

Summation rules for higher order Quasi-continuum methods

Claire Heaney, Lars Beex, Stéphane Bordas
and Pierre Kerfriden

Institute of Mechanics and Advanced Materials

ACME conference, 2-4 April 2014, Exeter

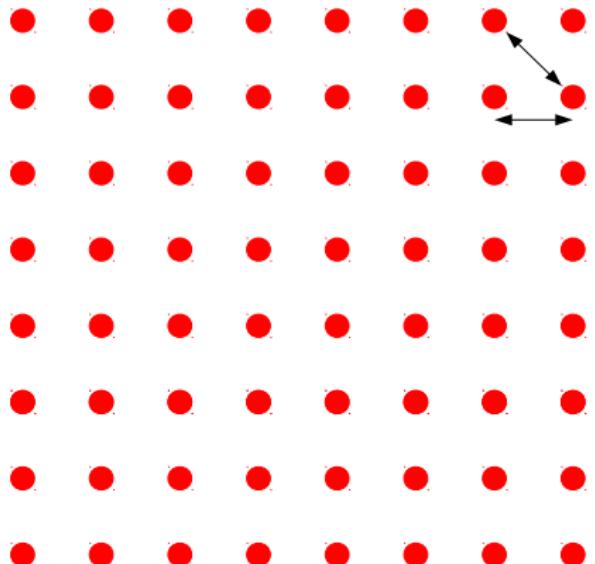
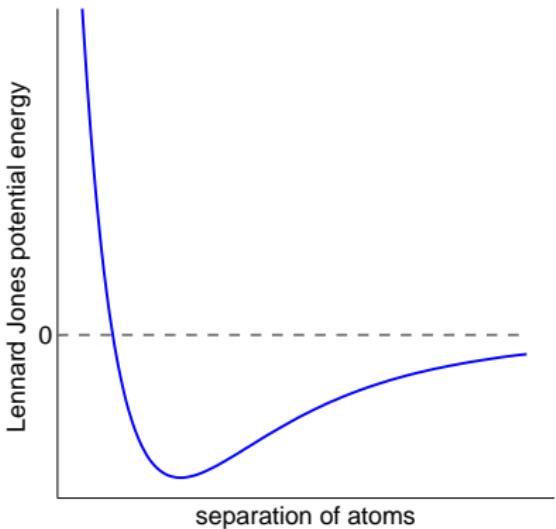
1 Lattice models

- Atomistic lattice models
- Structural lattice models

2 The Quasi-continuum method

- Formulation
- Approximations
- Summation rules

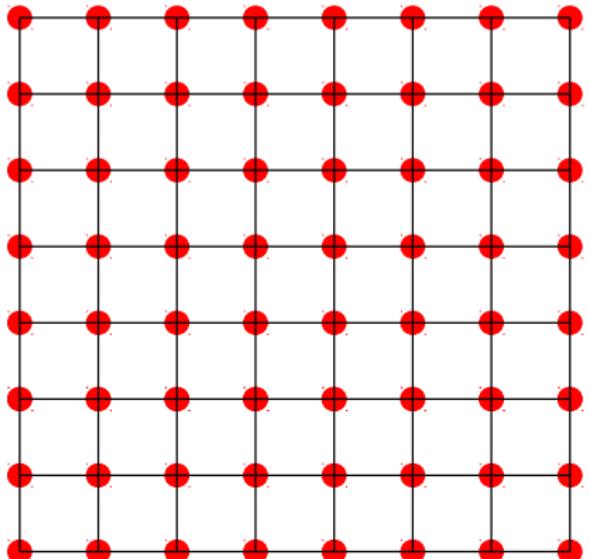
3 Results





Lattice models

Structural lattice models



Lattice models comprising springs or beams have been used to model

- atomistic crystalline materials
- fibrous materials
- collagen networks
- heterogenous materials

Quasi-continuum method:

aims to reduce the computational cost of calculations associated with lattice models

Lattice models comprising springs or beams have been used to model

- atomistic crystalline materials
- fibrous materials
- collagen networks
- heterogenous materials

Quasi-continuum method:

aims to reduce the computational cost of calculations associated with lattice models

For displacements and rotations,

$$\mathbf{a}^T = \{u_i, v_i, w_i, \theta_i^x, \theta_i^y, \theta_i^z\}_{i=1}^{nNodes},$$

we minimise the potential energy of the system:

$$\arg \min(E_{\text{int}}(\mathbf{a}) - \mathbf{f}_{\text{ext}} \cdot \mathbf{a}), \quad \text{where} \quad E_{\text{int}} = \sum_{j=1}^{\text{beams}} E_j$$

$$\left[\frac{\partial^2 E_{\text{int}}}{\partial \mathbf{a}^2} \right] \mathbf{a} = \mathbf{f}_{\text{ext}}$$

For displacements and rotations,

$$\mathbf{a}^T = \{u_i, v_i, w_i, \theta_i^x, \theta_i^y, \theta_i^z\}_{i=1}^{nNodes},$$

we minimise the potential energy of the system:

$$\arg \min(E_{\text{int}}(\mathbf{a}) - \mathbf{f}_{\text{ext}} \cdot \mathbf{a}), \quad \text{where} \quad E_{\text{int}} = \sum_{j=1}^{\text{beams}} E_j$$

$$\left[\frac{\partial^2 E_{\text{int}}}{\partial \mathbf{a}^2} \right] \mathbf{a} = \mathbf{f}_{\text{ext}}$$

Efficiencies made in the coarse region:

- 1 “interpolation”: number of degrees of freedom are reduced by introducing representative lattice nodes or “rep-atoms”

$$\mathbf{a_r}^T = \{u_i, v_i, w_i, \theta_i^x, \theta_i^y, \theta_i^z\}_{i=1}^{rNodes},$$

- 2 “summation rule”: find representative interactions or sampling beams
 - determine which beams will be used in the summation
 - calculate the weight factors for the beams

Efficiencies made in the coarse region:

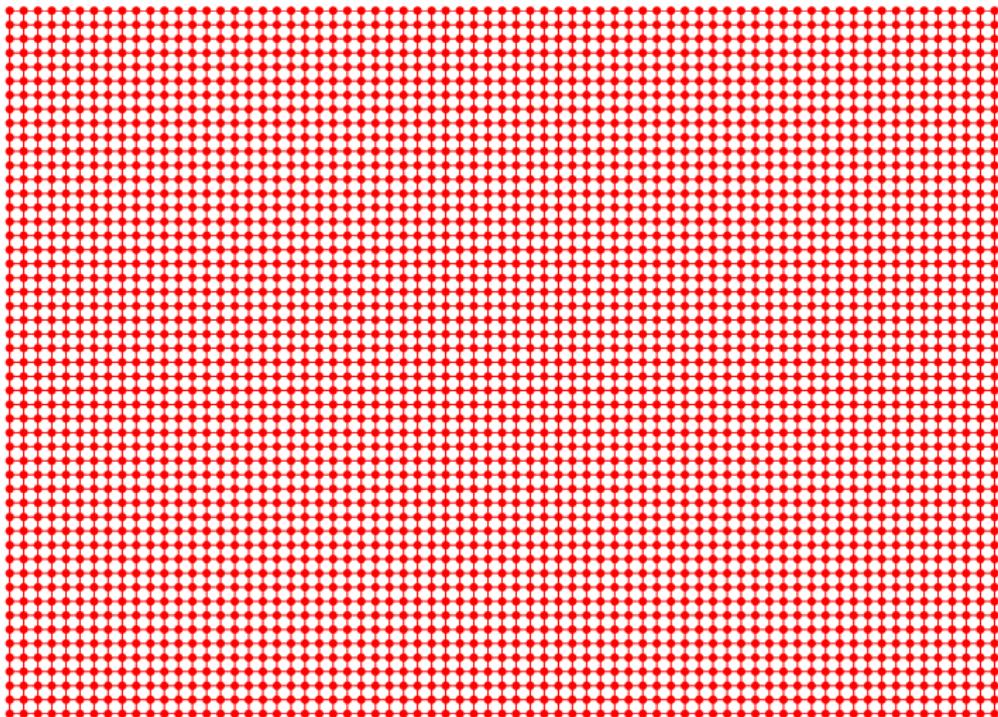
- 1 “interpolation”: number of degrees of freedom are reduced by introducing representative lattice nodes or “rep-atoms”

$$\mathbf{a}_r^T = \{u_i, v_i, w_i, \theta_i^x, \theta_i^y, \theta_i^z\}_{i=1}^{rNodes},$$

- 2 “summation rule”: find representative interactions or sampling beams
 - determine which beams will be used in the summation
 - calculate the weight factors for the beams

