UPSIDE DOWN WITH THE STRONG PARTIAL CLONES

ABSTRACT.

1. INTRODUCTION

Let A be an arbitrary finite set. In the case we deal with Boolean clones
we have A =2 := {0, 1}.

A function f : A" — A is called a total function on A. A function
f:8 — Awith § C A" is called partial function on A and we denote the
domain by dom f := S. The set Op(A) is the set of all total functions on A,
and Par(A) is the set of all partial functions on A.

The function e’ : A" — A defined by €}'(z1,...,z,) := z; is called the
n-ary projection onto the i-th coordinate. The set Proj(A) is the set of all
projections on A, i.e., Proj(A4) := {e}' | i,n € N,1 <i < n}.

Let f € Par(A) be n-ary and let gi,...,9, € Par(A) be m-ary. The
composition F := f(gi1,...,gn) is an m-ary partial function defined by

F(z1,...,xm) = f(g1(z1, .., Zm)s - s gn(T1, ooy T))

and

dom F' := {x € ﬂ dom g;
i=1

(g1(x),...,gn(2)) € domf} )

C C Par(A) is called a partial clone if it is composition closed and contains
the projections. If additionally C' C Op(A) then C is a total clone.

Let f,g € Par(A). Then f is a restriction (or subfunction) of g if dom f C
domg and f(x) = g(x) for all x € dom f, short f < g. Let X C Par(A).
Then the set Str(X) C Par(A) is defined by

Str(X):={fePar(A)|Jge X : f <g}.

If X = Str(X) then X is called strong. That means, that X contains every
restriction of every of its functions, i.e., f € C for every f € Par(A) and
g € C with f <g.

The set pProj(A) := Str(Proj(A)) contains all partial projections on A,
i.e., all subfunctions of the projections on A.

Let Rel™(A) be the set of all h-ary relations on A for some h > 1, i.e.,
Rel™(A4) := {X | X C A"}. Furthermore, let Rel(A) := Un>1 Rel™ (A).

Let o € Rel™ (A),and f: S — A with S C A™ an n-ary partial function.
Then f preserves o iff f(M) € p for any h x n matrix M = (m;;) whose rows
belong to the domain of f, i.e. (m;1,...,miy) € dom f for all ¢, and whose
columns belong to p.

Let pPol R be the set of all partial functions preserving every relation
0 € R. Inversely, let pInv C be the set of all relations preserved by every
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partial function f € C. Then (pPol,plnv) form a Galois connection, see
Theorem 4.2.2. in [4].

2. FURTHER DEFINITIONS

For some natural numbers n,m € N with n < m we define the sets
[n,m] := {n,n+1,...,m}, and [n] := [1,n]. Tuples will be written with
boldface small letters, and with the exception of 2 = {0,1} a small boldface
letter signifies a tuple. For a tuple x := (z1,...,z,) € A™ we define the set
of its entries by [x] := {z1,...,2,}, and let |x| := |[x]|. For I C [n] we let
x7:={x; | i € I}. Fori= (i1,...,4) € [n] with I € N we define x; :=
(ziy, ..., 2;) € AL, We will often use the two special tuples 0 := (0,...,0)
and 1:=(1,...,1).

Sometimes it will be more readable to omit some indices, but not neces-
sarily the last one. Then for readability we write x € Al with I C N, i.e.,
x is indexed by I in ascending order. That means x = (24, Ziy, - -, Tiy|)
where iy < dip < .-+ < g and I = {i1,i2,...,%7}. For example writing
x € A2U.6} indicates that x = (z9, 5, ).

2.1. Romov’s definability lemma. The statement of Theorem 2.1 proven
by Romov in |7] gives a nice characterization of the constructability of rela-
tions in the co-clone of a strong partial clone.

The relation p € Rel™ (A) is called irredundant iff it fulfills the following
two conditions:

(i) p has no duplicate rows, i.e., for all ,j with 1 < i < j < h, there is
a tuple (a1,...,ap) € p with a; # aj;

(ii) p has no fictitious coordinates, i.e., there is no ¢ € {1,...,h}, such
that (ai,...,ap) € p implies (a1,...,a;—1,T,Gj+1,...,ap) € p for all
x € A.

For a relation o € Rel™ (A) we define ar(c) := h.

Theorem 2.1. Let ¥ C Rel(A) and p € Rel®(A) be relations. Furthermore
let p be iwrredundant. Then

ﬂ pPol o C pPol p
ocEY

iff there are some v, C [t} for all 0 € ¥ such that
p={xec A |x;€0 foralli€, and o € X}

and

1= U

cEX i€,
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3. CLOSURE OPERATORS

For arbitrary relations p € Rel™(A) and o € Rel™(A) we define the
Maltsev-operations (, 7, A, V, and ® by

Cp:={x€ A" [ X3, . n1) € P}
Tpi={x€ A" | X213, € P}
Apim {{XEA” Yxa12,m _1 €p} forn>2,
p forn=1,
Vp:={x€ A" |x03 . nt1) € P}
p@oi={xc A" X1 ) € P X(nt1,..ntm) € O}
For arbitrary functions f € Par(™(A) and g € Par(™(A) we define the
Maltsev-operations ¢, 7, A, V, ®, and x by
dom(af) := a(dom f) for a € {¢,1,A, V},
dom(f & g) = (dom f) @ (dom g),
dom(fxg):={x€ Antm—1 | X(1,....m) € dom(g),
(9(X(1,...m))» X(m+1,...n4m—1)) € dom(f)},
and
(€N (x) = f(x@3...n1))
(TF)(x) = f(X213,..m))
{f X(1,12,..n—-1)) forn>2,
f(x) forn=1,
(V)(x) = f(x 2,3,.. ,n+1))
(f®@9)x) = Fxa,.m)

(f*g)(X) = f( ( ,.‘.,m))ax(m+1,...,n+m71))
for all x € dom(g * f).

