
UPSIDE DOWN WITH THE STRONG PARTIAL CLONES

Abstract.

1. Introduction

Let A be an arbitrary �nite set. In the case we deal with Boolean clones
we have A = 2 := {0, 1}.

A function f : An → A is called a total function on A. A function
f : S → A with S ⊆ An is called partial function on A and we denote the
domain by dom f := S. The set Op(A) is the set of all total functions on A,
and Par(A) is the set of all partial functions on A.

The function eni : An → A de�ned by eni (x1, . . . , xn) := xi is called the
n-ary projection onto the i-th coordinate. The set Proj(A) is the set of all
projections on A, i.e., Proj(A) := {eni | i, n ∈ N, 1 ≤ i ≤ n}.

Let f ∈ Par(A) be n-ary and let g1, . . . , gn ∈ Par(A) be m-ary. The
composition F := f(g1, . . . , gn) is an m-ary partial function de�ned by

F (x1, . . . , xm) := f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

and

domF :=

{
x ∈

n⋂
i=1

dom gi

∣∣∣∣∣ (g1(x), . . . , gn(x)) ∈ dom f

}
.

C ⊆ Par(A) is called a partial clone if it is composition closed and contains
the projections. If additionally C ⊆ Op(A) then C is a total clone.

Let f, g ∈ Par(A). Then f is a restriction (or subfunction) of g if dom f ⊆
dom g and f(x) = g(x) for all x ∈ dom f , short f ≤ g. Let X ⊆ Par(A).
Then the set Str(X) ⊆ Par(A) is de�ned by

Str(X) := {f ∈ Par(A) | ∃g ∈ X : f ≤ g}.

If X = Str(X) then X is called strong. That means, that X contains every
restriction of every of its functions, i.e., f ∈ C for every f ∈ Par(A) and
g ∈ C with f ≤ g.

The set pProj(A) := Str(Proj(A)) contains all partial projections on A,
i.e., all subfunctions of the projections on A.

Let Rel(h)(A) be the set of all h-ary relations on A for some h ≥ 1, i.e.,

Rel(h)(A) := {X | X ⊆ Ah}. Furthermore, let Rel(A) :=
⋃
h≥1 Rel(h)(A).

Let % ∈ Rel(h)(A), and f : S → A with S ⊆ An an n-ary partial function.
Then f preserves % i� f(M) ∈ % for any h×n matrixM = (mij) whose rows
belong to the domain of f , i.e. (mi1, . . . ,min) ∈ dom f for all i, and whose
columns belong to %.

Let pPolR be the set of all partial functions preserving every relation
% ∈ R. Inversely, let pInvC be the set of all relations preserved by every
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2 UPSIDE DOWN WITH THE STRONG PARTIAL CLONES

partial function f ∈ C. Then (pPol,pInv) form a Galois connection, see
Theorem 4.2.2. in [4].

2. Further definitions

For some natural numbers n,m ∈ N with n ≤ m we de�ne the sets
[n,m] := {n, n + 1, . . . ,m}, and [n] := [1, n]. Tuples will be written with
boldface small letters, and with the exception of 2 = {0, 1} a small boldface
letter signi�es a tuple. For a tuple x := (x1, . . . , xn) ∈ An we de�ne the set
of its entries by [x] := {x1, . . . , xn}, and let |x| := |[x]|. For I ⊆ [n] we let
xI := {xi | i ∈ I}. For i = (i1, . . . , il) ∈ [n]l with l ∈ N we de�ne xi :=
(xi1 , . . . , xil) ∈ Al. We will often use the two special tuples 0 := (0, . . . , 0)
and 1 := (1, . . . , 1).

Sometimes it will be more readable to omit some indices, but not neces-
sarily the last one. Then for readability we write x ∈ AI with I ⊆ N, i.e.,
x is indexed by I in ascending order. That means x = (xi1 , xi2 , . . . , xi|I|)

where i1 < i2 < · · · < i|I| and I = {i1, i2, . . . , i|I|}. For example writing

x ∈ A{2}∪{5,6} indicates that x = (x2, x5, x6).

2.1. Romov's de�nability lemma. The statement of Theorem 2.1 proven
by Romov in [7] gives a nice characterization of the constructability of rela-
tions in the co-clone of a strong partial clone.

The relation ρ ∈ Rel(h)(A) is called irredundant i� it ful�lls the following
two conditions:

(i) ρ has no duplicate rows, i.e., for all i, j with 1 ≤ i < j ≤ h, there is
a tuple (a1, . . . , ah) ∈ ρ with ai 6= aj ;

(ii) ρ has no �ctitious coordinates, i.e., there is no i ∈ {1, . . . , h}, such
that (a1, . . . , ah) ∈ ρ implies (a1, . . . , ai−1, x, ai+1, . . . , ah) ∈ ρ for all
x ∈ A.

For a relation σ ∈ Rel(h)(A) we de�ne ar(σ) := h.

Theorem 2.1. Let Σ ⊆ Rel(A) and ρ ∈ Rel(t)(A) be relations. Furthermore
let ρ be irredundant. Then ⋂

σ∈Σ

pPolσ ⊆ pPol ρ

i� there are some γσ ⊆ [t]ar(σ) for all σ ∈ Σ such that

ρ = {x ∈ At | xi ∈ σ for all i ∈ γσ and σ ∈ Σ}

and

[t] =
⋃
σ∈Σ

⋃
i∈γσ

[i].



UPSIDE DOWN WITH THE STRONG PARTIAL CLONES 3

3. Closure operators

For arbitrary relations ρ ∈ Rel(n)(A) and σ ∈ Rel(m)(A) we de�ne the
Maltsev-operations ζ, τ , ∆, ∇, and ⊗ by

ζρ := {x ∈ An | x(2,3,...,n,1) ∈ ρ},
τρ := {x ∈ An | x(2,1,3,...,n) ∈ ρ},

∆ρ :=

{
{x ∈ An−1 | x(1,1,2,...,n−1) ∈ ρ} for n ≥ 2,

ρ for n = 1,

∇ρ := {x ∈ An+1 | x(2,3,...,n+1) ∈ ρ},
ρ⊗ σ := {x ∈ An+m | x(1,...,n) ∈ ρ,x(n+1,...,n+m) ∈ σ}.