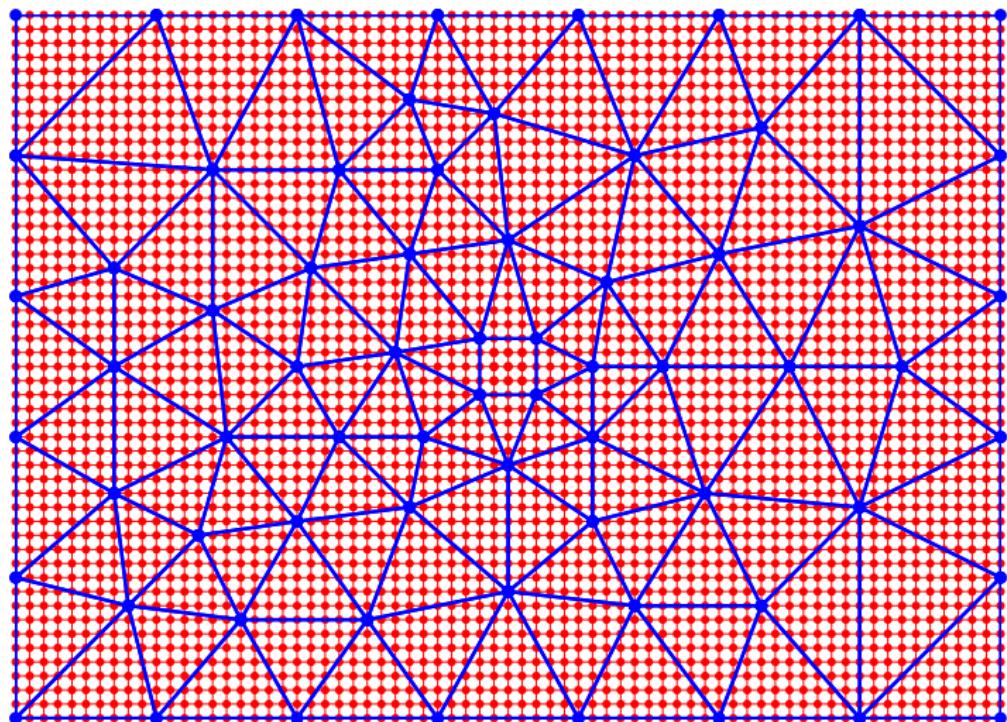
Quasi-continuum method

Approximations in the coarse region



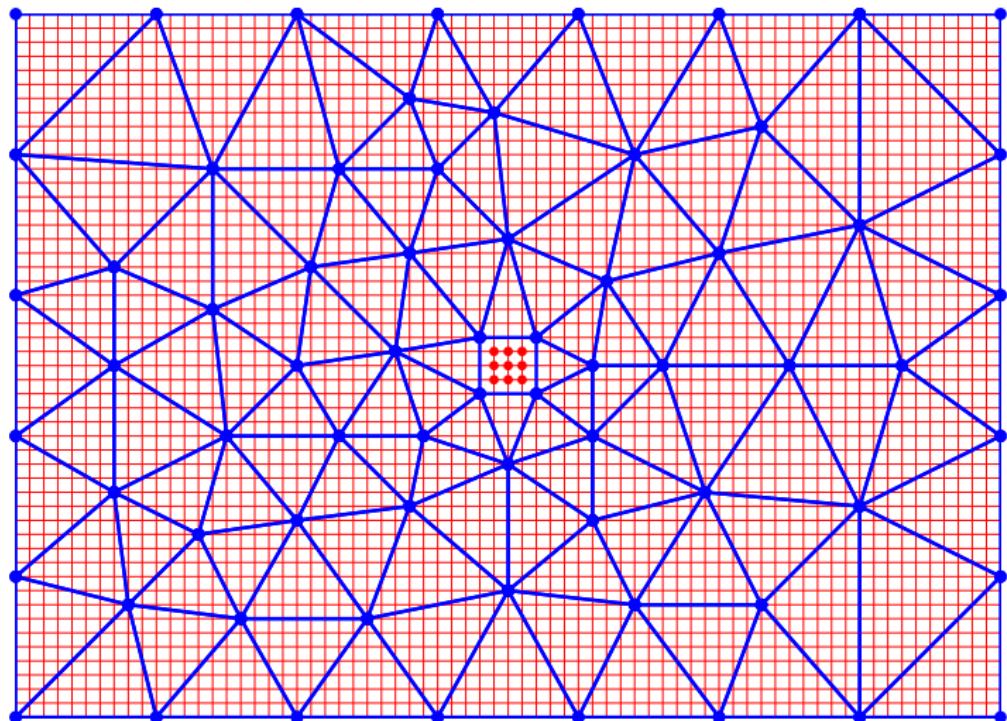
Quasi-continuum method

Approximations in the coarse region



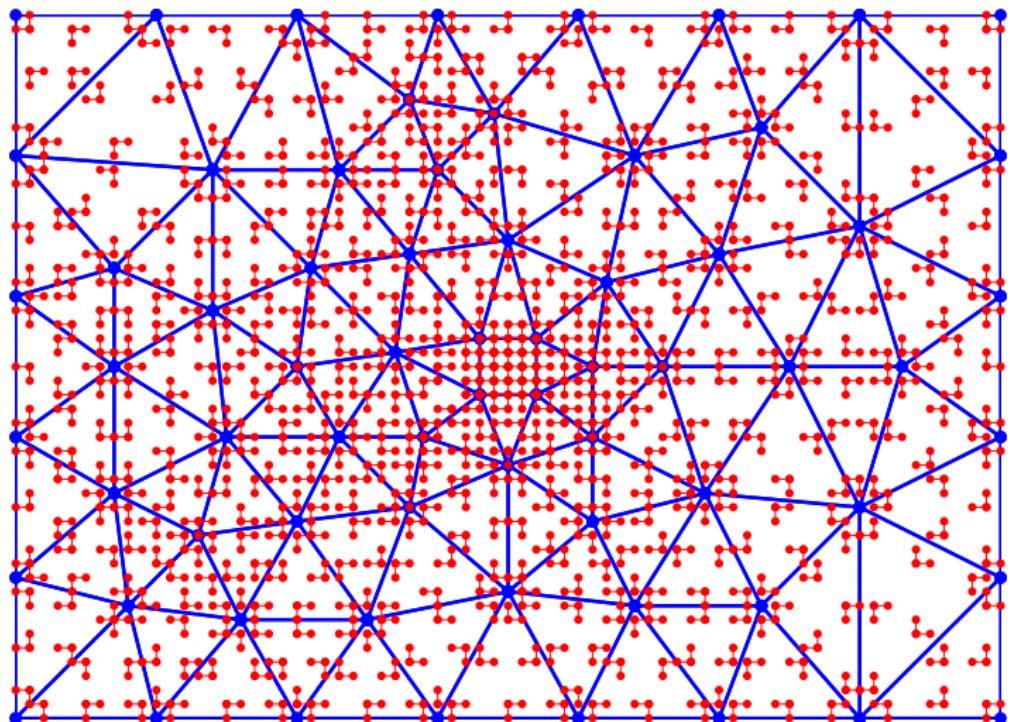
Quasi-continuum method

Approximations in the coarse region



Quasi-continuum method

Approximations in the coarse region



Advantages of QC

- lattice defects can be modelled accurately (in the fully resolved region)
- no continuum model is required in the coarse region, as the approximation is based on the lattice model itself

Disadvantage of QC

- irregular lattice models are still challenging

Advantages of QC

- lattice defects can be modelled accurately (in the fully resolved region)
- no continuum model is required in the coarse region, as the approximation is based on the lattice model itself

Disadvantage of QC

- irregular lattice models are still challenging

Summation rules - guided by Gaussian quadrature rules.

Three rules:

- closest summation rule (implemented in Beex *et. al.* 2014)
- mid-beam rules
 - non-local
 - local

Summation rules - guided by Gaussian quadrature rules.

Three rules:

- closest summation rule (implemented in Beex *et. al.* 2014)
- mid-beam rules
 - non-local
 - local

Summation rules - guided by Gaussian quadrature rules.

Three rules:

- closest summation rule (implemented in Beex *et. al.* 2014)
- mid-beam rules
 - non-local
 - local

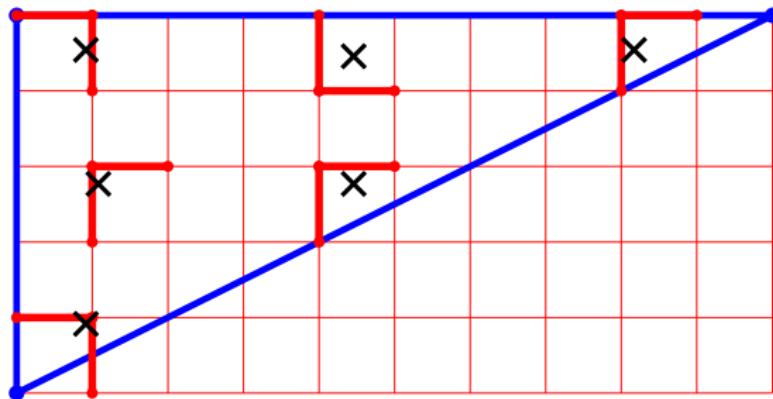
Summation rules - guided by Gaussian quadrature rules.

Three rules:

- closest summation rule (implemented in Beex *et. al.* 2014)
- mid-beam rules
 - non-local
 - local

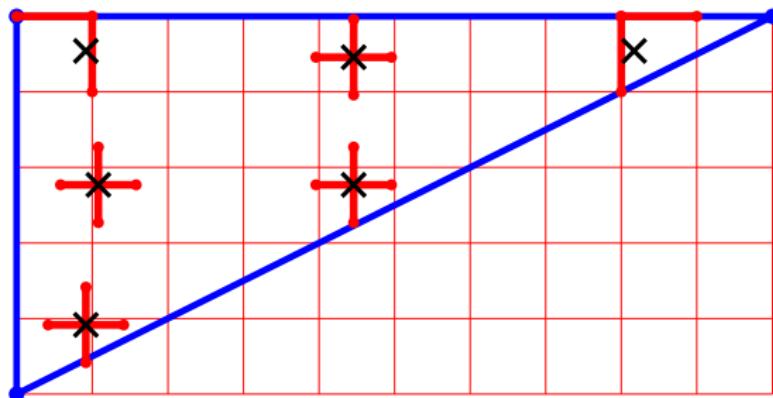
Quasi-continuum method

Closest summation rule (non-local)



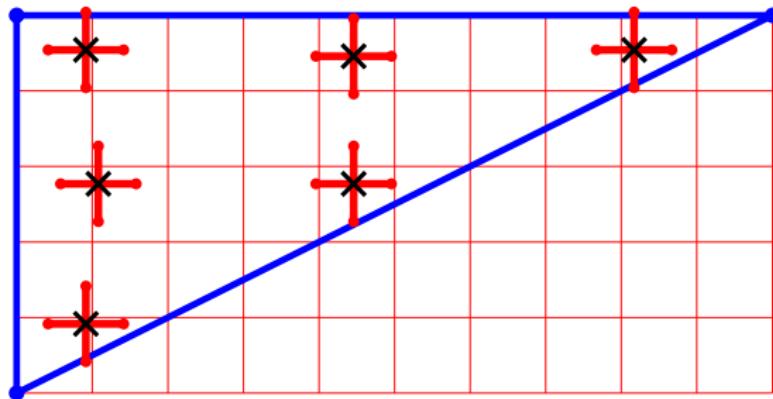
Quasi-continuum method

Mid-beam summation rule (closest, non-local)



