
ALGORITHMS AND FORMULAS FOR CONVERSION

BETWEEN SYSTEM SIGNATURES AND RELIABILITY

FUNCTIONS

JEAN-LUC MARICHAL

Abstract. The concept of signature is a useful tool in the analysis of semi-
coherent systems with continuous and i.i.d. component lifetimes, especially

for the comparison of different system designs and the computation of the
system reliability. For such systems, we provide conversion formulas between
the signature and the reliability function through the corresponding vector
of dominations and we derive efficient algorithms for the computation of any

of these concepts from the other. We also show how the signature can be
easily computed from the reliability function via basic manipulations such as
differentiation, coefficient extraction, and integration.

1. Introduction

Consider an n-component system (C,ϕ), where C is the set [n] = {1, . . . , n} of
its components and ϕ∶{0,1}n → {0,1} is its structure function which expresses the
state of the system in terms of the states of its components. We assume that the
system is semicoherent, which means that the structure function ϕ is nondecreasing
in each variable and satisfies the conditions ϕ(0, . . . ,0) = 0 and ϕ(1, . . . ,1) = 1. We
also assume that the components have continuous and i.i.d. lifetimes T1, . . . , Tn.

Samaniego [10] introduced the signature of such a system as the n-vector s =
(s1, . . . , sn) whose k-th coordinate sk is the probability that the k-th component
failure causes the system to fail. That is,

sk = Pr(TS = Tk∶n), k = 1, . . . , n,
where TS denotes the system lifetime and Tk∶n denotes the k-th smallest lifetime.
From this definition one can immediately derive the identity ∑n

k=1 sk = 1.
It is very often convenient to express the signature vector s in terms of the

tail signature of the system, a concept introduced by Boland [3] and named so
by Gertsbakh et al. [5]. The tail signature of the system is the (n + 1)-vector
S = (S0, . . . , Sn) defined from s by

(1) Sk =
n

∑
i=k+1

si , k = 0, . . . , n.

In particular, we have S0 = 1 and Sn = 0. Moreover, it is clear that the signature s
can be retrieved from the tail signature S through the formula

(2) sk = Sk−1 − Sk , k = 1, . . . , n.

Date: April 30, 2014.

2010 Mathematics Subject Classification. 62N05, 90B25, 94C10.
Key words and phrases. Semicoherent system, system signature, reliability function, domina-

tion vector.
1

2 JEAN-LUC MARICHAL

Recall also that the reliability function associated with the structure function
ϕ is the unique multilinear polynomial function h∶ [0,1]n → R whose restriction
to {0,1}n is precisely the structure function ϕ. Since the component lifetimes are
independent, this function expresses the reliability of the system in terms of the
component reliabilities (for general background see [2, Chap. 2] and for a more
recent reference see [9, Section 3.2]).

By identifying the variables of the reliability function, we obtain a real polyno-
mial function h(x) of degree at most n. The n-vector d = (d1, . . . , dn) whose k-th
coordinate dk is the coefficient of xk in h(x) is called the vector of domination of
the system (see, e.g., [11, Sect. 6.2]).

The computation of the signature of a large system by means of the usual meth-
ods may be cumbersome and tedious since it requires the evaluation of the structure
function ϕ at every element of {0,1}n. However, Boland et al. [4] observed that
the n-vectors s and d can always be computed from each other through simple
bijective linear transformations (see also [11, Sect. 6.3]). Although these linear
transformations were not given explicitly, they show that the signature vector s
can be efficiently computed from the domination vector d, or equivalently, from
the polynomial function h(x). Since Eqs. (1) and (2) provide linear conversion

formulas between vectors s and S, we observe that any of the vectors s, S, and d
can be computed from any other by means of a bijective linear transformation (see
Figure 1).

s S

d or h(x)

�
����
��	 @

@@I
@
@@R

-
�

Figure 1. Bijective linear transformations

After recalling some basic formulas in Section 2 of this paper, in Section 3 we
yield these linear transformations explicitly and present them as linear conversion
formulas. From these conversion formulas we derive algorithms for the computation
of any of these vectors from any other. These algorithms prove to be very efficient
since they require at most 1

2
n(n + 1) additions and multiplications.

We also show how the computation of the vectors s and S can be easily performed
from basic manipulations of function h(x) such as differentiation, reflection, coeffi-
cient extraction, and integration. For instance, we establish the polynomial identity
(see Eq. (26))

(3)
n

∑
k=1
(n
k
) sk xk = ∫

x

0
(Rn−1h′)(t + 1)dt ,

where h′(x) is the derivative of h(x) and (Rn−1h′)(x) is the polynomial function
obtained from h′(x) by switching the coefficients of xk and xn−1−k for k = 0, . . . , n−1.
Applying this result to the classical 5-component bridge system (see Example 1
below), we can easily see that Eq. (3) reduces to

5s1 x + 10s2 x2 + 10s3 x3 + 5s4 x4 + s5 x5 = 2x2 + 6x3 + x4 .

3

By equating the corresponding coefficients we immediately obtain the signature
vector s = (0, 1

5
, 3
5
, 1
5
,0).

In Section 4 we examine the general non-i.i.d. setting where the component
lifetimes T1, . . . , Tn may be dependent. We show how a certain modification of the
structure function enables us to formally extend almost all the conversion formulas
and algorithms obtained in Sections 2 and 3 to the general dependent setting.
Finally, we end our paper in Section 5 by some concluding remarks.

