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Motivation: multiscale fracture/cutting

» Reduce the problem size while controlling the error (in Qol)
when solving very large (multiscale) mechanics problems 4



Motivation: multiscale fracture - Example

Solder joint durability (microelectronics), Bosch GmbH
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* Efficient numerical prediction
of material and structural failure

L. Beex S.P.-A. Bordas P. Kerfriden

Initial crack Final fracture
distribution [Sutula et al., 2013]

* Characterisation and optimisation of composites

[Silani et al., 2013]
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* Interactive simulations of
biological structures

* Simplified Link between
CAD/CT scans and analysis

2D from CAD

Local 3D
analysis

[Nguyen et al., 2013]
[Scott et al., 2013]

UNIVERSITE DU
LUXEMBOURG

[J FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



* Advanced discretization techniques for complex PDEs

= XFEM/meshfree

Cenaero

Taylor bar problem
(dynamic fragmentation)

" |sogemetric

analysis
> >
Model IGA "
simplification
(CAD)

o1

300 a1
x[m]

yim
[Torninca;a etal., 2013]
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* Multilevel methods to reduce CPU time by orders of magnitude and
devise robust, efficient code/model coupling

* HPC Adaptive multiscale
models/solvers
with controlled accuracy
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[Akbari et al., 2013]

[Kerfriden et al., 2010]
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* Multilevel methods to reduce CPU time by orders of magnitude and
devise robust, efficient code/model coupling

“offline” / “online” strategy
KA
y i
Optimal linear
combination

“Offline” (training) for all parameters

® Virtual chart with controlled
accuracy via ROM for multiscale
modelling and real-time optimisation

Qg: Screw

_§)4: Dental implant
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“Online” (evaluation)
for a particular
Q,: Cancellous bone parameter

_ [4: Interfacial tissue

Direct
Q,;: Cortical bone

[Hoang et al., 2013]

[Kerfriden et al., 2013]
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Error control

Sogeometric analysis ,

"= implicit boundaries _ /7

— / v XFEM: goal-oriented error estimates

» used by CENAERO (Morfeo XFEM)
g v meshless methods for fracture

v error estimation for reduced models
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Part 0. An adaptive method for fracture -

application to polycrystalline failure
Ahmad Akbari, Pierre Kerfriden, Spal3

Faculty of Sciences,
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* Bottom-up view: replace heterogeneous
subscale model by an equivalent, smoother,
model at the scale where predictions are
required (i.e. macroscopic scale)

* When is scale-bridging necessary? <

" Derive predictive macroscopic models that

are difficult to obtain using phenomenological
approaches

* Optimise subscale properties to obtain better
overall characteristics

" Observations at microscale but approximations

required away from region of interest to
remain tractable
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Approximation of the
behaviour of polycrystalline
materials away from
macroscopic cracks

Optimisation of fiber content in
sandwich beams to minimise
interfacial stress in
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Mathematical formulation
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Heterog. continuum
* Knowing the governing equations at the
microscale, can we find homogeneous
governing equations at the macroscale s. t.:

® The solution of the macroscale problem converges

to the solution of the microscale problem when

(Or discrete
the scale ratio tends to zero

model)

* Hopefully: the solution of the macroscale

problem is a good approximation of the solution
of the microscale problem (in some sense)

even when the scale ratio is not very small.

VL Homogenisation

PDE with
constant coeff.

Error in Qol macroscopic < Tolerance
Cost of solving macromodel << subscale model

S bt
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* Heterogeneous microstructure undergoing
moderate deformations, observations at
macroscale, slow loading, scale separability

* Macroscale candidate model: lin. elasticity

= Equilibrium

div gM +f=0 in £

M.n=0 in O
= Kinematic equations

M =U in 0,

gM = % (gradgM + grad QMT) in £

" Constitutive relation by classical micromechanics
oM = SM (e(u™)) in €
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» Attach a representative volume element to the

material point: volume of material large enough
to represent the statistics of the distribution

of material properties (unit cell in periodic case) 1
o" =D(y): " G

* Suppose that the RVE is mechanically
equilibrated: dive™ =0

* The effective constitutive law the/a relationship
between average stress and average strain
<g™>=8M(<em>)
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Computational homogenisation
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* Obtain < g™ >= sM (< e >) by solving RVE problem numerically

