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The	
  insCtute	
  
•6	
  professors,	
  6	
  lecturers/senior	
  lecturers	
  
•10	
  post-­‐doc	
  fellows	
  
•17	
  PhD	
  students	
  
•~	
  £1.0M	
  funding	
  annually	
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Theory 



MoCvaCon:	
  mulQscale	
  fracture/cuRng
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PracCcal	
  early-­‐stage	
  design	
  simulaCons	
  (interacCve)

[Allix, Kerfriden, Gosselet 2010]
Discretise

0.125 mm
50 mm

100 plies

courtesy: EADS

‣Reduce the problem size while controlling the error (in QoI) 
when solving very large (multiscale) mechanics problems  

Discretise

Surgical	
  simulaCon	
  



MoCvaCon:	
  mulQscale	
  fracture	
  -­‐	
  Example
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Solder joint durability (microelectronics), Bosch GmbH



6



7



8



9



10



!
DiscreCzaCon	
  

!
!

➡parQQon	
  of	
  unity	
  enrichment	
  
✓(enriched)	
  meshless	
  methods	
  
✓level	
  sets	
  
!
➡isogeometric	
  analysis	
  
➡implicit	
  boundaries

!

Model	
  reducC
on	
  

!

✓mulQ-­‐scale	
  &	
  
homogenisaQon

	
  

✓algebraic	
  m
odel	
  reducQ

on	
  (using	
  PO
D)	
  

✓Newton-­‐Kry
lov,	
  “local/g

lobal”,	
  domain	
  

decomposiQon	
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!
Error	
  control	
  

!
!

✓XFEM:	
  goal-­‐oriented	
  error	
  esQmates	
  	
  
‣	
  used	
  by	
  CENAERO	
  (Morfeo	
  XFEM)	
  

✓meshless	
  methods	
  for	
  fracture	
  
✓error	
  esQmaQon	
  for	
  reduced	
  models



M A M 
Institute of Mechanics  
& Advanced MaterialsI

12

!

Part	
  0.	
  An	
  adapQve	
  method	
  for	
  fracture	
  -­‐	
  
applicaQon	
  to	
  polycrystalline	
  failure 
Ahmad	
  Akbari,	
  Pierre	
  Kerfriden,	
  Spaß  

1
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Multiscale methods for Fracture
▪ Concurrent▪ Non-concurrent

Damage zone is modelled by a  
 macroscopic cohesive crack 
that homogenises the failure 
zone.

V.P. Nguyen 2012

l

L

L/l >1

L

l
L/l >>1

Damage zone is modelled 
directly at the microscale and 
coupled to the coarse scale.
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Ways to reduce the fracture models

• HomogenisaQon	
  (FE^2,	
  etc.)	
  -­‐	
  Hierarchical	
  	
  

• Concurrent	
  (bridging	
  domain,	
  ARLEQUIN,	
  etc.)	
  

• Enrichment	
  (PUFEM,	
  XFEM,	
  GFEM)	
  

• Model	
  reducQon

20

mailto:email@cardiff.ac.uk


➢Microscale problem: 

▪Orthotropic grains 
!
!
!
▪Cohesive interface

Fine Scale: micro-structure



➢Macroscale problem: 

▪ FE2 Method 
Based on averaging theorem 
(computational homogenisation) 
!
▪Adaptive mesh refinement 
Error estimation by Zienkiewicz-Zhu-type recovery technique

Mesh refinement

RVECoarse Scale



▪ The FE2 Method RVE time step, i

  Macroscale problem 
Iteration, j

  RVE problem 
Iteration, k

❖ Shortcoming of the FE2 Method : 

Lack of scale separation  
RVE cannot be found in the softening regime 
!
!

Coarse Scale: FE2



er
ro

r

Coarse Element size

Disc
retiza

tion erro
r 

Homogenisation error

Critical level of error

Error control in multiscale modelling

Critical size 

Domain  
Decomposition 

Method
FE2 

method



⌦c

Solution beyond FE2 :  
“Hybrid Multiscale Method”

•FE2 for non-critical region 
 (hierarchical multiscale) 
!
•Domain decomposition for critical 
region (concurrent multiscale)

 
Fine-Coarse scales Coupling 

Critical region

FE2

uf=uc



➢Strategy:
• control the coarse scale 

discretization error  

Mesh refinement Hybrid method

• control the 
modelling error

FE2 FE2 FE2+ Domain 
Decomposition 
Method

 Adaptive multiscale method: A Concurrent approach



• Error estimation by Zienkiewicz-Zhu-type 
recovery technique

➢Coarse scale Adaptive mesh refinement

Element	
  to	
  refine Refined	
  mesh

•Convergence criterion:

Coarse Scale: Adaptive mesh refinement

Error$due$to$the$
discre-sa-on$of$
neglected$$$

⌦f



Results: L-shape



Results: L-shape



Results: uni-axial tension

❖ Sizes are in mm



Results: uni-axial tension

❖ 100X (magnification of displacement)

von Mises stress (Pa)
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Results: uni-axial tension

❖ 100X (magnification of displacement)

von-Mises stress (Pa)



Results: uni-axial tension

❖ 100X (magnification of displacement)

von-Mises stress (Pa)



Verification

36



Verification

37



Perspectives
• coarsening once the crack is open 
• molecular dynamics at the fine scale 
!
!
!
!