2. Preliminaries

Boland [3] showed that every coordinate sk of the signature vector can be ex-
plicitly written in the form

(4) sk = ∑
A⊆C

∣A∣=n−k+1

1

(n
∣A∣)

ϕ(A) − ∑
A⊆C
∣A∣=n−k

1

(n
∣A∣)

ϕ(A) .

Here and throughout we identify Boolean n-vectors x ∈ {0,1}n and subsets A ⊆ [n]
in the usual way, that is, by setting xi = 1 if and only if i ∈ A. Thus we use the
same symbol to denote both a function f ∶{0,1}n → R and the corresponding set

function f ∶2[n] → R interchangeably. For instance, we write ϕ(0, . . . ,0) = ϕ(∅) and
ϕ(1, . . . ,1) = ϕ(C).

As mentioned in the introduction, the reliability function associated with the
structure function ϕ is the multilinear function h∶ [0,1]n → R defined by

(5) h(x) = h(x1, . . . , xn) = ∑
A⊆C

ϕ(A)∏
i∈A

xi ∏
i∈C∖A

(1 − xi).

It is easy to see that this function can always be put in the unique standard mul-
tilinear form

(6) h(x) = ∑
A⊆C

d(A)∏
i∈A

xi ,

where, for every A ⊆ C, the coefficient d(A) is an integer.
By identifying the variables x1, . . . , xn in function h(x), we define its diagonal

section h(x, . . . , x), which we have simply denoted by h(x). From Eqs. (5) and (6)
we immediately obtain

h(x) = ∑
A⊆C

ϕ(A)x∣A∣(1 − x)n−∣A∣ = ∑
A⊆C

d(A)x∣A∣ ,

or equivalently,

(7) h(x) =
n

∑
k=0

ϕk x
k(1 − x)n−k =

n

∑
k=0

dk x
k ,

where

(8) ϕk = ∑
A⊆C
∣A∣=k

ϕ(A) and dk = ∑
A⊆C
∣A∣=k

d(A) , k = 0, . . . , n.

Clearly, we have ϕ0 = ϕ(∅) = 0 and d0 = d(∅) = h(0) = 0. As already mentioned,
the n-vector d = (d1, . . . , dn) is called the vector of dominations of the system.

Example 1. Consider the bridge structure as indicated in Figure 2. The corre-
sponding structure function is given by

ϕ(x1, . . . , x5) = x1 x4 ∐ x2 x5 ∐ x1 x3 x5 ∐ x2 x3 x4 ,

4 JEAN-LUC MARICHAL

where ∐ is the (associative) coproduct operation defined by x ∐ y = 1 − (1 − x)(1 −
y). The corresponding reliability function, given in Eq. (5), can be computed
by expanding the coproducts in ϕ and then simplifying the resulting algebraic
expression using x2i = xi. We have

h(x1, . . . , x5) = x1x4 + x2x5 + x1x3x5 + x2x3x4
− x1x2x3x4 − x1x2x3x5 − x1x2x4x5 − x1x3x4x5 − x2x3x4x5
+ 2x1x2x3x4x5 .

We then obtain its diagonal section h(x) = 2x2 + 2x3 − 5x4 + 2x5 and finally the
domination vector d = (0,2,2,−5,2).

2

1

3

5

4

HHH

HHH

���

���

r
���

���

HHH

HHH r

Figure 2. Bridge structure

Example 1 illustrates the important fact that the reliability function h(x) of
any system can be easily obtained from the minimal path sets simply by first
expressing the structure function as a coproduct over the minimal path sets and
then expanding the coproduct and simplifying the resulting algebraic expression
(using x2i = xi) until it becomes multilinear. The diagonal section h(x) of the
reliability function is then obtained by identifying all the variables.

This observation is crucial since, when combined with an efficient algorithm for
converting the polynomial function h(x) into the signature vector, it provides an
efficient way to compute the signature of any system from its minimal path sets.

3. Conversion formulas

Recall that Eq. (6) gives the standard multilinear form of the reliability function
h(x). As mentioned for instance in [9, p. 31], the link between the coefficients
d(A) and the values ϕ(A) is given through the following linear conversion formulas
(obtained from the Möbius inversion theorem)

(9) ϕ(A) = ∑
B⊆A

d(B) and d(A) = ∑
B⊆A
(−1)∣A∣−∣B∣ ϕ(B) .

The following proposition yields the linear conversion formulas between the n-
vectors d = (d1, . . . , dn) and (ϕ1, . . . , ϕn). Note that an alternative form of Eq. (11)
was previously found by Samaniego [11, Sect. 6.3].

Proposition 1. We have

(10) ϕk =
k

∑
j=0
(n − j
k − j

)dj , k = 1, . . . , n,

and

(11) dk =
k

∑
j=0
(−1)k−j (n − j

k − j
)ϕj , k = 1, . . . , n.

5

Proof. By Eqs. (8) and (9) we have

ϕk = ∑
A⊆C
∣A∣=k

ϕ(A) = ∑
A⊆C
∣A∣=k

∑
B⊆A

d(B).