Elasticity, constant
. +
coefficients

Homogeneous strain
(macroscopic part)

~

a(y) = 'y +u(y)

“micro” fluctuation

® lll-posed, requires BC for fluctuation compatible with < e(u(y) >

" One possibility: Dirichlet problem, fluctuation vanishes on boundary

— Very expensive too solve



Multiscale methods for Fracture

= Non-concurrent = Concurrent
Damage zone is modelled by a Damage zone is modelled
macroscopic _coheswe grack directly at the microscale and
that homogenises the failure coupled to the coarse scale.
zone.
 — ]
Ii
V.P. Nguyen 2012 l
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Homogenisation (FE*2, etc.) - Hierarchical
Concurrent (bridging domain, ARLEQUIN, etc.)
Enrichment (PUFEM, XFEM, GFEM)

Model reduction

RealTcut
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Fine Scale: micro-structure

>Microscale problem:

/ o(u): de dQ—l—/ T-[[5u]]dQ:/ f.dudl
QT r. 99

»Orthotropic grains

Vxe Q/T.,, o=C:e¢

sCohesive interface

vxel,, T,=T ((“u]|'7')7-£t)

UUUUUUUUUUUU
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Coarse Scale

>Macroscale problem: - < <

« FE2 Method
Based on averaging theorem
(computational homogenisation)

= Adaptive mesh refinement
Error estimation by Zienkiewicz-Zhu-type recovery technique

- -« -

<

- -« -

Mesh refinement

| >

UUUUUUUUUUUU
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Coarse Scale: FE?2

time step, i v
Macroscale problem
lteration, j

_________________

RVE problem
[teration, k

Cr

—
o' = (crf>

% Shortcoming of the FE2 Method :

Lack of scale separation
RVE cannot be found in the

UNIVERSITE DU
LUXEMBOURG

[J FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



Error control in multiscale modelling

Domain FE2
Decomposition
Method method
\ \
A | \

error

_________________________ Critical_level of error

omogenisation error

>
Coarse Element size

Critical size

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION
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Fine-Coarse scales Coupling

Solution beyond FE2:
“Hybrid Multiscale Method”

*FE2for non-critical region
(hierarchical multiscale)

*Domain decomposition for critical
region (concurrent multiscale)

/

UUUUUUUUUUUU
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Adaptive mUItiscale methOd: A Concurrent approach

>Strategy:
 control the coarse scale « control the
discretization error modelling error
Qf
4 A\ 4 \
-— - - -— - - - FCf
Mesh refinement /\ Hybrid method
| > < | >
A
FE2 FE2+ Domain
Decomposition
Method il

UUUUUUUUUUUU
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Coarse Scale: Adaptive mesh refinement

>Coarse scale Adaptive mesh refinement

* Error estimation by Zienkiewicz-Zhu-type
recovery technique

el / (0" —a): (22
el = o' —o): | —
0, ' Je

-1
) (0" — o)d)
"

Element to refine Refined mesh
‘ [
| Error due to the
-Convergence criterion: el g discretisation of { )
o]l neglected i lu
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Results: L-shape
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Results: L-shape

Direct Numerical Solution Adaptive Multiscale method

.
. lu
UNIVERSIT E DU
UUUUUUUUUU
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Results: uni-axial tension

x10~

UUUUUUUUUUU
LUX {o]V]

. . .
% Sizes are in mm i lu
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Results: uni-axial tension

von Mises stress (Pa) ™" i

UUUUUUUUUUUU
UUUUUUUUUU

“ 100X (magnification of displacement)
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Results: uni-axial tension

von-Mises stress (Pa) ™~

SR

% 100X (magnification of displacement) | &=
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Results: uni-axial tension

von-Mises stress (Pa) ™~

“ 100X (magnification of displacement)

