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Noniinear consensus protocols for dynamic directed networks of multi-agent systems with fixed and switching

topologies are investigated separately in this paper. Based on the centre manifold reduction technique, nonlinear

consensus protocols are presented. We prove that a group of agents can reach a B-consensus, the value of which is the

group decision value varying from the minimum and the maximum values of the initial states of the agents. Moreover,

we derive the conditions to guarantee that all the agents reach a B-consensus on a desired group decision value. Finally,

a simulation study concerning the vertical alignment manoeuvere of a team of unmanned air vehicles is performed.

Simulation results show that the nonlinear consensus protocols proposed are more effective than the linear protocols for

the formation control of the agents and they are an improvement over existing protocols.
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1. Introduction agents. Fax and Murray[7J gave the stability anal-

ysis of multi-vehicle formations with a Nyquist-type
In recent years, the distributed coordination of criterion. Moreau[8] used a set-valued Lyapunov ap-

multiple agents has attracted considerable attention. proach to study consensus problems with unidirec-
This is mainly due to its important applications, in- tional time-dependent communication links. Mor-e-
cluding the cooperative control of unmanned air ve- over, by a Lyapunov-based approach, Olfati-Saber and
hicles (UAVs), autonomous underwater vehicles, con- Murraylsl solved the average-consensus problem for a
gestion control in communication networks, swarms network of agents with switching topology and time-
of autonomous vehicles or robots, autonomous forma- delays. Cao et o1lrt,tzl investigated a consensus in a
tion flight, etc. In all cases the aim is to control a d.ynamically changing environment. The studies men-
group of agents connected through a communication tioned above are all concerned with linear protocols
network to reach an agreement on certain quantities design rule allowing consensus on certain quantities

of interest. This problem is usually called the con- of interest. However, the problem of attitude align-
sensus problem. Many results have been obtained on ment for robots and spacecraft is a special type of
this problem.li r3l For example, Vicsek 

"1 
ollr) pro- consensus problem. For these physical systems? it

posed a simple model for the phase transition of a is not reasonable to assume that their attitudes can
group of self-driven particles and numerically demon- be changed by an unbounded value, i.e. the input

strated the complex dynamics of the model. Jad- torque is bounded. This suggests developing consen-

babaie et all2l demonstrated that a simple neighbour sus protocols that guarantee that the overall input of

rule made all agents eventually move in the same each node stays bounded. This naturally leads to the

direction despite the absence of centralized coordi- design and analysis of nonlinear consensus protocols.

nation and each agent's set of neighbours changed Bauso et allrsl and Olfati-Saber and Murraylral t"o-

with time as the system evolved under a joint con- arately, considered nonlinear consensus protocols for

nection condition. Lin et al [6] studied three for- an undirected network of agents with fixed topologies.

mation strategies for groups of mobile autonomous The stability analysis in the existing literature is based
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on the traditional Lyapunov theory.la-ro] However,

there still exists considerable difficulty in construct-

ing a concrete Lyapunov functional for a nonlinear

system, which motivates us to find a more suitable

tool to judge the stability of nonlinear systems.

In the present paper, a B-consensus problem for

directed networks of nonlinear multi-agent systems

with fixed and switching topologies is discussed, sep-

arately. Here, each agent has only local information

from its neighbours. What we are interested in is to

design a nonlinear protocol to make the agents reach

consensus on group decision value B(z(0)), the value

which varies from the minimum value to the maximum

value of the initial states of the agents. The conver-
gence analysis is carried out based on centre mani-

fold reduction theory. It is different from the results
presented in the existing literature, where the conver-
gence analysis is based on the Lyapunov theory.[e-to]

The idea of centre manifold reduction is to reduce an

infi.nite.dimensional network dynamic system into a

one-dimensional system by projecting the original dy-

namics onto the eigenvectors corresponding to zero

real-part eigenvalue. Therefore, the stability of the

original system is completely dependent on the stabil-

ity of the reduced system. Recently, centre manifold

reduction has been introduced as a tool for the de.

sign of stabilizing control laws for nonlinear systems in

critical cases. Critical cases occur when the linearized

system at an equilibrium point has at least one zero

real-part eigenvalue, while the remaining eigenvalues

all have negative real-parts. So, if the communication

links between agents are kept strongly connected, the

nonlinear dynamic multi-agent systems with protocol

(9) are said to be in the critical cases. We prove that

the asymptotic consensus is reachable and we also de-

rive conditions to guarantee that all agents reach a B-
consensus on a desired group decision value. Finally,

we perform a simulation study concerning the vertical

alignment manoeuvere of a team of UAVs. Simulation

results show that the nonlinear consensus protocols

proposed are more effective than the linear protocols

for the formation control of the agents and they are

an improvement over existing protocols.