For arbitrary functions f ∈ Par(n)(A) and g ∈ Par(m)(A) we de�ne the
Maltsev-operations ζ, τ , ∆, ∇, ⊗, and ? by

dom(αf) := α(dom f) for α ∈ {ζ, τ,∆,∇},
dom(f ⊗ g) := (dom f)⊗ (dom g),

dom(f ? g) := {x ∈ An+m−1 | x(1,...,m) ∈ dom(g),

(g(x(1,...,m)),x(m+1,...,n+m−1)) ∈ dom(f)},
and

(ζf)(x) := f(x(2,3,...,n,1)),

(τf)(x) := f(x(2,1,3,...,n)),

(∆f)(x) :=

{
f(x(1,1,2,...,n−1)) for n ≥ 2,

f(x) for n = 1,

(∇f)(x) := f(x(2,3,...,n+1)),

(f ⊗ g)(x) := f(x(1,...,n)),

(f ? g)(x) := f(g(x(1,...,m)),x(m+1,...,n+m−1))

for all x ∈ dom(g ? f).

To enhance readability we denote by Ω the set of Maltsev operations
(without ?), i.e., Ω := {ζ, τ,∆,∇,⊗}.

For a set L ⊆ {ζ, τ,∆,∇,⊗, ?} and some set X ⊆ Par(A), we denote by
〈X〉L the closure of X under the operations in L, i.e., the smallest set Y
containing X, such that pn(f1, . . . , fn) ∈ Y for each f1, . . . , fn ∈ Y , and
pn ∈ L (where pn is an n-ary operation).

4. Closure operators beneath pProj(A)

The following statement about partial clones has been shown long ago, or
was used as the de�nition:

reference, more ex-
planationsTheorem 4.1. Let C ⊆ Par(n)(A). Then C is a partial clone on A if and

only if A is closed under the Maltsev-operations ζ, τ , ∆, ∇, and ?, and
Proj(A) ⊆ C.

We now want to show that we can replace ? by ⊗ if C contains only partial
projections, i.e., if C ⊆ pProj(A) holds.
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Lemma 4.2. Let f ∈ pProj(n)(A) and g ∈ pProj(m)(A).
Then f ⊗ g = e2

1(ζm∇mf,∇ng).

Proof. Since

dom(ζm∇mf) = {x ∈ An+m | x(1,...,n) ∈ dom f}, and
dom(∇ng) = {x ∈ An+m | x(n+1,...,n+m) ∈ dom g},

we see that

dom(e2
1(ζm∇mf,∇ng)) = dom(ζm∇mf) ∩ dom(∇ng) = dom(f ⊗ g).

Let x ∈ dom(f ⊗ g) be arbitrary. Since (ζm∇mf)(x) = f(x(1,...,n)) we get

(e2
1(ζm∇mf,∇ng))(x) = f(x(1,...,n)) = f ⊗ g.

Thus the equality holds. �

Lemma 4.3. Let f ∈ pProj(n)(A) and g ∈ pProj(m)(A).
Then f ? g = ∆j,m+1ζ

m(f ⊗ g) for some j ∈ [m].

Proof. Since g ∈ pProj(m)(A) there is some j ∈ [m] with g ≤ emj , i.e.,

g(x) = xj for all x ∈ dom g.
We have

dom(∆j,m+1ζ
m(f ⊗ g))

= ∆j,m+1ζ
m dom(f ⊗ g)

= ∆j,m+1ζ
m{x ∈ An+m | x(n+1,...,n+m) ∈ dom g,x(1,...,n) ∈ dom f}

= ∆j,m+1{x ∈ An+m | x(1,...,m) ∈ dom g,x(m+1,...,m+n) ∈ dom f}
= {x ∈ An+m−1 | x(1,...,m) ∈ dom g,x(j,m+1,...,m+n−1) ∈ dom f}
= {x ∈ An+m−1 | x(1,...,m) ∈ dom g, (g(x(1,...,m)),x(m+1,...,m+n−1)) ∈ dom f}
= dom(f ? g)

Let x ∈ dom(f ? g) be arbitrary. Then

(∆j,m+1ζ
m(f ⊗ g))(x)

= (ζm(f ⊗ g))(x(1,...,m,j,m+1,...,m+n−1))

= (f ⊗ g))(x(j,m+1,...,m+n−1,1,...,m))

= f(x(j,m+1,...,m+n−1))

= f(g(x(1,...,m)),x(m+1,...,m+n−1))

= (f ? g)(x)

Thus f ? g = ∆j,m+1ζ
m(f ⊗ g) holds. �

Lemma 4.4. Let C ⊆ pProj(A). Then C is a partial clone if and only if
C = 〈C〉Ω and Proj(A) ⊆ C.

Proof. If C is a partial clone, then C is closed under ζ, τ , ∆, ∇ and ?,
and Proj(A) ⊆ C. By Lemma 4.2 the operation ⊗ is de�nable with these
operations, and Proj(A). Thus C is closed under ⊗.

Let C ⊆ pProj(A) be closed under ζ, τ , ∆, ∇ and ⊗, and Proj(A) ⊆ C.
By Lemma 4.3 we see that C is also closed under ?, and therefore C is a
partial clone. �
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4.1. Partial clones of projections and their domains. The following
material is similar to the weak systems of relations from the work of B�orner,
Haddad, and P�oschel [1] to describe the minimal partial clones. The ap-
proach here handles the relations with Maltsev operations. Furthermore,
the empty relation and the equality relation are handled specially since they
are required to get the connection to strong partial clones later on.

In this subsection we show that a clone C ⊆ pProj(A) of partial projec-
tions is completely speci�ed by the set of domains dom(C) of its members.
These are relations on A, i.e., dom(C) := {dom f | f ∈ C} ⊆ Rel(A). We

de�ne a kind of inverse operation dom∗ for ρ ∈ Rel(n)(A) with n ≥ 1 by

dom∗ ρ := {f | dom f = ρ, f ≤ eni for 1 ≤ i ≤ n}.

This can then be used to de�ne it for a set R ⊆ Rel(A) by

dom∗R :=
⋃
ρ∈R

dom∗ ρ.

We call R ⊆ Rel(A) a domain clone if R is closed under ζ, τ , ∆, ∇, ⊗,
and An ∈ R for all n ≥ 1.

Lemma 4.5. Let C ⊆ Par(A) be a partial clone. Then dom(C) is a domain
clone.

Proof. Let ρ, σ ∈ dom(C). Then there are f, g ∈ C with ρ = dom f and
σ = dom g.

Since αf ∈ C for all α ∈ {ζ, τ,∇,∆}, and α(dom f) = dom(αf) we obtain
αρ = dom(αf) ∈ dom(C). Similar f ⊗ g ∈ C, and thus

ρ⊗ σ = (dom f)⊗ (dom g) = dom(f ⊗ g) ∈ dom(C).

Furthermore, An = dom en1 ∈ domC for all n ≥ 1 since Proj(A) ⊆ C.
Thus dom(C) is a domain clone. �

Lemma 4.6. LetR ⊆ Rel(A) be a domain clone. Then dom∗(R) ⊆ pProj(A)
is a partial clone.