7

r 10
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Results: uni-axial tension

von-Mises stress (Pa) ™"

UUUUUUUUUUUU
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“ 100X (magnification of displacement)
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Results: uni-axial tension

von-Mises stress (Pa) ™"

UUUUUUUUUUUU
LUXEMBOURG

“ 100X (magnification of displacement)
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Verification

Energy, (J)

0.5
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total dissipated energy, D, (J)

0.2 +

0.1+

DN
adaptive multiscale method

/
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-

Verification

total dissipated energy, D, (

Traction force, v f4, (MPa)
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Y-coordinate (Angstroms)

Perspectives

* coarsening once the crack is open
* molecular dynamics at the fine scale

200l a 20 o a 200 .
b o
w 15 w 150§
150"‘ 5 5
- ] R
100} o 100 o 100
® .
s [~}
50}~ g 5 — T o 50
g - g
of - ? ot — ? of —
i i i i > R . X . R > N R N R N
0 100 200 300 0 50 100 150 200 250 0 50 100 150 200 250
X-coordinate (Angstroms) X-coordinate (Angstroms) X-coordinate (Angstroms)

* real-life problems! :)

« coupling with algebraic model reduction
(POD)

A
nni.
UNIVERSITE DU 3
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Link with algebraic model reduction
(Proper Orthogonal Decomposition)

[J FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



CARDIFF MA M
———  Parametric / stochastic multiscale fracture mechanics

PRIFYSGOL Institute of Mechanics
(A'RDY & Advanced Materials

Highly correlated solution fields

First realisation Second realisation

0 5 15 20

Localisation of fracture, uncorrelated

m» Direct numerical simulation: efficient preconditioner? B Reduced order modelling?

B Adaptive coupling?
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E Reduced DDM-POD M A M

PRIEFYSGOL Institute of Mechanics
(A'RDY & Advanced Materials

Partitioned reduced basis

Compute particular realisations

P Decompose the structure into
subdomains

» Perform a reduction in the
highly correlated region

P Couple the reduced to the non-
reduced region by a primal
Schur complement

(cost intensive) using domain
decomposition (snapshots)

10*" (last) timestep

AONMNNNNNNNNNN
WRERE eeid

SOUONNNNANNNNNNN

Locally non correlated:
no reduction

orc RealTcut
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Publications

http://hdl.handle.net/10993/16347

http://orbilu.uni.lu/handle/10993/14475

http://orbilu.uni.lu/handle/10993/10207

http://orbilu.uni.lu/handle/10993/10066

http://orbilu.uni.lu/handle/10993/12454

http://orbilu.uni.lu/handle/10993/16323

http://orbilu.uni.lu/handle/10993/12012

http://orbilu.uni.lu/handle/10993/12014
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Part I. Streamlining the CAD-analysis transition

Part lll. Application to H cutting of Si wafers

Part IV. Interactive cutting sim.
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Part I. Streamlining the CAD-analysis transition
Coupling, or decoupling?
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Motivation: free boundary problems - mesh burden




CAD to Analysis

vM stress distribution
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Compute interactions between the geometry and the mesh
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Perform the analysis




Paradigm 1: Separate field and boundary discretisation

o Immersed boundary method (Mittal, et al. 2005) NAVA(VAVAVAYA :\
e Fictiious domain (Glowinski, et al. 1994) SRR
* Embedded boundary method (Johansen, et al. 1998)" ) (j : |
e Virtual boundary method (Saiki, et al. 1996) % [\;@J |

. e Cartesian grid method (Ye, et al. 1999, Nadal, 2013) - - - VavAV; g

v' Easy adaptive refinement + error estimation (Nadal, 2013)
v Flexibility of choosing basis functions
e Accuracy for complicated geometries? BCs on implicit surfaces?