The remainder of the present paper is organized

as follows. In Section 2, some fundamental concep-

tions on graph theory and centre manifold theory

are introduced. In Section 3, the nonlinear consen-

sus problem is described. In Section 4 are presented

the main results, including our designed distributed

nonlinear consensus protocol for a network of multi-

agents with fixed and switching topologies according

to the centre manifold theory, the analysis of the con-

vergence, and the derived conditions to guarantee that

all agents reach consensus on a group decision value

of interest. In Section 5, the vertical alignment ma-

noeuvere of a team of UAVs is simulated. Finally,

some conclusions drawn from the present study are
presented in Section 6.

2. Preliminaries

2.1. Graph theory

Let graph G: (f , E, A)be a directed graph de-

noting the dynamic network with a set of nodes f,

where f : {I, 2,. . . , n} is composed of all agents,

and a set of edges E : {(i, j)}, where (i,, j) e E

which means that i, arrd j are adjacent or that j

is one of the neighbours of z. We refer to i, and j

as the tail and head of the edge (2, j), respectively.

A: Lati) is a weighed adjacency matrix, here we de-

frne aii ) 0, i, j  : I,. .. , f l , i f ( i, j) € E, while

au : 0 lf (i, i) f E. Moreover, we assume that

att : 0 for all i e f . The neighbours of agent i

a,re denoted by lfz : {j e f t (i, j) e E} and lAlal
denotes the number of AI;. A directed path that con-

nects i and j in the directed graph G is a sequence

of distinct nodes i1, i2, . . . , i-, where it : 'i, i* : j

and ( i1 , i r+r)  € E,  0 < I  < m-I .  The d i rected
graph tnrns into an undirected graph if aii : ai.; for

any i. j € .f . If there is a directed path from a node

to any other node, the graph is said to be strongly

connected while the undirected graph is said to be a

connected graph.[15] The in-degree and out-degree of

node i are defined, repectively, as

+ = \
d in \ z ) :  

Lo j r ,  
a . nd  dou t (?J  :  )  . a i i .

j:1

A directed graph G : (f , E, A) is said to be bal-

anced if and only if all of its nodes are balanced, i.e.

di,( ' i ,): do*(i), i  € f .tel

2.2. Centre manifold theory

Consider the following system:

i : A r _ t f ( r , y )

i  :  By I  g(r ,  y) (1)

where e € R, A € R^, and A and B are constant ma-
trices such that all the eigenvalues of,4 have zero real
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parts while all the eigenvalues of B have negative real

parts. The functions f and g are C2 with /(0, 0) : 0,

D/(0, 0) : 0, 9(0, 0) : O, and D9(0, 0) : 0 (Here,

D/ denotes the Jacobian matrix of /). In general, if

a : h(r) is an invariant manifold for Eq.(l) and h is

smooth, then it is called a centre manifold if h(0) : 0,

and Dh(O) :0.

Theorem 1[16] There exists a centre manifold for

Eq.(l), v : h(n), l" l < d where h is C2. The flow on

the centre manifold is governed by the n-dimensional

system

t t :  Au+  f  ( u ,  h (u ) ) .  ( 2 )

The next theorem shows that equation (2) contains all

the necessary information that is needed to determine

the asymptotic behaviour of small solutions of Eq.(1).

Theorem 2[16] (a) Suppose that the zero solu-

tion of Eq.(Z) is stable (asymptotically stable) (unsta-

ble), then the zero solution of Eq.(1) will be stable

(asymptotically stable) (unstable). (b) Suppose that

the zero solution of Eq.(2) is stable and let (r(t), y(t))

be a solution of Eq.(l) with (r(0), 9(0)) sufficiently

small, then there will exist a solution u(t) of Eq.(2)

such that as f --+ oo

r ( t ) : u ( t ) + o ( e - t t 1

a( t ) :  n(u( t ) )  *  o(e- t ;  (3)

w h e r e T ) 0 i s a c o n s t a n t .

Substituting A(t): h(r(t)) into the second equa-

tion in Eq.(l) yields

Dh(r)lAn + f (r,  n@))l:  Bh(n) + s(r, h(n)). (4)

Equation (4) together with the conditions h(0) : 0

and Dh(O) : 0 is the system to be solved for the cen-

tre manifold. It is impossible to accurately solve the

equation, in general, since it is equivalent to solving

Eq.(t). The next result, however, shows that, in prin-

ciple, the centre manifold can be approximated to any

degree of accuracy.

Function d , Rn -- R* which is CL in a neigh-

bourhood of the origin is defined as

(Mo)(n) : Da(t)lAz + f (t, Q@\l
86(r) - s(x,6(r)). (5)

Note that by Eq.( ), (Mh)(r) : g.

Theorem 3[16] Let @ be a Cl mapping of a

neighbourhood of the origin in .R' into R- with

d(0) : 0 and Dd(0) : 0. Suppose that as r ---+

0 , (M f i ( r ) :O ( l " l n )  whe re  q  >  1 ,  t hen  as  r  -  0 ,

l h ( " )  -  Q@) l :0 ( l " l o )  w i l l  ho ld .