• real-life problems! :) 
• coupling with algebraic model reduction 

(POD)
38



Link with algebraic model reduction 
(Proper Orthogonal Decomposition) 

39
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Parametric / stochastic multiscale fracture mechanics

40

➡ Reduced order modelling?➡ Direct numerical simulation: efficient preconditioner?

➡ Adaptive coupling?

First realisation Second realisation

Highly correlated solution fields

Localisation of fracture, uncorrelated

mailto:email@cardiff.ac.uk
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Reduced DDM-POD

41

‣ Decompose	
  the	
  structure	
  into	
  
subdomains	
  

‣ Perform	
  a	
  reducQon	
  in	
  the	
  
highly	
  correlated	
  region	
  

‣ Couple	
  the	
  reduced	
  to	
  the	
  non-­‐
reduced	
  region	
  by	
  a	
  primal	
  
Schur	
  complement

mailto:email@cardiff.ac.uk


Publications 
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Part	
  I.	
  Streamlining	
  the	
  CAD-­‐analysis	
  transiQon  
Part	
  II.	
  Some	
  advances	
  in	
  enriched	
  FEM 
Part	
  III.	
  ApplicaQon	
  to	
  H	
  cuRng	
  of	
  Si	
  wafers 
Part	
  IV.	
  InteracQve	
  cuRng	
  sim.  
 

1
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Part	
  I.	
  Streamlining	
  the	
  CAD-­‐analysis	
  transiQon  
Coupling,	
  or	
  decoupling? 
 

1
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Mo+va+on:	
  free	
  boundary	
  problems	
  -­‐	
  mesh	
  burden

FEM

XFEM



3

CAD	
  to	
  Analysis

calculate

vM stress distribution

iterate

mesh 80%

20%



One	
  would	
  like	
  to	
  be	
  able	
  to	
  use	
  such	
  a	
  mesh

5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

(c)

Figure 5.27 – Approximation géométrique d’une microstructure contenant des inclusions
lenticulaires. (a) maillage grossier de l’approximation ÉF. (b) raffinement par un sous-
maillage gradué (SMG) de niveau (n = 7) à l’intérieur de chaque élément de frontière EB.
(c) approximation de la géométrie indépendamment de la taille h du maillage.

95
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Superimpose	
  the	
  geometry	
  onto	
  an	
  arbitrary	
  background	
  mesh
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Compute	
  interacQons	
  between	
  the	
  geometry	
  and	
  the	
  mesh
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Perform	
  the	
  analysis
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5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

Figure 5.28 – Champs de contraintes (a) et de déplacements (b).

Figure 5.29 – Approximation géométrique d’une microstructure contenant des inclusions
en forme de tore indépendamment de la taille du maillage ÉF.

96
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Implicit	
  boundary	
  method

• Immersed	
  boundary	
  method	
  (Mieal,	
  et	
  al.	
  2005)	
  
• FicQQous	
  domain	
  (Glowinski,	
  et	
  al.	
  1994)	
  
• Embedded	
  boundary	
  method	
  (Johansen,	
  et	
  al.	
  1998)	
  
• Virtual	
  boundary	
  method	
  (Saiki,	
  et	
  al.	
  1996)	
  
• Cartesian	
  grid	
  method	
  (Ye,	
  et	
  al.	
  1999,	
  Nadal,	
  2013)	
  

Paradigm	
  1:	
  Separate	
  field	
  and	
  boundary	
  discreQsaQon	
  

✓ Easy	
  adapQve	
  refinement	
  +	
  error	
  esQmaQon	
  (Nadal,	
  2013)	
  
✓ Flexibility	
  of	
  choosing	
  basis	
  funcQons	
  
• Accuracy	
  for	
  complicated	
  geometries?	
  BCs	
  on	
  implicit	
  surfaces?	
  
➡ An	
  accurate	
  and	
  implicitly-­‐defined	
  geometry	
  from	
  arbitrary	
  

parametric	
  surfaces	
  including	
  corners	
  and	
  sharp	
  edges	
  
(Moumnassi,	
  et	
  al.	
  2011)
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Ex:	
  Moumnassi	
  et	
  al,	
  CMAME	
  DOI:10.1016/j.cma.2010.10.002
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marching method  

seed point(s) - 
requires one 
single global 
search

Level Set representation of a surface defined by a parametric function

• Objectives 
‣ insert surfaces in a structured mesh  

- without meshing the surfaces (boundary, cracks, holes,  
inclusions, etc.) 