Proof. Let f, g ∈ dom∗(R). Then there are ρ, σ ∈ R with ρ = dom f and
σ = dom g.

Let α ∈ {ζ, τ,∇,∆}. Then αf ≤ eni for some 1 ≤ i ≤ n, and dom(αf) =
α(dom f) ∈ R. Thus αf ∈ dom∗(R).

Similarly, f⊗g ≤ eni for some (possibly di�erent) 1 ≤ i ≤ n, and dom(f⊗
g) = (dom f)⊗ (dom g) ∈ R. Thus f ⊗ g ∈ dom∗(R).

Furthermore, eni ≤ eni for all 1 ≤ i ≤ n, and dom(eni ) = An ∈ R. Thus
eni ∈ dom∗(R). �

We have shown that dom and dom∗ map partial clones to domain clones,
and reversely. For our purposes we need a stronger result, namely that dom
and dom∗ are the inverse operations of each other, i.e., that C = dom∗ domC
for each partial clone C ⊆ pProj(A), and R = dom dom∗R for each domain
clone R ⊆ Rel(A). But these are straight forward as given in the following
two lemmas.

Lemma 4.7. Let C ⊆ pProj(A) be a partial clone. Then C = dom∗ domC.
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Proof. We �rst show that C ⊆ dom∗ domC holds. Let f ∈ C. Then f ⊆ eni
for some 1 ≤ i ≤ n, and dom f ∈ domC. Thus f ∈ dom∗(domC).

Now we show C ⊇ dom∗ domC. Let f ∈ dom∗ domC. Then f ⊆ eni
for some 1 ≤ i ≤ n, and there is some g ∈ C with dom f = dom g. Let
f ′ := e2

1(eni , g). Then dom f ′ = An ∩ dom g = dom f and f ′ ≤ eni . Thus
f = f ′ ∈ C. �

Lemma 4.8. Let R ⊆ Rel(A) be a domain clone. Then R = dom dom∗R.

Proof. We �rst show R ⊆ dom dom∗R. Let ρ ∈ R. Then there is some
f ∈ dom∗R with f ≤ en1 and dom f = ρ. Thus ρ = dom f ∈ dom(dom∗R).

Now we show R ⊇ dom dom∗R. Let ρ ∈ dom dom∗R. Then there is
some f ∈ dom∗R with dom f = ρ. By the de�nition of dom∗R follow
ρ = dom f ∈ R. �

Let LpProj(A) be the lattice of all partial clones in the interval I(Proj(A),pProj(A))
ordered by set inclusion. Let LDom(A) be the lattice of all domain clones on
A also ordered by set inclusion.

We now proof that dom and dom∗ are lattice homomorphisms between
LpProj(A) and LDom(A), and reversely.

Lemma 4.9. Let C,C ′ ⊆ Par(A) be partial clones with C ⊆ C ′. Then
domC ⊆ domC ′.

Proof. Let ρ ∈ domC. Then there is some f ∈ C with ρ = dom f . Since
f ∈ C ′ we also have ρ = dom f ∈ domC ′. �

Lemma 4.10. Let R,R′ ⊆ Rel(A) be domain clones with R ⊆ R′. Then
dom∗R ⊆ dom∗R′.

Proof. Let f ∈ dom∗R. Then f ≤ eni for some 1 ≤ i ≤ n, and there is some
ρ ∈ R with ρ = dom f . Then ρ ∈ R′ and thus there is some f ′ ∈ dom∗R′
with f ≤ eni and dom f ′ = ρ = dom f . Thus f = f ′ ∈ dom∗R′. �

Theorem 4.11. The map dom is a lattice isomorphism from LpProj(A) to
LDom(A), and the map dom∗ is its inverse lattice isomorphism from LDom(A)

to LpProj(A).

4.2. Shu�ing operators. Some preparations for the next section:

Lemma 4.12. Let R ⊆ Rel(A). Then 〈R〉ζ,τ,∆,⊗ = 〈〈R〉⊗〉ζ,τ,∆.

Proof. Let ρ ∈ Rel(n)(A) and σ ∈ Rel(m)(A). Then

(τρ)⊗ σ = τ(ρ⊗ σ);

ρ⊗ (τσ) = ζnτζ−n(ρ⊗ σ);

(ζρ)⊗ σ = π(1...n)(ρ⊗ σ);

ρ⊗ (ζσ) = π(n+1...m)(ρ⊗ σ);

(∆ρ)⊗ σ =

{
∆(ρ⊗ σ) if n ≥ 2,

ρ⊗ σ if n = 1;

ρ⊗ (∆σ) =

{
ζn∆ζ−n(ρ⊗ σ) if m ≥ 2,

ρ⊗ σ if m = 1;
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The π's are just permutations of coordinates, and thus representable with ζ
and τ . �

Let ρ ∈ Rel(n)(A). We de�ne a variant of ∇ by ∇l ∈ Rel(n+1)(A)

∇lρ := {x ∈ An+1 | x(1,...,l,l+2,...,n+1) ∈ ρ}

for 0 ≤ l ≤ n, i.e., we add a �ctious coordinate after the �rst l coordinates
of ρ. For l > n we de�ne ∇lρ := ∇nρ. Clearly, ∇ = ∇0.

Lemma 4.13. Let R ⊆ Rel(A). Then 〈R〉Ω = 〈〈R〉ζ,τ,∆,⊗〉(∇l)l≥0
.

Proof. Let ρ ∈ Rel(n)(A), σ ∈ Rel(m)(A), and 0 ≤ l ≤ n. Then

τ(∇lρ) =


∇1ρ if l = 0,

∇0ρ if l = 1,

∇l(τρ) otherwise;

ζ(∇lρ) =

{
∇nρ if l = 0,

∇l−1(ζρ) otherwise;

∆(∇lρ) =

{
ρ if l ∈ {0, 1},
∇l−1(∆ρ) otherwise;

(∇lρ)⊗ σ = ∇l(ρ⊗ σ)

σ ⊗ (∇lρ) = ∇l+m(σ ⊗ ρ) �

Let ρ ∈ Rel(n)(A). We de�ne another operation δi,j for i, j ∈ [n] by

δi,jρ = {x ∈ ρ | xi = xj}.

Furthermore, let δ ∈ Rel(2)(A) be de�ned by δ := {(x, x) | x ∈ A}. Then we
see that, δ = δ1,2A

2, and δi,iρ = ρ.

Lemma 4.14. Let R ⊆ Rel(A).
Then 〈R ∪ {δ}〉Ω = 〈〈R ∪ {A}〉ζ,τ,∆,⊗〉(∇l)l≥0,(δi,j)i,j≥1

.