3. Problem description

Suppose that the network system under consid-

eration is composed of n agents. Each agent is re-

garded as a node in a directed graph G. Each edge

U, i,) € E(G) corresponds to an available information

Iink from agent i to agent j. Moreover, each agent

updates its current state based on the information re-

ceived from its neighbours. Let ni be the state of the

i-th agent. Suppose the z-th agent (z € f) has the

dynamics as follows:

i t ( t ) : u i ( t ) ,Y i '  €  l ,  i  e  N i  ( 6 )

with init ial condition 
"r(s) 

: za(0), s e (-oo,0]

where u; is the control protocol.

Our objective is to find an appropriate nonlinear

protocol to suppress disturbances of agents and make

all agents reach agreement.

Consider the following nonlinear protocol:

u i ( t ) :  Y  p@6 r ) ,  ( 7 )
j €Nt

where  i ,  i  : 7 , . . . , t u i  p ( . ) ,  R  - -+  R  sa t i s f i es  t he  fo l -

Iowing properties: t) g(.) is continuous and locally

Lipschitz, and 2) g(u, ri): 0 <+ ri : r j. D@ g R)

denotes the domains of definition of function p(.), i.e.

$ i  e  D , ' i : 1 , . . . ) r L .  G i v e n  p r o t o c o l  ( 7 ) ,  t h e  n e t -

work dynamics of these n agents may be written in

the vector form as

h ( t ) :  q ( r ) ,  ( 8 )

whe re  r ( t )  :  :  ( r 1 ( t ) , . . . ,  * . ( t ) ) r ,  f  )  0  and  q  :

( q r , . . . ,  q , ) "  i s  such  tha t  qo ( " ) :  D  p@0,  r1 )  and
j € N t

g(.) is continuous on -R'.

First, we define the invariant subspace Q as A :

{ n e D " O R n : n L : n 2
that q(z-) : 0 for all z* e '(7. Hence, the subspace l-l

is an equilibrium set for the system (8).

For the convenience of discussion, we assume the

nonlineeu'protocol (7) is in the following form:

ui ( t ) :  D "ut ( " t  
-  *o)  t  |  6u i@n, r i1 ,  (9)

i€Nr i€N"

w}nerc Q6i(ri, ri) is a purely nonlinear function and for

all (i, j) € e satisfies the following properties: dr;(.) is

C2 on R*n, with d;4(ri, r i) : O and D$ii(na, rj) :

0, if and only if zi : 13 (Here, DQii is the Jacobian

matrix of Qti).
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Remark 1 Note that based on the Taylor se-
ries expansion, nonlinear protocol (7) can always be
represented as the sum of a linear part and a purely

nonlinear part. Therefore, the discussion of protocol
(9) is without loss of generality.

Given protocol (9), the network dynamics can be
summarized as

" ( t ) : - L r ( t )+ f ( " ) ,
where -L is called the graph Laplacian induced by the
information flow G and defined as

( *
-  |  t  a * , j : ' i ,
I i j :  \  

k = l . k + i
I
|  

- o o j '  i * i "

where / (fr,..., f-)T i" such that fi(r)
D d.;i@i, ri) and /(r) satisfies the following prop-

j€Nr.

erties:
1) /(.) is C2 on R--, with f(r*) :

Df ("-) : 0, (Here, z* is the equilibrium
system (10), Df is the Jacobian matrix of /,

"(t) 
: -Lr(t)

is a corresponding linearized system of nonlinear sys-
tem (10). Apparently, .L has a zero eigenvalue and
1 : (1, ..., l)L € rR' is the corresponding eigenvec-
tor with the eigenvalue .\: 0.

If for any initial state z(0) e D", r(t) converges to
asymptotically stable equilibrium point r* € J7 of sys-
tem (8) as t ---+ oo we say that all agents have asymp
totically reached consensus in infinite time t > 0; let

0 : Rn --+ ft be a continuous and differentiable func-
t i on  on  r :  ( r r , . . . ,  nn ) r ,  i t  l l r i -  0 ( " (O) ) l l  - - -+  0  f o r

aIli, j € f as f --+ oo we say that protocol u6(t) makes
the agents asymptotically reach the B-consensus on a
group decision value B@Q))t function of their ini-
tial states or we say that the system asymptotically
converges to B(z(0))f; especially for the cases with

0@) : Aue(n) : (1.1n)Lrr(0)1 we say that the sys-

tem asymptotically reaches an average-consensus.

In this paper, we are interested in discussing the

B-consensus problem in networks of agents with both

fixed and switching topologies, sepa,rately. In particu-

lar, we are interested in agreement functions varying
in the following range:

mi4{z i (0)}  < 0@) < max{rz(0)} .  (12)
i € r ' '  i e r ' "  "

The above condition means that the group decision

value must be restricted between the minimum and

the maximum values of the initial states of agents.