=
Kﬁ
i

To enhance readability we denote by €2 the set of Maltsev operations
(without *), i.e., Q:={{,7,A,V,®}.

For aset L C {(,7,A,V,®,*} and some set X C Par(A), we denote by
(X)r the closure of X under the operations in L, i.e., the smallest set Y
containing X, such that p,(fi,...,fn) € Y for each fi,...,f, € Y, and
pn € L (where p,, is an n-ary operation).

4. CLOSURE OPERATORS BENEATH pProj(A)

The following statement about partial clones has been shown long ago, or

was used as the definition:
reference, more ex-

Theorem 4.1. Let C C Par(”)(A). Then C is a partial clone on A if and planations
only if A is closed under the Maltsev-operations ¢, 7, A, V, and x, and
Proj(A) C C.

We now want to show that we can replace x by ® if C' contains only partial
projections, i.e., if C' C pProj(A) holds.
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Lemma 4.2. Let f € pProj(")(A) and g € pPrOJ(m)(A)
Then f @ g = e1(C"V™ f,V"g).
Proof. Since
dom(¢"V™f) = {x € A" | x(y, ) € dom f}, and
dom(V"g) = {x € A™t™ | x(n+17._7n+m) € domg},
we see that
dom(ef(¢"V™f, V"g)) = dom(¢"V™ f) N dom(V"g) = dom(f @ g).
Let x € dom(f ® g) be arbitrary. Since (("™V™ f)(x) = f(xq,..n)) we get
(1C"V™ V")) (%) = [(X(1,.m) = [ ® 9.
Thus the equality holds. O

Lemma 4.3. Let f € pProj(")(A) and g € pPI‘OJ(m)(A)
Then f*g=DjmC"(f @ g) for some j € [m].
Proof. Since g € pProj(™(A) there is some j € [m] with g < 7

g(x) = z; for all x € domg.
We have

dom(Ajm1¢"™(f ® g))
= Ajm1¢" dom(f © g)
= Aj,m—i—lcm{x € AMt™ | X(n41,...,n+m) € domgvx(l,...,n) € dornf}

7 Le.,

= Ajmp{xe A" | X(1,..;m) € dOM g, X(yp 41, .m+n) € dom f}
={x¢€ Artm—1 | X(1,...;m) € dOM g, X(j m41,....m4n—1) € dom f}
={xe Artm=t | X(1,....m) € dom g, (9(X(1,...m))s X(m+1,....m+n—1)) € dom f}
= dom(f *g)
Let x € dom(f % g) be arbitrary. Then
(Ajm+1¢"(f ® 9))(x)
= (C"(f ®9))(X(1,...;m.jsm+1,...m+n—1))
= ([ ®@9)(X(m+1,....m4n—1,1,...m))
= f( (]7m+1,...,m+n—1)>
= f(g(x(l,...,m))a X(m+1,...,m+n—1))
= (f*9)(x)
Thus f*g = Ajm1{™(f ® g) holds. O
Lemma 4.4. Let C C pProj(A). Then C is a partial clone if and only if
C = (C)q and Proj(A) C C.

Proof. If C is a partial clone, then C is closed under ¢, 7, A, V and x,
and Proj(A) C C. By Lemma 4.2 the operation ® is definable with these
operations, and Proj(A4). Thus C is closed under ®

Let C' C pProj(A) be closed under ¢, 7, A, V and ®, and Proj(A) C C.
By Lemma 4.3 we see that C' is also closed under %, and therefore C' is a
partial clone. O
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4.1. Partial clones of projections and their domains. The following
material is similar to the weak systems of relations from the work of Borner,
Haddad, and Poschel [1] to describe the minimal partial clones. The ap-
proach here handles the relations with Maltsev operations. Furthermore,
the empty relation and the equality relation are handled specially since they
are required to get the connection to strong partial clones later on.

In this subsection we show that a clone C' C pProj(A) of partial projec-
tions is completely specified by the set of domains dom(C') of its members.
These are relations on A4, i.e., dom(C) := {dom f | f € C} C Rel(A). We

define a kind of inverse operation dom* for p € Rel™(A) with n > 1 by
dom* p:={f|dom f=p, f<e} forl<i<n}.
This can then be used to define it for a set R C Rel(A) by

dom™ R := U dom™ p.
PER

We call R C Rel(A) a domain clone if R is closed under (, 7, A, V, ®,
and A™ € R for all n > 1.

Lemma 4.5. Let C C Par(A) be a partial clone. Then dom(C') is a domain
clone.

Proof. Let p,o € dom(C). Then there are f,g € C with p = dom f and
o = domg.

Since af € Cfor all a € {¢, 7,V, A}, and a(dom f) = dom(avf) we obtain
ap = dom(af) € dom(C). Similar f ® g € C, and thus

p®o = (dom f) ® (domg) = dom(f ® g) € dom(C).

Furthermore, A" = dome} € domC for all n > 1 since Proj(A4) C C.
Thus dom(C') is a domain clone. O

Lemma 4.6. Let R C Rel(A) be a domain clone. Then dom™(R) C pProj(A)
s a partial clone.