- directly from the underlying CAD model 
- model arbitrary solids, including sharp edges and vertices 
‣ keep as much as possible of the mesh as the CAD model  

evolves, i.e. reduce mesh dependence of the implicit  
boundary representation 

‣ maintain the convergence rates and implementation simplicity of the FEM

• In order to reproduce the geometry accurately, significant mesh refinement is typi-

cally needed;

• Because the whole boundary is defined using one single function, it is not straight-

forward to locate and separate different regions on ∂Ωh for attribution of appropriate

boundary conditions;

• To efficiently approximate a curved domain, one generates a discrete approxima-

tion of the scalar distance field φ by evaluating the function on a sufficiently fine

mesh, or by adaptive schemes like octree techniques to capture details of the domain

boundary ∂Ωh. However, linear interpolation of the mesh values to approximate the

boundary is insufficient for higher order analysis.

Figure 3: Approximation of an object with convex and concave boundaries with the

same background mesh, resulting from Boolean combinations of half-spaces defined using

analytically defined level set functions (8-planes and 3-cylinders). (a) The object is con-

structed by a single level set resultant from Boolean operations (one scalar distance value

is stored at each node). (b) shows the approximation by our new approach that preserves

sharp features (eleven scalar distance values are stored at each node).

In the following section, we present a new approach to represent arbitrary regions

using level set functions, which alleviates the pitfalls of the “single-level-set-description”.

11

Single Multiple level sets

Advance by CRP Henri Tudor in 2011 
(Moumnassi et al, CMAME DOI: 10.1016/
j.cma.2010.10.002
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Geomety- 
based  
refinement

H-adaptive refinement based on error estimation

Pixel/Voxel-­‐based	
  FEA	
  on	
  Cartesian	
  grids	
  (Valencia) 

http://www.researcherid.com/rid/A-1858-2009
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Pixel/Voxel-­‐based	
  FEA	
  on	
  Cartesian	
  grids	
  (Valencia) 

Processing time

Quad8 uniform refinement

http://www.researcherid.com/rid/A-1858-2009


EXTENSION TO IMAGE TO MESH 
TRANSITION UNDER WAY
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COLONIX, OSIRIX

How can we move from an image…  



…or perhaps a series of images…

Source: COLONIX, OSIRIX



to a full mechanical analysis?



Pipeline to analysis

Acquire images

Segment images

Mesh Surfaces

Mesh Volume

Perform analysis

Traditional

NURBS/CAD



Image: CGAL Project

Planes (64)

z Rows (64)

x

Cols (64)

y

jEach voxel   is a 32-bit  
floating point measurement



Soft segmentation

0 < mk(j) < 1 �j, k
K�

k=1

mk(j) = 1 �j



Hard segmentation

� =
K�

k=1

Sk

S1

S2

Sk � Sj = � �k �= j



Hard Segmentation at 0.2f 



Hard Segmentation at 0.2f with CGAL and OpenVDB 





Visible Human
Stephane Lanteri (INRIA) and France Telecom



Problems
• Core problem: Geometry is tightly coupled with discretisation. 

• How will we deal with: 

• Dynamic topology eg. cutting. 

• Clinical environments. 

• Refinement. 

• Complex microstructures.



Pipelines to analysis

Acquire images

Segment images

Mesh Surfaces

Mesh Volume

Perform analysis

Traditional

Acquire images

Segment images

Perform analysis

Implicit Boundary

NURBS

Implicit

Explicit }}

{ Implicit





The method



1-irregular mesh/2:1 balance

Octree data structure



Nested Octree

OgOd

M

Discretisation Geometry



Quadtree Level 7/Level 4



Octree Level 5/Level 3



Surface6a2e86c



How to transfer geometric information 
back to the discretisation?

V pd

hd
(Od) V

pg

hg
(Og)pd > pg

hd > hg pg = 1

Enrichment

V pd

hd
(Od)

�
E[V

pg

hg
(Og)]



For each enriched cell in the 
discretisation…

M�1

�2

�



generate local Delaunay 
triangulation…

�1

�2

�



Case 1: boundary
finite cell method, implicit boundary method…

�1

�



Case 2: inclusion
XFEM, PUM…

�1

�
�2

uh(x) =
N�

i=1

Niui +
N�

i=1

Ni

M�

j=1

�j(x)aj
i



Case 3: Dirichlet Boundary
Nitsche’s method, Lagrange multipliers…

�1

�
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!