(10)

Remark 2 The B-consensus mentioned in this
paper is significant in some areas, especially, in the

biological and the chemical areas where only certain

life-form groups or chemical reactors are required to

reach an agreement but not to be maintained at a

fixed value.

Remark 3 In a network of continuous-time in-

tegrator agents, convergence analysis of protocol (9)

is equivalent to stability analysis for system (10) at

equilibrium point r* : B(z(0))1.
The following lemmas are needed for the main re-

sult of next section.

Lemma ttel If the graph G is strongly connected,

then its Laplacian tr satisfies

( i )  r ank (Z )  : n - r ;

(ii) ^ : 0 is one eigenvalue of -L, and 1 is the

corresponding eigenvectorl

(iii) The remaining n - 1 eigenvalues all have pos-

, 0 and itive real-parts, in particular, for an undirected graph,

point of they are all positive and real'

( 1  1 )
3.1. Nonlinear consensus protocols

based on centre manifold reduction

Recently, centre manifold reduction has been em-

ployed in nonlinear stabilization to stabilize the con-

trol law designs for varieties of nonlinear systems in

the so-called "critical cases". Critical cases occur

when the linearized system at an equilibrirrm point

has at least one zero real-part eigenvalue, while the

lspa,ining eigenvalues all have negative real-parts. So,

according to Lemma l. lsnlinear sJrstem (10) is said

to be in the critical case, if the graph G is strongly

connected.

To investigate the stability of nonlinear system

(10) at equilibrilm point B(r(0))r (B(r(O))r e f/), we

use a coordinate transformation yi(t) : n{t) - B@@))
then system (10) becomes

t(t) :  -Ly(t) - LB@(o)L+ f (y + B(r(0))) due
to LB(r(0)L : B@Q)LL : 0 and denote f(y) :

f (a + 0@Q))) then

y ( t ) : -Ly ( t )+ f ( y ) . (13)

Thus, discussing the stability of system (10) at the

equilibrium point, B(z(0))1, is equivalent to dis-

cussing the stability of the origin of system (13).

Lemma 2 For system (13), there exists a unitary

matrix ,S, (,S € C"'n) such that system (13) can be

normalized to the form of system (1), if the commu-

nication links between agents are kept strongly con-

nected.
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Proof Flom Lemma 1, if the communication

links between agents are kept strongly connected, then

Laplacian matrix -L has one 0 eigenvalue and n-1 posi-

tive real-part eigenvalues. Let 0 < A2 ( )s ( ... ( ),

denote the ru * 1 nonzero eigenvalues of Laplacian ma-

trix .L and let A: *L, according to Schur's unitary

triangularisation theorem, there will exist unitary ma-

trix 5 € Cnxn such that

and 
[-,1" * * 1

, .  , , : l  I
l 0  - l
L o  o - ^ , . ]

we denote s :  [S,  s , ] ,  ( ( t ) :  S ly( t ) ,  and 4( t )  :

S{ y(t), where ,Sr is the conjugate transpose of S, {(t)
is the one-dimensional vector, and a(t) is the (n - 1)-

dimensional vector. Noting that ,S is a unitary matrix,

we have ̂ 9flS1 :0. Further, Iet .9t : 7lr/", then we

will have

where /(f, 4) and GG, ri are smooth functions and

satisfy /(0, O) : 0, G(0, 0) : 0, D/(0, 0) : 0, and

DG@.0) : 0. The proof of Lemma 2 is completed.

Remark 4 For undirected connected graphs,

since A is s1-mmetric. there exists an orthogonal ma-

rrix t/.(u e R"") such that urAU: f 9 ,O IL0 "I--r I

Then sys.tem (13) can be normalized into the form of

system (1).

From the centre manifold theorem it is easv to

obtain the following lemma.

Lemma 3 If the directed graph G is strongly

connected, then there exists a centre manifold q(t) :

h({) such that the origin of system (14) is asymptot-

ically stable if the origin is asymptotically stable for

the reduced model

e(t) :  Anh(0 + i(€, h(€)), (15)

where h satisfies the partial differential equation

Dh(0{AL2h(€) + /({, h({))} - J"_rh(€)

-  c(€,  h({ ) )  :  o  (16)

with boundary conditions: h(0) :0 and ,h(0) :0.

3.2. Analysis of stabil ization

Consider a scalar real nonlinear system

y :  d a z  +  e y 3  + . . . .  ( 1 7 )

The stability condition for the system is given by the

following lemma.

Lemma 41r) 76" origin is asymptotically stable

for system (17) if d : 0 and e < 0, but it is unstable

1 f d + 0 .

We employ Taylor series expansions below, using

multilinear function notation for the terms in these

expansions. The definition of the multilinear function

is recalled as follows.