Proof. Let f,g € dom™(R). Then there are p,o € R with p = dom f and
o = domg.

Let a € {¢,7,V,A}. Then af < e for some 1 < i < n, and dom(af) =
a(dom f) € R. Thus af € dom*(R).

Similarly, f®g < e} for some (possibly different) 1 <14 < n, and dom(f®
g) = (dom f) ® (domg) € R. Thus f ® g € dom*(R).

Furthermore, e < el for all 1 < i < n, and dom(e}) = A" € R. Thus
el € dom*(R). O

We have shown that dom and dom™ map partial clones to domain clones,
and reversely. For our purposes we need a stronger result, namely that dom
and dom™ are the inverse operations of each other, i.e., that C' = dom™ dom C
for each partial clone C' C pProj(A), and R = domdom* R for each domain
clone R C Rel(A). But these are straight forward as given in the following
two lemmas.

Lemma 4.7. Let C' C pProj(A) be a partial clone. Then C = dom™ dom C.



6 UPSIDE DOWN WITH THE STRONG PARTIAL CLONES

Proof. We first show that C' C dom” dom C' holds. Let f € C. Then f C e}
for some 1 <i < n, and dom f € domC. Thus f € dom*(dom C).

Now we show C DO dom*domC. Let f € dom*domC. Then f C e
for some 1 < i < n, and there is some g € C with dom f = domg. Let
f' == €2(e?,g). Then dom f/ = A" Ndomg = dom f and f’ < e?. Thus
f=fecC. O

Lemma 4.8. Let R C Rel(A) be a domain clone. Then R = domdom™ R.

Proof. We first show R C domdom™R. Let p € R. Then there is some
f € dom* R with f < e} and dom f = p. Thus p = dom f € dom(dom™* R).

Now we show R O domdom®R. Let p € domdom™R. Then there is
some f € dom® R with dom f = p. By the definition of dom* R follow
p=dom f € R. O

Let L,proj(a) be the lattice of all partial clones in the interval Z(Proj(A), pProj(A))
ordered by set inclusion. Let Lpom(4) be the lattice of all domain clones on
A also ordered by set inclusion.

We now proof that dom and dom™ are lattice homomorphisms between
Loproj(4) and Lpem(4), and reversely.

Lemma 4.9. Let C,C" C Par(A) be partial clones with C C C'. Then
dom C C dom C'.

Proof. Let p € domC. Then there is some f € C with p = dom f. Since
f € C" we also have p = dom f € dom C’. O

Lemma 4.10. Let R, R’ C Rel(A) be domain clones with R C R'. Then
dom* R C dom* R'.

Proof. Let f € dom™ R. Then f < el for some 1 <i < n, and there is some
p € R with p = dom f. Then p € R’ and thus there is some f’ € dom™ R’
with f < el and dom " = p = dom f. Thus f = f' € dom* R’ O

Theorem 4.11. The map dom is a latlice isomorphism from Lpypyoja) to
Lbom(4), and the map dom”™ is its inverse lattice isomorphism from Lpom(a)

to ﬁpProj (A)-
4.2. Shuflling operators. Some preparations for the next section:

Lemma 4.12. Let R C Rel(A). Then (R)crae = ((R)a)cra-
Proof. Let p € Rel™(A) and o € Rel'™ (A). Then

(rp) @0 =7(p@o0);

p&(ro) = ("¢ (p®o);

(Cp) @0 =71 n)(p®0);

P®(C0) = T(ngt1..m)(p @ 0);

(Ap) @0 = Alpo) iftn>2
pPRC ifn =1,

C"ACTM(p® o)  ifm>2,

Ao) =
p® (Ao) {p@m ifm =1
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The 7’s are just permutations of coordinates, and thus representable with ¢
and 7. O

Let p € Rel™(A). We define a variant of V by V; € Rel™*1)(A4)

.....

for 0 <1 < n, i.e., we add a fictious coordinate after the first [ coordinates
of p. For | > n we define V;p := V,,p. Clearly, V = V.

Lemma 4.13. Let R C Rel(A). Then (R)o = ((R)¢,ra,0)(V))s0-

Proof. Let p € Rel™(A), o € Rel™(A), and 0 < I < n. Then
Vip if I =0,

T(Vip) = Vop  ifl=1,
Vi(tp) otherwise;

C(Vip) = Vanp ifl=0,
= Vi—1(¢p) otherwise;
A(Vip) = p if 1 € {0,1},

Vi—1(Ap) otherwise;

(Vip) o =Vi(p®o)
o ® (Vip) = Vigm(o @ p) O

Let p € Rel™ (A). We define another operation d;; for i,j € [n] by

dijp ={x€plxi=xz;}.

Furthermore, let § € Rel®®)(A4) be defined by & := {(z,z) | 2 € A}. Then we
see that, § = 51,2142, and gi,ip =p.
Lemma 4.14. Let R C Rel(A).

Then (R U {0} = ((RU{A})¢r00) (91105

0ig)ig>1"

Proof. Let p € Rel™(A), o € Rel™(A), and 4, j € [n]. Then

7(00,5p) = O2(i)(j)TP

C(0i,3p) = d¢(y.c(i)SP

A@i,jﬂ) = 3max(1,1‘—1),max(1,j—1)AP

(0ijp) ® 0 =0;j(p® o)

0 ® (9ijp) = itmj+m(0 @ p) O

Now we can conclude the following theorem which is useful in the charac-
terization in the next section.