Quasi-continuum method

Mid-beam summation rule (local)



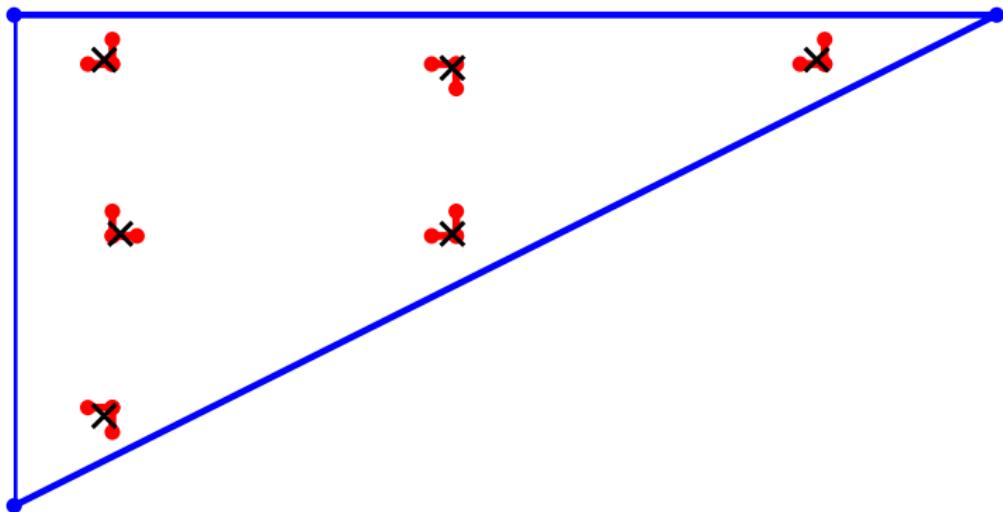
Quasi-continuum method

Closest summation rule



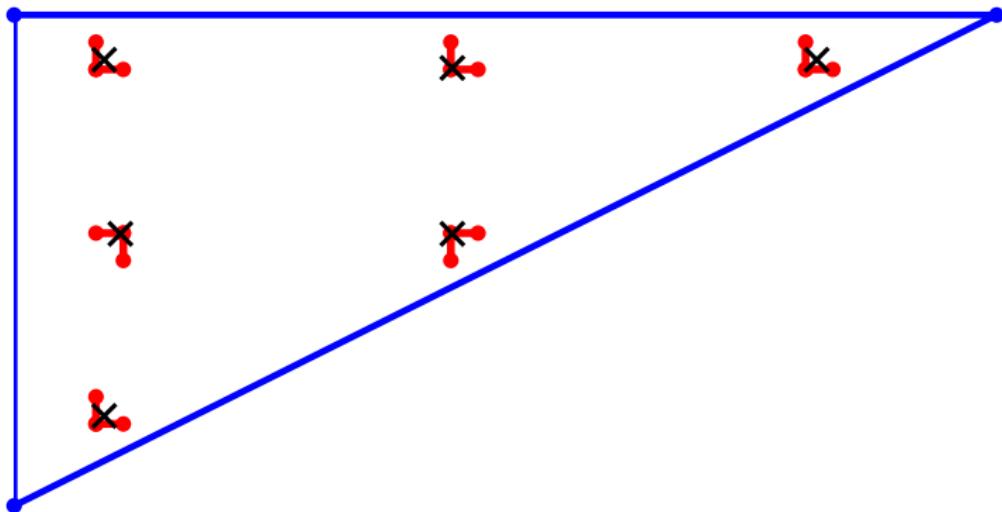
Quasi-continuum method

Closest summation rule



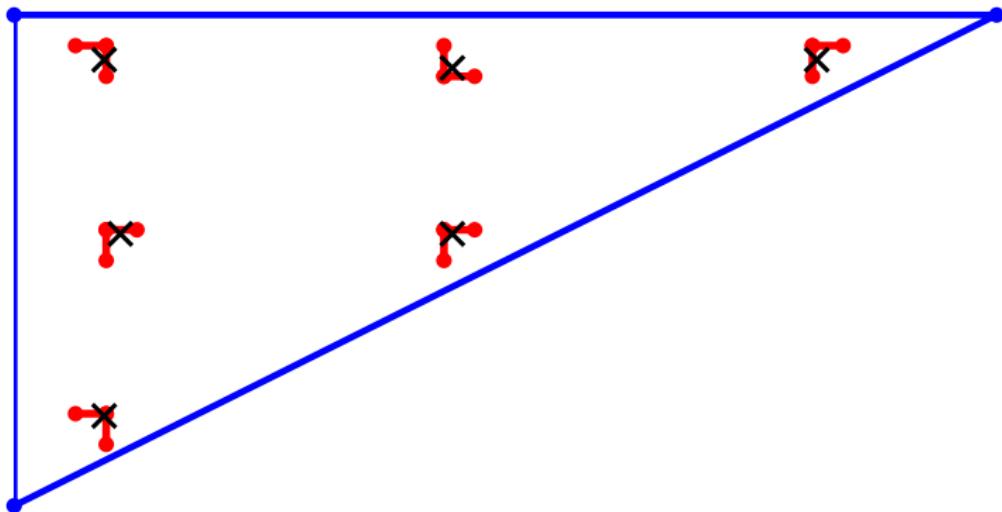
Quasi-continuum method

Closest summation rule



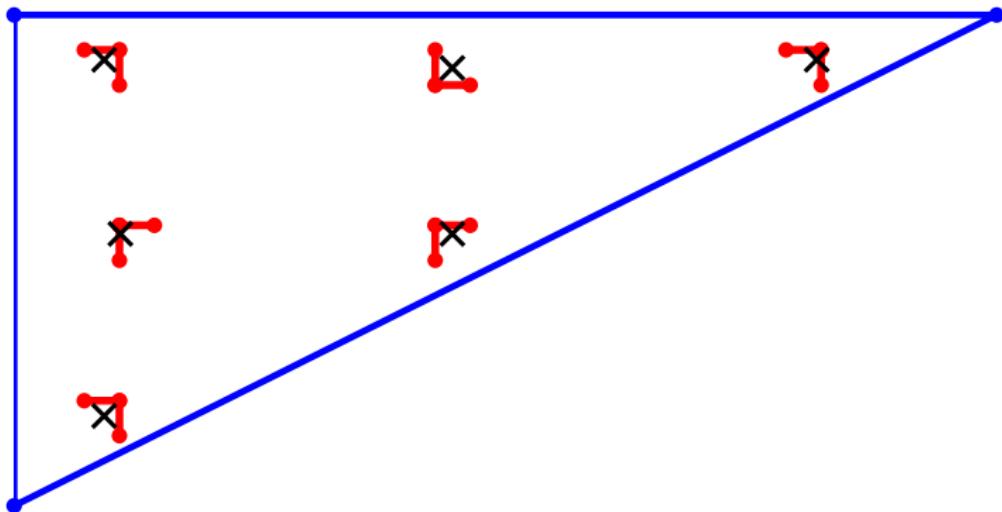
Quasi-continuum method

Closest summation rule



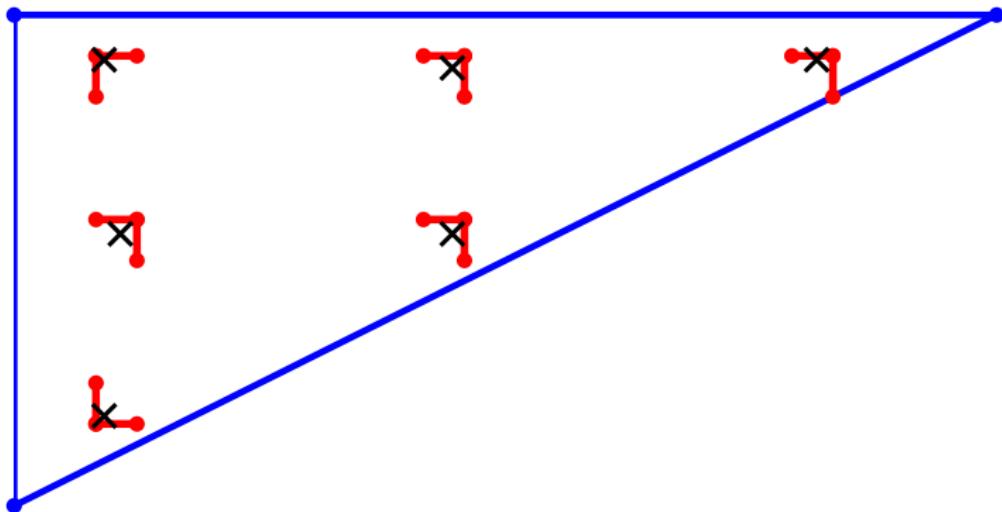
Quasi-continuum method

Closest summation rule



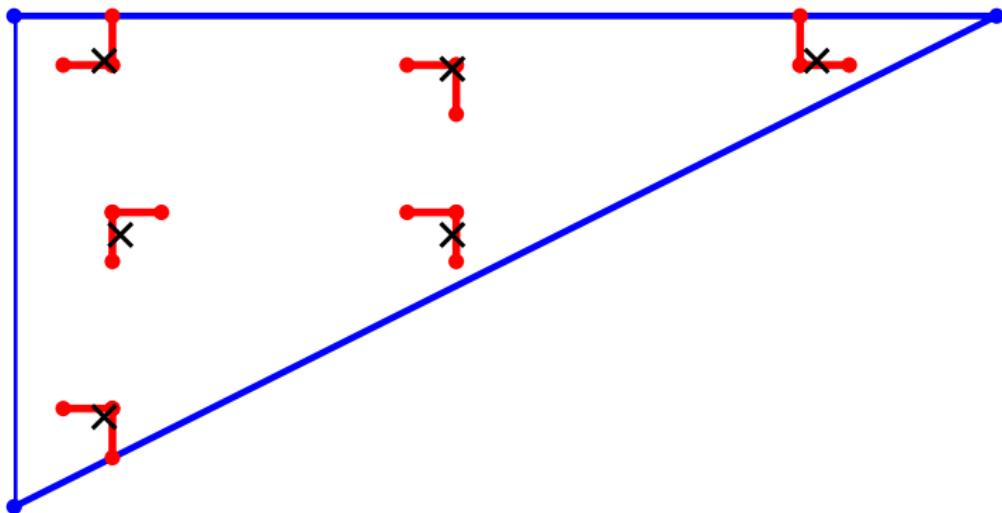
Quasi-continuum method

Closest summation rule



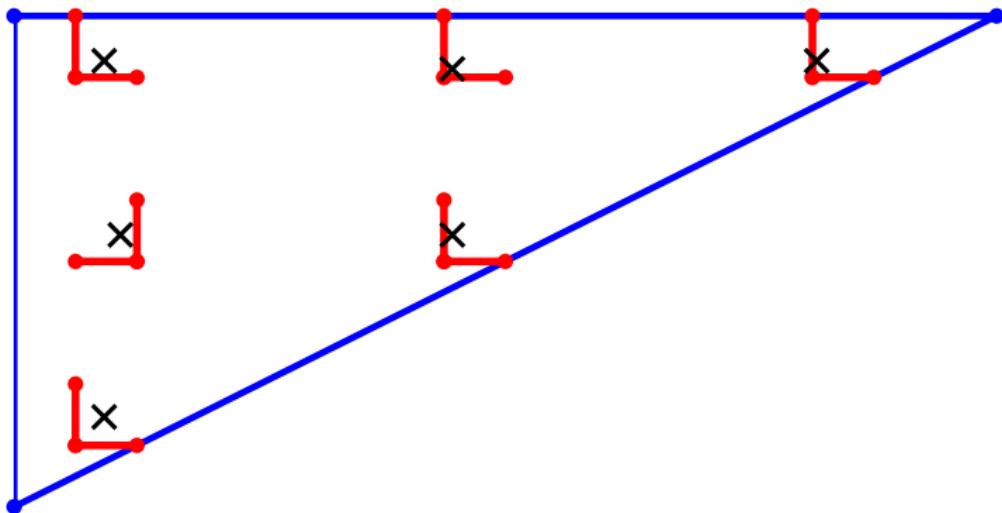