Paradigm	
  2	
  :	
  IGA	
  

Couple	
  Geometry	
  and	
  ApproximaQon  

1



3

Isogeometric	
  analysis	
  (with	
  BEM)

Approximate	
   the	
  unknown	
  fields	
  with	
   the	
   same	
  basis	
   	
   	
   funcQons	
  
(	
  NURBS,	
  T-­‐splines	
  …	
  )	
  as	
  that	
  used	
  to	
  generate	
  the	
  CAD	
  model	
  

direct	
  calcula+on

meshing

calcula+on

stress analysis•Exact	
  geometry.	
  
•High	
  order	
  conQnuity.	
  
•hpk-­‐refinement



3 KEY QUESTIONS FOR IGA 
!

1. Generate a volume discretization using the surface geometry only? 
!
2. Realistic solids can in general not be represented by only one volume 
(patch) and multiple patches must be glued together to avoid 
“leaks” (Nitsche, T-splines, PHT-splines, RL/LR-splines) 
!
3. Refinement must be done everywhere in the domain (T, PHT…
splines) 

84
With Gang Xu: Generalized IGA - Field-independent geometry approximation



 IGABEM

           Domain	
  
representaQon

           Boundary	
  

	
  	
  	
  	
  representaQon

Isogeometric	
  Analysis	
  with	
  BEM

1.	
  IGABEM	
  with	
  NURBS	
  for	
  2D	
  elasQc	
  problems	
  (Simpson,	
  et	
  al.	
  	
  	
  	
  
CMAME,	
  2011).	
  
!
2.	
  IGABEM	
  with	
  T-­‐splines	
  for	
  3D	
  elasQc	
  problems	
  (Scoe,	
  et	
  al.	
  
CMAME,	
  2012).	
  
!
3.	
  IGABEM	
  with	
  T-­‐splines	
  for	
  3D	
  acousQc	
  problems	
  (Simpson,	
  et	
  al.	
  
2013	
  -­‐	
  MAFELAP2013	
  TH1515).

DifficulQes	
  in	
  dealing	
  with	
  nonlinear	
  problems	
  and	
  non-­‐homogeneous	
  	
  
materials.



4

Knot	
  vector	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  a	
  non-­‐decreasing	
  set	
  of	
  coordinates	
  in	
  the	
  parametric	
  space.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  
B-­‐spline	
  basis	
  func+on	
  
!
!
!
!
!
!
!
NURBS	
  basis	
  func+on

Non-­‐uniform	
  raQonal	
  B-­‐splines



5

•	
  ParQQon	
  of	
  Unity	
  
!
!
!
	
  	
  
•	
  Non-­‐negaQve	
  
!
•	
  p-­‐1	
  conQnuous	
  derivaQves	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
•	
  Tensor	
  product	
  property	
  
	
  	
  	
  	
  
!
!
!
!
!
!
No	
  Kronecker	
  delta	
  property

	
  ProperQes	
  of	
  NURBS



	
  NURBS	
  to	
  T-­‐splines

(NURBS	
  geometry) (T-­‐splines	
  geometry)

NURBS	
  to	
  T-­‐splines

!
NURBS	
  

•	
  No	
  waterQght	
  geometry	
  
•	
  No	
  local	
  refinement	
  scheme

!
T-­‐splines	
  
•	
  	
  	
  Local	
  knot	
  vector	
  (as	
  Point-­‐

based	
  splines)	
  
•	
  	
  	
  Global	
  topology	
  	
  

www.tsplines.com

Y.	
  Bazilevs,	
  V.M.	
  Calo,	
  J.A.	
  Coerell,	
  J.A.	
  Evans,	
  T.J.R.	
  Hughes,	
  S.	
  Lipton,	
  M.A.	
  Scoe,	
  and	
  T.W.	
  
Sederberg.	
  Isogeometric	
  analysis	
  using	
  T-­‐splines.	
  CMAME,	
  199(5-­‐8):229–263,	
  2010.

www.tsplines.com

http://www.tsplines.com
http://www.tsplines.com


PropellerPropeller:	
  NURBS	
  would	
  require	
  several	
  patches	
  -­‐	
  single	
  patch	
  T-­‐splines

Isogeometric	
  boundary	
  element	
  analysis	
  using	
  unstructured	
  T-­‐splines	
  
MA	
  Scoe,	
  RN	
  Simpson,	
  JA	
  Evans,	
  S	
  Lipton,	
  SPA	
  Bordas,	
  TJR	
  Hughes,	
  TW	
  Sederberg	
  
CMAME,	
  2013.	
  hep://orbilu.uni.lu/handle/10993/11850	
  

http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=xhdGcjkAAAAJ&citation_for_view=xhdGcjkAAAAJ:WF5omc3nYNoC
http://orbilu.uni.lu/handle/10993/11850
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!