Theorem 4.15. Let R C Rel(A).
Then (R U {8, 0})a = (R U{AR8)cra)wpon st sr U0}
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5. STRONG PARTIAL CLONES UPSIDE DOWN

In this section, we show that there is a order-reserving bijection between
the interval I({9,0}, Rel(A)) of domain clones and the lattice of strong partial
clones.

We need to recall some things about strong partial clones and the galois
connection to relations on A. B. Romov has shown that a strong partial clone
is determined by a family of relations of a certain type called irredundant
relations. This requires the following:

Let h > 1 and let p be an h-ary relation on A. We say that p is repetition-
free if for all 1 < i < j < h, there exists (a1,...,an) € p with a; # a;.
Moreover p is said to be irredundant if it is repetition-free and has no ficti-
tious components, i.e., there is no i € [h] such that (ai,...,ap) € p implies
(aty..., Gj—1,Z, Qiy1,...,ap) € p for all z € A.

It can be shown that if p is a non-empty relation, then one can find an
irredundant relation p such that pPol = pPolp (see [2] and [3]). We have:

Lemma 5.1. ([6]) Let C be a strong partial clone on A. Then there is a
non-empty set of irredundant relations R with C = pPol R.

The following result, known as the Definability Lemma, was first estab-
lished by B. Romov in [7] (see [3] and Lemma 20.3.4 in [4]).

Lemma 5.2 (Definability Lemma). Let A be an irredundant t-ary relation
on A, and R a set of relations on A. Then pPol R C pPol \ if and only if
for each R € R there is an ar(R)-ary auziliary relation yg on [t], such that
{yr | R € R} covers [t], and A = {x € A' | x; € Rforall R € Randi €

YR}

We now show that the operations for domains given in the previous section,
are equivalent to the one in the previous lemma plus the addition and deletion
of duplicate and superficial coordinates.

Lemma 5.3. Let A be an irredundant t-ary relation on A, and R a set of
relations on A. Then pPolR C pPol X if and only if A € (R)¢rae.

Proof. If pPol R C pPol A, then by Lemma 5.2 we have for each R € R there
is an ar(R)-ary auxiliary relation g on [t], such that {yr | R € R} covers
[t],and A ={x€ A" |x; € Rforall R€ R and i € yp}.

Since A is finite, we can assume w.l.o.g., that R is finite. Then let
X :={(i,R) | R € R,i € vg} be ordered in some (arbitrary) way, i.e.,
let {p1,...,p} = X with [ := |X|, and p; = (¥, R’) for all 1 < j < [
Let the order be denoted by <, i.e., p; < p; iff @ < j. Then for p € X let

v—1
ar(p) = 3 ar(Ry).
j=1

Furthermore, let I = (iy,...,1), i.e., the concatenation of all i;.

We can now write A = {x € A’ | x; € R}, where R:= R @ Ry ®--- ® Ry,
and ® is the operation on the domains given before. Then every a € [t]
appears at least once in I. With ¢ and 7 we can reorder the coordinates of
I and R such that we can assume I = (1,...,1,2,...,2,...,t,...,t). Then
with A (as well as ¢ and 7) we can identify the coordinates with the same
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value in I. Thus we obtain A = {x € A" | x4 € #(R)} = ¢(R), where ¢
is some combination of A, 7, and (.

Thus A € (R)¢.r.a0-

Now we let A € (R)¢.r,A,@, and want to show that pPol R C pPol \.

First by Lemma 4.12 we have A\ € <R>QT’A for some relation R = Ry ®
---® Ry with Ry, ..., R € R. Then A\ = ¢(R) where ¢ = £,&, ... €, for some
¢ € {¢,7,A}. Then ¢ induces a coordinate mapping ¢’ : [ar(R)] — [t]. Now
we can write

A= {xe A" |xy € Rj for all j € [I]}

with i/ = (¢'(ar<(R)) +1),..., ¢ (ar<(R;) + ar(R;)).
Furthermore the i/ do cover [t], since otherwise there would be a fictitious
coordinate, i.e., A would not be irredundant. O

Lemma 5.4. Let A € (RU{6})a \ (R)¢crae be non-empty. Then X is
not irredundant, and there is some irredundant relation X' € (R)¢ A with

pPol X = pPol A\, or pPol A\ = Par(A).

Proof. By Theorem 4.15 we have (RU{d})q = <<<RU{A}>®>C’T’A>(vl)lzm(gi,j)i,jZl'

Thus there is some X" € ((RU{A})a)¢,ra with X € <{)\”}>(Vl)l207(gi,j)i,j21’

and A\ # N’. Thus V, for some [ > 0, or §;; for some 4,5 > 1 have been
applied at least once to \”, and therefore A\ has a fictious coordinate, or a
duplicate coordinate, respectively. That means, A is not irredundant, and
furthermore pPol A = pPol \.

If ) is irredundant, then we can take A\’ := A. Otherwise, \” has fictious
coordinates, or duplicate coordinates.

If 7 is a fictious coordinate and \” is at least binary, then we can remove
it by Ajimi N € (RU{A})g)cra. If X is unary, then \” = A, and thus
pPol A = pPol A = Par(A).

If A has a duplicate coordinate there are i < j with z; = z; for all x € A”.
Then A; ;N € (RU{A})g)¢,ra, and has smaller arity.