= An accurate and implicitly-defined geometry from arbitrary
parametric surfaces including corners and sharp edges
(Moumnassi, et al. 2011)




Ex: Moumnassi et al, CMAME DOI:10.1016/j.cma.2010.10.002

® Objectives ~ ]
P insert surfaces in a structured mesh [ )
= without meshing the surfaces (boundary, cracks, holes, ~ ,/

inclusions, etc.)
= directly from the underlying CAD model
= model arbitrary solids, including sharp edges and vertices

P keep as much as possible of the mesh as the CAD model
evolves, i.e. reduce mesh dependence of the implicit
boundary representation

» maintain the convergence rates and implementation simplicity o

Level Set representation of a surface defined by a para

the FEM

Advance by CRP Henri Tudor in 2011
(Moumnassi et al, CMAME DOI: 10.1016/
j.cma.2010.10.002

'seed point(s) -
requires one
single global -

— .

c /Singl’é Multiple level sets
52
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Pixel/Voxel-based FEA on Cartesian grids (Valencia) I M A IVI

H-adaptive refinement based on error estimation

iy
] Y

N
L

T

Institute of Mechanics and Advanced Materials -


http://www.researcherid.com/rid/A-1858-2009
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RO Pixel/Voxel-based FEA on Cartesian grids (Valencia) I M A IVI
FEM SPR-C SPR-C—-FEM
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EXTENSION TO IMAGE TO MESH
TRANSITION UNDER WAY




How can we move from an image...

COLONIX, OSIRIX



..or perhaps a series of images. ..

Source: COLONIX, OSIRIX



to a full mechanical analysis?



Pipeline to analysis

Traditional
Acquire images
Segment images

Mesh Surfaces

Mesh Volume

Perform analysis



Each voxel 7 is a 32-bit
floating point measurement

X
< Rows (64)
Planes (64)
Y
Cols (64)

DOOCO O ©C© QD D)D) )



Soft segmentation

0<mi(j) <1 Vj,k ka(])



Hard segmentation




Hard Segmentation at 0.2f

float / class unknoun
38 x 50 x 60 / voxel size 3.943 (ScaleMap)

22,490 active voxels

—




Hard Segmentation at 0.2f with CGAL and OpenVDB

float / class unknown
38 x 50 x 60 / voxel size 3.943 (ScaleMap)
22,490 active voxels
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Problems

* Core problem: Geometry is tightly coupled with discretisation.

 How will we deal with:

Dynamic topology eg. cutting.

Clinical environments.

Refinement.

Complex microstructures.



Pipelines to analysis

Traditional Implicit Boundary
Acquire images Acquire images
Implicit
Segment images Segment images

NURBS

Mesh Surfaces Implicit

Explicit
Mesh Volume







The method



T

Octree data structure



Nested Octree




levelset
O

0.4

0.2

Quadtree Level 7/Level 4



Octree Level 5/Level 3
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6a2e86¢c Surface



How to transter geometric information
back to the discretisation”

Vi (0a) D B[V, (Oy)]

fodd(od) Pd > Py Vf?g (Og)

hd>hg pg:1



—or each enriched cell In the
discretisation. ..




generate local Delaunay
triangulation...




Case 1: boundary




Case 2: inclusion




Case 3: Dirichlet Boundary
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Paradigm 2 : IGA

Couple Geometry and Approximation
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Isogeometric analysis (with BEM)

-

(

Approximate the unknown fields with the same basis functions
NURBS, T-splines ... ) as that used to generate the CAD model

-

e Exact geometry.
e High order continuity.
e hpk-refinement

-
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1. Generate a volume discretization using the surface geometry only?