Quasi-continuum method

Closest summation rule



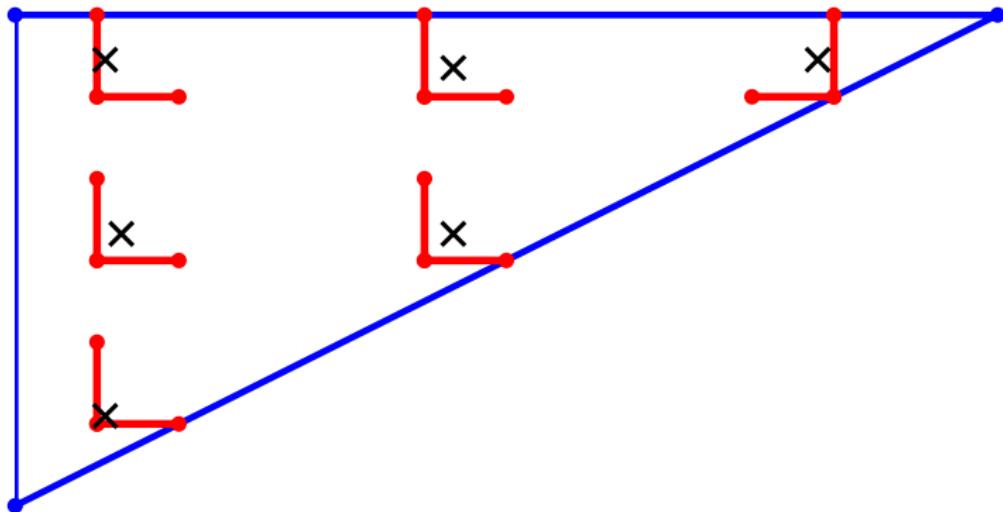
Quasi-continuum method

Closest summation rule



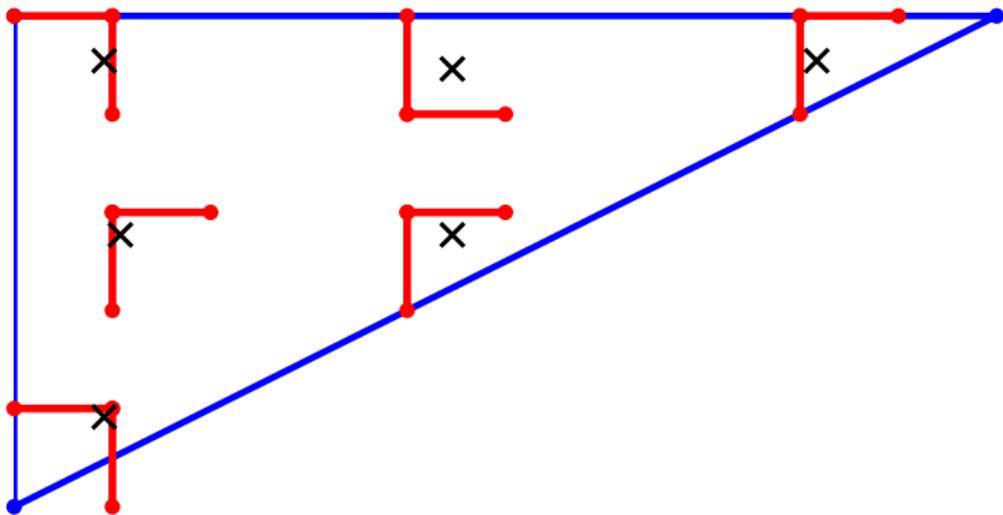
Quasi-continuum method

Closest summation rule



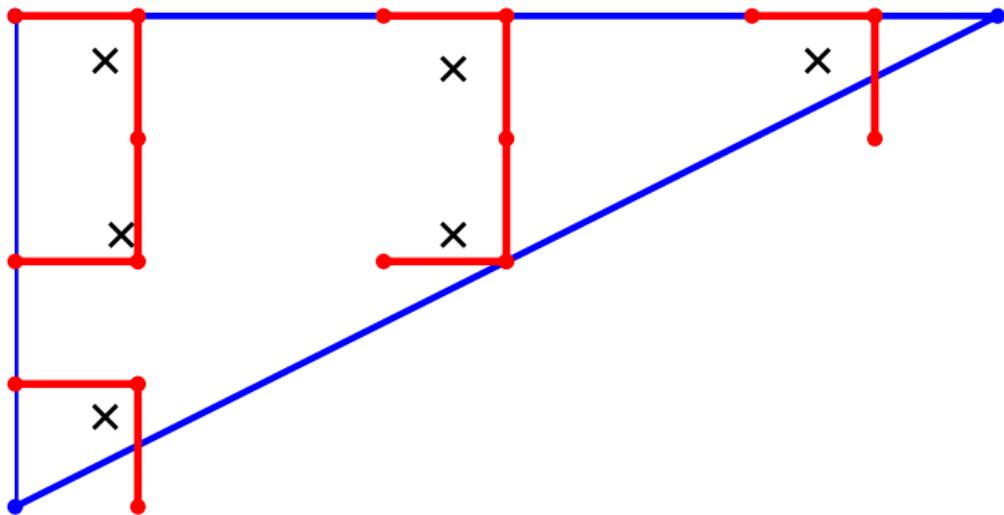
Quasi-continuum method

Closest summation rule



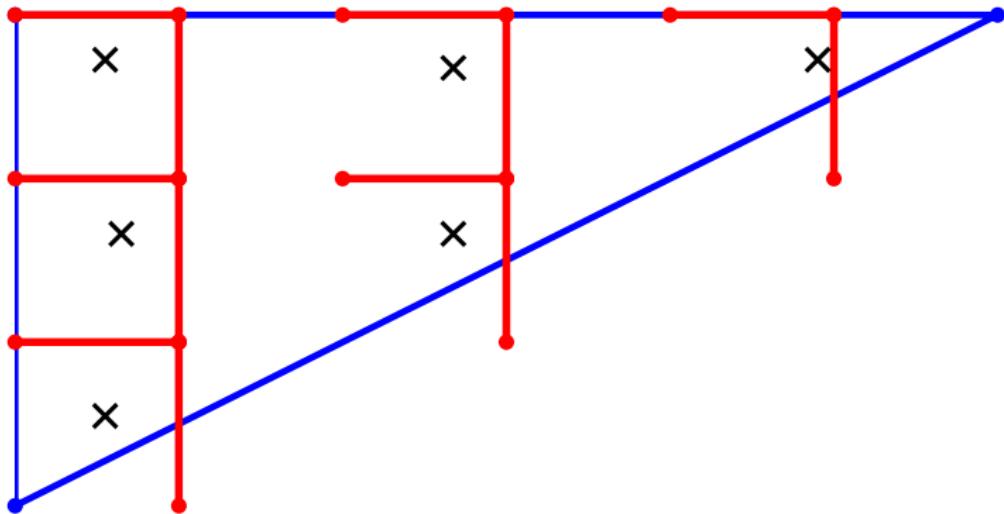
Quasi-continuum method

Closest summation rule



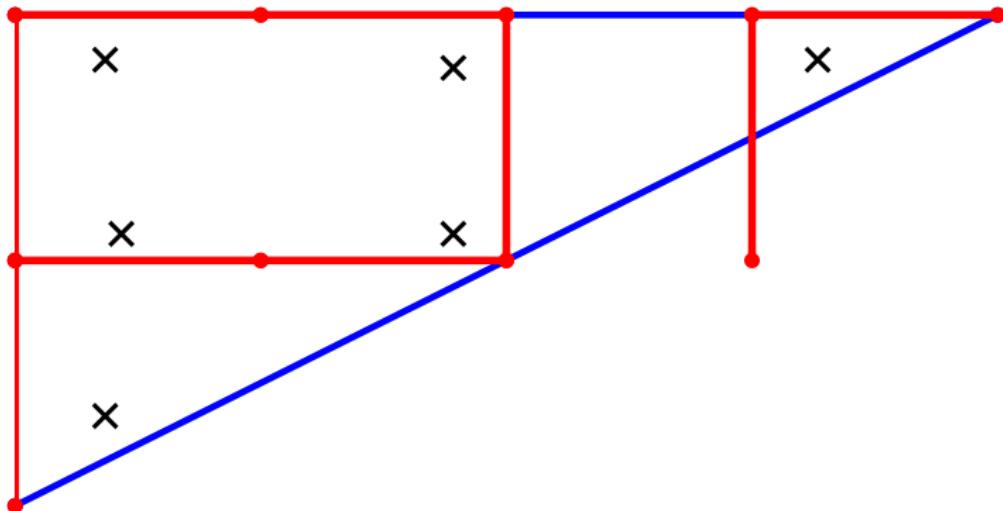
Quasi-continuum method

Closest summation rule



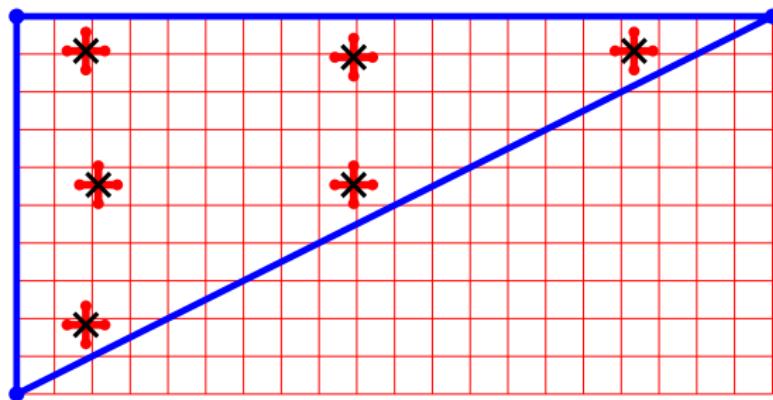
Quasi-continuum method

Closest summation rule



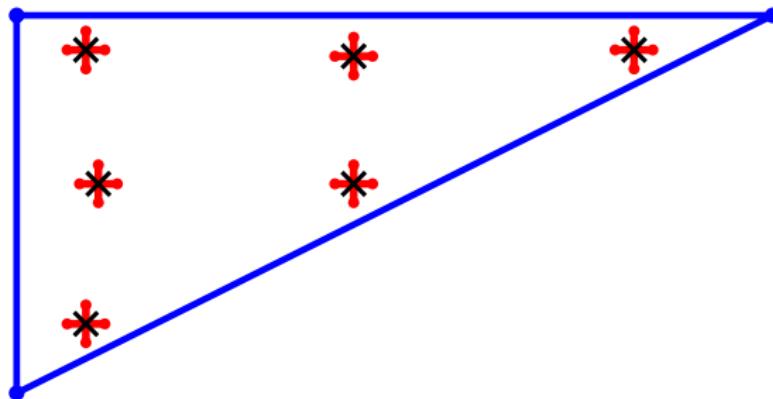