Repeating this process, until all fictious and duplicate coordinates are re-
moved stops eventually, and we obtain and irredundant A € ((RU{A})g)¢ rA.
or X = A and thus pPol A = pPol A = Par(A). O

From the last two lemmas we can conclude the following nice theorem.

Theorem 5.5. Let R C Rel(A), and A € Rel(A).
Then X\ € (RU{4,0})q if and only if pPol R C pPol p.

For the sublattice of domain clones, which contain the relations § and 0,
we use the symbol L5y, d.e., Lf 4y = Z((6,0)q, Rel(A)).

Corollary 5.6. Let R,S € ‘CBom(A) be domain clones. Then

S CR <= pPolR C pPolS.
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Since (pPol, pInv) is a Galois-connection we have for all C, D C Par(A),
and R,S C Rel(A) that

CCD = plnvD C plnv C,
R CS = pPolS C pPol R,
C C pPolplnv C,
R C plnv pPol R.

We want to show that the strong partial clones and the domain clones in
[,*Dom( ) are precisely the Galois-closed sets.

Lemma 5.7. Let C C Par(A). Then pInvC contains 0, and &, and it is
closed under (, 7, A, V, and ®.

Thus plnv C' is a domain clone in El*)om( A)-

Lemma 5.8. Let R C Rel(A) be a domain clone in Lhom(a)-
Then R = pInvpPol R.

Proof. We have R C plnvpPolR. Assume to the contrary, that there is
some p € (pInvpPolR) \ R.

Since R is a domain clone, we see that pPolR € pPolp, i.e., there is
some f € (pPolR) \ (pPolp). Then f does not preserve p, and thus p ¢
pInv(pPolR) D pInv{f}. Thus we have a contradiction, and the equation
holds. O

As it is known, for each R C Rel(A), the set pPol R is a strong partial
clone.

Lemma 5.9. Let C C Par(A) be a strong partial clone.
Then C = pPol plnv C.

Proof. We have C' = pPolR for some R C Rel(A) by Lemma 5.1. Then
R C plnvpPol R implies C = pPol’R O pPol plnvpPol R = pPolplnv C,
and together with C' C pPol pInv C we obtain C' = pPol pInv C. |

Theorem 5.10. The map pPol is an order-reversing lattice isomorphism
from interval LBom(A) of domain clones to the lattice of strong partial clones
LEor(a) = Z(pProj(A),Par(A)), and the map plnv is its inverse lattice iso-

morphism from Z(pProj(A),Par(A)) to Lom(a)-

We can now combine the two pairs of maps (dom,dom*) and (pPol, pInv)
to obtain the main theorem. Let L;ij (4) be the lattice of all partial clones
in Lyproj(4) Which contain ey (the unary function with empty domain) and

es (defined by es < e? and domegs = §).

Theorem 5.11. The maps pPoldom and dom™ pInv are bijective and each
1s the inverse of the other. They form a pair of order-reversing lattice ho-
momorphisms between the lattices ‘C;Proj(A) and [,l*par(A).

We note that pProj(A) is the only common point of these two sublattices
of the lattice of all partial clones Lpyy(4), and it is the only fix point of
pPoldom and dom™ pInv.
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Par(A)

{A" [n > 1}

'CDom(A)

FIGURE 1. The maps between the lattices Lypyj4) and
Lpom(a) on the left, and the maps between E*Dom( A) and
Ef,ar( 4) On the right. Note that, to improve readability of
the figure, the lattice Lf)ar(A) appears both in the left lattice
as a sublattice, and on the right on its own.

6. THE LATTICE Lproj(A)

In the last section we have seen that the lattices E;‘)Pr 0i(A) and L} ar(A) aT€
isomorphic with the order by inclusion reversed. Now we want to describe
all the other partial clones in the lattice Lypyoj4) = Z(Proj(A), pProj(A)).
As we have shown this lattice is isomorphic to the lattice of domain clones
Lpom(a)- We know that £*Dom(A) is isomorphic to L;Proj(A).

First we consider the problems of minimal and maximal clones in Lpgm(4)-

6.1. Minimal domain clones. From the results by Borner, Haddad and
Poschel about minimal partial clones [1] we obtain all minimal clones in
Lpom(a)- But first we need to define some terminology.

Definition 6.1. Let p € Rel™ (A) and S,, be the group of permutations on
[n]. The relation p is said to be
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(1) totally symmetric if for all # € S,, and (aq,...,a,) € A",

(ala ce >an) €Ep — (aﬂ(l)? s 7a7r(n)> € p;
(2) totally reflexive if for every (ai,...,a,) € A" and all 1 <i < j <n,
the equality a; = a; implies that (ai,...,an) € p;
(3) non-trivial if p # A™.

Note that any subset of A (including the empty set () is considered as a
totally symmetric and totally reflexive relation.
We get the following theorem.

Theorem 6.2 (Borner, Haddad, Pdschel [1]). Let R € Lpom(a) be a minimal
domain clone.

Then R = (p)q for some non-trivial, totally symmetric and totally reflex-
we relation p € Rel™ (A) with n < |A].

6.2. Maximal domain clones. As was shown in [9] there are no minimal
strong partial clones. Thus there are no maximal domain clones in the
interval L om(A)" The following lemma will let us conclude that there are no
maximal domain clones in the lattice Lpom(a)-

Lemma 6.3. Let R C Rel(A) be a domain clone. Then (R U {0,0})q #
Rel(A).

Proof. Let R := (RU{0,0})q.

