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Nonlinear consensus protocols for dynamic directed networks of multi-agent systems with fixed and switching

topologies are investigated separately in this paper.

Based on the centre manifold reduction technique, nonlinear

consensus protocols are presented. We prove that a group of agents can reach a -consensus, the value of which is the
group decision value varying from the minimum and the maximum values of the initial states of the agents. Moreover,

we derive the conditions to guarantee that all the agents reach a S—consensus on a desired group decision value. Finally,

a simulation study concerning the vertical alignment manoeuvere of a team of unmanned air vehicles is performed.

Simulation results show that the nonlinear consensus protocols proposed are more effective than the linear protocols for

the formation control of the agents and they are an improvement over existing protocols.
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1. Introduction

In recent years, the distributed coordination of
multiple agents has attracted considerable attention.
This is mainly due to its important applications, in-
cluding the cooperative control of unmanned air ve-
hicles (UAVs), autonomous underwater vehicles, con-
gestion control in communication networks, swarms
of autonomous vehicles or robots, autonomous forma-
tion flight, etc. In all cases the aim is to control a
group of agents connected through a communication
network to reach an agreement on certain quantities
of interest. This problem is usually called the con-
sensus problem. Many results have been obtained on
this problem.!'=23] For example, Vicsek et al [ pro-
posed a simple model for the phase transition of a
group of self-driven particles and numerically demon-
Jad-
babaie et al 2! demonstrated that a simple neighbour

strated the complex dynamics of the model.

rule made all agents eventually move in the same
direction despite the absence of centralized coordi-
nation and each agent’s set of neighbours changed
with time as the system evolved under a joint con-
Lin et al!® studied three for-
mation strategies for groups of mobile autonomous

nection condition.

agents. Fax and Murrayl” gave the stability anal-
ysis of multi-vehicle formations with a Nyquist-type
criterion. Moreau!® used a set-valued Lyapunov ap-
proach to study consensus problems with unidirec-
More-
over, by a Lyapunov-based approach, Olfati-Saber and

tional time-dependent communication links.

Murray!® solved the average-consensus problem for a
network of agents with switching topology and time-

delays. Cao et al 1112

investigated a consensus in a
dynamically changing environment. The studies men-
tioned above are all concerned with linear protocols
design rule allowing consensus on certain quantities
of interest. However, the problem of attitude align-
ment for robots and spacecraft is a special type of
consensus problem. For these physical systems, it
is not reasonable to assume that their attitudes can
be changed by an unbounded value, i.e. the input
torque is bounded. This suggests developing consen-
sus protocols that guarantee that the overall input of
each node stays bounded. This naturally leads to the
design and analysis of nonlinear consensus protocols.
Bauso et al 13 and Olfati-Saber and Murray™¥ sep-
arately, considered nonlinear consensus protocols for
an undirected network of agents with fixed topologies.

The stability analysis in the existing literature is based
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on the traditional Lyapunov theory.[3—10

However,
there still exists considerable difficulty in construct-
ing a concrete Lyapunov functional for a nonlinear
system, which motivates us to find a more suitable
tool to judge the stability of nonlinear systems.

In the present paper, a —consensus problem for
directed networks of nonlinear multi-agent systems
with fixed and switching topologies is discussed, sep-
arately. Here, each agent has only local information
from its neighbours. What we are interested in is to
design a nonlinear protocol to make the agents reach
consensus on group decision value 3(z(0)), the value
which varies from the minimum value to the maximum
value of the initial states of the agents. The conver-
gence analysis is carried out based on centre mani-
fold reduction theory. It is different from the results
presented in the existing literature, where the conver-
gence analysis is based on the Lyapunov theory.[3—10l
The idea of centre manifold reduction is to reduce an
infinite-dimensional network dynamic system into a
one-dimensional system by projecting the original dy-
namics onto the eigenvectors corresponding to zero
real-part eigenvalue. Therefore, the stability of the
original system is completely dependent on the stabil-
ity of the reduced system. Recently, centre manifold
reduction has been introduced as a tool for the de-
sign of stabilizing control laws for nonlinear systems in
critical cases. Critical cases occur when the linearized
system at an equilibrium point has at least one zero
real-part eigenvalue, while the remaining eigenvalues
all have negative real-parts. So, if the communication
links between agents are kept strongly connected, the
nonlinear dynamic multi-agent systems with protocol
(9) are said to be in the critical cases. We prove that
the asymptotic consensus is reachable and we also de-
rive conditions to guarantee that all agents reach a (-
consensus on a desired group decision value. Finally,
we perform a simulation study concerning the vertical
alignment manoeuvere of a team of UAVs. Simulation
results show that the nonlinear consensus protocols
proposed are more effective than the linear protocols
for the formation control of the agents and they are
an improvement over existing protocols.