Part	
  II.	
  Some	
  recent	
  advances	
  in	
  enriched	
  FEM 

 
 

1
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!

Handling	
  discon3nui3es	
  in	
  isogeometric	
  
formula3ons 

!
with	
  Nguyen	
  Vinh	
  Phu,	
  Marie	
  Curie	
  Fellow 

 
 

1



PUM	
  enriched	
  methods	
  

Discon3nui3es	
  modeling	
  

!
• IGA:	
  link	
  to	
  CAD	
  and	
  
accurate	
  stress	
  fields	
  

•XFEM:	
  no	
  remeshing
92

Mesh	
  conforming	
  methods	
  

!
• IGA:	
  link	
  to	
  CAD	
  and	
  
accurate	
  stress	
  fields	
  

•Apps:	
  delaminaQon



PUM	
  enriched	
  methods	
  (XIGA)	
  

1. E.	
  De	
  Luycker,	
  D.	
  J.	
  Benson,	
  T.	
  Belytschko,	
  Y.	
  Bazilevs,	
  and	
  M.	
  C.	
  Hsu.	
  X-­‐FEM	
  
in	
  isogeometric	
  analysis	
  for	
  linear	
  fracture	
  mechanics.	
  IJNME,	
  87(6):541–565,	
  
2011.	
  	
  

2. S.	
  S.	
  Ghorashi,	
  N.	
  Valizadeh,	
  and	
  S.	
  Mohammadi.	
  Extended	
  isogeometric	
  
analysis	
  for	
  simulaQon	
  of	
  staQonary	
  and	
  propagaQng	
  cracks.	
  IJNME,	
  89(9):
1069–1101,	
  2012.	
  	
  

3. D.	
  J.	
  Benson,	
  Y.	
  Bazilevs,	
  E.	
  De	
  Luycker,	
  M.-­‐C.	
  Hsu,	
  M.	
  Scoe,	
  T.	
  J.	
  R.	
  Hughes,	
  
and	
  T.	
  Belytschko.	
  A	
  generalized	
  finite	
  element	
  formulaQon	
  for	
  arbitrary	
  basis	
  
funcQons:	
  From	
  isogeometric	
  analysis	
  to	
  XFEM.	
  IJNME,	
  83(6):765–785,	
  2010.	
  	
  

4. A.	
  Tambat	
  and	
  G.	
  Subbarayan.	
  Isogeometric	
  enriched	
  field	
  approximaQons.	
  
CMAME,	
  245–246:1	
  –	
  21,	
  2012.	
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NURBS	
  basis	
  funcQons enrichment	
  funcQons



Delamina3on	
  analysis	
  with	
  cohesive	
  elements	
  (standard	
  approach)

Z

⌦
�u · bd⌦+

Z

�t

�u · t̄d�t =

Z

⌦
�✏ : �(u)d⌦+

Z

�d

�JuK · tc([[u]])d�d

!
• No link to CAD

• Long preprocessing

• Refined meshes 



Isogeometric	
  cohesive	
  elements

1. C.	
  V.	
  Verhoosel,	
  M.	
  A.	
  Scoe,	
  R.	
  de	
  Borst,	
  and	
  T.	
  J.	
  R.	
  Hughes.	
  An	
  
isogeometric	
  approach	
  to	
  cohesive	
  zone	
  modeling.	
  IJNME,	
  87(15):336–360,	
  
2011.	
  	
  

2. V.P.	
  Nguyen,	
  P.	
  Kerfriden,	
  S.	
  Bordas.	
  Isogeometric	
  cohesive	
  elements	
  for	
  two	
  
and	
  three	
  dimensional	
  composite	
  delaminaQon	
  analysis,	
  2013,	
  Arxiv.

Knot	
  inser3on

quadratic basis



Isogeometric	
  cohesive	
  elements:	
  advantages

!
•	
  Direct	
  link	
  to	
  CAD	
  
•	
  Exact	
  geometry	
  
•	
  Fast/straighworward	
  generaQon	
    
	
  	
  	
  	
  of	
  interface	
  elements	
  
•	
  Accurate	
  stress	
  field	
  
•	
  ComputaQonally	
  cheaper

!
•	
  2D	
  Mixed	
  mode	
  bending	
  test	
  (MMB)	
  	
  
•	
  2	
  x	
  70	
  quarQc-­‐linear	
  B-­‐spline	
  elements	
  
•	
  Run	
  Qme	
  on	
  a	
  laptop	
  4GBi7:	
  6	
  s	
  
•	
  Energy	
  arc-­‐length	
  control	
  

V.	
  P.	
  Nguyen	
  and	
  H.	
  Nguyen-­‐Xuan.	
  High-­‐order	
  B-­‐splines	
  based	
  finite	
  elements	
  for	
  
delaminaQon	
  	
  analysis	
  of	
  laminated	
  composites.	
  	