Quasi-continuum method

Mid-beam summation rule (local)



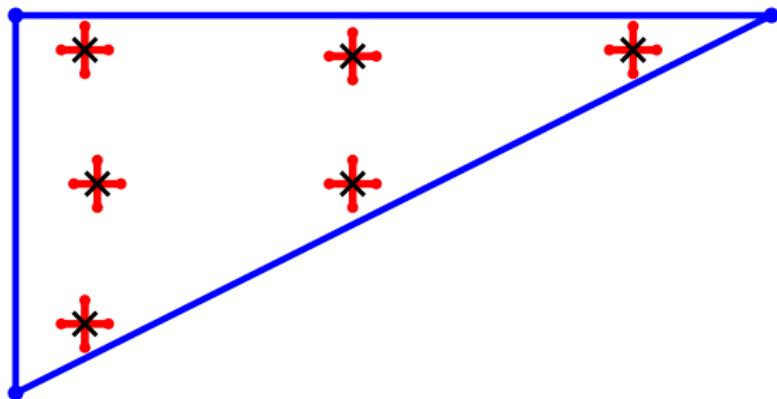
Quasi-continuum method

Mid-beam summation rule (local)



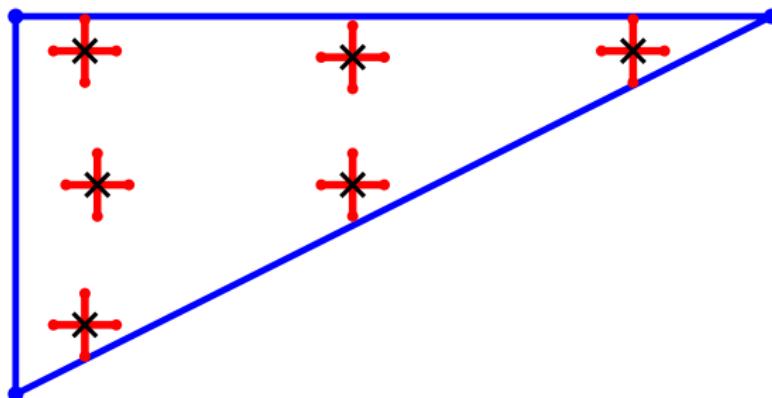
Quasi-continuum method

Mid-beam summation rule (local)



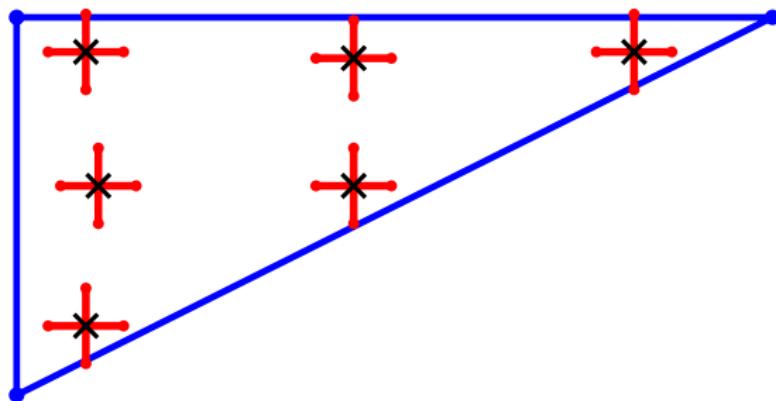
Quasi-continuum method

Mid-beam summation rule (local)



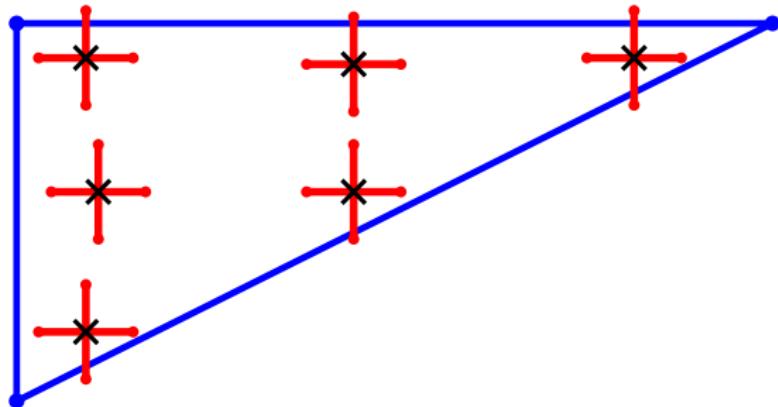
Quasi-continuum method

Mid-beam summation rule (local)



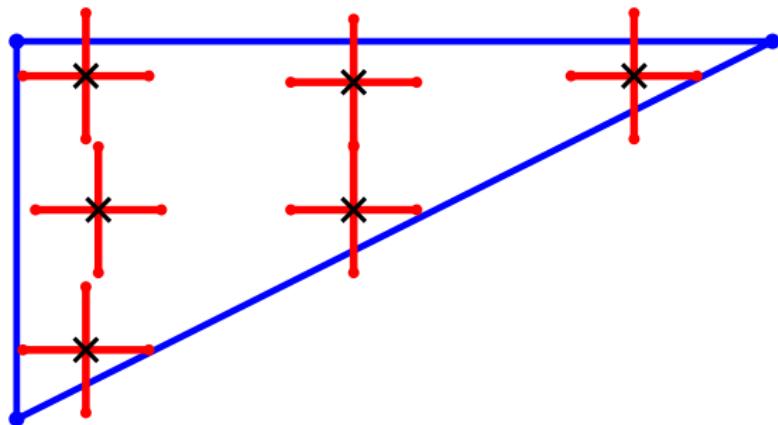
Quasi-continuum method

Mid-beam summation rule (local)



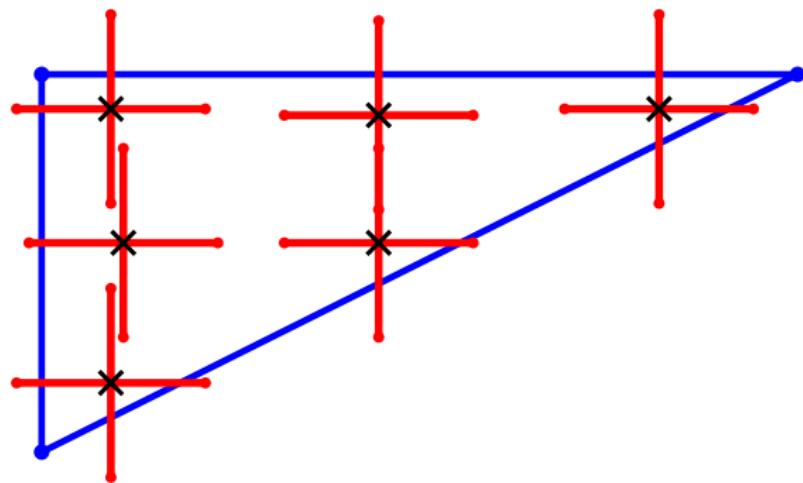
Quasi-continuum method

Mid-beam summation rule (local)