2. Realistic solids can in general not be represented by only one volume
(patch) and multiple patches must be glued together to avoid
“leaks” (Nitsche, T-splines, PHT-splines, RL/LR-splines)

3. Refinement must be done everywhere in the domain (T, PHT...
splines)

3 KEY QUESTIONS FOR IGA

UNIVERSITE DU
LUXEMBOURG

4
With Gang Xu: Generalized IGA - Field-independent geometry approximation




Isogeometric Analysis with BEM

\

(

G

Domain
representation

Boundary C! | .
representation )

1. IGABEM with NURBS for 2D elastic problems (Simpson, et al.
CMAME, 2011).

2. IGABEM with T-splines for 3D elastic problems (Scott, et al.
CMAME, 2012).

3. IGABEM with T-splines for 3D acoustic problems (Simpson, et al.
2013 - MAFELAP2013 TH1515).

J

Difficulties in dealing with nonlinear problems and non-homogeneous

materials.

J




Non-uniform rational B-splines

-
Knot vector

a non-decreasing set of coordinates in the parametric space.

== {gl ’ E',z >0 §n+p+1} Kngt Parametric mesh
B-spline basis function y— r 44'4§
4 . )
N (5) _ 1) if éa < g < ga-l-l
a,0 0, otherwise.
Na,p(&) — g — ga Na,p—l(g) + €a+p+1 - g Na-i—l,p—l(g)'
£a+p _ §a €a+p+1 - €a+1
g _J
NURBS basis function
Na (6) Wyq Na (f)wa Control point
Ra, 5 — ; — n P )
(&) W(¢) >i=1Na,pwa




Properties of NURBS

o Partition of Unity

iRi,p(i) =1

e Non-negative

e p-1 continuous derivatives

e Tensor product property

-

i=l j=1

YR, )R, ()=

i=l j=1

\_

SEn)=X Y R, )R, M)B,

SLHOI LN




NURBS to T-splines
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(NURBS geometry)
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(T-splines geometry)

-

N (O ~
NURBS T-splines
e No watertight geometry e Local kno_t vector (as Point-
: based splines)
e No local refinement scheme
e Global topology
J )

\_

Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, and T.W.

Sederberg. Isogeometric analysis using T-splines. CMAME, 199(5-8):229-263, 2010.
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Propeller: NURBS would require several patches - single patch T-splines

4 )
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Isogeometric boundary element analysis using unstructured T-splines
MA Scott, RN Simpson, JA Evans, S Lipton, SPA Bordas, TIR Hughes, TW Sederberg
CMAME, 2013. http://orbilu.uni.lu/handle/10993/11850

\_
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http://orbilu.uni.lu/handle/10993/11850
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(PUM enriched methods
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e IGA: link to CAD and

accurate stress fields
e XFEM: no remeshing

-

\-




PUM enriched methods (XIGA)

u’(x) = ZR[(X)H[ + Z Rjy(x)P(x)ay

Ies Jese

NURBS basis functions enrichment functions

. E. De Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, and M. C. Hsu. X-FEM
. S. S. Ghorashi, N. Valizadeh, and S. Mohammadi. Extended isogeometric
. D. J. Benson, Y. Bazilevs, E. De LuK_cker, M.-C. Hsu, M. Scott, T. J. R. Hughes,

. A. Tambat and G. Subbarayan. Isogeometric enriched field approximations.

~N

iznOisogeometric analysis for linear fracture mechanics. IJINME, 87(6):541-565,
11.

analysis for simulation of stationary and propagating cracks. JNME, 89(9):
1069-1101, 2012.

and T. Belytschko. A generalized finite element formulation for arbitrary basis
functions: From isogeometric analysis to XFEM. IJNME, 83(6):765-785, 2010.

CMAME, 245-246:1 - 21, 2012.




Delamination analysis with cohesive elements (standard approach)

(

e No link to CAD
e Long preprocessing

° Refined meshes

/ s
continuum element /
S
Y\ 3 P e 4
[ N /
I \ 2
> \ \ » /zrack path
* ~ N
TA 3 \ {2 4
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’]’0 ______ : 1 Ol 2
interface element
N |/
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\_
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Isogeometric cohesive elements
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2011.

2. V.P. Nguyen, P. Kerfriden, S. Bordas. Isogeometric cohesive elements for two
and three dimensional composite delamination analysis, 2013, Arxiv.