  Composite	
  Structures,	
  102:261–275,	
  2013.	
  



Isogeometric	
  cohesive	
  elements:	
  2D	
  example

!
•Exact	
  geometry	
  by	
  NURBS	
  +	
  direct	
  link	
  to	
  CAD	
  
• It	
  is	
  straighworward	
  to	
  vary	
  
	
  	
  	
  	
  (1)	
  the	
  number	
  of	
  plies	
  and	
  
	
  	
  	
  	
  (2)	
  #	
  of	
  interface	
  elements:	
  
•	
  Suitable	
  for	
  parameter	
  studies/design	
  	
  
•	
  Solver:	
  energy-­‐based	
  arc-­‐length	
  method	
  (GuQerrez,	
  2007)	
  



98



Isogeometric	
  cohesive	
  elements:	
  2D	
  example

99



Isogeometric	
  cohesive	
  elements:	
  3D	
  example	
  with	
  shells

!
•RotaQon	
  free	
  B-­‐splines	
  shell	
  elements	
  (Kiendl	
  et	
  al.	
  CMAME)	
  
•	
  Two	
  shells,	
  one	
  for	
  each	
  lamina	
  
•	
  Bivariate	
  B-­‐splines	
  cohesive	
  interface	
  elements	
  in	
  between	
  
!



Isogeometric	
  cohesive	
  elements:	
  3D	
  examples

!
•	
  cohesive	
  elements	
  for	
  3D	
  
meshes	
  the	
  same	
  as	
  2D	
  
•	
  large	
  deformaQons	
  



Isogeometric	
  cohesive	
  elements

!
•	
  singly	
  curved	
  thick-­‐wall	
  laminates	
  
•	
  geometry/displacements:	
  NURBS	
  
•	
  trivariate	
  NURBS	
  from	
  NURBS	
  surface(*)	
  
•	
  cohesive	
  surface	
  interface	
  elements

(*)V. P. Nguyen, P. Kerfriden, S.P.A. Bordas, and T. Rabczuk. An integrated design-analysis !
framework for three dimensional composite panels. Computer Aided Design, 2013. submitted.



•Nitsche	
  coupling	
  -­‐	
  NURBS-­‐NURBS

Future	
  work:	
  model	
  selecQon	
  (conQnuum,	
  plate,	
  beam,	
  shell?)

103

Model	
  selec3on	
  	
  
•	
  Model	
  with	
  shells	
  
•	
  IdenQfy	
  “hot	
  spots”	
  -­‐	
  dual	
  	
  
•	
  Couple	
  with	
  conQnuum	
  	
  
•	
  Coarse-­‐grain	
  

le
ve

l 0
 

gl
ob

al
le

ve
l 1

 
lo

ca
l 

RVE

load

thesis A. Akbari 
thesis O. Goury 

1/2 concurrent

concurrent
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Part	
  III.	
  ApplicaQon	
  to	
  mulQ-­‐crack	
  propagaQon	
  
with	
  Danas	
  Sutula,	
  President	
  Scholar 

 
 

1



Numerical	
  Modeling	
  of	
  	
  
SOI	
  Wafer	
  SpliRng



Physical	
  process

Manufacturing	
  process:	
  SmartCutTM	
  
• H+	
  ionizaQon	
  of	
  a	
  thin	
  surface	
  of	
  Si	
  

• Bonding	
  to	
  a	
  handle-­‐wafer	
  (sQffener)	
  

• High	
  temperature	
  thermal	
  annealing	
  

• NucleaQon	
  and	
  growth	
  of	
  caviQes	
  filled	
  with	
  H2	
  

• Pressure	
  driven	
  micro	
  crack	
  growth	
  

• Coalescence	
  and	
  post-­‐split	
  fracture	
  roughness

re
-­‐u
se

A

B

A

A

B

B

B

A

A

A
concerned	
  with

Si	
  wafer



Objec3ves

Determine:	
  
• micro	
  crack	
  nucleaQon	
  points	
  and	
  direcQon	
  

• mulQple	
  crack	
  paths	
  unQl	
  coalescence	
  

• Qme	
  to	
  complete	
  fracture	
  

• final	
  surface	
  roughness



Model

Modeling	
  cavi3es	
  by	
  zero	
  thickness	
  surfaces	
  
• disconQnuiQes	
  in	
  the	
  displacement	
  field	
  
Linear	
  elas3c	
  fracture	
  mechanics	
  (LEFM)	
  