Proof. Let ρ ∈ Rel(n)(A), σ ∈ Rel(m)(A), and i, j ∈ [n]. Then

τ(δi,jρ) = δτ(i),τ(j)τρ

ζ(δi,jρ) = δζ(i),ζ(j)ζρ

∆(δi,jρ) = δmax(1,i−1),max(1,j−1)∆ρ

(δi,jρ)⊗ σ = δi,j(ρ⊗ σ)

σ ⊗ (δi,jρ) = δi+m,j+m(σ ⊗ ρ) �

Now we can conclude the following theorem which is useful in the charac-
terization in the next section.

Theorem 4.15. Let R ⊆ Rel(A).
Then 〈R ∪ {δ, ∅}〉Ω = 〈〈〈R ∪ {A}〉⊗〉ζ,τ,∆〉(∇l)l≥0,(δi,j)i,j≥1

∪ {∅}.
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5. Strong partial clones upside down

In this section, we show that there is a order-reserving bijection between
the interval I({δ, ∅},Rel(A)) of domain clones and the lattice of strong partial
clones.

We need to recall some things about strong partial clones and the galois
connection to relations on A. B. Romov has shown that a strong partial clone
is determined by a family of relations of a certain type called irredundant
relations. This requires the following:

Let h ≥ 1 and let ρ be an h-ary relation on A. We say that ρ is repetition-
free if for all 1 ≤ i < j ≤ h, there exists (a1, . . . , ah) ∈ ρ with ai 6= aj .
Moreover ρ is said to be irredundant if it is repetition-free and has no �cti-
tious components, i.e., there is no i ∈ [h] such that (a1, . . . , ah) ∈ ρ implies
(a1, . . . , ai−1, x, ai+1, . . . , ah) ∈ ρ for all x ∈ A.

It can be shown that if µ is a non-empty relation, then one can �nd an
irredundant relation ρ such that pPolµ = pPol ρ (see [2] and [3]). We have:

Lemma 5.1. ( [6]) Let C be a strong partial clone on A. Then there is a
non-empty set of irredundant relations R with C = pPolR.

The following result, known as the De�nability Lemma, was �rst estab-
lished by B. Romov in [7] (see [3] and Lemma 20.3.4 in [4]).

Lemma 5.2 (De�nability Lemma). Let λ be an irredundant t-ary relation
on A, and R a set of relations on A. Then pPolR ⊆ pPolλ if and only if
for each R ∈ R there is an ar(R)-ary auxiliary relation γR on [t], such that
{γR | R ∈ R} covers [t], and λ = {x ∈ At | xi ∈ R for all R ∈ R and i ∈
γR}.

We now show that the operations for domains given in the previous section,
are equivalent to the one in the previous lemma plus the addition and deletion
of duplicate and super�cial coordinates.

Lemma 5.3. Let λ be an irredundant t-ary relation on A, and R a set of
relations on A. Then pPolR ⊆ pPolλ if and only if λ ∈ 〈R〉ζ,τ,∆,⊗.

Proof. If pPolR ⊆ pPolλ, then by Lemma 5.2 we have for each R ∈ R there
is an ar(R)-ary auxiliary relation γR on [t], such that {γR | R ∈ R} covers
[t], and λ = {x ∈ At | xi ∈ R for all R ∈ R and i ∈ γR}.

Since λ is �nite, we can assume w.l.o.g., that R is �nite. Then let
X := {(i, R) | R ∈ R, i ∈ γR} be ordered in some (arbitrary) way, i.e.,
let {p1, . . . , pl} := X with l := |X|, and pj = (ij , Rj) for all 1 ≤ j ≤ l.
Let the order be denoted by ≺, i.e., pi ≺ pj i� i < j. Then for p ∈ X let

ar≺(pv) :=

v−1∑
j=1

ar(Rj).

Furthermore, let I = (i1, . . . , il), i.e., the concatenation of all ij .

We can now write λ = {x ∈ At | xI ∈ R̂}, where R̂ := R1⊗R2⊗ · · · ⊗Rl,
and ⊗ is the operation on the domains given before. Then every a ∈ [t]
appears at least once in I. With ζ and τ we can reorder the coordinates of
I and R̂ such that we can assume I = (1, . . . , 1, 2, . . . , 2, . . . , t, . . . , t). Then
with ∆ (as well as ζ and τ) we can identify the coordinates with the same
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value in I. Thus we obtain λ = {x ∈ At | x(1,...,t) ∈ φ(R̂)} = φ(R̂), where φ
is some combination of ∆, τ , and ζ.

Thus λ ∈ 〈R〉ζ,τ,∆,⊗.
Now we let λ ∈ 〈R〉ζ,τ,∆,⊗, and want to show that pPolR ⊆ pPolλ.

First by Lemma 4.12 we have λ ∈ 〈R̂〉ζ,τ,∆ for some relation R̂ = R1 ⊗
· · ·⊗Rl with R1, . . . , Rl ∈ R. Then λ = φ(R̂) where φ = ξ1ξ2 . . . ξµ for some

ξj ∈ {ζ, τ,∆}. Then φ induces a coordinate mapping φ′ : [ar(R̂)]→ [t]. Now
we can write

λ = {x ∈ At | xij ∈ Rj for all j ∈ [l]}

with ij = (φ′(ar≺(Rj) + 1), . . . , φ′(ar≺(Rj) + ar(Rj)).
Furthermore the ij do cover [t], since otherwise there would be a �ctitious

coordinate, i.e., λ would not be irredundant. �

Lemma 5.4. Let λ ∈ 〈R ∪ {δ}〉Ω \ 〈R〉ζ,τ,∆,⊗ be non-empty. Then λ is
not irredundant, and there is some irredundant relation λ′ ∈ 〈R〉ζ,τ,∆,⊗ with
pPolλ′ = pPolλ, or pPolλ = Par(A).

Proof. By Theorem 4.15 we have 〈R∪{δ}〉Ω = 〈〈〈R∪{A}〉⊗〉ζ,τ,∆〉(∇l)l≥0,(δi,j)i,j≥1
.

Thus there is some λ′′ ∈ 〈〈R ∪ {A}〉⊗〉ζ,τ,∆ with λ ∈ 〈{λ′′}〉(∇l)l≥0,(δi,j)i,j≥1
,

and λ 6= λ′′. Thus ∇l for some l ≥ 0, or δi,j for some i, j ≥ 1 have been
applied at least once to λ′′, and therefore λ has a �ctious coordinate, or a
duplicate coordinate, respectively. That means, λ is not irredundant, and
furthermore pPolλ′′ = pPolλ.

If λ′′ is irredundant, then we can take λ′ := λ. Otherwise, λ′′ has �ctious
coordinates, or duplicate coordinates.