Definition 1[18] Let V1, V2,. . . , Vp and W be

vector spaces over the same fi.eld. A map tIt :

Vy x V2 x ... x V1" ---+ W is multilinear (or k-linear)

if it is linear in each of its arguments, that is, for

a n y  s c a l a r ,  w e  h a v e  V ( u t , . . . , d ' t ) i l d , 6 i , . . . , u n )  :

a V ( q , . . . ,  t r i , , . . . ,  u n )  *  d ' V ( u y , . . . ,  6 i . , . . . ,  u n ) .

The integer k is the degree of the multilinear func-

tion V.

Next, we give a simple description for Taylor se-

ries expansions and the notations which are used in

the following formula. Using the Taylor series expan-

sion, a real-valued function f (rr, ,r, . . . , frn) at origin

Mo(0, 0, . . . , 0) can be expressed as

.HAS: [o 
'" 

.1 

,
l0 J,_r I

sHro): 
[;r]

: sH AS Iertl-l +.sHl(,s1€ + sn)
I r(t) I

:  fo o, ,  I feol l*  l t r r , t r€+sLal . l  ,
Lo t ,- ,1 lz(r) l  Lt , ' f t t ' {+sLq)l

i .e .

[eor ]  _ lo  o , , l  feor l . I i ! * , ' l ] ,  ( r4 )
Itr 'yl  

:  
lo,, , l  Inorl 

* 
Let*,rrt



3360 Li Yu-Mei et ai Vol. 18

where

The coefrcients in the Taylor series expansions

(18) and (19) are either constants or syrnmetric mul-

tilinear functions of their arguments. For instance,

frrr\t, rl, ri and. Grr(r1,4) denote a symmetric trilin-

ear scalar function and a bilinear vector function of 4,

respectively.

FYom Lemma 2 and Lemma 4 we have the follow-

ing theorem.

Theorem 4 Qonsider a directed network of

multi-agents with fixed topology G(1, E) that is

strongly connected. Given nonlinear protocol (9),

there exists a centre manifold 4(t) : h({) such

that the stability of system (6) is completely depen-

dent on the stability of the reduced system i(tl :

Anh(€) + f(€, h({)) and 1f fu - tu2J.)$Ea : 0
and /66g - iqrl;)rGqg ( 0, the agents asymptotically

reach B-consensus at B(r(0))1 for any initial state

r (0 ) .

Proof First, observe system (9) where the

consensus that is reached at the equilibrium point

B(r(O))f corresponds to asymptotic stability of vari-

able y : {at, i ef} where a(t) : r(t) - B@Q))l and

g : 0 corresponds to r(t) : B@Q))I. Substituting

v(t) : r(t) - B(r(o))r into svstem (10), then svstem

(10) is transformed into system (13)' It follows that

if 
,Jlrg((t) 

: 0, then .l!Av(t) 
: 0. Fhom Lemma 2,

if ih-idynamic graph ir-ff orrgty connected, there ex-

ists a unitary matrix such that system (13) turns into

system (14). Thus from Lemma 3, we can obtain a

J lMo

centre manifold n : h(0 such that the stability of the

origin of the reduced model (15) determines the sta-

bility of the origin of system (14). Solving the partial

differential equation (16), we have

h(€) : €'hee-r o(l€l '), (20)

wflere

het: -J-) 'Ge*

Substituting expressions (18), (19) and (20) into

Eq.(15) yields

i(r) : (iee - AnJ;:rGry)€'+ (/eee - lErJ;lrGqq){3

+,(116l l ' )

from Lemma 4. lt fet - ApJ-!$aa : 0 and

feee - iqrl;)rGaa ( 0, then € * 0 as t ---+ oo, i.e'

U ---+ 0 e r(t) -- B(z(0))f , as f --+ oo, that is, consen-

sus is reachable.

Corollary 1 Assume that all the conditions in

Theorem 4 will hold and if /66 - A2J;:LG{€ : 0 and

feee - iqrl;)rGqq : 0, then every agreement state

will be stable for the nonlinear system (14).

Remark 5 Theorem 4 provides a rule to find

nonlinear protocols for directed networks of agents

and it sheds new light on consensus behaviour: the

original infinite-dimensional system is reduced into a

one-dimensional system via centre manifold reduction

and the agreement of the original system is completely

dependent on the stability of the reduced system, if

f  ( * r ,  * 2 , . . . ,  r n ) :  . f  ( 0 ,  0 , . . . ,  0 )  *  ( # " r  +  f i " r +  
. . .  + a \

a"."- )

B099

3L04

31L5

3L22

31_31

31"35

3139

3L45

3150

3155
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31.63

3r.69

. ;  (#",+ f i ;*,+ + *"") '  r  t*o * . .

.  * (*.",  + f i ; , ,+.. .  + *"")" r tmo * R-,

r* :  G+i(#" ,+ f i * '+ " '+ * ' * ) "n '  f ( , r t '0rz ' " ' '  0*n) '  (0 < d < 1) '

If / is vector-valued instead, i.e. f : (fr, f2,..., /,), then the array of rn-order partial derivatives is an

n-dimensional tensor of order m and. has n- components. The concept of tensor can be found in Ref. [19] .