The remainder of the present paper is organized
as follows. In Section 2, some fundamental concep-
tions on graph theory and centre manifold theory
are introduced. In Section 3, the nonlinear consen-
sus problem is described. In Section 4 are presented
the main results, including our designed distributed
nonlinear consensus protocol for a network of multi-

agents with fixed and switching topologies according
to the centre manifold theory, the analysis of the con-
vergence, and the derived conditions to guarantee that
all agents reach consensus on a group decision value
of interest. In Section 5, the vertical alignment ma-
noeuvere of a team of UAVs is simulated. Finally,
some conclusions drawn from the present study are
presented in Section 6.

2. Preliminaries

2.1. Graph theory

Let graph G = (I', E, A) be a directed graph de-
noting the dynamic network with a set of nodes I,
where I' = {1, 2,---, n} is composed of all agents,
and a set of edges E = {(i, j)}, where (i, j) € FE
which means that ¢ and j are adjacent or that j
is one of the neighbours of . We refer to ¢ and j
as the tail and head of the edge (4, j), respectively.
A = [a;;] is a weighed adjacency matrix, here we de-
fine o a0, Sl sl . in it (i) € B, while
a;; = 0if (i, j) ¢ E. Moreover, we assume that
a; = 0 for all ¢ € I'. The neighbours of agent ¢
are denoted by N; = {j € I" : (i, j) € E} and |N|
denotes the number of N;. A directed path that con-
nects 7 and j in the directed graph G is a sequence
of distinct nodes i1, %2,..., im, wWhere i3 =1, 4, = j
and (i,941) € FE, 0 < < m — 1. The directed
graph turns into an undirected graph if a;; = a;; for
any i, j € I'. If there is a directed path from a node
to any other node, the graph is said to be strongly
connected while the undirected graph is said to be a
connected graph./’®! The in-degree and out-degree of
node 7 are defined, respectively, as

n n
din(i) = Z aj,-, and dout(i) = Zaij.
= g=1

A directed graph G = (I, E, A) is said to be bal-
anced if and only if all of its nodes are balanced, i.e.
din(t) = dousll), 1€ T
2.2. Centre manifold theory
Consider the following system:
&= Az + f(z, y)
y=By+g(z,y) (1)

where z € R”, y € R™, and A and B are constant ma-
trices such that all the eigenvalues of A have zero real
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parts while all the eigenvalues of B have negative real
parts. The functions f and g are C? with f(0, 0) =0,
Df(0,0) = 0, g(0,0) = 0, and Dg(0, 0) = 0 (Here,
Df denotes the Jacobian matrix of f). In general, if
y = h(z) is an invariant manifold for Eq.(1) and A is
smooth, then it is called a centre manifold if h(0) = 0,
and Dh(0) = 0.

Theorem 1'% There exists a centre manifold for
Eq.(1), y = h(z), |z| < & where h is C2. The flow on
the centre manifold is governed by the n-dimensional
system

@ = Au + f(u, h(u)): (2)

The next theorem shows that equation (2) contains all
the necessary information that is needed to determine
the asymptotic behaviour of small solutions of Eq.(1).

