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Lattice models
Structural lattice models

Lattice models comprising springs or beams have been used to model

atomistic crystalline materials

fibrous materials

collagen networks

heterogenous materials

Quasi-continuum method:

aims to reduce the computational cost of calculations associated
with lattice models
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Quasi-continuum method
Formulation

For displacements and rotations,

a
T = {ui, vi, wi, θ

x
i , θ

y
i , θ

z
i }

nNodes

i=1
,

we minimise the potential energy of the system:

argmin(Eint(a)− fext · a), where Eint =

beams
∑

j=1

Ej

[

∂2Eint

∂a2

]

a = fext
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Quasi-continuum method
Approximations in the coarse region

Efficiencies made in the coarse region:

1 “interpolation”: number of degrees of freedom are reduced by
introducing representative lattice nodes or “rep-atoms”

ar
T = {ui, vi, wi, θ

x
i , θ

y
i , θ

z
i }

rNodes

i=1
,

2 “summation rule”: find representative interactions or sampling
beams

determine which beams will be used in the summation
calculate the weight factors for the beams
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Quasi-continuum method

Advantages of QC

lattice defects can be modelled accurately (in the fully resolved
region)

no continuum model is required in the coarse region, as the
approximation is based on the lattice model itself

Disadvantage of QC

irregular lattice models are still challenging
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Quasi-continuum method
Summation rules

Summation rules - guided by Gaussian quadrature rules.

Three rules:

closest summation rule (implemented in Beex et. al. 2014)

mid-beam rules

non-local

local
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Quasi-continuum method
Closest summation rule (non-local)
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Quasi-continuum method
Mid-beam summation rule (closest, non-local)
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Quasi-continuum method
Mid-beam summation rule (local)
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Mid-beam summation rule (local)
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Results
Mesh 1, 12 triangles on [0, 200]× [0, 100]
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Results
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Results
Mesh 1, 12 triangles on [0, 100]× [0, 50]
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Results
Mesh 9, 796 triangles on [0, 100] × [0, 50]
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Results
Uniaxial test [0, 200] × [0, 100]
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Results
Mesh quality, mesh 4 on [0, 100] × [0, 50] (closest beam rule)
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Results
Mesh quality, mesh 5 on [0, 100] × [0, 50] (closest beam rule)
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Results
Mesh quality, mesh 4 on [0, 100] × [0, 50] (mid-beam rule, local)
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Results
Mesh quality, mesh 5 on [0, 100] × [0, 50] (mid-beam rule, local)
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Conclusions and further work

The results show that

the mid-beam rules have a significantly lower error than the closest
summation rule

of the two mid-beam rules, the local rule performs better than the
non-local rule

Current work involves

running problems with a defect modelled by a fully resolved region
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Quasi-continuum method
Euler-Bernoulli beams

The internal energy of beam i given in a local coordinate system

Ei =
E

2

∫

V

(

εxx/u + εxx/by + εxx/bz
)

2
+

γ2xy + γ2xz

2(1 + ν)
dV

=
E

2

∫

V

(

ub − ua

L
− yv′′ − zw′′

)

2

+

(

θxb − θxa
L

)

2
y2 + z2

2(1 + ν)
dV .

We expand v(x) and w(x) as third degree polynomials and calculate
their coefficients by using the following conditions

v(x = 0) = va w(x = 0) = wa

v(x = L) = vb w(x = L) = wb

v′(x = 0) = θza w′(x = 0) = −θya

v′(x = L) = θzb w′(x = L) = −θ
y
b .
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Quasi-continuum method
Meshes

Number of triangles out of which sampling beams stray, for the domain
[0, 200] × [0, 100].

mesh # number of closest rule mid-beam rule mid-beam) rule
triangles (non-local) (local)

1 12 0 0 0
2 36 0 0 0
3 60 0 0 0
4 132 0 0 0
5 296 40 0 0
6 394 104 0 0
7 470 163 12 12
8 668 269 89 85
9 796 348 198 198
10 920 393 356 350
11 1056 454 583 571
12 1134 508 738 728
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Quasi-continuum method
Meshes

Number of sampling beams for the domain [0, 200]× [0, 100]. Total
number of beams in the lattice: 40300.

mesh # number of closest rule mid-beam rules
triangles

1 12 144 (0.36%) 144
2 36 432 (1.07%) 432
3 60 720 (1.79%) 720
4 132 1584 (3.93%) 1584
5 296 3552 (8.81%) 3552
6 394 4726 (11.73%) 4728 (11.73%)
7 470 5631 (13.97%) 5640 (14.00%)
8 668 7936 (19.69%) 8016 (23.70%)
9 796 9359 (23.22%) 9552 (27.39%)
10 920 10685 (26.51%) 11040 (27.39%)
11 1056 12141 (30.13%) 12672 (31.44%)
12 1134 12929 (32.08%) 13608 (33.77%)
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Quasi-continuum method
Meshes

Total degrees of freedom of the lattice for the domain [0, 200]× [0, 100]:
121806.

mesh # number of triangles degrees of freedom

1 12 300
2 36 813
3 60 1326
4 132 2805
5 296 6108
6 394 8064
7 470 9591
8 668 13542
9 796 16083
10 920 18531
11 1056 21228
12 1134 22764
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