Permuting the sums and then setting j = ∣B∣, we obtain

ϕk = ∑
B⊆C
∣B∣⩽k

d(B) ∑
A⊇B
∣A∣=k

1 = ∑
B⊆C
∣B∣⩽k

(n − ∣B∣
k − ∣B∣

)d(B) =
k

∑
j=0
(n − j
k − j

) ∑
B⊆C
∣B∣=j

d(B),

which proves Eq. (10). Formula (11) can be established similarly. �

We are now ready to establish conversion formulas and algorithms as announced
in the introduction.

3.1. Conversions between s and S. We already know that the linear conversion
formulas between the vectors s and S are given by Eqs. (1) and (2). This conversion
can also be explicitly expressed by means of a polynomial identity. Let ∑n

k=1 sk x
k

and ∑n
k=0 Sk x

k be the generating functions of vectors s and S, respectively. Then
we have the polynomial identity

(12)
n

∑
k=1

sk x
k = 1 + (x − 1)

n

∑
k=0

Sk x
k.

Indeed, using Eq. (2) and summation by parts, we obtain

n

∑
k=1

sk x
k =

n

∑
k=1
(Sk−1 − Sk)xk = x +

n

∑
k=1

Sk (xk+1 − xk) ,

which proves Eq. (12).
For instance, for the bridge system described in Example 1, the generating func-

tions of vectors s and S are given by 1
5
x2 + 3

5
x3 + 1

5
x4 and 1 + x + 4

5
x2 + 1

5
x3,

respectively. We can easily verify that Eq. (12) holds for these functions.

3.2. Conversions between S and d. Combining Eq. (1) with Eqs. (4) and (8),
we observe that

(13) Sk =
1

(n
k
)
∑
A⊆C
∣A∣=n−k

ϕ(A) = 1

(n
k
)
ϕn−k , k = 0, . . . , n.

Recall that a path set of the system is a component subset A such that ϕ(A) = 1.
It follows from Eq. (13) that ϕk is precisely the number of path sets of size k and

that Sn−k is the proportion of component subsets of size k which are path sets.
We also observe that the leading coefficient dn of h(x), also known as the signed
domination [1] of h(x), is zero if and only if there are as many path sets of odd sizes
as path sets of even sizes. This observation immediately follows from the identity
dn = ∑n

j=0(−1)n−j ϕj , obtained by setting k = n in Eq. (11).
Combining Eqs. (10) and (11) with Eq. (13), we immediately obtain the following

conversion formulas between the vectors S and d.

6 JEAN-LUC MARICHAL

Proposition 2. We have

Sk =
n−k
∑
j=0

(n−j
k
)

(n
k
)
dj =

n−k
∑
j=0

(n−k
j
)

(n
j
)
dj , k = 0, . . . , n,(14)

dk = (n
k
)

k

∑
j=0
(−1)k−j (k

j
)Sn−j , k = 0, . . . , n.(15)

Equation (15) can be rewritten in a simpler form by using the classical difference
operator ∆i which maps a sequence zi to the sequence ∆izi = zi+1−zi. Defining the

k-th difference ∆k
i zi of a sequence zi recursively as ∆0

i zi = zi and ∆k
i zi =∆i∆

k−1
i zi,

we can show by induction on k that

(16) ∆k
i zi =

k

∑
j=0
(−1)k−j (k

j
) zi+j .

Comparing Eq. (15) with Eq. (16) immediately shows that Eq. (15) can be rewritten
as

(17) dk = (
n

k
)(∆k

i Sn−i)∣i=0 , k = 1, . . . , n,

and the vector d can then be computed efficiently from a classical difference table
(see Table 1).

Sn

(n
1
)(∆iSn−i)∣i=0

Sn−1 (n
2
)(∆2

iSn−i)∣i=0
(n
1
)(∆iSn−i)∣i=1 (n

3
)(∆3

iSn−i)∣i=0
Sn−2 (n

2
)(∆2

iSn−i)∣i=1 ⋮
(n
1
)(∆iSn−i)∣i=2 ⋮

Sn−3 ⋮
⋮

Table 1. Computation of d from S

Setting Dj,k = (nk)(∆
k
i Sn−i)∣i=j , from Eq. (17) we can easily derive the following

algorithm for the computation of d. This algorithm requires only 1
2
n(n+1) additions

and multiplications.

Algorithm 1. The following algorithm inputs vector S and outputs vector d. It
uses the variables Dj,k for k = 0, . . . , n and j = 0, . . . , n − k.

Step 1. For j = 0, . . . , n, set Dj,0 ∶= Sn−j .
Step 2. For k = 1, . . . , n

For j = 0, . . . , n − k
Dj,k ∶= n−k+1

k
(Dj+1,k−1 −Dj,k−1)

Step 3. For k = 0, . . . , n, set dk ∶=D0,k.

Example 2. Consider the bridge system described in Example 1. The correspond-
ing tail signature vector is given by S = (1,1, 4

5
, 1
5
,0,0). Forming the difference

table (see Table 2) and reading its first row, we obtain the vector d = (0,2,2,−5,2)
and therefore the function h(x) = 2x2 + 2x3 − 5x4 + 2x5.

7

0
0

0 2
1 2

1/5 4 −5
3 −8 2

4/5 −4 5
1 2

1 −2
0

1

Table 2. Computation of d from S (Example 2)

The converse transformation (14) can then be computed efficiently by the fol-
lowing algorithm, in which we compute the quantities

Sj,k =
k

∑
i=0

(k
i
)(i+j

i
)

(n−j
i
)

di+j .

Algorithm 2. The following algorithm inputs vector d and outputs vector S. It
uses the variables Sj,k for k = 0, . . . , n and j = 0, . . . , n − k.