Theorem 2!'6] (a) Suppose that the zero solu-
tion of Eq.(2) is stable (asymptotically stable) (unsta-
ble), then the zero solution of Eq.(1) will be stable
(asymptotically stable) (unstable). (b) Suppose that
the zero solution of Eq.(2) is stable and let (z(t), y(t))
be a solution of Eq.(1) with (x(0), y(0)) sufficiently
small, then there will exist a solution u(t) of Eq.(2)

such that as t — oo

8
—~~
o~
~=
|

u(t) + o(e™)
y(t) = h(u(t)) + o(e™) 3)

where v > 0 is a constant.
Substituting y(¢) = h(z(¢)) into the second equa-
tion in Eq.(1) yields

Dh(z)[Az + f(z, h(z))] = Bh(z) + g(z, h(z)). (4)

Equation (4) together with the conditions h(0) = 0
and Dh(0) = 0 is the system to be solved for the cen-
tre manifold. It is impossible to accurately solve the
equation, in general, since it is equivalent to solving
Eq.(1). The next result, however, shows that, in prin-
ciple, the centre manifold can be approximated to any
degree of accuracy.

Function ¢ : R® — R™ which is C! in a neigh-
bourhood of the origin is defined as

(M9)(z) = Do(z)|Az + f(z, ¢(z))]
— Bo(z) — g(z, ¢(z)). (5)

Note that by Eq.(4), (Mh)(z) =0.

Theorem 3161 Let ¢ be a C! mapping of a
neighbourhood of the origin in R™ into R™ with
¢(0) = 0 and D¢(0) = 0. Suppose that as z —
0,(M¢)(z) = 0(|z|?) where ¢ > 1, then as z — 0,

|h(z) — ¢(x)| = 0(|z|?) will hold.

3. Problem description

Suppose that the network system under consid-
eration is composed of n agents. FEach agent is re-
garded as a node in a directed graph G. Each edge
(4, %) € E(G) corresponds to an available information
link from agent 7 to agent j. Moreover, each agent
updates its current state based on the information re-
ceived from its neighbours. Let z; be the state of the
i-th agent. Suppose the i-th agent (i € I') has the
dynamics as follows:

£i(t) = wi(t),Vie I',j € N; (6)

with initial condition z;(s) = ;(0), s € (—o0, 0]
where w; is the control protocol. |

Our o\bjective is to find an appropriate nonlinear
protocol to suppress disturbances of agents and make
all agents reach agreement.

Consider the following nonlinear protocol:

ul(t) = Z (p(xiv wj)v (7)

JEN;

where i, j = 1,...,mn; ¢(-) : R — R satisfies the fol-
lowing properties: 1) ¢(-) is continuous and locally
Lipsclitbzgand 2) (2, 2= 0 Suwp=u DIDCR)
denotes the domains of definition of function ¢(-), i.e.
z; € D,i =1,...,n. Given protocol (7), the net-
work dynamics of these n agents may be written in
the vector form as

(t) = q(2), (8)

whete z(f) = (2i(t),..., 2 (t))T, ¢ > 0'and ¢ =
(Giy -+« G )" 18 such that g;(z) = ) wl2s, =;) and
JEN;

q(+) is continuous on R™.

First, we define the invariant subspace {2 as {2 =
{ze D2 RE 5@ =dpo=ud =25} Thissimplies
that g(z*) = 0 for all z* € £2. Hence, the subspace {2
is an equilibrium set for the system (8).

For the convenience of discussion, we assume the
nonlinear protocol (7) is in the following form:

D petales @)t bii(@is 7)o (9)

JEN; JEN;

where ¢;;(z;, ;) is a purely nonlinear function and for
all (¢, j) € e satisfies the following properties: ¢;;(-) is
C? on R™, with ¢;;(z;, z;) = 0 and Dg;;(z;, ;) =
0, if and only if z; = z; (Here, D¢;; is the Jacobian
matrix of ¢;;).
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Remark 1 Note that based on the Taylor se-
ries expansion, nonlinear protocol (7) can always be
represented as the sum of a linear part and a purely
nonlinear part. Therefore, the discussion of protocol
(9) is without loss of generality.

Given protocol (9), the network dynamics can be
summarized as

z(t) = —Lz(t) + f(x), (10)

where L is called the graph Laplacian induced by the
information flow G and defined as

n
Z Aiky, ) =1,
l'ij = b=1! k=1

—Qij, ] 7é ia

where . = (fi,.. 0005 s Vsl That’ piE 2
E ¢ij(z;, z;) and f(x) satisfies the following prop-
erties

1ga Fl- ot CPnoonl BF7  wpofz ) i==00 and
Df(z*) = 0, (Here, z* is the equilibrium point of
system (10), Df is the Jacobian matrix of f.