(1. C. V. Verhoosel, M. A. Scott, R. de Borst, and T. J. R. Hughes. An
isogeometric approach to cohesive zone modeling. IJINME, 87(15):336-360,

\\
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Isogeometric cohesive elements: advantages

( N

e Direct link to CAD

e Exact geometry

e Fast/straightforward generation
of interface elements

e Accurate stress field

e Computationally cheaper
- y,

-

e 2D Mixed mode bending test (MMB)
e 2 x 70 quartic-linear B-spline elements
® Run time on a laptop 4GBi7: 6 s

e Energy arc-length control
-

J

V. P. Nguyen and H. Nguyen-Xuan. High-order B-splines based finite elements for
delamination analysis of laminated composites. Composite Structures, 102:261-275, 2013.




Isogeometric cohesive elements: 2D example

O\

1) the number of

[
u
- — 30
25
0/90/0/90/...] .
g 20
!
© 15 |
__________ + 10 |
0
2 5t no initial crack
Y small initial crack
Y A 0 . . ‘ large initial crack ‘
“ND. 0 0.2 0.4 0.6 0.8 1 1.2 1.4
L» : Ny displacement u [mm
. 7)) P [mm]
~

lies and

2) # of interface elements:

e Suitable for parameter studies/design
e Solver: energy-based arc-length method (Gutierrez, 2007)

e Exact geometry by NURBS + direct link to CAD
e It is straightforward to vary
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Isogeometric cohesive elements: 2D example

reaction [N]

O | | 1 1 http:/ /www.frontiersin.org/peoplef —no L |
NguyenPhu/94150/video

0 02 04 06 0.8 1 T2 14
displacement u [mm]




Isogeometric cohesive elements: 3D example with shells

\_

\_

-
damage
0.2 0.5 0.7
II|I|I|I|III|IIIII|III|I|II
U 1
-

e Rotation free B-splines shell elements (Kiend| et al. CMAME)

e Two shells, one for each lamina

e Bivariate B-splines cohesive interface elements in between




Isogeometric cohesive elements: 3D examples

(" N\

e cohesive elements for 3D
meshes the same as 2D
e |arge deformations




Isogeometric cohesive elements

4 )

® singly curved thick-wall laminates

e geometry/displacements: NURBS

e trivariate NURBS from NURBS surface(*)
® cohesive surface interface elements

\_ J

damage

0.25 0.75

w |||||||(|)|'§|||||| 0

0 1
(*)V. P. Nguyen, P. Kerfriden, S.P.A. Bordas, and T. Rabczuk. An integrated design-analysis
framework for three dimensional composite panels. Computer Aided Design, 2013. submitte-)c.




Future work: model selection (continuum, plate, beam, shell?)

( Model selection

® Model with shells

e |dentify “hot spots” - dual
® Couple with continuum

® Coarse-grain
\_

( eNitsche coupling - NURBS-NURBS

2D from CAD

||

Local 3D
analysis

[Nguyen et al., 2013]
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Numerical Modeling of
SOl Wafer Splitting




Physical process

Manufacturing process: SmartCut™
* H*ionization of a thin surface of Si | A
A
* Bonding to a handle-wafer (stiffener) o
i VYV v oy

 High temperature thermal annealing

re-use

« Nucleation and growth of cavities filled with H, v s

* Pressure driven micro crack growth g
* Coalescence and post-split fracture roughness A L
NI | . | \'_ D) 8

* CMP and cut
Si wafer

=N




Objectives

Determine:
micro crack nucleation points and direction

multiple crack paths until coalescence

time to complete fracture

final surface roughness




-

-

Modeling cavities by zero thickness surfaces
e discontinuities in the displacement field
Linear elastic fracture mechanics (LEFM)
 infinite stress at crack tip, i.e. singularity

-

SiO2 (linear isotropic)

Si (linear isotropic)

Cohesive interface with
variation in surface energy

fracture criterion at the
discontinuity tip

|

statistically distributed discontinuity subjected ]
discontinuities to H, pressure }