Step 1. For j = 0, . . . , n, set Sj,0 ∶= dj .
Step 2. For k = 1, . . . , n

For j = 0, . . . , n − k
Sj,k ∶= j+1

n−j Sj+1,k−1 + Sj,k−1

Step 3. For k = 0, . . . , n, set Sn−k ∶= S0,k.

3.3. Conversions between s and d. The following proposition yields the con-
version formulas between the vectors s and d. Note that a non-explicit version of
Eq. (18) was previously found in Boland et al. [4] (see also Theorem 6.1 in [11]).

Proposition 3. We have

sk =
n−k
∑
j=0

(n−j
k
)

(n
k
)

j + 1
n − j

dj+1 =
n−k+1
∑
j=1

(n−k
j−1)
(n
j
)
dj , k = 1, . . . , n,(18)

dk = (n
k
)
k−1
∑
j=0
(−1)k−1−j (k − 1

j
) sn−j , k = 1, . . . , n.(19)

dk = (n
k
)(∆k−1

i sn−i)∣i=0 , k = 1, . . . , n,(20)

Proof. Combining Eq. (14) with Eq. (2), we obtain

sk = Sk−1 − Sk =
n−k+1
∑
j=1

(n−k+1
j
)

(n
j
)

dj −
n−k
∑
j=1

(n−k
j
)

(n
j
)
dj

=
n−k
∑
j=1

(n−k
j−1)
(n
j
)
dj +

1

(n
n−k+1)

dn−k+1 ,

8 JEAN-LUC MARICHAL

which proves Eq. (18). By Eq. (2) we have ∆iSn−i = sn−i for i = 0, . . . , n − 1.
Equation (20) then follows from Eq. (17). Equation (19) then follows immediately
from Eq. (20). �

Equation (20) shows that d can be efficiently computed directly from s by means
of a difference table (see Table 3).

(n
1
)sn

(n
2
)(∆isn−i)∣i=0

(n
1
)sn−1 (n

3
)(∆2

i sn−i)∣i=0
(n
2
)(∆isn−i)∣i=1 (n

4
)(∆3

i sn−i)∣i=0
(n
1
)sn−2 (n

3
)(∆2

i sn−i)∣i=1 ⋮
(n
2
)(∆isn−i)∣i=2 ⋮

(n
1
)sn−3 ⋮
⋮

Table 3. Computation of d from s

Setting dj,k = (nk)(∆
k−1
i sn−i)∣i=j−1, we can also derive the following algorithm for

the computation of vector d. This algorithm requires only 1
2
n(n− 1) additions and

multiplications.

Algorithm 3. The following algorithm inputs vector s and outputs vector d. It
uses the variables dj,k for k = 1, . . . , n and j = 1, . . . , n − k + 1.

Step 1. For j = 1, . . . , n, set dj,1 ∶= nsn−j+1.
Step 2. For k = 2, . . . , n

For j = 1, . . . , n − k + 1
dj,k ∶= n−k+1

k
(dj+1,k−1 − dj,k−1)

Step 3. For k = 1, . . . , n, set dk ∶= d1,k.

Example 3. Consider again the bridge system described in Example 1. The cor-
responding signature vector is given by s = (0, 1

5
, 3
5
, 1
5
,0). Forming the difference

table (see Table 4) and reading its first row, we obtain the vector d = (0,2,2,−5,2)
and hence the function h(x) = 2x2 + 2x3 − 5x4 + 2x5.

0
2

1 2
4 −5

3 −8 2
−4 5

1 2
−2

0

Table 4. Computation of d from s (Example 3)

9

The converse transformation (18) can then be computed efficiently by the fol-
lowing algorithm, in which we compute the quantities

sj,k =
1

n

k

∑
i=1

(k−1
i−1)(

i+j−1
i−1)

(n−j
i−1)

di+j−1 .

Algorithm 4. The following algorithm inputs vector d and outputs vector s. It
uses the variables sj,k for k = 1, . . . , n and j = 1, . . . , n − k + 1.

Step 1. For j = 1, . . . , n, set sj,1 ∶= 1
n
dj .

Step 2. For k = 2, . . . , n
For j = 1, . . . , n − k + 1
sj,k ∶= j+1

n−j sj+1,k−1 + sj,k−1
Step 3. For k = 1, . . . , n, set sn−k+1 ∶= s1,k.

3.4. Conversions between S or s and h(x). The conversion formulas between
vectors s and d show that the diagonal section h(x) of the reliability function
encodes exactly the signature (or equivalently, the tail signature), no more, no less.
Even though the latter can be computed from vector d using Eqs. (14) and (18), we
will now see how we can compute it by direct and simple algebraic manipulations
of function h(x).

Let f be a univariate polynomial of degree ⩽ n,

f(x) = an x
n + an−1 xn−1 +⋯ + a1 x + a0 .

The n-reflected of f is the polynomial Rnf obtained from f by switching the coef-
ficients of xk and xn−k for k = 0, . . . , n; that is,

(Rnf)(x) = a0 x
n + a1 xn−1 +⋯ + an−1 x + an ,

or equivalently, (Rnf)(x) = xn f(1/x).
Combining Eq. (7) with Eq. (13), we obtain (see also [4])

(21) h(x) =
n

∑
k=0

Sn−k (
n

k
)xk(1 − x)n−k.

