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Prac$cal	
  early-­‐stage	
  design	
  simula$ons	
  (interac$ve)

[Allix, Kerfriden, Gosselet 2010]
Discretise

0.125 mm
50 mm

100 plies

courtesy: EADS

‣Reduce the problem size while controlling the error (in QoI) 
when solving very large (multiscale) mechanics problems  

Discretise

Surgical	
  simula$on	
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!
Discre$za$on	
  

!
!

➡parIIon	
  of	
  unity	
  enrichment	
  
✓(enriched)	
  meshless	
  methods	
  
✓level	
  sets	
  
!
➡isogeometric	
  analysis	
  
➡implicit	
  boundaries

!

Model	
  reduc$
on	
  

!

✓mulI-­‐scale	
  &	
  
homogenisaIon

	
  

✓algebraic	
  m
odel	
  reducI

on	
  (using	
  PO
D)	
  

✓Newton-­‐Kry
lov,	
  “local/g

lobal”,	
  domain	
  

decomposiIon	
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!
Error	
  control	
  

!
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✓XFEM:	
  goal-­‐oriented	
  error	
  esImates	
  	
  
‣	
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  by	
  CENAERO	
  (Morfeo	
  XFEM)	
  

✓meshless	
  methods	
  for	
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✓error	
  esImaIon	
  for	
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  models
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Adaptive method for fracture
➢ Introduction: Multiscale methods for Fracture 
➢ Adaptive multiscale method 

▪ Strategy  
▪ Fine scale problem 
▪ Coarse scale problem 

• FE2  method 
• Adaptive mesh refinement 

▪ Coupling fine and coarse discretisations 
▪ Results 

• L-shape problem 
• Notched bar under Uni-axial tension
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Multiscale methods for Fracture
▪ Concurrent▪ Non-concurrent

Damage zone is modelled by a  
 macroscopic cohesive crack 
that homogenises the failure 
zone.

V.P. Nguyen 2012

l

L

L/l >1

L

l
L/l >>1

Damage zone is modelled 
directly at the microscale and 
coupled to the coarse scale.



➢Strategy:
• control the coarse scale 

discretization error  

Mesh refinement Hybrid method

• control the 
modelling error

FE2 FE2 FE2+ Domain 
Decomposition 
Method

 Adaptive multiscale method: A Concurrent approach



➢Microscale problem: 

▪Orthotropic grains 
!
!
!
▪Cohesive interface

Fine Scale: micro-structure



➢Macroscale problem: 

▪ FE2 Method 
Based on averaging theorem 
(computational homogenisation) 
!
▪Adaptive mesh refinement 
Error estimation by Zienkiewicz-Zhu-type recovery technique

Mesh refinement

RVECoarse Scale



▪ The FE2 Method RVE time step, i

  Macroscale problem 
Iteration, j

  RVE problem 
Iteration, k

❖ Shortcoming of the FE2 Method : 

Lack of scale separation  
RVE cannot be found in the softening regime 
!
!

Coarse Scale: FE2



• Error estimation by Zienkiewicz-Zhu-type 
recovery technique

➢Coarse scale Adaptive mesh refinement

Element	
  to	
  refine Refined	
  mesh

•Convergence criterion:

Coarse Scale: Adaptive mesh refinement

Error$due$to$the$
discre-sa-on$of$
neglected$$$

⌦f



⌦c

What is the solution for the FE2 

shortcoming:  
“Hybrid Multiscale Method”

•FE2 for non-critical region 
 (hierarchical multiscale) 
!
•Domain decomposition for critical 
region (concurrent multiscale)

 
Fine-Coarse scales Coupling 

Critical region

FE2

uf=uc



Results: L-shape



Results: L-shape



Results: uni-axial tension

❖ Sizes are in mm



Results: uni-axial tension

❖ 100X (magnification of displacement)

von-Mises stress (Pa)
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Results: uni-axial tension

❖ 100X (magnification of displacement)
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Verification
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An adaptive multiscale method was developed for 
discrete fracture in polycrystalline materials: 
!

•  An unstructured mesh is used for the coarse scale 
problem 
!

• A local arc-length was used to control crack speed in the 
fully resolved region. 

!
• A recovery based error indicator was employed to limit 

discretization error at each time step. 

 Adaptive Multiscale Method



Perspectives
• coarsening once the crack is open 
• molecular dynamics at the fine scale 
!
!
!
!

• real-life problems! :) 
• coupling with algebraic model reduction 

(POD)
34
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  transiIon  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Part	
  I.	
  Streamlining	
  the	
  CAD-­‐analysis	
  transiIon  
Coupling,	
  or	
  decoupling? 
 