Discretization: XFEM

N
Extended Finite Element Method (XFEM)
* Introduced by Ted Belytschko (1999) for elastic problems
. y
4
4 L Fracture of “XFEM” using XFEM J




Soitec




Example #1

4 )
Vertical extension of a plate with 300 cracks

[ Post-split roughness )

I T I T T I I T T

r ™

|
| [y

A

-30 f/f N
— V. (R, = 2.195e+01)
=40 y =

| | | | | | |

I I
100 200 300 400 500 600 700 800 900

\ Position, x j

Profile, y
(en]
T




Example #2

4 ™
Mechanical splitting of a wafer sample
* Post-split roughness as a function of micro crack distribution

1000

500+
damaged zone
(studied area)

-500—

-1000

| |
-2000 -1500 -1000 -500 0 500 1000 1500 2000




Example #2

-

Mechanical splitting of a wafer sample
o Discretisation (x1mlIn. DOF, h,= 150 nm)

“ | Fracture control parameters
| -initial cracked length: p. ={10,30,50,70} (%)
- damage thickness: ¢, ={100,300, 500 } (nm)




Example #2

4 N\
e ~
Fracture rot Roughness vs. Percentage cracked
(mechanical splitting)
* (Case exat 0.8 . ; . . ; : :
| * tdmg =100 (nm)
1k 07+ ., X tdmg = 300 (nm) |-
s DSl € L + tdmg =500 (nm)
S — 3 06f + —~—  t .
& o’ TR
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1 5 T
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50 o 04F X X -
g
* Caseexal £ ..l X O — X |
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Application to Si-wafer splitting ¢ soec

Mechanical splitting of a wafer
» Post-split roughness as a function of micro crack distribution

» Consider a representative material sample -

« BC: blade loading = fixed displacements (RHS)

« 20 initial micro cracks within the damage zone

damaged zone
(pre-existing flaws)

v

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



Application to Si-wafer splitting ¢ softec

Mechanical splitting of a wafer
* Fracture path comparison: max-hoop crit. VS. energy min.

 NOTE: non-uniform scaling of axis, y / x =400

Si-wafer splitting using a wedge blade
(comparison of two growth criteria)

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION
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]

gty ’,{

The ERC RealTcut project

P Reduce the problem size while controlling error in solving

very large multiscale mechanics problems
Courtecuisse et al. PBMB 2011

c RealTcut



mailto:email@cardiff.ac.uk

Approach

r . : )
Concrete objective: compute the response of organs during surgica
procedures (including cuts) in real time (50-500 solutions per second)

e )
Two schools of Tchought First implicit, interactive method
» constant time

for cutting with contact
B accuracy often controlled
visually only

» model reduction or “learning”

) scarce development for
biomedical problems

B no results available for
cutting

[Courtecuisse et al., MICCAI, 2013]
Collaboration INRIA

Proposed approach: maximize accuracy \_ )
for given computational time. Error control

2

\_ 11




offline
GENERATE particular
solutions

~ N, ~
1076 1073 0(10) fonctions
snapshots snapshots

patient-
specific
mapping

reduced
space of
small

[ dimension
r cut-tip enrichment

instrument action

online: interactive

[ |
<1 11/l
[ [T T 1 1A P11 T ]

global POD
approximation

120
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A semi-implicit method for real-time
deformation, topological changes, and
contact of soft tissues

Paper ID : 269
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TWO POST DOCS
TWO FACULTY POSITIONS AVAILABLE

OPEN SOURCE CODES

PERMIX: Multiscale, XFEM, large deformation, coupled 2 LAMMPS, ABAQUS, OpenMP -
Fortran 2003, C++

MATLAB Codes: XFEM, 3D ISOGEOMETRIC XFEM, 2D ISOGEOMETRIC BEM, 2D MESHLESS
DOWNLOAD @ http://cmechanicsos.users.sourceforge.net/