If i is a �ctious coordinate and λ′′ is at least binary, then we can remove
it by ∆i,i+1λ

′′ ∈ 〈〈R ∪ {A}〉⊗〉ζ,τ,∆. If λ′′ is unary, then λ′′ = A, and thus
pPolλ = pPolA = Par(A).

If λ′′ has a duplicate coordinate there are i < j with xi = xj for all x ∈ λ′′.
Then ∆i,jλ

′′ ∈ 〈〈R ∪ {A}〉⊗〉ζ,τ,∆, and has smaller arity.
Repeating this process, until all �ctious and duplicate coordinates are re-

moved stops eventually, and we obtain and irredundant λ′ ∈ 〈〈R∪{A}〉⊗〉ζ,τ,∆,
or λ′ = A and thus pPolλ = pPolA = Par(A). �

From the last two lemmas we can conclude the following nice theorem.

Theorem 5.5. Let R ⊆ Rel(A), and λ ∈ Rel(A).
Then λ ∈ 〈R ∪ {δ, ∅}〉Ω if and only if pPolR ⊆ pPol ρ.

For the sublattice of domain clones, which contain the relations δ and ∅,
we use the symbol L?Dom(A), i.e., L

?
Dom(A) := I(〈δ, ∅〉Ω,Rel(A)).

Corollary 5.6. Let R,S ∈ L?Dom(A) be domain clones. Then

S ⊆ R ⇐⇒ pPolR ⊆ pPolS.
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Since (pPol,pInv) is a Galois-connection we have for all C,D ⊆ Par(A),
and R,S ⊆ Rel(A) that

C ⊆ D =⇒ pInvD ⊆ pInvC,

R ⊆ S =⇒ pPolS ⊆ pPolR,
C ⊆ pPol pInvC,

R ⊆ pInv pPolR.
We want to show that the strong partial clones and the domain clones in
L?Dom(A) are precisely the Galois-closed sets.

Lemma 5.7. Let C ⊆ Par(A). Then pInvC contains ∅, and δ, and it is
closed under ζ, τ , ∆, ∇, and ⊗.

Thus pInvC is a domain clone in L?Dom(A).

Lemma 5.8. Let R ⊆ Rel(A) be a domain clone in L?Dom(A).

Then R = pInv pPolR.

Proof. We have R ⊆ pInv pPolR. Assume to the contrary, that there is
some ρ ∈ (pInv pPolR) \ R.

Since R is a domain clone, we see that pPolR 6⊆ pPol ρ, i.e., there is
some f ∈ (pPolR) \ (pPol ρ). Then f does not preserve ρ, and thus ρ /∈
pInv(pPolR) ⊇ pInv{f}. Thus we have a contradiction, and the equation
holds. �

As it is known, for each R ⊆ Rel(A), the set pPolR is a strong partial
clone.

Lemma 5.9. Let C ⊆ Par(A) be a strong partial clone.
Then C = pPol pInvC.

Proof. We have C = pPolR for some R ⊆ Rel(A) by Lemma 5.1. Then
R ⊆ pInv pPolR implies C = pPolR ⊇ pPol pInv pPolR = pPol pInvC,
and together with C ⊆ pPol pInvC we obtain C = pPol pInvC. �

Theorem 5.10. The map pPol is an order-reversing lattice isomorphism
from interval L?Dom(A) of domain clones to the lattice of strong partial clones

L?Par(A) := I(pProj(A),Par(A)), and the map pInv is its inverse lattice iso-

morphism from I(pProj(A),Par(A)) to L?Dom(A).

We can now combine the two pairs of maps (dom, dom∗) and (pPol,pInv)
to obtain the main theorem. Let L?pProj(A) be the lattice of all partial clones

in LpProj(A) which contain e∅ (the unary function with empty domain) and

eδ (de�ned by eδ ≤ e2
1 and dom eδ = δ).

Theorem 5.11. The maps pPol dom and dom∗ pInv are bijective and each
is the inverse of the other. They form a pair of order-reversing lattice ho-
momorphisms between the lattices L?pProj(A) and L?Par(A).

We note that pProj(A) is the only common point of these two sublattices
of the lattice of all partial clones LPar(A), and it is the only �x point of
pPol dom and dom∗ pInv.
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Par(A)

pProj(A)

Proj(A)

LPar(A)

〈e∅〉Ω 〈eδ〉Ω

Rel(A)

{An | n ≥ 1}

LDom(A)

〈{∅}〉Ω 〈{δ}〉Ω

Par(A)

pProj(A)

L?Par(A)

dom

dom
∗

pPol

pInv

id

Figure 1. The maps between the lattices LpProj(A) and
LDom(A) on the left, and the maps between L?Dom(A) and

L?Par(A) on the right. Note that, to improve readability of

the �gure, the lattice L?Par(A) appears both in the left lattice

as a sublattice, and on the right on its own.

6. The lattice LpProj(A)

In the last section we have seen that the lattices L?pProj(A) and L
?
Par(A) are

isomorphic with the order by inclusion reversed. Now we want to describe
all the other partial clones in the lattice LpProj(A) = I(Proj(A), pProj(A)).
As we have shown this lattice is isomorphic to the lattice of domain clones
LDom(A). We know that L?Dom(A) is isomorphic to L?pProj(A).

First we consider the problems of minimal and maximal clones in LDom(A).

6.1. Minimal domain clones. From the results by B�orner, Haddad and
P�oschel about minimal partial clones [1] we obtain all minimal clones in
LDom(A). But �rst we need to de�ne some terminology.

De�nition 6.1. Let ρ ∈ Rel(n)(A) and Sn be the group of permutations on
[n]. The relation ρ is said to be
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(1) totally symmetric if for all π ∈ Sn and (a1, . . . , an) ∈ An,
(a1, . . . , an) ∈ ρ ⇐⇒ (aπ(1), . . . , aπ(n)) ∈ ρ;

(2) totally re�exive if for every (a1, . . . , an) ∈ An and all 1 ≤ i < j ≤ n,
the equality ai = aj implies that (a1, . . . , an) ∈ ρ;

(3) non-trivial if ρ 6= An.

Note that any subset of A (including the empty set ∅) is considered as a
totally symmetric and totally re�exive relation.

We get the following theorem.

Theorem 6.2 (B�orner, Haddad, P�oschel [1]). Let R ∈ LDom(A) be a minimal
domain clone.

Then R = 〈ρ〉Ω for some non-trivial, totally symmetric and totally re�ex-

ive relation ρ ∈ Rel(n)(A) with n ≤ |A|.

6.2. Maximal domain clones. As was shown in [9] there are no minimal
strong partial clones. Thus there are no maximal domain clones in the
interval L?Dom(A). The following lemma will let us conclude that there are no

maximal domain clones in the lattice LDom(A).