Now consider system (14), applying the concept of tensor and the multilinear function, and due to 1(0, O; :

0 , G ( 0 , 0 ) : 0 , D / ( 0 , 0 )  : 0 , D G ( o , 0 ) : 0 , t h e T a y l o r s e r i e s e x p a n s i o n o f  f ( t , r i a n a G ( { , 4 )  c a n b e d e s c r i b e d

AS

f G, ,t) ,: iut' + €f *rq -t rtr irrrt+ /eec€t + t'ieerrt * tnr ierrrt * frrr(n, q, ril + o(ll({, ?)lln), (18)

c(e, ri,: €'G*+ €Ge,fl *Grr(rt, r i + t 'Geeei €'Geerrt *tGerrln, q) *Grrr?t, rl, q) + o(l l(6' 4;l l4)' (to)
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and only if the dynamic graph G is kept strongly con-

nected.

In the case where there is no nonlinear term in

system (10), that is /(r) is assumed to be zero, non-

linear system (10) degenerates into linear system (11).

Theorem 4 is specialized into the following corollary.

Corollary 2 Consider a directed network of

multi-agents with fixed topology GQ, E) that is

strongly connected. Given a linear protocol ui(t) :

D oui@i - rr), then there exists a centre manifold
j € N t

q{t) : 0 such that system (10) is stable and the

agentsasymptotically reach an average-consensus at

(t l") D ri(O)L if and only if the topolo W G : (f , E)
; - 1

is a balanced digraph.

Proof First, observe system (11) where the

consensus that is reached at the equilibrium point

B(r(O))f corresponds to asymptotic stability of vari-

able g : {w, i, e f), where y(t) : r(t) - p@Q))t

and y : 0 corresponds to r(t) : B(r(O))f. Substi-

tuting a(t) : r(t) - B(z(O))r into system (11), then

system (11) is transformed into system !(t) : -Ly(t).

Flom Lemma 2, if the dynamic graph is strongly con-

nected, there exists an unitary matrix ^9 such that

system y(t) : -Ly(t) becomes system

Thus from Lemma 3, we can obtain a centre manifold
q : h(0 such that the stability of the origin of the

reduced model €(r) : Atzh(il determines the stabil-

ity of the origin of system (21). Solving the partial

differential equation Dh(€){ADh(€)} - J--ft(t) :0

with boundary conditions: h(0) : 0 and Dh(O) :0,

we have q : h(€) : 0, and i(t) : O So, linear

system (16) is stable in the origin. Then ( ---+ Q

as t ---+ oo, i.e. a ---+ 0 e r(t) ---+ B(r(0))1 as

, ---+ oo, that is, consensus is reachable. Moreover,
n

B(z(O))r : Gl") | z1(0)1 is an equilibrium point of
i - l

system (11) if and only if the topolory G : (f , .tr) is

a balanced digraph, thus by the above discussion, the

agents canrasymptotically reach an average'consensus

on (L ln)  )  r i (0)r .

Remark 6 The corollary is compatible with The-

orem 5 in Ref.l9], therefore, the nonlinear protocol

proposed in this paper includes the case investigated
in Ref.[201.

3.3. Network consensus with switching

topology

Communication links among multi-agent systems

are ofben unreliable due to multipath efects and ex-

ogenous disturbances leading to dynamic information

exchange topologies. In this section, we develop a

static nonlinear consensus protocol to achieve agree-

ment over a network with switching topology. Con-

sider a hybrid system with continuous-state r € Rn

and discrete-state G that belongs to a finite collection

of digraphs f- : {G} such that G is a digraph of order

n and strongly connected. This set can be analytically

expressed as Fn : {G : (f , E, A) : rank(Z(G)) :

n-r]r.
Given protocol (9), the network dynamics is sum-

marized as

i ( t) :  - L"p1r(t) + f "<q(*),
(22)

where -Lo11; : L(G"OI) is the Laplacian of graph

Gopl, Go61 € .F. is a random switching signal that

determines the communication topology G, P is a fi-

nite set of indices corresponding to all graphs over ??

nodes, f "61@) 
is a purely nonlinear function vector

and C2 on R n and satisfi.es the following conditions:

f  
" 6@*) :  

0  and  D f  ' 6@. )  :  O .

Resembling the analysis in cases with fixed topol-

ogy, there exists unitary matrix So111 such that system

(22) can be normalized to satisfy the form

According to the centre manifold theorem, if the

switching topology G"ot(f ,,8) is kept strongly con-

nected, then there exists centre manifold 4(t)
h,trl (€) such that the stability of system (23) is com-
pletely determined by the stability of the reduced sys-

tem {( l )  :  Ao( t1, ,ho1r)(€)+ f "u, (€,  h"O;GD.There-

fore, from Lemma 2 and Lemma 4 we can obtain the

following theorem.