123

COMPUTATIONAL MECHANICS DISCUSSION GROUP
Request membership @
http://sroups.google.com/group/computational mechanics discussion/about



http://cmechanicsos.users.sourceforge.net
http://groups.google.com/group/computational_mechanics_discussion/about
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Publications - model reduction
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Mesh-burden reduction
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Demos
« Surgical simulation

» http://www.youtube.com/watch?
v=KagM7rh6sES8s

 http://www.youtube.com/watch?
v=DYBRKDbEIiH]8
* Multi-crack growth

* http://www.youtube.com/watch?
v=6yPb6NXnex8

 http://www.youtube.com/watch?
v=/U205bFV|8E

.
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http://www.youtube.com/watch?v=KqM7rh6sE8s
http://www.youtube.com/watch?v=DYBRKbEiHj8
http://www.youtube.com/watch?v=6yPb6NXnex8
http://www.youtube.com/watch?v=7U2o5bFvj8E

Demos

 http://www.youtube.com/watch?
v=90NAQ76mVmQ

» Solder joint durability

 http://www.youtube.com/watch?
v=Ri96Wv6zBNU

* http://www.youtube.com/watch?
v=1g3Pe_9XN9|
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http://www.youtube.com/watch?v=Ri96Wv6zBNU
http://www.youtube.com/watch?v=1g3Pe_9XN9I

Damage tolerance assessment directly

from CAD

 http://www.youtube.com/watch?

v=RV0gidOT0-U

 http://www.youtube.com/watch?

v=cYha|6SPLTE
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e/10993/12157
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http://www.youtube.com/watch?v=RV0gidOT0-U
http://www.youtube.com/watch?v=cYhaj6SPLTE
http://orbilu.uni.lu/handle/10993/12159
http://orbilu.uni.lu/handle/10993/14135
http://orbilu.uni.lu/handle/10993/13847
http://orbilu.uni.lu/handle/10993/12157

Damage tolerance analysis directly from
CAD

 http://orbilu.uni.lu/handle/10993/11850
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Isogeometric analysis

* P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-Spline Finite
Element approach for geometrical design and mechanical
analysis. INME, 41(3):435-458, 1998.

e [, Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: a new
paradigm for thin-shell finite-element analysis. INME, 47(12):
2039-2072, 2000.

e Constructive solid analysis: a hierarchical, geometry-based
meshless analysis procedure for integrated design and analysis.
D. Natekar, S. Zhang,and G. Subbarayan. CAD, 36(5): 473--486,
2004.

* T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. CMAME, 194(39-41):4135-4195, 2005.

). A. Cottrell, T. J.R. Hughes, and Y. Bazilevs. Isogeometric
Analysis: Toward Integration of CAD and FEA. Wiley, 2009.




Isogeometric analysis

* P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-Spline Finite
Element approach for geometrical design and mechanical
analysis. INME, 41(3):435-458, 1998.

e [, Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: a new
paradigm for thin-shell finite-element analysis. INME, 47(12):
2039-2072, 2000.

* Constructive solid analysis: a hierarchical, geometry-based
meshless analysis procedure for integrated design and analysis.
D. Natekar, S. Zhang,and G. Subbarayan. CAD, 36(5): 473--486,
2004.

* T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement. CMAME, 194(39-41):4135-4195, 2005.

). A. Cottrell, T. J.R. Hughes, and Y. Bazilevs. Isogeometric
Analysis: Toward Integration of CAD and FEA. Wiley, 2009.
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problems using the assumed stress approach”, International Journal for
Numerical Methods in Engineering, 1(2): 135-149, 1969.
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F. Rizzo, “An integral equation approach to boundary value problems of
classical elastostatics”, Quart. Appl. Math, 25(1): 83-95, 1967.

R. Glowinski, T. Pan, J. Periaux, “A fictitious domain method for Dirichlet
problem and applications”, Computer Methods in Applied Mechanics and
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Sederberg Computer Methods in Applied Mechanics and Engineering, 2013.
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Reduce mesh burden
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E. Saiki, S. Biringen, “Numerical simulation of a cylinder in uniform flow:
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