S≠∅

qSR ∑
T⊆R
(−1)∣R∣−∣T ∣ f(T ) = ∑

T⊆N
f(T ) ∑

R⊇T
R∩S≠∅

(−1)∣R∣−∣T ∣ qSR .

Partitioning every R into R′ = R ∖ S and R′′ = R ∩ S, the latter expression
becomes

∑
T⊆N

f(T ) ∑
T∖S⊆R′⊆N∖S

∑
T∩S⊆R′′⊆S

R′′≠∅

(−1)∣R′∣+∣R′′∣−∣T ∣ qSR′∪R′′ .
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Since our assumption on the coefficients qSR implies qSR′∪R′′ = qSR′∪S, the latter
expression becomes

∑
T⊆N

f(T ) ∑
T∖S⊆R′⊆N∖S

(−1)∣R′∣−∣T∖S∣ qSR′∪S ∑
T∩S⊆R′′⊆S

R′′≠∅

(−1)∣R′′∣−∣T∩S∣ ,

where the inner sum equals (1 − 1)∣S∖T ∣, if T ∩ S ≠ ∅, and −1, otherwise.
Setting T ′ = T ∖ S for every T containing S, the latter expression finally
becomes

∑
T ′⊆N∖S

( ∑
T ′⊆R′⊆N∖S

(−1)∣R′∣−∣T ′∣ qSR′∪S)(f(T ′ ∪ S) − f(T ′)) ,

which completes the proof of the lemma.
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