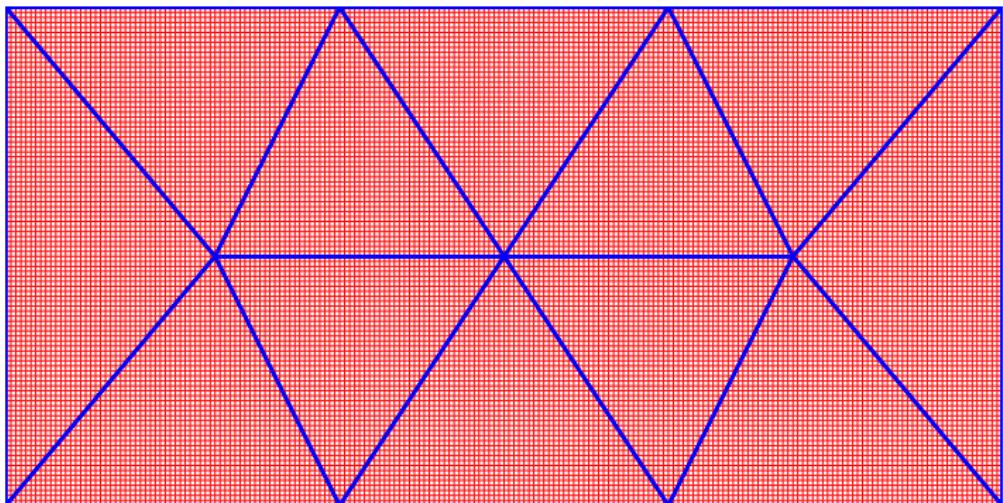
Quasi-continuum method

Mid-beam summation rule (local)