#(t) = —La(?) (11)

is a corresponding linearized system of nonlinear sys-
tem (10). Apparently, L has a zero eigenvalue and
1=(1,...,1)T € R™ is the corresponding eigenvec-
tor with the eigenvalue A = 0.

If for any initial state (0) € D™, z(t) converges to
asymptotically stable equilibrium point z* € 2 of sys-
tem (8) as ¢ — oo we say that all agents have asymp-
totically reached consensus in infinite time ¢ > 0; let
B : R™ — R be a continuous and differentiable func-
tion on = = (x1,..., x,)7, if ||z; — Blz(@))]] — 0 for
all4, j € I' ast — oo we say that protocol u;(t) makes
the agents asymptotically reach the 3-consensus on a
group decision value £(z(0))1 function of their ini-
tial states or we say that the system asymptotically
converges to ((z(0))1; especially for the cases with
B(z) = Ave(z) = (1/n)17z(0)1 we say that the sys-
tem asymptotically reaches an average-consensus.

In this paper, we are interested in discussing the
B-consensus problem in networks of agents with both
fixed and switching topologies, separately. In particu-
lar, we are interested in agreement functions varying
in the following range:

min{z;(0)} < A(z) < max{z;(0)}.  (12)

The above condition means that the group decision
value must be restricted between the minimum and
the maximum values of the initial states of agents.

Remark 2 The (-consensus mentioned in this
paper is significant in some areas, especially, in the
biological and the chemical areas where only certain
life-form groups or chemical reactors are required to
reach an agreement but not to be maintained at a
fixed value.

Remark 3 In a network of continuous-time in-
tegrator agents, convergence analysis of protocol (9)
is equivalent to stability analysis for system (10) at
equilibrium point z* = B(x(0))1.

The following lemmas are needed for the main re-
sult of next section.

Lemma 1% If the graph G is strongly connected,
then its Laplacian L satisfies

(i) rank(L) =n —1;

(ii) A = 0 is one eigenvalue of L, and 1 is the
corresponding eigenvector;

(iii) The remaining n— 1 eigenvalues all have pos-
itive real-parts, in particular, for an undirected graph,
they are all positive and real.

3.1. Nonlinear = consensus protocols
based on centre manifold reduction

Recently, centre manifold reduction has been em-
ployed in nonlinear stabilization to stabilize the con-
trol law designs for varieties of nonlinear systems in
the so-called “critical cases”. Critical cases occur
when the linearized system at an equilibrium point
has at least one zero real-part eigenvalue, while the
remaining eigenvalues all have negative real-parts. So,
according to Lemma 1, nonlinear system (10) is said
to be in the critical case, if the graph G is strongly
connected.

To investigate the stability of nonlinear system
(10) at equilibrium point 8(z(0))1 (8(z(0))1 € 2), we
use a coordinate transformation y;(t) = z;(t)—3(x(0))
then system (10) becomes

9(t) = ~Ly(t) — LA(0)1 + f(y + A(x(0)) due
to LB(z(0)1 = B(x(0)L1 = 0 and denote f(y) =
f(y+ B(z(0))) then

y(t) = —Ly(t) + f(y). (13)

Thus, discussing the stability of system (10) at the
equilibrium point, F(z(0))1, is equivalent to dis-
cussing the stability of the origin of system (13).

Lemma 2 For system (13), there exists a unitary
matrix S, (S € C™*™) such that system (13) can be
normalized to the form of system (1), if the commu-
nication links between agents are kept strongly con-
nected.
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Proof From Lemma 1, if the communication
links between agents are kept strongly connected, then
Laplacian matrix L has one 0 eigenvalue and n—1 posi-
tive real-part eigenvalues. Let 0 < Ao < A3 < ... < A\,
denote the n — 1 nonzero eigenvalues of Laplacian ma-
trix L and let A =
triangularisation theorem, there will exist unitary ma-

trix. S € C%*™ such that

—L, according to Schur’s unitary

0 A
SHAS - 12 7
0 Jn—l
and
-y *x  *
Jnfl = 0 ok
0. 0. .2

We denote S = [Sl Sl}, £(t) = SHy(t), and n(t) =
SHy(t), where S is the conjugate transpose of S, £(t)
is the one-dimensional vector, and 7(t) is the (n — 1)-
dimensional vector. Noting that S is a unitary matrix,
we have SES; = 0. Further, let S; = 1/4/n, then we
will have