From this equation it follows, as it was already observed in [8], that

(22) (Rnh)(x + 1) =
n

∑
k=0
(n
k
)Sk x

k.

Thus, (n
k
)Sk can be obtained simply by reading the coefficient of xk in the poly-

nomial function (Rnh)(x + 1). Denoting by [xk]f(x) the coefficient of xk in a
polynomial function f(x), Eq. (22) can be rewritten as

(23) (n
k
)Sk = [xk](Rnh)(x + 1), k = 0, . . . , n.

From Eq. (23) we immediately derive the following algorithm (see also [8]).

Algorithm 5. The following algorithm inputs n and h(x) and outputs S.

Step 1. For k = 0, . . . , n, let ak be the coefficient of xk in the n-degree
polynomial (Rnh)(x + 1) = (x + 1)n h(1

x+1).
Step 2. We have Sk = ak/(nk) for k = 0, . . . , n.

10 JEAN-LUC MARICHAL

The following proposition yields the analog of Eqs. (22) and (23) for the signa-
ture. Here and throughout we denote by h′(x) the derivative of h(x).
Proposition 4. We have

k (n
k
) sk = [xk−1](Rn−1h′)(x + 1), k = 1, . . . , n,(24)

n

∑
k=1
(n
k
) sk k xk−1 = (Rn−1h′)(x + 1) ,(25)

n

∑
k=1
(n
k
) sk xk = ∫

x

0
(Rn−1h′)(t + 1)dt .(26)

Proof. By Eq. (7) we have h′(x) = ∑n−1
j=0 (j + 1)dj+1 xj and therefore

(Rn−1h′)(x + 1) =
n−1
∑
j=0
(j + 1)dj+1(x + 1)n−1−j

=
n−1
∑
j=0
(j + 1)dj+1

n−j
∑
k=1
(n − 1 − j
k − 1

)xk−1

=
n

∑
k=1

xk−1
n−k
∑
j=0
(n − 1 − j
k − 1

)(j + 1)dj+1.

Thus, the inner sum in the latter expression is the coefficient of xk−1 in the polyno-
mial function (Rn−1h′)(x+ 1). Dividing this sum by k(n

k
) and then using Eq. (18),

we obtain sk. This proves Eqs. (24) and (25). Equation (26) is then obtained by
integrating both sides of Eq. (25) on the interval [0, x]. �

From Eq. (24) we immediately derive the following algorithm.

Algorithm 6. The following algorithm inputs n and h(x) and outputs s.

Step 1. For k = 1, . . . , n, let ak−1 be the coefficient of xk−1 in the (n−1)-
degree polynomial (Rn−1h′)(x + 1) = (x + 1)n−1 h′(1

x+1).
Step 2. We have sk = ak−1/(k (nk)) for k = 1, . . . , n.

Even though such an algorithm can be easily executed by hand for small n, a
computer algebra system can be of great assistance for large n.

Example 4. Consider again the bridge system described in Example 1. We have

h′(x) = 4x + 6x2 − 20x3 + 10x4 and (R4h′)(x) = 10 − 20x + 6x2 + 4x3.
It follows that (R4h′)(x + 1) = 4x + 18x2 + 4x3 and hence s = (0, 1

5
, 3
5
, 1
5
,0) by

Algorithm 6. Indeed, we have for instance s3 = a2/(3(53)) =
3
5
.

The following proposition, established in [8], provides a necessary and sufficient
condition on the system signature for the reliability function to be of full degree
(i.e., the corresponding signed domination dn is nonzero). Here we provide a shorter
proof based on Eq. (25).

Proposition 5 ([8]). Let (C,ϕ) be an n-component semicoherent system with con-
tinuous and i.i.d. component lifetimes. Then the reliability function h(x) (or equiv-
alently, its diagonal section h(x)) is a polynomial of degree n if and only if

∑
k odd

(n − 1
k − 1

) sk ≠ ∑
k even

(n − 1
k − 1

) sk .

11

Proof. The function h(x) is of degree n if and only if h′(x) is of degree n − 1 and
this condition holds if and only if dn = 1

n
(Rn−1h′)(0) ≠ 0. By Eq. (25) this means

that
n

∑
k=1
(n
k
) sk k (−1)k−1 = n

n

∑
k=1
(n − 1
k − 1

) sk (−1)k−1

is not zero. �

The vectors s and S can also be computed via their generating functions. The
following proposition yields integral formulas for these functions.

Proposition 6. We have

n

∑
k=0

Sk x
k = ∫

1

0
(n + 1)Rn

t ((Rnh)((t − 1)x + 1))dt ,(27)

n

∑
k=1

sk x
k = ∫

1

0
xRn−1

t ((Rn−1h′)((t − 1)x + 1))dt ,(28)

where Rn
t is the n-reflection with respect to variable t.

Proof. By Eq. (22), we have

(Rnh)((t − 1)x + 1) =
n

∑
k=0
(n
k
)Sk (t − 1)kxk

and hence

Rn
t ((Rnh)((t − 1)x + 1)) =

n

∑
k=0
(n
k
)Sk t

n−k (1 − t)kxk.

Integrating this expression from t = 0 to t = 1 and using the well-known identity

(29) ∫
1

0
tn−k (1 − t)k dt = 1

(n + 1)(n
k
)
,

we finally obtain Eq. (27). Formula (28) can be proved similarly by using Eq. (25).
�

From Eq. (28) we immediately derive the following algorithm for the computation
of the generating function of the signature. The algorithm corresponding to Eq. (27)
can be derived similarly.