Theorem 5 Consider a directed network of

agents with switching topology G"G)(|, E) that is

kept strongly connected. Given a nonlinear proto-

col (9), then there exists centre manifotd 4(t)
h,6l (€) such that the stability of system (22) is com-
pletely dependent on the stability of the reduced sys-

tem {( t )  :  Ao( t ) , "ho(r ) (€)  + / " t r l ( { ,  h ,1 i ; ( { ) )  and,

i f  f "@€€ -  Aot t ) ' ,Jo\ i7-  ,G"1t1qq:  0 and fo@€€€ -

f'Arc,rJ"fil*_,Go(Dg- ( 0, the agents asymptotically

[;g] :lz:':,J [;g] (2,,
Ietr l I  Ioo,, , , , , - l  ferr l l  [ / , , , r (e,ry)  I
Ittrll 

: 
Lo ,,,,,.-, I l-zrrlj 

* 
1u,,,,({, a)J

(23)
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reach B-consensus at B(r(0))f for any initial state

z(0)

Proof The proof of Theorem 5 follows straight-

forwardly the way of proving Theorem 4, hence, it is

omitted here.

Remark 7 It should be pointed out that we

only require all the dynamic directed graphs in this

paper to be kept strongly connected, but not all are

required to be balanced graphs. It is different from

the situations in Refs.fg] and [10], where all digraphs

are required to be balanced. Therefore, the method

presented in this paper may relax the restriction on

mulit-agents reaching an agreement state to some ex-

tent.

Remark 8 With switching signals varying, the

group decision value is not a fixed-value any more, but

a variable of a bounded-value between the minimum

and the maximum values of the initial states of agents.

Remark 9 In this paper are investigated the

nonlinear consensus protocols under the condition of

strongly connected between agents. However, the

strongly connected condition may be relaxed into

a more general one. For example, the topology

graph G(f, E) is quasi-strongly connected or uni-

formly quasi-strongly connected,l'ol 
"rr"tt 

if there exist

communication delays between agents. [11] Considering

that quasi-strongly connected graph and communica-

tion delays between agents might be useful for further

improving our results, it deserves to be further stud-

ied.

4. Simulation results

We consider a team of tenUAVs in longitudinal

flight and initially at different heights. Each UAV

controls the vertical rate with knowing only the rela-

tive positions of its neighbours, but without knowing

the relative positions of all the other UAVs according

to the communication network topology depicted in

Fig.1.

1 0 9 8 7 6

(") G'

Fig.1. Four strongly connected where Go and
unbalanced digrapbs.

1 0 9 8 7 6

(d) Ga

G6 are balanced digraphs and G. and Gd are

AII digraphs in this fi.gure have 0-1 weights.

Moreover, they are all strongly connected, but not

all graphs are required to be balanced, for instance,

where G. and G4, are not balanced graphs. It is dif-

ferent from the situation in Refs.fg] and [10], where

all digraphs are required to be balanced. Shown

in Fig.2 is a finite state machine with four states

{Go, Gt, G., Ga} representing the discrete-states of a

network with switching topology as a hybrid system.

The hybrid system starts at the discrete-state Go and

switches to the next state every other one second, i.e.

I
7 : 1 s according to the state machine in Fig.2.

G6 Go

G6 G"

Fig.2. Finite machine with four states representing the

discrete states of a network with switching topology.
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As mentioned above, we a,re interested in de-

termining a suitable distributed vertical rate control

strategy that allows the UAVs to align their paths

according to the formation centre at time 0 which

we assume to be expressed as the B agreement func-

tion of the initial heights of UAVs and to satisfy

min{rc(O)} < a{h(o\\ < max{2,(0)}. The init ial
i € f  

t  -  
i € r ' ' ' - '

he igh t  i s  r (0 )  :  12 ;7 ;3 ; -3 ;  4 ; -3 ;  5 ; -3 ;  10 ; -11 " .

The challenging point is that the UAV knows the

heights of only its neighbours (but it does not know

the heights of all the other UAVs) and is required to

align its path according to the path of the formation

centre 0@(0)), which in turn depends on the positions

of all the UAVs.

We give the UAVs a nonlinear protocol as follows:

ui:  D@i -  *o) + t  h i@1 - r ) ) .  (24)
j € N c  j € N t

Applying Theorem 5, the UAVs asymptotically

align on 0(r(O)). Figures 3, 4 and 5 give the state

trajectories of the UAVs as n : 0, n :1, and n:2,

respectively.

10

8

6

b!
O n

t n z

n

Time
(u) G"

2
Time
(c) G.

Time

(d) Ga

Fig.3. State trajectories of the networks with nonlinear protocol (as n : 0) and with topologies shown in Fig.l.