= SHAS 2} + SHf(5:€ + Sim)
- 0 A £(1) S{If(slf + S1n)
0 Jnis ) IPlt) SHf(5'1§ + S1n)
ie.
£(t) = 0 A £(t) . Jf(& n) (14

where f(£, n) and G(£, n) are smooth functions and
satisfy f(0,0) = 0, G(0,0) =0, Df(0,0) = 0, and
DG(0, 0) = 0. The proof of Lemma 2 is completed.

Remark 4 For undirected connected graphs,
since A is symmetric, there exists an orthogonal ma-
00
L0 Jn
Then system (13) can be normalized into the form of
system (1).

trix U, € R™™) such that UTAU =

From the centre manifold theorem it is easy to
obtain the following lemma.

Lemma 3 If the directed graph G is strongly
connected, then there exists a centre manifold 7(t) =
h(€) such that the origin of system (14) is asymptot-
ically stable if the origin is asymptotically stable for
the reduced model

£(t) = Aah(€) + F (€, h(8)), (15)

where h satisfies the partial differential equation

Dh(€){A12h(€) + F(&, h(£)} — Jn—1h(§)
—G(& h(§) =0 (16)

with boundary conditions: h(0) = 0 and Dh(0) =

3.2. Analysis of stabilization

Consider a scalar real nonlinear system
g=dy? +ey’ +.... (17)

The stability condition for the system is given by the
following lemma.

Lemma 4['7) The origin is asymptotically stable
for system (17) if d = 0 and e < 0, but it is unstable -
if d =440,

We employ Taylor series expansions below, using
multilinear function notation for the terms in these
expansions. The definition of the multilinear function
is recalled as follows.

Definition 1*8 Let Vi, Va,...,
vector spaces over the same field.
Vi xVa x
if it is linear in each of its arguments, that is, for
y Uk) =
AR ) G (U - 540 e i V) -

Vi and W be
A map ¥

. X Vi — W is multilinear (or k-linear)
any scalar, we have ¥(vy,..., av; + ad, ...
G (Uit B Uiy

The integer k is the degree of the multilinear func-
tion V.

Next, we give a simple description for Taylor se-
ries expansions and the notations which are used in
the following formula. Using the Taylor series expan-
sion, a real-valued function f(z1, za,...,
My(0, 0,...,

Z,) at origin
0) can be expressed as
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f(xl,xQ,...,a:n):f(O,0,...,0)+(

0 0 0
a—xlx1+—x2—|—...+—azn I a

0xo oz,

+£ ix _|_i g _'_i 2f| +
o 81:1 1 ax2$2 In My

o0z,

+i —Q—I +i e +i nfl + R
n! \ 0z o B (A i anm" e thie

where

2

i 8 n+1l
R,n:—<a +—6—:c2+...—|—87xn) flw], Pog i 0 )y (09 < 1).

(n+1)! 59;301 0z

If f is vector-valued instead, i.e. f = (f1, f2,..., fn), then the array of m-order partial derivatives is an

n-dimensional tensor of order m and has n™ components. The concept of tensor can be found in Ref.[19].

Now consider system (14), applying the concept of tensor and the multilinear function, and due to f(0, 0) =
0, G(0, 0) =0, Df(0, 0) = 0, DG(0, 0) = 0, the Taylor series expansion of F(€, n) and G(&, n) can be described

as

FE, n) i = feel® + Efem + 17 Famn + Feee€® + € feeqn + €07 feqmn + Fomm (s 1, 1) + ol M), (18)

é({, n) = 52@56 o 6@@77] 7= énn(na n) + §3é565 e 52&557777 I féﬁnn(na Ty~ Gmm(n’ i o(|I(&, 77>||4)- (19)

The coefficients in the Taylor series expansions
(18) and (19) are either constants or symmetric mul-
tilinear functions of their arguments. For instance,
Fomn(n, 1, m) and Gyy(n, n) denote a symmetric trilin-
ear scalar function and a bilinear vector function of 7,
respectively.