Algorithm 7. The following algorithm inputs n and h(x) and outputs the gener-
ating function of vector s.

Step 1. Let f(t, x) = x (Rn−1h′)((t − 1)x + 1).
Step 2. We have ∑n

k=1 sk x
k = ∫

1
0 (R

n−1
1 f)(t, x)dt, where Rn−1

1 is the
(n − 1)-reflection with respect to the first argument.

The computation of h(x) from s or S can be useful if we want to compute the
system reliability h(p) directly from the signature and the component reliability p.

We already know that Eq. (21) gives the polynomial h(x) in terms of vector

S. The following proposition yields simple expressions of h(x) and h′(x) in terms
of vector s. This result was already presented in [6, Sect. 4] and [8, Rem. 2] in
alternative forms.

12 JEAN-LUC MARICHAL

Proposition 7. We have

h′(x) =
n

∑
k=1

sk k (
n

k
)xn−k(1 − x)k−1 ,(30)

h(x) =
n

∑
k=1

sk Ix(n − k + 1, k) =
n

∑
k=1

sk
n

∑
i=n−k+1

(n
i
)xi(1 − x)n−i ,(31)

where Ix(a, b) is the regularized beta function defined, for any a, b, x > 0, by

Ix(a, b) = ∫
x
0 ta−1(1 − t)b−1 dt

∫
1
0 t

a−1(1 − t)b−1 dt
.

Proof. Formula (30) immediately follows from Eq. (25). Then, from Eqs. (29) and
(30) we immediately derive the first equality in Eq. (31) since h(x) = ∫

x
0 h′(t)dt.

The second equality follows from Eqs. (1) and (21). �

The following proposition provides alternative expressions of h(x) and h′(x) in
terms of S and s, respectively.

Proposition 8. We have

h(x) = ((x∆i + I)n Sn−i)∣i=0 ,(32)

h′(x) = n((x∆i + I)n−1 sn−i)∣i=0 ,(33)

where I denote the identity operator.

Proof. By Eq. (17) we have

h(x) =
n

∑
k=0

dk x
k =

n

∑
k=0
(n
k
)xk (∆k

i Sn−i)∣i=0 ,

which proves Eq. (32) as we can immediately see by formally expanding the bino-
mial operator expression (x∆i + I)n. Equation (33) then immediately follows from
Eq. (32). �

Proposition 8 shows that the functions h(x) and h′(x) can be computed from
difference tables. Setting

Dj,k(x) = ((x∆i + I)k Sn−i)∣i=j and dj,k(x) = n((x∆i + I)k−1 sn−i)∣i=j−1,

we can derive the following algorithms for the computation of h(x) and h′(x).

Algorithm 8. The following algorithm inputs vector S and outputs function h(x).
It uses the functions Dj,k(x) for k = 0, . . . , n and j = 0, . . . , n − k.

Step 1. For j = 0, . . . , n, set Dj,0(x) ∶= Sn−j .
Step 2. For k = 1, . . . , n

For j = 0, . . . , n − k
Dj,k(x) ∶= xDj+1,k−1(x) + (1 − x)Dj,k−1(x)

Step 3. h(x) ∶=D0,n(x).

Algorithm 9. The following algorithm inputs vector s and outputs function h′(x).
It uses the functions dj,k(x) for k = 1, . . . , n and j = 1, . . . , n − k + 1.

Step 1. For j = 1, . . . , n, set dj,1(x) ∶= nsn−j+1.

13

Step 2. For k = 2, . . . , n
For j = 1, . . . , n − k + 1
dj,k(x) ∶= xdj+1,k−1(x) + (1 − x)dj,k−1(x)

Step 3. h′(x) ∶= d1,n(x).

Table 5 summarizes the main conversion formulas obtained thus far. They are
given by the corresponding equation numbers. For instance, formulas to compute
s from d or h(x) are given in Eqs. (18), (24), (26), and (28).

d or h(x) s S
d or h(x) (19)(20)(31) (15)(17)(21)(32)

s (18)(24)(26)(28) (2)(12)

S (14)(23)(27) (1)(12)

Table 5. Conversion formulas

3.5. Conversions based on the dual structure. We end this section by giving
conversion formulas involving the dual structure of the system. Let ϕD ∶{0,1}n →
{0,1} be the dual structure function defined as ϕD(x) = 1−ϕ(1−x), where 1−x =
(1−x1, . . . ,1−xn), and let hD ∶ [0,1]n → R be its corresponding reliability function,
that is, hD(x) = 1 − h(1 − x).

Straightforward computations yield the following conversion formulas, where the
upper index D always refers to the dual structure and δ stands for the Kronecker
delta:

dDk = δk,0 − (−1)k
n

∑
j=k
(j
k
)dj , k = 0, . . . , n,(34)

dk = δk,0 − (−1)k
n

∑
j=k
(j
k
)dDj , k = 0, . . . , n,(35)

Sk = 1 − SD

n−k = 1 −
k

∑
j=0

(k
j
)
(n
j
)
dDj , k = 0, . . . , n,(36)

sk = sDn−k+1 =
k

∑
j=1

(k−1
j−1)
(n
j
)
dDj , k = 1, . . . , n,(37)

dDk = δk,0 − (
n

k
)(∆k

i Si)∣i=0 , k = 0, . . . , n,(38)

dDk = (n
k
) (∆k−1

i si)∣i=1 , k = 1, . . . , n.(39)

Recall that ϕk gives the number of path sets of size k. Combining (13) with (22),
we obtain the identity ∑n

k=0 ϕn−k x
k = (Rnh)(x + 1), from which we immediately

derive the following generating function

n

∑
k=0

ϕk x
k = Rn((Rnh)(x + 1)) = (x + 1)n h(x

x + 1
) .