• infinite	
  stress	
  at	
  crack	
  Qp,	
  i.e.	
  singularity

staQsQcally	
  distributed	
  
disconQnuiQes

Cohesive	
  interface	
  with	
  
variaQon	
  in	
  surface	
  energy

fracture	
  criterion	
  at	
  the	
  
disconQnuity	
  Qp	
  

disconQnuity	
  subjected	
  
to	
  H2	
  pressure



Discre3za3on:	
  XFEM

Extended	
  Finite	
  Element	
  Method	
  (XFEM)	
  
• Introduced	
  by	
  Ted	
  Belytschko	
  (1999)	
  for	
  elasQc	
  problems

Fracture	
  of	
  “XFEM”	
  using	
  XFEM



Plate	
  with	
  300	
  cracks	
  -­‐	
  ver3cal	
  extension	
  BCs

	
  

	
  

Fracture	
  process



Ver3cal	
  extension	
  of	
  a	
  plate	
  with	
  300	
  cracks

Example	
  #1

Post-­‐split	
  roughness



Example	
  #2

Mechanical	
  spliWng	
  of	
  a	
  wafer	
  sample	
  
• Post-­‐split	
  roughness	
  as	
  a	
  funcQon	
  of	
  micro	
  crack	
  distribuQon	
  

3 (mm)

1.
5 

(m
m

)

0.5 (mm)

	
  

	
  

damaged	
  zone	
  
(studied	
  area)



Example	
  #2

Mechanical	
  spliWng	
  of	
  a	
  wafer	
  sample	
  
• DiscreQsaQon	
  (≈1mln.	
  DOF,	
  he	
  =	
  150	
  nm)

	
  

Fracture	
  control	
  parameters	
  
-­‐	
  iniQal	
  cracked	
  length:	
  
-­‐	
  damage	
  thickness:



Fracture	
  roughness	
  results	
  
• Case	
  example:	
   	
   ,	
  
!
!
!
!

!
!
• Case	
  example:	
   	
   ,

Example	
  #2

more	
  rough

less	
  rough



Mechanical splitting of a wafer 
• Post-split roughness as a function of micro crack distribution 

• Consider a representative material sample 

• BC: blade loading = fixed displacements (RHS) 

• 20 initial micro cracks within the damage zone  

2 (mm)

1.
5 

(m
m

)

damaged zone 
(pre-existing flaws)

F

Physical experiment

 Application to Si-wafer splitting



Mechanical splitting of a wafer 
• Fracture path comparison: max-hoop crit. VS. energy min. 

• NOTE: non-uniform scaling of axis, y / x = 400 

 Application to Si-wafer splitting
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Part	
  IV.	
  ApplicaQon	
  to	
  surgical	
  simulaQon	
  
with	
  InsQtue	
  of	
  Advanced	
  Studies	
  (iCube,	
  University	
  of	
  Strasbourg,	
  France:	
  Hadrien	
  

Courtecuisse),	
  INRIA,	
  SHACRA	
  Team	
  (Stéphane	
  CoQn,	
  ChrisQan	
  Duriez);	
  Karol	
  Miller,	
  UWA. 

 
 

1RealTcut  
Interactive multiscale 
cutting simulations 



bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

iMAM

Surgical simulation (real time/interactivity)

SimLearning AssistancePlanning

PrecisionRealTcut  
The ERC RealTcut project

‣ Reduce the problem size while controlling error in solving 
very large multiscale mechanics problems  

complex 
microstructure

Courtecuisse et al. PBMB 2011

Discretise

118

mailto:email@cardiff.ac.uk


Approach

Concrete	
  objec3ve:	
  compute	
  the	
  response	
  of	
  organs	
  during	
  surgical	
  
procedures	
  (including	
  cuts)	
  in	
  real	
  Qme	
  (50-­‐500	
  soluQons	
  per	
  second)

119

Two	
  schools	
  of	
  thought	
  
‣ constant	
  Qme	
  

➡accuracy	
  o�en	
  controlled	
  
visually	
  only	
  

‣ model	
  reducQon	
  or	
  “learning”	
  

➡scarce	
  development	
  for	
  
biomedical	
  problems	
  

➡no	
  results	
  available	
  for	
  
cuRng	
  

Proposed	
  approach:	
  maximize	
  accuracy 
for	
  given	
  computaQonal	
  Qme.	
  Error	
  control

A

4.30 A

10�7

2.6⇥

U
Q

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100  120  140

 

 

   

U Q
15%

3.4
U

Q

x

c Wc

1%

25 U

[Courtecuisse	
  et	
  al.,	
  MICCAI,	
  2013]	
  
CollaboraQon	
  INRIA	
  

!
!