Assume to the contrary that R’ = Rel(A). Then {(0,1),(1,0)},{(0,1)}U
d € R'. Since both of these relations are irredundant we have {(0,1), (1,0)},{(0,1)}u
d € (R)¢,rae = R. But then ) = A{(0,1),(1,0)} € R, and ¢ = ({(0,1)} U

)N H{(1,0)}Ud) € R.
Thus R = R’ = Rel(4) in contradiction to the assumption. Thus R’ #
Rel(A). O

Theorem 6.4. Let R C Rel(A) be a domain clone. Then there is some
domain clone R' C Rel(A), with R C R’ C Rel(A), i.e., there are no

mazimal domain clones in Rel(A).

Let us look at domain clones in £* 4) and what happens if we remove

Dom(
(0,0)q from them. First we look at domain clones generated by just one
relation.

7. INTERVALS Z(C, Str(C')) FOR TOTAL CLONES C

Lemma 7.1. Let C C Op(A) be a total clone on A, D € Z(C,Str(C)),
feC™ and pedom™ (D).
Then f, € D where f, < f and dom f, = p

Proof. There is some g € D with dom g = p. Then f, = e3(f,g) € D. O
Corollary 7.2. Let C C Op(A) be a total clone on A. Then the map vc
from Z(C,Str(C)) to Lyprojia) = Z(Proj(A),pProj(A)) defined by 1c(D) =
D NpProj(A) is injective.

Proof. By Lemma 7.1 D N pProj(A) = D' N pProj(A) implies D = D’ and
therefore (¢ is injective. O
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Thus we know that the interval Z(C, Str(C')) is at most as complicated as
the interval Lyproja) = Lpom(4)- We now want to know how they differ. For
that we have to get back to work with functions, and then we will translate
this to operations on the domains/relations.

Let C be a total clone and let f € C™ be an n-ary function. Furthermore,
let p € Rel™ D (A) for some m > n. We define the operator Sy by Sy(p) €
Rel™)(A4) and

Splp) = A{x € A" | (f(x(1,..n)), %) € p}-
We note that Sc1(p) = Ap.

Lemma 7.3. Let C C Op(A) be a total clone on A, and D € Z(C, Str(C)).
Then dom D 1is closed under Sy for all f € C.

Proof. Let p € dom™*V) D and f € C™ with m > n. Then there is some
g € D with domg = p.

We consider the partial function G := g(f(e",...,en"),el", ..., en). Then
dom f(ef",...,ep') = {x € A™ | x(1,.. ) € dom f} = A™ since f € Op(4).
Then

domG = {x € A™ | (f(x(1,..n)),%) € domg}
and G € D imply that S¢(p) = S¢(domg) = dom G € dom D. Thus dom D
is closed under Sy for all f € C. O

As a simple example we take f := ¢y be the unary constant 0, and p =
{001,010,111}. Then S, (p) = {01,10}, and SZ (p) = {1}. Thus if C'is a
total clone and ¢o € C, then p € dom D implies {01,10},{1} € dom D for
each partial clone D € Z(C, Str(C)).

We have seen that the associated domain clone dom D for a partial clone
D € I(C, Str(C)) is closed under Sy for all f € C. Now we will show that
the converse is also true, i.e., the interval {dom D | D € Z(C,Str(C))} is
precisely the set of domain clones closed under Sy for all f € C.

Lemma 7.4. Let f € Op™(A) for some n>1, and g1, .., gn € Parl™ (A)
for some m > 1. Then

dom f(g1,...,9n) = domeq(g1,...,9n) = ﬂdomgi.
i=1

Lemma 7.5. Let f,g € Par(A).
Then dom(f x g) € ({dom f,dom g})as, -

Proof. Let f € Par™(A) and g € Par™(A) for some n,m > 1.
By the definition of x we have
dom(f +g) = {x € A" [ x(q, ) € dom(g),
(g(X(l,...,m))v X(m+1,...,n+m—1)) € dOHl(f)}
= (¢V)" ! (dom g)N
{xe Artmet | (g(X(l,...,m)>7X(m+1,...7n+m—l)) € dom(f)}
— (¢V)"(dom g) N S, (V)" (dom f).
Thus the statement holds. O
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Now we can conclude our main theorem for this section.

Theorem 7.6. Let C' C Op(A) be a total clone on A, and R € Lpom(a) @
domain clone.

Then R is closed under Sy for all f € C if and only if there is some
D e Z(C,Str(C)) with R = dom D.

If the relation § € dom D we even get another construction S}, which is a

kind of inverse to Sy. Let p € Rel™(A4) and f € Op™ (A) with m > n. We
define S by S} (p) € Rel™*+1D(A) and

Si(p) = {(f(X(1,..n))> %) € A" [ x € p.
Then S¢S (p) = p, and S}S¢(p) C p, where the inclusion is normally strict.

Lemma 7.7. Let p € Rel(A) and f € Op(A). Then S}(p) € ({p,})¢ce.5;-
Proof. Let p € Rel™(A) and f € Op"™(A) with m > n. Then

Si(p) = ¢1S¢(8 @ p).
0

7.1. The domain clone ({0, 6})q,(s,);.0- Let Qc = ({0,0})qa,(s;) e Then
Q¢ is a domain clone, and, as we already know, for C' = Proj(A) we have
pPol Qpyoj(a) = Par(A). Now we want to consider in the Boolean case, i.e.,
A ={0,1}, what is pPol Q¢ for each total Boolean clone C.