14 JEAN-LUC MARICHAL

Note that this function can also be obtained by using Eqs. (13), (36), and the dual
version of Eq. (22). Indeed, we have

n

∑
k=0

ϕk x
k =

n

∑
k=0
(n
k
)Sn−k x

k =
n

∑
k=0
(n
k
)xk −

n

∑
k=0
(n
k
)SD

k x
k

= (x + 1)n − (RnhD)(x + 1).

4. The general dependent case

In this final section we drop the i.i.d. assumption and consider the general depen-
dent setting, assuming only that there are no ties among the component lifetimes
(i.e., Pr(Ti = Tj) = 0 whenever i ≠ j). As a consequence, the function h(x) may no
longer express the reliability of the system in terms of the component reliabilities.

Two concepts of signature emerge in this general setting. First, we can consider
the structure signature, that is, the n-vector s = (s1, . . . , sn) whose k-th coordinate
is given by Boland’s formula (4). Of course, the conversion formulas and algorithms
obtained in Sections 2 and 3 can still be used “as is”, even if the i.i.d. assumption
is dropped. Second, we can consider the probability signature, that is, the n-vector
p = (p1, . . . , pn) whose k-th coordinate is given by pk = Pr(TS = Tk∶n).

We now elaborate on this latter case and show that a modification of the struc-
ture function enables us to formally extend almost all the conversion formulas and
algorithms obtained in Sections 2 and 3 to the general dependent setting.

It was recently shown [7] that

(40) pk = ∑
A⊆C

∣A∣=n−k+1

q(A)ϕ(A) − ∑
A⊆C
∣A∣=n−k

q(A)ϕ(A) ,

where the function q∶2[n] → R, called the relative quality function associated with
the system, is defined by

q(A) = Pr(max
i∉A

Ti <min
i∈A

Ti) ,

and has the property ∑∣A∣=k q(A) = 1 for k = 0, . . . , n. Thus, for any subset A ⊆ C,
the number q(A) is the probability that the best ∣A∣ components of the system are
precisely those in A.

In the special case when the component lifetimes are i.i.d., or even exchangeable,
the number q(A) is exactly 1/(n

∣A∣) and therefore by comparing Eqs. (4) and (40)

we immediately see that the vector p then reduces to s. As mentioned in [7], this
observation motivates the introduction of the normalized relative quality function
q̃∶2[n] → R, defined by q̃(A) = (n

∣A∣) q(A). We then have q̃(A) = 1 whenever the

component lifetimes are i.i.d. or exchangeable.
Following a suggestion by P. Mathonet, we now assign to the system a pseudo-

structure function ψ∶2[n] → R defined so as to have

(41) ∑
A⊆C
∣A∣=k

1

(n
∣A∣)

ψ(A) = ∑
A⊆C
∣A∣=k

q(A)ϕ(A), k = 0, . . . , n.

Definition 9. Let (C,ϕ) be an n-component system with relative quality function

q. The q-structure function associated with the system is the set function ψ∶2[n] →

15

R defined by

ψ(A) = q̃(A)ϕ(A) =
⎧⎪⎪⎨⎪⎪⎩

(n
∣A∣) q(A), if A is a path set,

0, otherwise.

It is clear that ψ reduces to ϕ whenever the component lifetimes of the system
are i.i.d. or exchangeable. In the general dependent case, the function ψ is a pseudo-
Boolean function, that is, a function from {0,1}n to R. As such, it has the following
multilinear form

ψ(x) = ∑
A⊆C

ψ(A)∏
i∈A

xi ∏
i∈C∖A

(1 − xi) , x ∈ {0,1}n.

Just as h(x) is the multilinear extension of ϕ(x), we can also define the multilinear
extension g∶ [0,1]n → R of ψ(x); that is,

g(x) = ∑
A⊆C

ψ(A)∏
i∈A

xi ∏
i∈C∖A

(1 − xi) , x ∈ [0,1]n.

This function can always be put in the unique standard multilinear form

(42) g(x) = ∑
A⊆C

c(A)∏
i∈A

xi ,

where, by the Möbius inversion theorem, the coefficient c(A) is given by

(43) c(A) = ∑
B⊆A
(−1)∣A∣−∣B∣ ψ(B).

Thus, in this general setting we readily see that Eq. (41) holds and, consequently,
that Eq. (4) immediately extends to Eq. (40).

Now, if we also define the values P k, ψk, and ck for k = 0, . . . , n as

P k =
n

∑
i=k+1

pi , ψk = ∑
A⊆C
∣A∣=k

ψ(A) , ck = ∑
A⊆C
∣A∣=k

c(A) ,

then we can formally extend all our formulas and algorithms from Eq. (1) to Eq. (33)
mutatis mutandis to the general dependent setting.

More formally, we have the following straightforward theorem.