Lemma 6.3. Let R ⊂ Rel(A) be a domain clone. Then 〈R ∪ {δ, ∅}〉Ω 6=
Rel(A).

Proof. Let R′ := 〈R ∪ {δ, ∅}〉Ω.
Assume to the contrary that R′ = Rel(A). Then {(0, 1), (1, 0)}, {(0, 1)} ∪

δ ∈ R′. Since both of these relations are irredundant we have {(0, 1), (1, 0)}, {(0, 1)}∪
δ ∈ 〈R〉ζ,τ,∆,⊗ = R. But then ∅ = ∆{(0, 1), (1, 0)} ∈ R, and δ = ({(0, 1)} ∪
δ) ∩ ({(1, 0)} ∪ δ) ∈ R.

Thus R = R′ = Rel(A) in contradiction to the assumption. Thus R′ 6=
Rel(A). �

Theorem 6.4. Let R ⊂ Rel(A) be a domain clone. Then there is some
domain clone R′ ⊆ Rel(A), with R ⊂ R′ ⊂ Rel(A), i.e., there are no
maximal domain clones in Rel(A).

Let us look at domain clones in L?Dom(A) and what happens if we remove

〈δ, ∅〉Ω from them. First we look at domain clones generated by just one
relation.

7. Intervals I(C,Str(C)) for total clones C

Lemma 7.1. Let C ⊆ Op(A) be a total clone on A, D ∈ I(C,Str(C)),

f ∈ C(n), and ρ ∈ dom(n)(D).
Then fρ ∈ D where fρ ≤ f and dom fρ = ρ.

Proof. There is some g ∈ D with dom g = ρ. Then fρ = e2
1(f, g) ∈ D. �

Corollary 7.2. Let C ⊆ Op(A) be a total clone on A. Then the map ιC
from I(C,Str(C)) to LpProj(A) = I(Proj(A),pProj(A)) de�ned by ιC(D) =
D ∩ pProj(A) is injective.

Proof. By Lemma 7.1 D ∩ pProj(A) = D′ ∩ pProj(A) implies D = D′, and
therefore ιC is injective. �
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Thus we know that the interval I(C,Str(C)) is at most as complicated as
the interval LpProj(A)

∼= LDom(A). We now want to know how they di�er. For
that we have to get back to work with functions, and then we will translate
this to operations on the domains/relations.

Let C be a total clone and let f ∈ C(n) be an n-ary function. Furthermore,
let ρ ∈ Rel(m+1)(A) for some m ≥ n. We de�ne the operator Sf by Sf (ρ) ∈
Rel(m)(A) and

Sf (ρ) := {x ∈ Am | (f(x(1,...,n)),x) ∈ ρ}.
We note that Se11(ρ) = ∆ρ.

Lemma 7.3. Let C ⊆ Op(A) be a total clone on A, and D ∈ I(C,Str(C)).
Then domD is closed under Sf for all f ∈ C.

Proof. Let ρ ∈ dom(m+1)D and f ∈ C(n) with m ≥ n. Then there is some
g ∈ D with dom g = ρ.

We consider the partial function G := g(f(em1 , . . . , e
m
n ), em1 , . . . , e

m
m). Then

dom f(em1 , . . . , e
m
n ) = {x ∈ Am | x(1,...,n) ∈ dom f} = Am since f ∈ Op(A).

Then
domG = {x ∈ Am | (f(x(1,...,n)),x) ∈ dom g}

and G ∈ D imply that Sf (ρ) = Sf (dom g) = domG ∈ domD. Thus domD
is closed under Sf for all f ∈ C. �

As a simple example we take f := c0 be the unary constant 0, and ρ =
{001, 010, 111}. Then Sc0(ρ) = {01, 10}, and S2

c0(ρ) = {1}. Thus if C is a
total clone and c0 ∈ C, then ρ ∈ domD implies {01, 10}, {1} ∈ domD for
each partial clone D ∈ I(C,Str(C)).

We have seen that the associated domain clone domD for a partial clone
D ∈ I(C,Str(C)) is closed under Sf for all f ∈ C. Now we will show that
the converse is also true, i.e., the interval {domD | D ∈ I(C,Str(C))} is
precisely the set of domain clones closed under Sf for all f ∈ C.

Lemma 7.4. Let f ∈ Op(n)(A) for some n ≥ 1, and g1, . . . , gn ∈ Par(m)(A)
for some m ≥ 1. Then

dom f(g1, . . . , gn) = dom e1(g1, . . . , gn) =
n⋂
i=1

dom gi.

Lemma 7.5. Let f, g ∈ Par(A).
Then dom(f ? g) ∈ 〈{dom f, dom g}〉Ω,Sg .

Proof. Let f ∈ Par(n)(A) and g ∈ Par(m)(A) for some n,m ≥ 1.
By the de�nition of ? we have

dom(f ? g) = {x ∈ An+m−1 | x(1,...,m) ∈ dom(g),

(g(x(1,...,m)),x(m+1,...,n+m−1)) ∈ dom(f)}
= (ζ∇)n−1(dom g)∩
{x ∈ An+m−1 | (g(x(1,...,m)),x(m+1,...,n+m−1)) ∈ dom(f)}

= (ζ∇)n−1(dom g) ∩ Sg(τ∇)n(dom f).

Thus the statement holds. �
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Now we can conclude our main theorem for this section.

Theorem 7.6. Let C ⊆ Op(A) be a total clone on A, and R ∈ LDom(A) a
domain clone.

Then R is closed under Sf for all f ∈ C if and only if there is some
D ∈ I(C,Str(C)) with R = domD.

If the relation δ ∈ domD we even get another construction S′f , which is a

kind of inverse to Sf . Let ρ ∈ Rel(m)(A) and f ∈ Op(n)(A) with m ≥ n. We

de�ne S′f by S′f (ρ) ∈ Rel(m+1)(A) and

S′f (ρ) := {(f(x(1,...,n)),x) ∈ Am+1 | x ∈ ρ.

Then SfS
′
f (ρ) = ρ, and S′fSf (ρ) ⊆ ρ, where the inclusion is normally strict.

Lemma 7.7. Let ρ ∈ Rel(A) and f ∈ Op(A). Then S′f (ρ) ∈ 〈{ρ, δ}〉ζ,⊗,Sf .

Proof. Let ρ ∈ Rel(m)(A) and f ∈ Op(n)(A) with m ≥ n. Then

S′f (ρ) = ζ−1Sfζ(δ ⊗ ρ).

�

7.1. The domain clone 〈{∅, δ}〉Ω,(Sf )f∈C . LetQC := 〈{∅, δ}〉Ω,(Sf )f∈C . Then

QC is a domain clone, and, as we already know, for C = Proj(A) we have
pPolQProj(A) = Par(A). Now we want to consider in the Boolean case, i.e.,
A = {0, 1}, what is pPolQC for each total Boolean clone C.