For this let us make several observations concerning the Boolean functions
generating the total clones. One step is to determine the total part Po :=
Op(A) NpPol Q¢ of this clone. The general idea in this search includes two
steps:

e First use the functions in a generating set for the C, to obtain some
set Q. of non-trivial relations in Q¢ via the operator Sy from the
relations A™ and d. This gives a suspect Yo := Pol Qf for Op(A) N
pPol Q¢.

e Then check for each ¢ in the generating set of Y, and each f in the
generating set of C' that g € Polp implies g € Pol S¢(p).

Lemma 7.8. Let C,C" be total clones with C C C'. Then Por C Peo.
Lemma 7.9. Let C O T ooNTyNM with {a,b} = {0,1}. Then Pc C {co, c1).

Proof. Let w.l.o.g. a =0 and b = 1. Then by Theorem 3.2.1.1 [4] we have
m € C where m(z,y,z) =x A (yV z). Thus

00000111

Sy |00 00111

S =10 011001 1] %
01010101

We define p := {x € A% | X(12,31), X(1,32,1) € Sp(A?)}. Then

)

p:

(=i}
— o O

01
1 1] €Qe.
01
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By Table 10.1 [4] we get Pc C Polp = (A, o, 1).

We show that A ¢ Po. Let x = (1,1,0,1), y = (1,1,1 0) Then x,y €
S!(A3), but x Ay = (1,1,0,0) ¢ S’ (A3). Thus A ¢ PolS! (A%) D Peo.

Thus PC - <Cg, Cl>. O
Lemma 7.10. Let C D T, .o N M be a total clone for some a € {0,1}. Then
Po C {cqa)-

Proof. Let w.lo.g. a = 0. By Lemma 7.9 we have Po C (cg,c1). By
Theorem 3.2.1.1 [4] we have ¢y € C, and thus {0} = AS[, (4) € Q¢. Since
c1 ¢ Pol{0} we obtain Pc C (co). O

Lemma 7.11. Let a € {0,1}. Then Pr, 2 (c4).

Proof. Since ¢, € Pol{, 6} = Pol({0,})q, we just need to show that Syp €
Inve, for all p € Inve, and f € Ty,.

Let p € Inveg, and f € T,. Then (a,...,a) € p, and f(a,...,a) = a.
Thus (a,...,a) € S¢p, and consequently S¢p € Invc,. This implies Q7, C
Inv ¢4, and therefore Pp, = PolQr, 2 Pollnvc, = (c,). O

Lemma 7.12. Let C be a total clone, and a € {0,1}. Then ¢, € Pc if and
only if C C Ty.

Proof. First let C' C T;,. By Lemmas 7.11 and 7.8 we get ¢, € Pr, C Pc.
Now assume C' € T,. Then there is some n-ary function f € C with

f(a,...,a) #a. Then c,(x) = (a,...,a) ¢ Sp(A") € Q¢ for all x € Sp(A™).

Thus ¢, ¢ Pol S§(A™) D Pe. O

Corollary 7.13. Let C be a total clone with Tp oo N M C C' C T, for some
a € {0,1}. Then Po = (cq).

Proof. By Lemmas 7.11, 7.8, and 7.10 we have

(ca) € Pr, C Pc C {ca),
and thus Po = (cq)- O
Corollary 7.14. Po,4) = Py = Proj(A).
Proof. By Corollary 7.13 we have P,y = (cq) for a € {0,1}. Since M D
T, N M for all a € {0,1} we get Poyay & Pu € (co) N (c1) = Proj(4).

Since Popa) is a total clone we also have Proj(A) € Pop(a). Thus follows

Popay = Py = Proj(A). O
Lemma 7.15. P~ 2 (co,c1).

Proof. By Lemma 7.8 and Corollary 7.13 we have (c¢,) = Pr, C Pp,nr, for
all @ € {0,1}, and thus Prnr, 2 (co, c1). O

Corollary 7.16. Let C be a total clone with T, oo N Ty N M C C CTyNTy
with {a,b} = {0,1}. Then Pc = {(co,c1).

Proof. By Lemmas 7.15, 7.8, and 7.9 we have

(co,c1) € Prynry, € Po C {co, 1),
and thus Po = {(cp, ¢1)- O
Lemma 7.17. Py, 0y 2 (A).
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Proof. Since A € Pol{(),0} = Pol({0,d})q, we just need to show that Syp €
Inv A for all p € InvA and f € {A,co,c1}.
Let p € InvA, and f € {A,co,c1}. d

Lemma 7.18. P, C (A, co,c1)-

Proof. Since

0
Sy(A%) = |0
0

—_ O =
O = O
— = =

we get from Table 10.1 [4]
P(/\) = P01Q<A> C Pol S/\(AQ) = </\,Co,cl>.

Corollary 7.19. o Py = (A, co,c1);
® Py = (A ca) for every a € {0,1};
= (A)-

i P/\CO,C1
Proof. Let C € {(N), (A, co), (A, c1), (A, co,c1)}. By Lemmas 7.17 and 7.18
we have (A) C Po C (A, co,c1). Then Lemma 7.12 implies the statement of
this corollary. O

Lemma 7.20. Pg = (7).

Proof. By Lemma OJ
C Op(A) NpPol Q¢ | Elements of Q¢
Proj(A) | Op(4)
(ca) S {a}
(o) | CTonT {0}, {1}
&) cs {(0.1), (1,00}
04 CcCSNIyNT
LNTynNnTy

7.2. The interval Z(Cy4,Str(C4)). Let C4 := ({ca | a € A}) C Op(A) be
the total clone generated by all constant functions in Op(A).