First	
  implicit,	
  interac3ve	
  method	
   
for	
  cuWng	
  with	
  contact	
  

Model	
  
reduc3on



6=

enriched  
zone

offline	
   online:	
  interacQve

instrument	
  acQon

GENERATE	
  par3cular	
  
solu3ons

sor3ng	
  
preop	
  	
  
!!!!!
paQent-­‐
specific	
  
mapping

~10^3	
  	
  
snapshots

POD	
  

O(10)	
  fonc3ons

reduced	
  
space	
  of	
  
small	
  
dimension	
  ! global	
  POD	
  

approximaQon
Local	
  (FE)

Local	
  (FE)

~10^6	
  
snapshots

!
cut-­‐Qp	
  enrichmentr

u

compute	
  asymptoQcs	
  

représentaQon	
  
locale
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Results	
  -­‐	
  Dr	
  Hadrien	
  Courtecuisse,	
  PhD	
  INRIA
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!

OPEN	
  SOURCE	
  CODES	
  
PERMIX:	
  MulQscale,	
  XFEM,	
  large	
  deformaQon,	
  coupled	
  2	
  LAMMPS,	
  ABAQUS,	
  OpenMP	
  -­‐	
  

Fortran	
  2003,	
  C++	
  

MATLAB	
  Codes:	
  XFEM,	
  3D	
  ISOGEOMETRIC	
  XFEM,	
  2D	
  ISOGEOMETRIC	
  BEM,	
  2D	
  MESHLESS	
  
DOWNLOAD	
  @	
  hcp://cmechanicsos.users.sourceforge.net/	
  

!
COMPUTATIONAL	
  MECHANICS	
  DISCUSSION	
  GROUP	
  	
  

Request	
  membership	
  @	
  	
  
hep://groups.google.com/group/computaQonal_mechanics_discussion/about	
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TWO	
  POST	
  DOCS  
TWO	
  FACULTY	
  POSITIONS	
  AVAILABLE	
  	
  

http://cmechanicsos.users.sourceforge.net
http://groups.google.com/group/computational_mechanics_discussion/about
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 Application to Si-wafer splitting
Mechanical splitting of a wafer 
• Comparison of total (potential) energy



M A M  
Institute of Mechanics  
& Advanced MaterialsI

125

Ahmad  
Akbari

Olivier 
Goury

Haojie 
Liang Dr. Sundararajan 

Natarajan
Chang-Kye 
Lee

Courtesy: 
PhD Comics

Nguyen-Tanh 
Nhon

Dr. Robert Simpson Dr. Pierre Kerfriden

Chi Hoang
Xuan Peng

Daniel Paladim Danas 
Sutula

Hadrien  
Courtecuisse

Dr. Nguyen 
 Vinh Phu

Yousef Ghaffari 
 Motlagh 

Andrés Octavio  
 Estrada 



Publications - model reduction

• http://orbilu.uni.lu/handle/10993/12024 
• http://orbilu.uni.lu/handle/10993/12012 
• http://orbilu.uni.lu/handle/10993/10207 
• http://orbilu.uni.lu/handle/10993/12454 
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Demos
• Surgical simulation 

• http://www.youtube.com/watch?
v=KqM7rh6sE8s 

• http://www.youtube.com/watch?
v=DYBRKbEiHj8 

• Multi-crack growth 
• http://www.youtube.com/watch?

v=6yPb6NXnex8 
• http://www.youtube.com/watch?

v=7U2o5bFvj8E
128

http://www.youtube.com/watch?v=KqM7rh6sE8s
http://www.youtube.com/watch?v=DYBRKbEiHj8
http://www.youtube.com/watch?v=6yPb6NXnex8
http://www.youtube.com/watch?v=7U2o5bFvj8E


Demos

• http://www.youtube.com/watch?
v=90NAq76mVmQ 

• Solder joint durability 
• http://www.youtube.com/watch?

v=Ri96Wv6zBNU 
• http://www.youtube.com/watch?

v=1g3Pe_9XN9I 

129

http://www.youtube.com/watch?v=90NAq76mVmQ
http://www.youtube.com/watch?v=Ri96Wv6zBNU
http://www.youtube.com/watch?v=1g3Pe_9XN9I


Damage tolerance assessment directly 
from CAD 
• http://www.youtube.com/watch?

v=RV0gidOT0-U 
• http://www.youtube.com/watch?

v=cYhaj6SPLTE 
• http://orbilu.uni.lu/handle/10993/12159 
• http://orbilu.uni.lu/handle/10993/14135 
• http://orbilu.uni.lu/handle/10993/13847 
• http://orbilu.uni.lu/handle/10993/12157

130

http://www.youtube.com/watch?v=RV0gidOT0-U
http://www.youtube.com/watch?v=cYhaj6SPLTE
http://orbilu.uni.lu/handle/10993/12159
http://orbilu.uni.lu/handle/10993/14135
http://orbilu.uni.lu/handle/10993/13847
http://orbilu.uni.lu/handle/10993/12157


Damage tolerance analysis directly from 
CAD
• http://orbilu.uni.lu/handle/10993/11850
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