From Lemma 2 and Lemma 4 we have the follow-
ing theorem.

Theorem 4 Consider a directed network of
multi-agents with fixed topology G(I', E) that is
strongly connected. Given nonlinear protocol (9),
there exists a centre manifold n(t) = h(§) such
that the stability of system (6) is completely depen-
dent on the stability of the reduced system § =
Awh(€) + F(€, h(€)) and if Jee — A1aJ 11Gee = 0
and feee — fgnjgflégg < 0, the agents asymptotically
reach (B-consensus at ((z(0))1 for any initial state
z(0).

Proof First, observe system (9) where the
consensus that is reached at the equilibrium point
B(x(0))1 corresponds to asymptotic stability of vari-
able y = {y;, i € I'} where y(t) = z(t) — 6(x(0))1 and
y = 0 corresponds to z(t) = B(z(0))1. Substituting
y(t) = z(t) — B(z(0))1 into system (10), then system
(10) is transformed into system (13). It follows that
if tl—ngo £(t) = 0, then tlirgo y(t) = 0. From Lemma 2,
if the dynamic graph is strongly connected, there ex-
ists a unitary matrix such that system (13) turns into
system (14). Thus from Lemma 3, we can obtain a

—

centre manifold n = h(£) such that the stability of the
origin of the reduced model (15) determines the sta-
bility of the origin of system (14). Solving the partial
differential equation (16), we have

h(€) = €%hee + o(|E[°), (20)

where

hee = —J,21Gee.
Substituting expressions (18), (19) and (20) into
Eq.(15) yields

£(t) = (fee — A1 11 Gee) €% + (feee — fenJnt1Gee)€®
+o(JI€lI%)

from Lemma 4. If fee — Aot 1@ = 0 and
fggg — fgnJ;EIégg < 0, then £ — 0 as t — oo, ie.
y — 0 < z(t) — B(z(0))1, as t — oo, that is, consen-
sus is reachable.

Corollary 1 Assume that all the conditions in
Theorem 4 will hold and if fgg —Aqs J;}légg =0 and
Feee — fgnJ,;llé’gg = 0, then every agreement state
will be stable for the nonlinear system (14).

Remark 5 Theorem 4 provides a rule to find
nonlinear protocols for directed networks of agents
and it sheds new light on consensus behaviour: the
original infinite-dimensional system is reduced into a
one-dimensional system via centre manifold reduction
and the agreement of the original system is completely
dependent on the stability of the reduced system, if
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and only if the dynamic graph G is kept strongly con-
nected.

In the case where there is no nonlinear term in
system (10), that is f(z) is assumed to be zero, non-
linear system (10) degenerates into linear system (11).
Theorem 4 is specialized into the following corollary.

Corollary 2 Consider a directed network of
multi-agents with fixed topology G(I', E) that is
strongly connected. Given a linear protocol u;(t) =
> aij(z;
JeN;

n(t) = 0 such that system (10) is stable and the
agents asymptotically reach an average-consensus at
n

(1/n) >~ ;(0)1 if and only if the topology G = (I', E)
1

— x;), then there exists a centre manifold

is a balzanced digraph.

Proof First, observe system (11) where the
consensus that is reached at the equilibrium point
B(x(0))1 corresponds to asymptotic stability of vari-
able y = {y;, ¢ € I'}, where y(t) = z(t) — 8(z(0))1
and y = 0 corresponds to z(t) = B(z(0))1. Substi-
tuting y(t) = z(¢t) — B(x(0))1 into system (11), then
system (11) is transformed into system y(t) = —Ly(t).
From Lemma 2, if the dynamic graph is strongly con-
nected, there exists an unitary matrix S such that
system y(t) = —Ly(t) becomes system

£(t) _ |0 A &(t) . (21)

() 0 Jn—1 | | ()

Thus from Lemma 3, we can obtain a centre manifold
n = h(€) such that the stability of the origin of the
reduced model £(t) = A;oh(€) determines the stabil-
ity of the origin of system (21). Solving the partial
differential equation Dh(€){A12h(£)} — Jn—1h(§) =0
with boundary conditions: h(0) = 0 and Dh(0) = 0,
we have n = h(£) = 0, and £(t) = 0. So, linear
system (16) is stable in the origin. Then £ — 0
y — 0 < z(t) — B(z(0)1 as
t — oo, that is, consensus is reachable. Moreover,

B(z(0))1 = (1/n) i z;(0)1 is an equilibrium point of

asiit. — o, 1.e.

i=1
system (11) if and only if the topology G = (I', E) is
a balanced digraph, thus by the above discussion, the
agents can asymptotically reach an average-consensus

on (1/n) i z;(0)1:

=1

Remark 6 The corollary is compatible with The-
orem 5 in Ref.[9], therefore, the nonlinear protocol
proposed in this paper includes the case investigated

in Ref.[20].