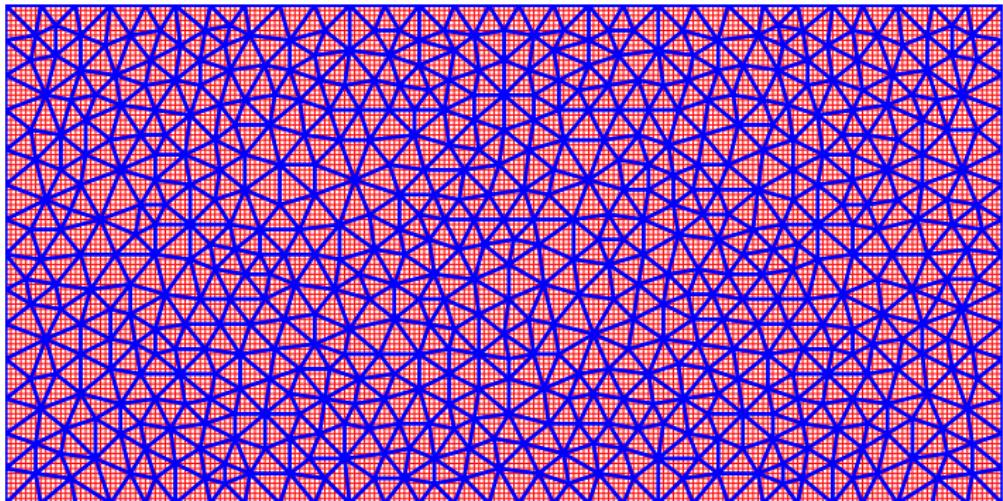
Results

Mesh 1, 12 triangles on $[0, 200] \times [0, 100]$



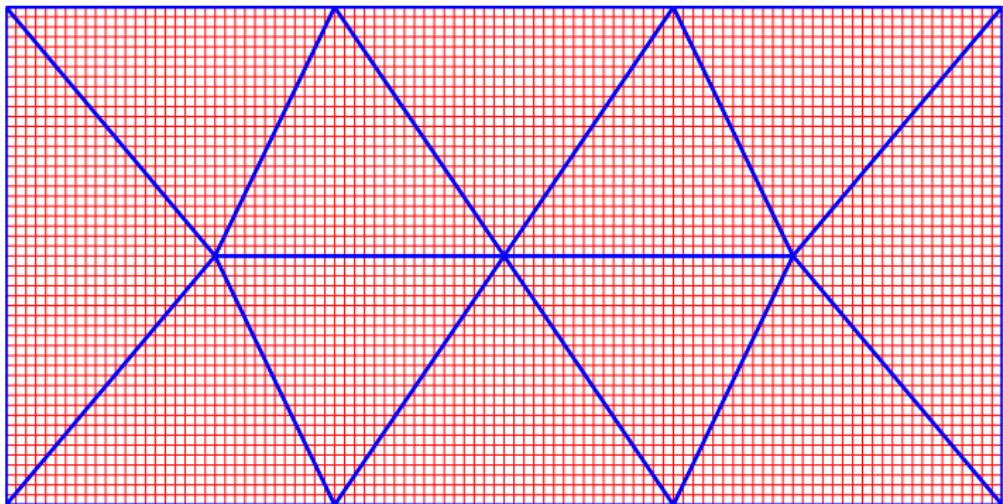
Results

Mesh 12, 1134 triangles on $[0, 200] \times [0, 100]$



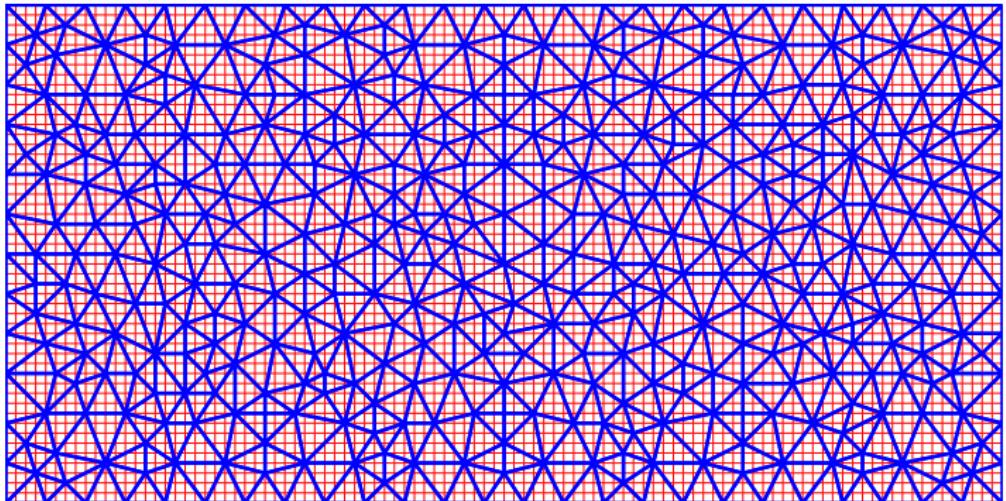
Results

Mesh 1, 12 triangles on $[0, 100] \times [0, 50]$



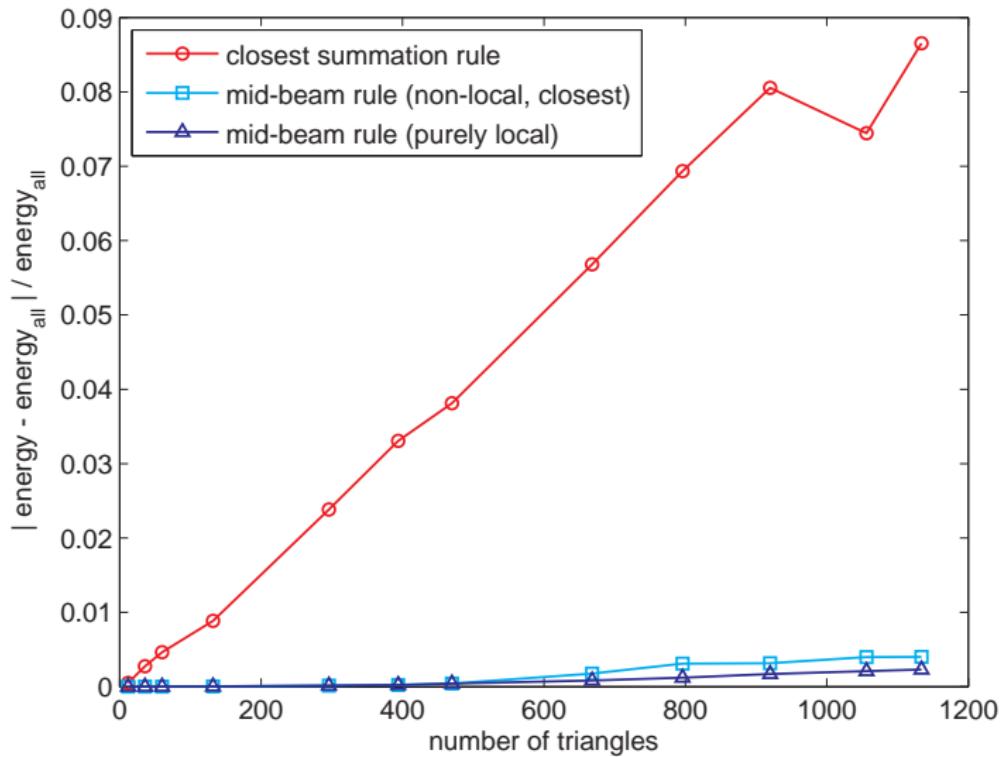
Results

Mesh 9, 796 triangles on $[0, 100] \times [0, 50]$



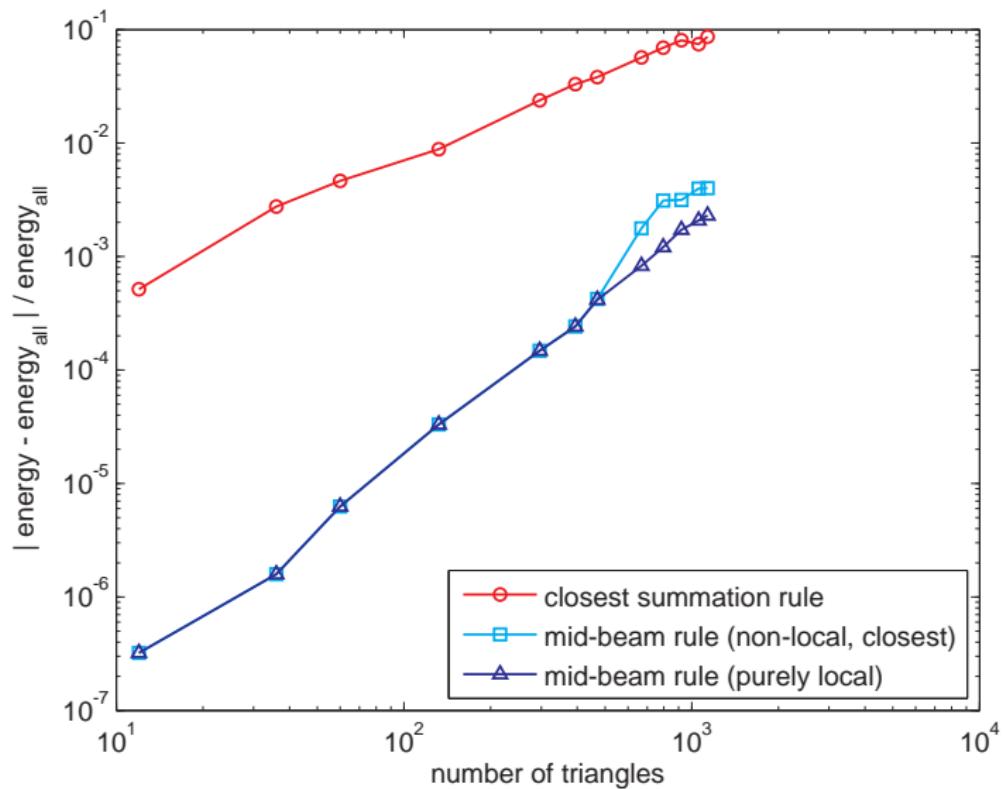
Results

Uniaxial test $[0, 200] \times [0, 100]$



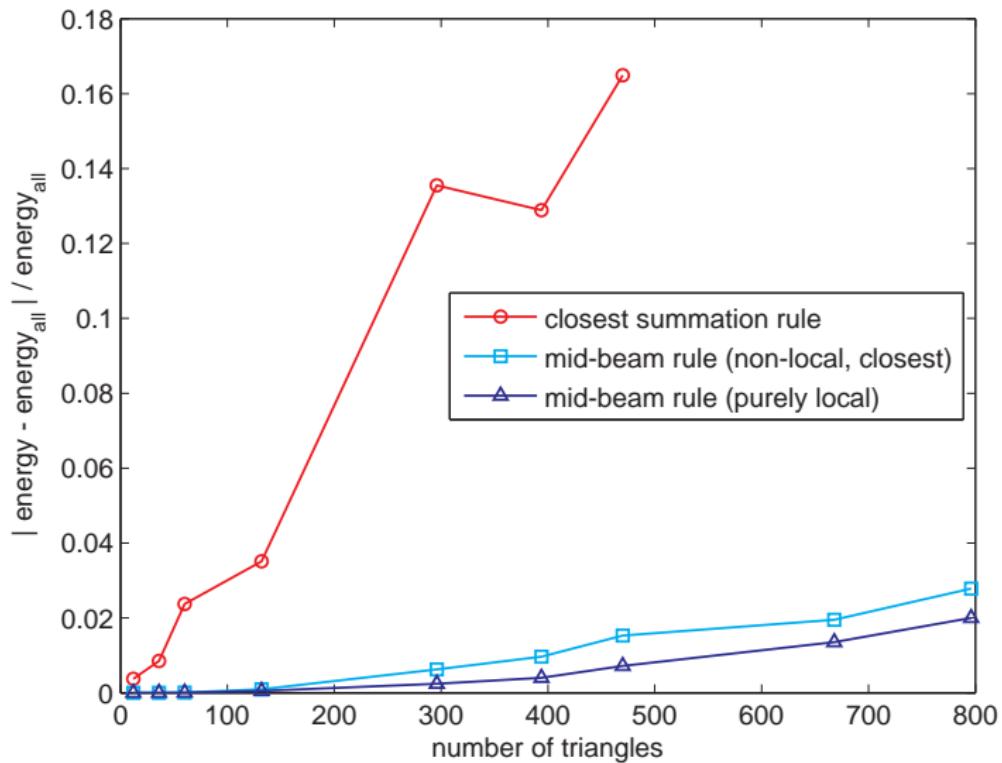
Results

Uniaxial test $[0, 200] \times [0, 100]$



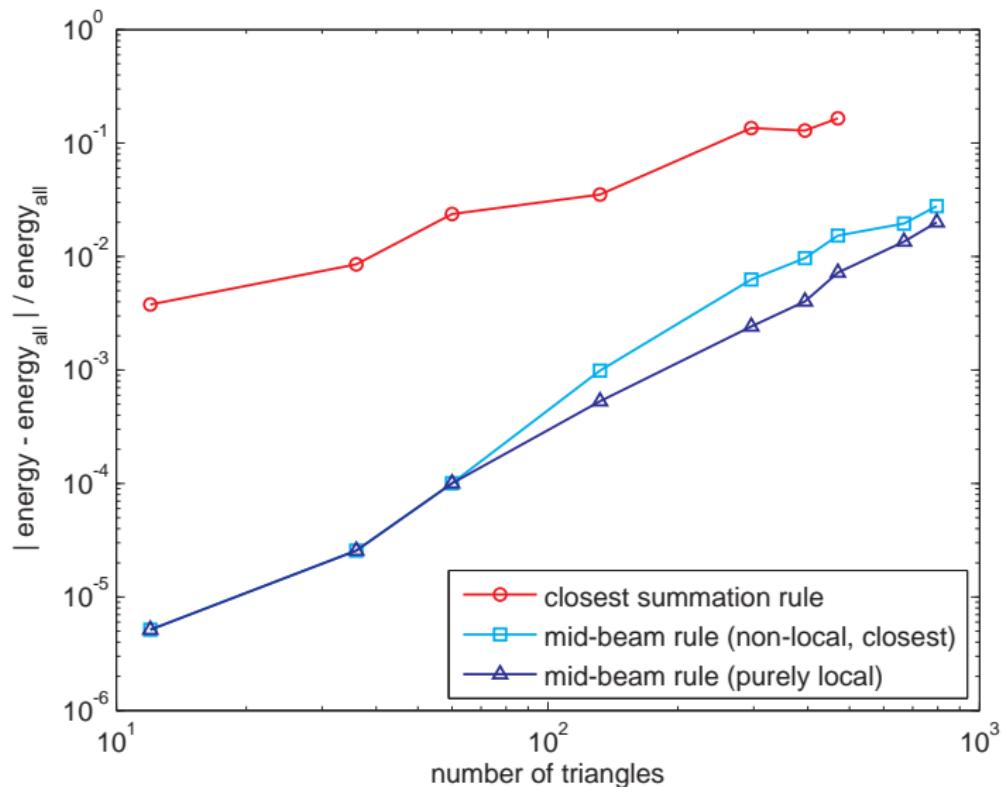
Results

Uniaxial test $[0, 100] \times [0, 50]$



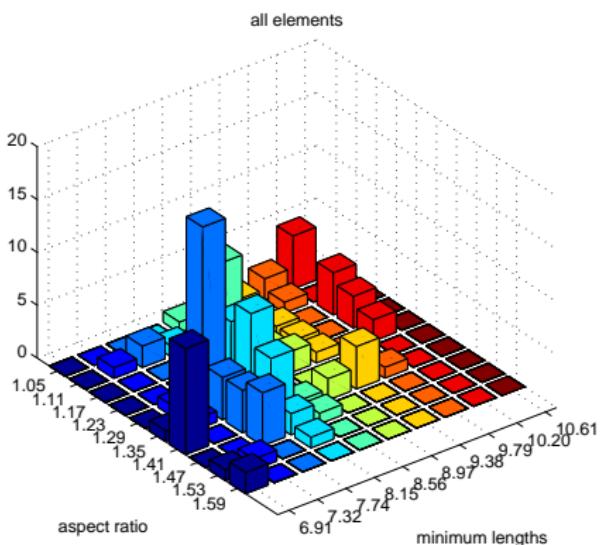
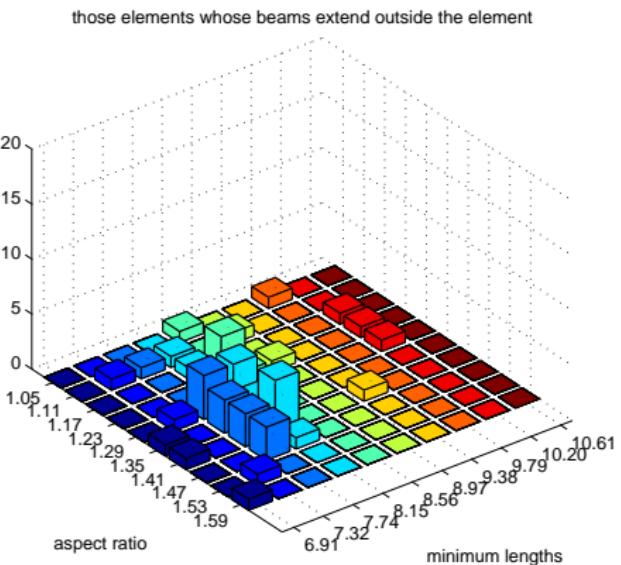
Results