1
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Mo$va$on:	
  free	
  boundary	
  problems	
  -­‐	
  mesh	
  burden

FEM

XFEM
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CAD	
  to	
  Analysis

calculate

vM stress distribution

iterate

mesh 80%

20%



One	
  would	
  like	
  to	
  be	
  able	
  to	
  use	
  such	
  a	
  mesh

5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

(c)

Figure 5.27 – Approximation géométrique d’une microstructure contenant des inclusions
lenticulaires. (a) maillage grossier de l’approximation ÉF. (b) raffinement par un sous-
maillage gradué (SMG) de niveau (n = 7) à l’intérieur de chaque élément de frontière EB.
(c) approximation de la géométrie indépendamment de la taille h du maillage.

95
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Superimpose	
  the	
  geometry	
  onto	
  an	
  arbitrary	
  background	
  mesh
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Compute	
  interacIons	
  between	
  the	
  geometry	
  and	
  the	
  mesh
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Perform	
  the	
  analysis
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5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

Figure 5.28 – Champs de contraintes (a) et de déplacements (b).

Figure 5.29 – Approximation géométrique d’une microstructure contenant des inclusions
en forme de tore indépendamment de la taille du maillage ÉF.

96

42



Implicit	
  boundary	
  method

• Immersed	
  boundary	
  method	
  (Mi]al,	
  et	
  al.	
  2005)	
  
• FicIIous	
  domain	
  (Glowinski,	
  et	
  al.	
  1994)	
  
• Embedded	
  boundary	
  method	
  (Johansen,	
  et	
  al.	
  1998)	
  
• Virtual	
  boundary	
  method	
  (Saiki,	
  et	
  al.	
  1996)	
  
• Cartesian	
  grid	
  method	
  (Ye,	
  et	
  al.	
  1999,	
  Nadal,	
  2013)	
  

Paradigm	
  1:	
  Separate	
  field	
  and	
  boundary	
  discreIsaIon	
  

✓ Easy	
  adapIve	
  refinement	
  +	
  error	
  esImaIon	
  (Nadal,	
  2013)	
  
✓ Flexibility	
  of	
  choosing	
  basis	
  funcIons	
  
• Accuracy	
  for	
  complicated	
  geometries?	
  BCs	
  on	
  implicit	
  surfaces?	
  
➡ An	
  accurate	
  and	
  implicitly-­‐defined	
  geometry	
  from	
  arbitrary	
  

parametric	
  surfaces	
  including	
  corners	
  and	
  sharp	
  edges	
  
(Moumnassi,	
  et	
  al.	
  2011)
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  Moumnassi	
  et	
  al,	
  CMAME	
  DOI:10.1016/j.cma.2010.10.002
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marching method  

seed point(s) - 
requires one 
single global 
search

Level Set representation of a surface defined by a parametric function

• Objectives 
‣ insert surfaces in a structured mesh  

- without meshing the surfaces (boundary, cracks, holes,  
inclusions, etc.) 

- directly from the underlying CAD model 
- model arbitrary solids, including sharp edges and vertices 
‣ keep as much as possible of the mesh as the CAD model  

evolves, i.e. reduce mesh dependence of the implicit  
boundary representation 

‣ maintain the convergence rates and implementation simplicity of the FEM

• In order to reproduce the geometry accurately, significant mesh refinement is typi-

cally needed;

• Because the whole boundary is defined using one single function, it is not straight-

forward to locate and separate different regions on ∂Ωh for attribution of appropriate

boundary conditions;

• To efficiently approximate a curved domain, one generates a discrete approxima-

tion of the scalar distance field φ by evaluating the function on a sufficiently fine

mesh, or by adaptive schemes like octree techniques to capture details of the domain

boundary ∂Ωh. However, linear interpolation of the mesh values to approximate the

boundary is insufficient for higher order analysis.

Figure 3: Approximation of an object with convex and concave boundaries with the

same background mesh, resulting from Boolean combinations of half-spaces defined using

analytically defined level set functions (8-planes and 3-cylinders). (a) The object is con-

structed by a single level set resultant from Boolean operations (one scalar distance value

is stored at each node). (b) shows the approximation by our new approach that preserves

sharp features (eleven scalar distance values are stored at each node).

In the following section, we present a new approach to represent arbitrary regions

using level set functions, which alleviates the pitfalls of the “single-level-set-description”.

11

Single Multiple level sets

Advance by CRP Henri Tudor in 2011 
(Moumnassi et al, CMAME DOI: 10.1016/
j.cma.2010.10.002
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I M A M  
• mulIple	
  level	
  sets	
  

!
!
!
!
!

• single	
  (len)	
  versus	
  mulIple	
  (right)	
  

!
!
!
!
!
!
!
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11

(a) (b) (c)

Figure 12: (a) Conversion of four parametric functions into zero level sets. (b) Polygonal

meshes extraction for the cutting method. (c) Approximated domain with sharp features.

it.

To obtain an accurate geometry description for domains with curved boundaries, we

present in the following section two different techniques: degenerated and graded sub-

meshes which we shall name DSM and GSM, respectively.