Theorem 10. Equations (1)–(33) still hold if we replace sk, Sk, h(x), h(x), ϕ(A),
d(A), ϕk, and dk with pk, P k, g(x), g(x), ψ(A), c(A), ψk, and ck, respectively.

Let us illustrate how this theorem can be applied. Considering for instance
Eq. (13), Theorem 10 shows that this equation can be translated in the general
setting into

P k =
1

(n
k
)
∑
A⊆C
∣A∣=n−k

ψ(A) = 1

(n
k
)
ψn−k , k = 0, . . . , n.

Similarly, from Eq. (26) we immediately derive the identity

(44)
n

∑
k=1
(n
k
)pk xk = ∫

x

0
(Rn−1g′)(t + 1)dt .

16 JEAN-LUC MARICHAL

Example 5. Consider a 3-component system whose structure function is given by

ϕ(x1, x2, x3) = x1(x2 ∐ x3) = x1x2x3 + x1x2(1 − x3) + x1(1 − x2)x3 .

The q-structure function is then given by

ψ(x1, x2, x3) = x1x2x3 + 3 q({1,2})x1x2(1 − x3) + 3 q({1,3})x1(1 − x2)x3 .

Using Eq. (44), we finally obtain

p1 = 1 − q({1,2}) − q({1,3}) = q({2,3}) ,
p2 = q({1,2}) + q({1,3}) ,
p3 = 0 .

It is noteworthy that in practice the function g(x) is much heavier to handle
than the function h(x) (consider for instance Example 1). Moreover, the function
g(x) need not be nondecreasing in each argument and hence it cannot be easily
expressed as a coproduct over the minimal path sets.

However, despite these observations, Theorem 10 shows that this formal exten-
sion of the conversion formulas is mathematically elegant and might have theoretical
applications.

5. Concluding remarks

We have provided various conversion formulas between the signature and the
reliability function for systems with continuous and i.i.d. component lifetimes and
we have extended theses formulas to the general dependent case. This study can
be regarded as the continuation of paper [8], where Eqs. (22)–(23), Algorithm 5,
and Proposition 5 were already presented and established.

We conclude this paper with the following two observations which are worth
particular mention:

● It is a well-known fact that, under the i.i.d. assumption, both the structure
signature s = (s1, . . . , sn) and the reliability function h(x) are purely com-
binatorial objects associated with the structure function of the system. As
a consequence, the developments and results presented in Sections 2 and 3
are based only on combinatorial and algebraic arguments and do not really
require any stochastic setting, even if such a setting has to be considered
to define the component lifetimes.
● The q-structure function of a system as introduced in Definition 9 is simply
a convenient transformation of the structure function of the system which
enables us to extend Equations (1)–(33) to the general dependent case.
Even though the q-structure function ψ(x) and its corresponding multilin-
ear extension g(x) are heavier to handle than their i.i.d. counterparts ϕ(x)
and h(x), Theorem 10 suggests that this extension is interesting more from
a conceptual than applied viewpoint.

Acknowledgments

The author would like to thank the reviewer for timely and helpful suggestions for
improving the organization of this paper. This research is supported by the internal
research project F1R-MTH-PUL-12RDO2 of the University of Luxembourg.

17

References

[1] R. E. Barlow and S. Iyer. Computational complexity of coherent systems and the reliability

polynomial. Probability in the Engineering and Informational Sciences, 2:461–469, 1988.
[2] R. E. Barlow and F. Proschan. Statistical theory of reliability and life testing. To Begin With,

Silver Spring, MD, 1981.
[3] P. J. Boland. Signatures of indirect majority systems. J. Appl. Prob., 38:597–603, 2001.

[4] P. J. Boland, F. J. Samaniego, and E. M. Vestrup. Linking dominations and signatures in
network reliability theory. In: Mathematical and statistical methods in reliability (Trondheim,
2002), pages 89-103. Ser. Qual. Reliab. Eng. Stat., 7, World Sci. Publ., River Edge, NJ, 2003.

[5] I. Gertsbakh, Y. Shpungin, and F. Spizzichino. Signatures of coherent systems built with

separate modules. J. Appl. Probab., 48(3):843–855, 2011.
[6] J.-L. Marichal. Cumulative distribution functions and moments of lattice polynomials. Stat.

Prob. Letters, 76(12):1273–1279, 2006.
[7] J.-L. Marichal and P. Mathonet. Extensions of system signatures to dependent lifetimes: Ex-

plicit expressions and interpretations. J. Multivariate Analysis, 102(5):931–936, 2011.
[8] J.-L. Marichal and P. Mathonet. Computing system signatures through reliability functions.

Stat. Prob. Letters, 83(3):710–717, 2013.
[9] K. G. Ramamurthy. Coherent structures and simple games, volume 6 of Theory and Deci-

sion Library. Series C: Game Theory, Mathematical Programming and Operations Research.
Kluwer Academic Publishers Group, Dordrecht, 1990.

[10] F. J. Samaniego. On closure of the IFR class under formation of coherent systems. IEEE

Trans. Reliability, 34:69–72, 1985.
[11] F. J. Samaniego. System signatures and their applications in engineering reliability. Int.

Series in Operations Research & Management Science, 110. New York: Springer, 2007.

Mathematics Research Unit, FSTC, University of Luxembourg, 6, rue Coudenhove-
Kalergi, L-1359 Luxembourg, Luxembourg

E-mail address: jean-luc.marichal[at]uni.lu