Uniaxial test $[0, 100] \times [0, 50]$



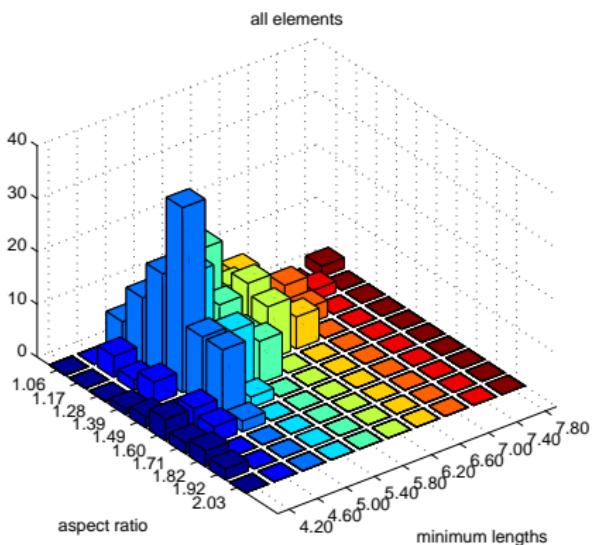
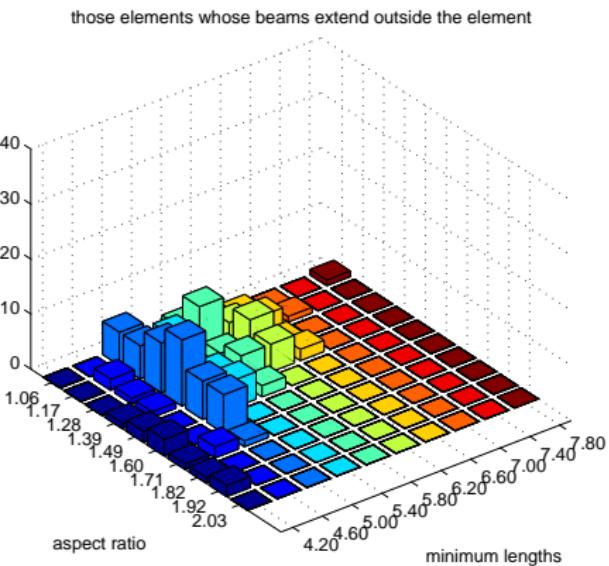
Results

Mesh quality, mesh 4 on $[0, 100] \times [0, 50]$ (**closest beam rule**)



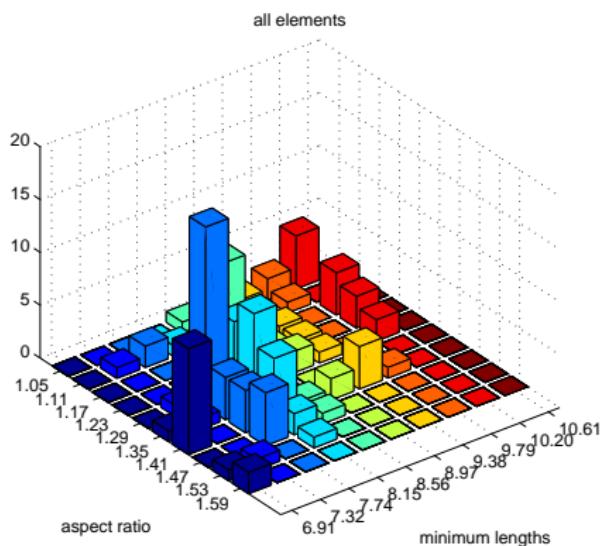
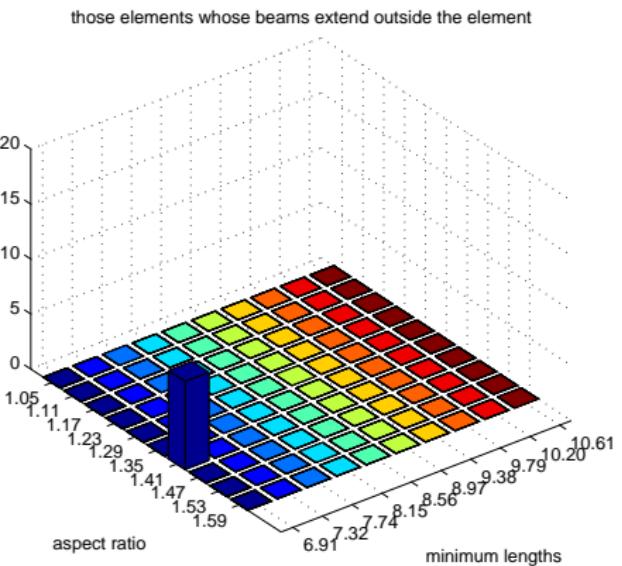
Results

Mesh quality, mesh 5 on $[0, 100] \times [0, 50]$ (**closest beam rule**)



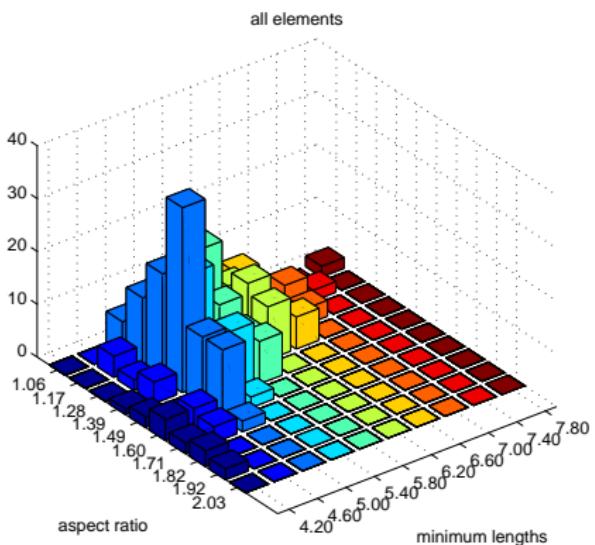
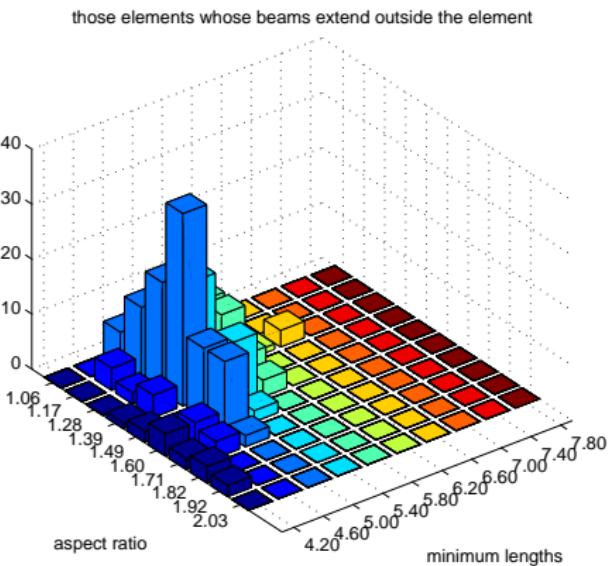
Results

Mesh quality, mesh 4 on $[0, 100] \times [0, 50]$ (**mid-beam rule, local**)



Results

Mesh quality, mesh 5 on $[0, 100] \times [0, 50]$ (**mid-beam rule, local**)



The results show that

- the mid-beam rules have a significantly lower error than the closest summation rule
- of the two mid-beam rules, the local rule performs better than the non-local rule

Current work involves

- running problems with a defect modelled by a fully resolved region

EPSRC EP/J01947X/1

Towards rationalised computational expense for
simulating fracture over multiple scales.

Dr Pierre Kerfriden.

The internal energy of beam i given in a local coordinate system

$$\begin{aligned} E_i &= \frac{\mathcal{E}}{2} \int_V (\varepsilon_{xx/u} + \varepsilon_{xx/by} + \varepsilon_{xx/bz})^2 + \frac{\gamma_{xy}^2 + \gamma_{xz}^2}{2(1+\nu)} dV \\ &= \frac{\mathcal{E}}{2} \int_V \left(\frac{u_b - u_a}{L} - yv'' - zw'' \right)^2 + \left(\frac{\theta_b^x - \theta_a^x}{L} \right)^2 \frac{y^2 + z^2}{2(1+\nu)} dV . \end{aligned}$$

We expand $v(x)$ and $w(x)$ as third degree polynomials and calculate their coefficients by using the following conditions

$$v(x = 0) = v_a$$

$$w(x = 0) = w_a$$

$$v(x = L) = v_b$$

$$w(x = L) = w_b$$

$$v'(x = 0) = \theta_a^z$$

$$w'(x = 0) = -\theta_a^y$$

$$v'(x = L) = \theta_b^z$$

$$w'(x = L) = -\theta_b^y .$$

Number of triangles out of which sampling beams stray, for the domain $[0, 200] \times [0, 100]$.

mesh #	number of triangles	closest rule	mid-beam rule (non-local)	mid-beam) rule (local)
1	12	0	0	0
2	36	0	0	0
3	60	0	0	0
4	132	0	0	0
5	296	40	0	0
6	394	104	0	0
7	470	163	12	12
8	668	269	89	85
9	796	348	198	198
10	920	393	356	350
11	1056	454	583	571
12	1134	508	738	728

Quasi-continuum method

Meshes

Number of sampling beams for the domain $[0, 200] \times [0, 100]$. Total number of beams in the lattice: 40300.

mesh #	number of triangles	closest rule	mid-beam rules
1	12	144 (0.36%)	144
2	36	432 (1.07%)	432
3	60	720 (1.79%)	720
4	132	1584 (3.93%)	1584
5	296	3552 (8.81%)	3552
6	394	4726 (11.73%)	4728 (11.73%)
7	470	5631 (13.97%)	5640 (14.00%)
8	668	7936 (19.69%)	8016 (23.70%)
9	796	9359 (23.22%)	9552 (27.39%)
10	920	10685 (26.51%)	11040 (27.39%)
11	1056	12141 (30.13%)	12672 (31.44%)
12	1134	12929 (32.08%)	13608 (33.77%)

Total degrees of freedom of the lattice for the domain $[0, 200] \times [0, 100]$:
121806.

mesh #	number of triangles	degrees of freedom
1	12	300
2	36	813
3	60	1326
4	132	2805
5	296	6108
6	394	8064
7	470	9591
8	668	13542
9	796	16083
10	920	18531
11	1056	21228
12	1134	22764