3.3. Network consensus with switching
topology

Communication links among multi-agent systems
are often unreliable due to multipath effects and ex-
ogenous disturbances leading to dynamic information
exchange topologies. In this section, we develop a
static nonlinear consensus protocol to achieve agree-
ment over a network with switching topology. Con-
sider a hybrid system with continuous-state x € R"™
and discrete-state G that belongs to a finite collection
of digraphs I, = {G} such that G is a digraph of order
n and strongly connected. This set can be analytically
expressed as F, = {G = ([, E, A) : rank(L(G)) =
n—1}

Given protocol (9), the network dynamics is sum-
marized as

&(t) = —Lowz(t) + for) (2), (22)

where Loy = L(Go)) is the Laplacian of graph
Got), Go) € F is a random switching signal that
determines the communication topology G, P is a fi-
nite set of indices corresponding to all graphs over n
nodes, fo()(z) is a purely nonlinear function vector
and C? on R™ and satisfies the following conditions:
foy(@*) =0 and D fo4)(z*) = 0.

Resembling the analysis in cases with fixed topol-
ogy, there exists unitary matrix S, ) such that system
(22) can be normalized to satisfy the form

g(t) 5 0 Acr(t)12 f(t) €

1(t) 0 Jo(tyan | | 1(B)

fa’(t) (5) 77)
éa(t) (57 77)
23

According to the centre manifold theorem, if the
switching topology G, (I, E) is kept strongly con-
nected, then there exists centre manifold n(t) =
ho)(§) such that the stability of system (23) is com-
pletely determined by the stability of the reduced sys-
tem £(t) = Ao(t)saho) (€) + Fo) (€, ho(€))- There-
fore, from Lemma 2 and Lemma 4 we can obtain the
following theorem. '
Theorem 5 Consider a directed network of
agents with switching topology G, (I', E) that is
kept strongly connected. Given a nonlinear proto-
col (9), then there exists centre manifold 7(t) =
ho(t) (&) such that the stability of system (22) is com-
pletely dependent on the stability of the reduced sys-
tem Gy = As(t)1shot) () + Fow (&, ho(t)(€)) and,
if fomes = Aowia Ty, Gomee = 0 and fornyece —
fg(t)gnJ;é)n_lég(t)gg < 0, the agents asymptotically
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reach (-consensus at ((z(0))1 for any initial state
z(0).

Proof The proof of Theorem 5 follows straight-
forwardly the way of proving Theorem 4, hence, it is
omitted here.

Remark 7 It should be pointed out that we
only require all the dynamic directed graphs in this
paper to be kept strongly connected, but not all are
required to be balanced graphs. It is different from
the situations in Refs.[9] and [10], where all digraphs
are required to be balanced. Therefore, the method
presented in this paper may relax the restriction on
mulit-agents reaching an agreement state to some ex-
tent.

Remark 8 With switching signals varying, the
group decision value is not a fixed-value any more, but
a variable of a bounded-value between the minimum
and the maximum values of the initial states of agents.

Remark 9 In this paper are investigated the
nonlinear consensus protocols under the condition of

1 2 3 4 5
10 9 8 T
(a) Ga
i 2 3 4 5
10 9 8 i 6
(c) Ge

strongly connected between agents. However, the
strongly connected condition may be relaxed into
a more general one. For example, the topology
graph G(I', E) is quasi-strongly connected or uni-
formly quasi-strongly connected,!?% even if there exist

[11] Considering

communication delays between agents.
that quasi-strongly connected graph and communica-
tion delays between agents might be useful for further
improving our results, it deserves to be further stud-

ied.