For this let us make several observations concerning the Boolean functions
generating the total clones. One step is to determine the total part PC :=
Op(A) ∩ pPolQC of this clone. The general idea in this search includes two
steps:

• First use the functions in a generating set for the C, to obtain some
set Q′C of non-trivial relations in QC via the operator Sf from the
relations An and δ. This gives a suspect YC := PolQ′C for Op(A) ∩
pPolQC .
• Then check for each g in the generating set of YC , and each f in the
generating set of C that g ∈ Pol ρ implies g ∈ PolSf (ρ).

Lemma 7.8. Let C,C ′ be total clones with C ⊆ C ′. Then PC′ ⊆ PC .

Lemma 7.9. Let C ⊇ Ta,∞∩Tb∩M with {a, b} = {0, 1}. Then PC ⊆ 〈c0, c1〉.

Proof. Let w.l.o.g. a = 0 and b = 1. Then by Theorem 3.2.1.1 [4] we have
m ∈ C where m(x, y, z) = x ∧ (y ∨ z). Thus

S′m(A3) =


0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 ∈ QC .
We de�ne ρ := {x ∈ A3 | x(1,2,3,1),x(1,3,2,1) ∈ S′m(A3)}. Then

ρ =

0 0 0 1
0 0 1 1
0 1 0 1

 ∈ QC .
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By Table 10.1 [4] we get PC ⊆ Pol ρ = 〈∧, c0, c1〉.
We show that ∧ /∈ PC . Let x = (1, 1, 0, 1), y = (1, 1, 1, 0). Then x,y ∈

S′m(A3), but x ∧ y = (1, 1, 0, 0) /∈ S′m(A3). Thus ∧ /∈ PolS′m(A3) ⊇ PC .
Thus PC ⊆ 〈c0, c1〉. �

Lemma 7.10. Let C ⊇ Ta,∞∩M be a total clone for some a ∈ {0, 1}. Then
PC ⊆ 〈ca〉.

Proof. Let w.l.o.g. a = 0. By Lemma 7.9 we have PC ⊆ 〈c0, c1〉. By
Theorem 3.2.1.1 [4] we have c0 ∈ C, and thus {0} = ∆S′c0(A) ∈ QC . Since
c1 /∈ Pol{0} we obtain PC ⊆ 〈c0〉. �

Lemma 7.11. Let a ∈ {0, 1}. Then PTa ⊇ 〈ca〉.

Proof. Since ca ∈ Pol{∅, δ} = Pol〈{∅, δ}〉Ω, we just need to show that Sfρ ∈
Inv ca for all ρ ∈ Inv ca and f ∈ Ta.

Let ρ ∈ Inv ca, and f ∈ Ta. Then (a, . . . , a) ∈ ρ, and f(a, . . . , a) = a.
Thus (a, . . . , a) ∈ Sfρ, and consequently Sfρ ∈ Inv ca. This implies QTa ⊆
Inv ca, and therefore PTa = PolQTa ⊇ Pol Inv ca = 〈ca〉. �

Lemma 7.12. Let C be a total clone, and a ∈ {0, 1}. Then ca ∈ PC if and
only if C ⊆ Ta.

Proof. First let C ⊆ Ta. By Lemmas 7.11 and 7.8 we get ca ∈ PTa ⊆ PC .
Now assume C 6⊆ Ta. Then there is some n-ary function f ∈ C with

f(a, . . . , a) 6= a. Then ca(x) = (a, . . . , a) /∈ Sf (An) ∈ QC for all x ∈ Sf (An).
Thus ca /∈ PolSf (An) ⊇ PC . �

Corollary 7.13. Let C be a total clone with Ta,∞ ∩M ⊆ C ⊆ Ta for some
a ∈ {0, 1}. Then PC = 〈ca〉.

Proof. By Lemmas 7.11, 7.8, and 7.10 we have

〈ca〉 ⊆ PTa ⊆ PC ⊆ 〈ca〉,
and thus PC = 〈ca〉. �

Corollary 7.14. POp(A) = PM = Proj(A).

Proof. By Corollary 7.13 we have PTa∩M = 〈ca〉 for a ∈ {0, 1}. Since M ⊇
Ta ∩M for all a ∈ {0, 1} we get POp(A) ⊆ PM ⊆ 〈c0〉 ∩ 〈c1〉 = Proj(A).
Since POp(A) is a total clone we also have Proj(A) ⊆ POp(A). Thus follows
POp(A) = PM = Proj(A). �

Lemma 7.15. PT0∩T1 ⊇ 〈c0, c1〉.

Proof. By Lemma 7.8 and Corollary 7.13 we have 〈ca〉 = PTa ⊆ PT0∩T1 for
all a ∈ {0, 1}, and thus PT0∩T1 ⊇ 〈c0, c1〉. �

Corollary 7.16. Let C be a total clone with Ta,∞ ∩ Tb ∩M ⊆ C ⊆ T0 ∩ T1

with {a, b} = {0, 1}. Then PC = 〈c0, c1〉.

Proof. By Lemmas 7.15, 7.8, and 7.9 we have

〈c0, c1〉 ⊆ PT0∩T1 ⊆ PC ⊆ 〈c0, c1〉,
and thus PC = 〈c0, c1〉. �

Lemma 7.17. P〈∧,c0,c1〉 ⊇ 〈∧〉.
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Proof. Since ∧ ∈ Pol{∅, δ} = Pol〈{∅, δ}〉Ω, we just need to show that Sfρ ∈
Inv∧ for all ρ ∈ Inv∧ and f ∈ {∧, c0, c1}.

Let ρ ∈ Inv∧, and f ∈ {∧, c0, c1}. �

Lemma 7.18. P〈∧〉 ⊆ 〈∧, c0, c1〉.

Proof. Since

S∧(A2) =

0 1 0 1
0 0 1 1
0 1 0 1


we get from Table 10.1 [4]

P〈∧〉 = PolQ〈∧〉 ⊆ PolS∧(A2) = 〈∧, c0, c1〉.

�

Corollary 7.19. • P〈∧〉 = 〈∧, c0, c1〉;
• P〈∧,ca〉 = 〈∧, ca〉 for every a ∈ {0, 1};
• P〈∧,c0,c1〉 = 〈∧〉.

Proof. Let C ∈ {〈∧〉, 〈∧, c0〉, 〈∧, c1〉, 〈∧, c0, c1〉}. By Lemmas 7.17 and 7.18
we have 〈∧〉 ⊆ PC ⊆ 〈∧, c0, c1〉. Then Lemma 7.12 implies the statement of
this corollary. �

Lemma 7.20. PS = 〈·〉.