10

8

6

U}
o
E

€ ,
b0

.al o

0

-4

Time

(u) G"

2
Time

(b) Ga



'g'31,f ul pedeldsrp sI J : {.1 se (VZ) 1oco1o;d rapun ?p qder8 d3o1odo1 ro;

oraanoorrertr luarnu8rTe l€crpo e Sur,toqs elduruxe uY 'sAVn oql Jo luoruu8qe 1ec1pe'r oq+ roJ 't3e1er1s IoJ+uoc

Jsou{ aql u€q} o rlcoso aroru qcnru st d3elerls IoJ+uoc r€auquou oql {oJoJaloqa dl{cpb aroru Sur8re'ruoc dq

poz.Fap€xeqc locolord snsuosuoc r€ouquou oql /roqs s+1nsoJ uolltslntuls 'qderB pocutsltsq € roJ IocoloJd snsuasuoa

e poqqlqslso $ oroq/( ,[o].;"U 
3o locolord reaurl oq] olur uol+€zlltsreue8 e sapr,lord (76) locolord reeuquou

,*r{l seTldur +I .q, pus ,, sqder8 pocu€Itsq uo snsuasuoc e8ere,re aq? qmar dlecrloldurdsB sAYn oq} 't'EI.{

uo{i[ .Iooolord reeu11 ts o+1rr so]BroueSep (76) locolord r€au{uou '0: u os€c oq} uI 'sos€arcop dlenper8 eurtl

ffiraauoc aq+ .sosgoJcu,t lr Jo rerro.od eq+ se'erorureq+qr '((o)r)g/ raluec uolltsruJoJ aql uo u8qe deql repe;

eq1 .smoqq3rou rraql ruo{ urc}qo slua8e aq} uol}tsruroJul oJoru aq} }tsql seqdurr qctqm' teq 
[I^4' o+€J Sur8re'ruoc

sagopeturl ottsls aq+ Jo+s€J oql (sr oroq+ $IurT uollsclununuoc Jo Jaqrunu eq1 raleer3 oql ltsq+ rBolc $ 1I

.I.BId uI ualoqs sel8olodol q+lrlA pu€ (6 : u se) locolord r€ouluou qllr\{ s}fron&lou eql Jo selrotteterl e1e1g '9'3;g

Pc (p)
EIIIII

,'o z'o

"D Q)
aurlJ

v'o z '0

I

01

ep (q)
orlrlJ

v'o

"p (e)

eurlJ

7 ' 0
v-
6 -

n

u o
0q

.I.sI.f uI u,raoqs sar3olodol qll^{ pue (1 : z se) locolord r€aulluou qTna $Iroi/qau oql Jo seFolseferl e1e15 '7'319

h -

0

0q

u o
0c

o

z'o

o
0rl

Pp (p)
ourIJ

"c @)
eurlJ

I

8

OI

0

u o

rq

9

8

01

0

n-

z-

gq

o

, l
i l l

nfi
d-lc

]

8I'IOA J" +e .Iow-n IT vqtt,



Nonlinear consensus protocols for multi-agent systems based on centre manifold reduction

a

a

a

a a a

R

bt

4

b!

F

t a t  t  t  t a t a

North
( a ) * = 0

o  a a  a  o  a  a

North
( p ) t = 3

5. Conclusion

A B-consensgs problem for direeted networks of

multi-agenJ Eystems, sepqrqfe]y with fixed topology

and switching topology is discussed. Here, fhe 0-
consensus function is an arbittary value that ranges

from the minimum value to the maximum value of

the initial states of the agents. We design a non-

linear protocol to make the agents reach consensus

on group decision value B(r(0)) of their initial states.

f[is main point of this paper is to apply the centre

menifold reduction lffhnique to analysing the stabil-

it-v of nonlinear multi-agent s]-stems. It is different

from the situation discused in the existing literature.

Thse the stabilfo- of nonlinear multi-agent slstems

b td on tbe Lyapunor theory- is anal1sed.-3-r0- 1a"

ilea of centrc menifold reduction analysis is to re'

duce the netwrk d1'namic system- which is infinite

dimensional. to a one-dimensional system. The con-

North

( b )  t :  1

a  a  a  a  a  a a  a a  a

t 2

4

h0

H

R

b0

F A

Flg.€, V.ert-ipal allgnment to graph G" (as n:1) in the vertical plane.

North

( d ) r : 1 0

vergence of the original system is completely depen-

dent on the convergence of the reduced system. We

have shown that the agents can reach consensus by us-

ing a distributed nonlinear protocol, provided that the

network communication links between agents are kept

strongly connected, where the nonlinear systems are

in the so-called "critical cases". Finally, we perform

a simulation study concerning the vertical alignment

manoeuvere of a team of UAVs. Simulation results

show that the nonlinear protocols proposed are more

effective than the linear protocols for the formation

control of the agenls and they are an improvement

over existing protocols.

These resu,lts can be applied in many other fields

including sytrchronization, flocking, distributed deci-

sion making and so on. In addition, in the paper we

did not consider the influence of time-delay, which is

unavoidable in the communication topology of agents.

It deserves to be further studied.
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