Frozen partial co-clones, see Nordh and Zanutti [5].

With this information, we might look into the following question. As-
suming we know the interval Z(C,Str(C)) for some total clone C. By
the lattice isomorphisms given in the previous section, we can associate
to each D € Z(C,Str(C)) containing ey and es the strong partial clone
pPoldom tcD. Which strong partial clones do we get? What does it tell us
about the lattice of strong partial clones?

The restriction, that D should contain ey and es could be abandoned.
This might give a more precise picture, but we have to take care that the
map pPoldom (¢ D is not injective in this case.

We will look at a few examples.
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8. INTERVALS OF DOMAIN CLONES FOR STRONG PARTIAL CLONES

As stated in Theorem 5.10 there is a bijection between the interval E’bom( A)

of domain clones and the lattice ’f;ar( 4) of all strong partial clones. So we
know the structure of the interval of domain clones if and only if we know
the structure of the lattice of strong partial clones. But what about the rest
of the lattice Lpgm(a) of all domain clones.

Let D € Lpom(a) be a domain clone. We define DT and D' by
D= ({ReD|R#0,Ris irredundant }) pom(4)
DT = <D U {075}>D0m(A)-

Since () and d are preserved by every partial function, and they are not needed
in the construction of irredundant relations, we have

pPol DT = pPol D = pPol D*.

Furthermore, DT = pInv pPol D, and thus the biggest domain clone D’ with
pPol D' = pPolD. Similarly, D' is the smallest domain clone D’ with
pPol D' = pPol D. The only relations possibly missing from DV, are the
ones with duplicate coordinates.

Since (D1)* = D*¥, we need only to consider domain clones the D with D =

D', These are exactly the domain clones in the interval LBom(A)’ ile, D=

pInv C for some strong partial clone C. Thus the intervals Z(D*, DT) can be
indexed by the strong partial clones, and to keep the notation simpler we de-
fine Ipom (C) for a strong partial clone C by Zpom (C) := Z((pInv C)¥, pInv C).

A natural question concerns the size of the interval Zpoy, (C) for any strong
partial clone C. We will see that there are strong partial clones where the
size is equal to the continuum.

We use the definitions from [8] to give continuum many domain clones in
Ipom(C) for a single strong partial clone C.  Let R%?n and R%n be two
n-ary relations defined by

Rodi.b(l‘l,...,l'n) = /\ P0,2(33i,$i+1 modn),
i€[n]
0,2
R}ém(xlv'-wxn) = /\ pog(.fhl’j).
i,j€ln]
i#]

Furthermore, let
02 . p0:2 0,2
Ry® =R, X Ry,

Let RY? be the (2n + 1)-ary relation obtained from RY? by duplicating the
first coordinate, i.e., RY? = {Xa1,2,.2n) | X € R2’2}. Clearly, by identifying
the first two coordinates of Ry? we obtain Ry? and thus (R?Z’z)Dom( A C
<R9L72>D?m(14)' A .

Let N:={n € N|n odd,n >3}, and R := {RW>, RW? | n € N}.

Lemma 8.1. Let n € N. Then Ry* ¢ (R\ {R2’2}>Dom(A)-
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Proof. Let R' := (R '\ {R2’2}>Dom(A) and R := RY?.
Since (1,...,1) ¢ R%Z2 Ry? for all m > 3, and (1,1) € 4, we see that

¢ R.
Assume to the contrary that R € R'. Then we can write
(1) R={xec2” |x;eSforallic~sand S e R’}

for some auxiliary relations vg for all S € R'.

We can apply Lemma 5.2 [8] and see that vs = () for every S with bigger
arity than R. Similarly, for every S with arity smaller than 2n we see that
it embeds into the second part of R.

Thus we obtain yg # () iff S = RY?. Basically, the only possible construc-
tion is B = {x € 22! | X134 ont1), X234, 2041) € Rn’}. But then
(1,0,...,0) € R in contradiction to the fact, that the first two coordinates
of R are equal. O

Now we can give the continuum many domain clones to some strong partial
clone C. Let N C N. For a given function ¢ : N — {0,1} let Ry :=
({RV? | n € N,p(n) = 0y U{RY* | n € N,$(n) = 1})pom(a)- Let Ry :=
({0,6} U{RY* | n e N})Dom(a)- Clearly, R; =RN.

Lemma 8.2. Let ¢,¢ : N — {0,1}. Then Ry =Ry <= ¢ = 1.

Proof. W.lo.g. ¢(n) =1 # ¢(n) for some n € N. Then Ry’ € R, but
RY? ¢ Ry by Lemma 8.1. O

Theorem 8.3. Let N C N. Then |Ipom(pPol Ry )| > 21V

Proof Tet ® := {¢ | ¢ : N — {0,1}}. Clearly, |®| > 2I¥l. By Lemma
8.2 we have that |Q| = |®| for Q = {Ry | ¢ € ®}. Furthermore, Q C
Tpom(PPol Ry ), and thus |Zpem (pPol Ry)| > 2/ O

Corollary 8.4. Let N C N be infinite. Then Ipom(pPol Ry) contains con-
tinuum many domain clones.

This shows that the lattice of partial clones is “much more” complicated
than the lattice of strong partial clones, even if we only restrict to the partial
projections.
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