Proof. By Lemma �

C Op(A) ∩ pPolQC Elements of QC
Proj(A) Op(A)
〈ca〉 ⊆ Ta {a}
〈c0, c1〉 ⊆ T0 ∩ T1 {0}, {1}
〈·〉 ⊆ S {(0, 1), (1, 0)}
Ω1 ⊆ S ∩ T0 ∩ T1

L ∩ T0 ∩ T1

7.2. The interval I(CA, Str(CA)). Let CA := 〈{ca | a ∈ A}〉 ⊆ Op(A) be
the total clone generated by all constant functions in Op(A).

Frozen partial co-clones, see Nordh and Zanutti [5].
With this information, we might look into the following question. As-

suming we know the interval I(C,Str(C)) for some total clone C. By
the lattice isomorphisms given in the previous section, we can associate
to each D ∈ I(C,Str(C)) containing e∅ and eδ the strong partial clone
pPol dom ιCD. Which strong partial clones do we get? What does it tell us
about the lattice of strong partial clones?

The restriction, that D should contain e∅ and eδ could be abandoned.
This might give a more precise picture, but we have to take care that the
map pPol dom ιCD is not injective in this case.

We will look at a few examples.
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8. Intervals of domain clones for strong partial clones

As stated in Theorem 5.10 there is a bijection between the interval L?Dom(A)

of domain clones and the lattice L?Par(A) of all strong partial clones. So we

know the structure of the interval of domain clones if and only if we know
the structure of the lattice of strong partial clones. But what about the rest
of the lattice LDom(A) of all domain clones.

Let D ∈ LDom(A) be a domain clone. We de�ne D↑ and D↓ by

D↓ := 〈{R ∈ D | R 6= ∅, R is irredundant}〉Dom(A),

D↑ := 〈D ∪ {∅, δ}〉Dom(A).

Since ∅ and δ are preserved by every partial function, and they are not needed
in the construction of irredundant relations, we have

pPolD↑ = pPolD = pPolD↓.

Furthermore, D↑ = pInv pPolD, and thus the biggest domain clone D′ with
pPolD′ = pPolD. Similarly, D↓ is the smallest domain clone D′ with
pPolD′ = pPolD. The only relations possibly missing from D↓, are the
ones with duplicate coordinates.

Since (D↑)↓ = D↓, we need only to consider domain clones theD withD =
D↑. These are exactly the domain clones in the interval L?Dom(A), i.e., D =

pInvC for some strong partial clone C. Thus the intervals I(D↓, D↑) can be
indexed by the strong partial clones, and to keep the notation simpler we de-
�ne IDom(C) for a strong partial clone C by IDom(C) := I((pInvC)↓, pInvC).

A natural question concerns the size of the interval IDom(C) for any strong
partial clone C. We will see that there are strong partial clones where the
size is equal to the continuum.

We use the de�nitions from [8] to give continuum many domain clones in

IDom(C) for a single strong partial clone C. Let R0,2
C,n and R0,2

K,n be two
n-ary relations de�ned by

R0,2
C,n(x1, . . . , xn) :=

∧
i∈[n]

ρ0,2(xi, xi+1 mod n),

R0,2
K,n(x1, . . . , xn) :=

∧
i,j∈[n]
i 6=j

ρ0,2(xi, xj).

Furthermore, let

R0,2
n := R0,2

C,n ×R
0,2
K,n.

Let R̂0,2
n be the (2n+ 1)-ary relation obtained from R0,2

n by duplicating the

�rst coordinate, i.e., R̂0,2
n := {x(1,1,2,...,2n) | x ∈ R

0,2
n }. Clearly, by identifying

the �rst two coordinates of R̂0,2
n we obtain R0,2

n and thus 〈R0,2
n 〉Dom(A) ⊆

〈R̂0,2
n 〉Dom(A).

Let N̂ := {n ∈ N | n odd, n ≥ 3}, and R := {R0,2
n , R̂0,2

n | n ∈ N̂}.

Lemma 8.1. Let n ∈ N̂. Then R̂0,2
n /∈ 〈R \ {R̂0,2

n }〉Dom(A).
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Proof. Let R′ := 〈R \ {R̂0,2
n }〉Dom(A) and R := R̂0,2

n .

Since (1, . . . , 1) /∈ R0,2
m , R̂0,2

m for all m ≥ 3, and (1, 1) ∈ δ, we see that
δ /∈ R′.

Assume to the contrary that R ∈ R′. Then we can write

(1) R = {x ∈ 22n+1 | xi ∈ S for all i ∈ γS and S ∈ R′}
for some auxiliary relations γS for all S ∈ R′.

We can apply Lemma 5.2 [8] and see that γS = ∅ for every S with bigger
arity than R. Similarly, for every S with arity smaller than 2n we see that
it embeds into the second part of R.

Thus we obtain γS 6= ∅ i� S = R0,2
n . Basically, the only possible construc-

tion is R = {x ∈ 22n+1 | x(1,3,4,...,2n+1),x(2,3,4,...,2n+1) ∈ R0,2
n }. But then

(1, 0, . . . , 0) ∈ R in contradiction to the fact, that the �rst two coordinates
of R are equal. �

Now we can give the continuum many domain clones to some strong partial
clone C. Let N ⊆ N̂. For a given function φ : N → {0, 1} let Rφ :=

〈{R0,2
n | n ∈ N,φ(n) = 0} ∪ {R̂0,2

n | n ∈ N,φ(n) = 1}〉Dom(A). Let RN :=

〈{∅, δ} ∪ {R0,2
n | n ∈ N}〉Dom(A). Clearly, R

↑
φ = RN .

Lemma 8.2. Let φ, ψ : N → {0, 1}. Then Rφ = Rψ ⇐⇒ φ = ψ.

Proof. W.l.o.g. φ(n) = 1 6= ψ(n) for some n ∈ N . Then R̂0,2
n ∈ Rφ, but

R̂0,2
n /∈ Rψ by Lemma 8.1. �

Theorem 8.3. Let N ⊆ N̂. Then |IDom(pPolRN )| ≥ 2|N |.

Proof. Let Φ := {φ | φ : N → {0, 1}}. Clearly, |Φ| ≥ 2|N |. By Lemma
8.2 we have that |Q| = |Φ| for Q := {Rφ | φ ∈ Φ}. Furthermore, Q ⊆
IDom(pPolRN ), and thus |IDom(pPolRN )| ≥ 2|N |. �

Corollary 8.4. Let N ⊆ N̂ be in�nite. Then IDom(pPolRN ) contains con-
tinuum many domain clones.

This shows that the lattice of partial clones is �much more� complicated
than the lattice of strong partial clones, even if we only restrict to the partial
projections.
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