4. Simulation results

We consider a team of tenUAVs in longitudinal
flight and initially at different heights. Each UAV
controls the vertical rate with knowing only the rela-
tive positions of its neighbours, but without knowing
the relative positions of all the other UAVs according
to the communication network topology depicted in
Fig.1.

il 2 3 4 5
10 9 8 Tt 6
(b) Gy
1l 2 3 - 5
10 9 8 7 6
(d) Ga

Fig.1. Four strongly connected digraphs, where G, and G} are balanced digraphs and G. and G4 are

unbalanced digraphs.

All digraphs in this figure have 0-1 weights.
Moreover, they are all strongly connected, but not
all graphs are required to be balanced, for instance,
where G, and Gy, are not balanced graphs. It is dif-
ferent from the situation in Refs.[9] and [10], where
all digraphs are required to be balanced. Shown
in Fig.2 is a finite state machine with four states
{G4, G, G., G} representing the discrete-states of a
network with switching topology as a hybrid system.
The hybrid system starts at the discrete-state G, and

switches to the next state every other one second, i.e.

T =1 s according to the state machine in Fig.2.

Gy Ga

Gq Ge

Fig.2. Finite machine with four states representing the
discrete states of a network with switching topology.
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As mentioned above, we are interested in de-
termining a suitable distributed vertical rate control
strategy that allows the UAVs to align their paths
according to the formation centre at time 0 which
we assume to be expressed as the 8 agreement func-
tion of the initial heights of UAVs and to satisfy
rlréllg{:cl(o)} < B{(z(0)) < rlrggc{zl(O)} The initial
height is z(0) = [2; 7; 3;-3; 4;-3; 5; —3; 10; —1]T.
The challenging point is that the UAV knows the
heights of only its neighbours (but it does not know
the heights of all the other UAVSs) and is required to

ahd
o
=
20
D
fo
10 15
Time
(a) Gq
10 -
8_
6
B4R
) g
o
a6 : : . :
0 1 D) 3 4 5
Time
(c) Ge

align its path according to the path of the formation
centre 3(x(0)), which in turn depends on the positions
of all the UAVs.

We give the UAVs a nonlinear protocol as follows:

w= Y (@ —z)+ ) &z —wi)).

JEN; JEN;

(24)

Applying Theorem 5, the UAVs asymptotically
align on B(z(0)). Figures 3, 4 and 5 give the state
trajectories of the UAVsasn =0, n=1, and n = 2,
respectively.

Height

Height

Time

(d) Gq

Fig.3. State trajectories of the networks with nonlinear protocol (as n = 0) and with topologies shown in Fig.1.

Height

Height
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Fig.6. Vertical alignment to graph G (as n=1) in the vertical plane.

5. Conclusion

A B-consensus problem for directed networks of
multi-agent systems, separately, with fixed topology
and switching topology is discussed. Here, the (-
consensus function is an arbitrary value that ranges
from the minimum value to the maximum value of
the initial states of the agents. We design a non-
linear protocol to make the agents reach consensus
on group decision value 3(z(0)) of their initial states.
This main point of this paper is to apply the centre
manifold reduction technique to analysing the stabil-
ity of nonlinear multi-agent systems. It is different
from the situation discussed in the existing literature,
where the stability of nonlinear multi-agent systems
based on the Lyapunov theory is analysed.>—1% The
idea of centre manifold reduction analysis is to re-
duce the network dynamic system, which is infinite-
dimensional, to a one-dimensional system. The con-

vergence of the original system is completely depen-
dent on the convergence of the reduced system. We
have shown that the agents can reach consensus by us-
ing a distributed nonlinear protocol, provided that the
network communication links between agents are kept
strongly connected, where the nonlinear systems are
in the so-called “critical cases”. Finally, we perform
a simulation study concerning the vertical alignment
manoeuvere of a team of UAVs. Simulation results
show that the nonlinear protocols proposed are more
effective than the linear protocols for the formation
control of the agents and they are an improvement
over existing protocols.

These results can be applied in many other fields
including synchronization, flocking, distributed deci-
sion making and so on. In addition, in the paper we
did not consider the influence of time-delay, which is
unavoidable in the communication topology of agents.
It deserves to be further studied.
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