5.4.1. Mesh refinement with degenerated sub-mesh (DSM)

We use the parametric information to generate the desired number of cut edges on the

surface inside a boundary element EB which are tangent to this parametric surface (see

Figure 13). These cut edges are created by the corresponding zero level sets such that they

are generated by a succession of analytically known level set planes p (x) = (x− x0) · n

that pass through the point x0 on the surface and defined by the normal n at this point.

Then we apply the cutting method to each boundary element EB by using these zero

level sets to create the sub-elements E∆. The next step is the classification of the sub-

elements into the interior boundary IB and exterior boundary OB to define the part of

the approximate domain Ωh on the boundary B and the part of its boundary Γh (see

Figure 14).

5.4.2. Mesh refinement with graded sub-mesh (GSM)

The marching algorithm (cf. Section 4.3) benefit of a natural strategy to locate the

narrow band from the all elements mesh, in which only the selected elements (i.e. ωi)

need to be used for refinement if desired. This is an attractive strategy to restrict local

mesh refinement to boundary elements EB. This strategy will be used locally in EB and
27

Figure 17: A three-dimensional graded sub-mesh refinement of level (n = 6) inside a

boundary element EB.

1. Subdividing EB based on a linear (as in [23, 54]) or higher order (as in [40, 41])

description of the boundary.

2. Without subdividing EB as proposed in Ventura [55] using equivalent poly-

nomials. It is also possible to use the approach of Natarajan et al.[24, 25]

based on the Schwarz Christoffel (SC) mapping of the interior/exterior polyg-

onal areas to the unit disk. Another alternative is strain smoothing where

domain integration is transformed into boundary integration as in [26]. The

advantage of the latter is that it has the potential to be amenable to three

dimensional cases, whereas the SC mapping technique remains restricted to

two-dimensional problems. To use the SC mapping in 3D, the interior and

outer parts of a boundary element could be integrated using strain smoothing

and the SC mapping subsequently used to integrate along the boundary of the

interior and exterior subregions. Since each of those boundaries is composed

of the union of polygons, the SC mapping (or any other method to integrate

numerically on polygons) can be used to compute the integral on each poly-

gon. Note that strain smoothing modifies the variational principle so that the

resulting stiffness matrix is usually not as stiff as that of the original finite

32
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I M A M  	
  Three-­‐dimensional	
  model	
  problem

• Laplace	
  equaIon	
  on	
  a	
  cube	
  

• convergence	
  rates	
  

➡ opImal	
  

➡ requires	
  proper	
  Lagrange	
  mulIplier	
  
space	
  to	
  eradicate	
  spurious	
  
oscillaIons
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(a) (b)

Figure 29: Finite element solution of 3D Laplace model problem using implicit computa-

tional domain. (a) implicit representation of the domain with sharp features, (b) illustrate

the cut view of the solution uh.

XFEM representation. These comparisons are shown in Figure 31. As can be seen,

the analysis with conforming and non-conforming mesh yield nearly the same accuracy

and convergence rates in the approximated energy and Lagrange multipliers. As to the

enforcement of the Dirichlet boundary conditions, the accuracy and convergence rate are

governed by the choice of the Lagrange multiplier space L ∗

h . It is interesting to note that

all these numerical results for the case of non-conforming mesh are superior to the standard

mixed method (naive approach), which yields oscillations of the Lagrange multipliers on

the boundary.

8. Conclusions

We presented and validated a general method to carry out finite element analysis on

arbitrary implicitly defined domains obtained from parametric surfaces. The input to the

algorithm is the parametric description of the boundary of the object which is converted

automatically and efficiently into implicit level set representations. The computational

domain is then obtained by Boolean operations on those level set functions. A special

adaptive numerical integration technique which uses the parametric description to increase
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(b)

Figure 30: Convergence study results for the mixed formulation on unstructured tetra-

hedral mesh: (a) analysis with a conforming mesh and FEM, (b) analysis with a non-

conforming mesh and XFEM using the reduced Lagrange multiplier space.
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Figure 31: Comparison study between analysis with conforming mesh (Figure 30a) and

non-conforming mesh (Figure 30b).

the geometrical faithfulness (thus decrease mesh dependence) was proposed. We showed

that the resulting algorithm is adequate to describe objects with sharp features such as

edges and corners.

The above paradigm required several contributions:
52
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Geomety- 
based  
refinement

H-adaptive refinement based on error estimation

Pixel/Voxel-­‐based	
  FEA	
  on	
  Cartesian	
  grids	
  (Valencia) 

http://www.researcherid.com/rid/A-1858-2009
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Pixel/Voxel-­‐based	
  FEA	
  on	
  Cartesian	
  grids	
  (Valencia) 

Processing time

Quad8 uniform refinement

http://www.researcherid.com/rid/A-1858-2009
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!

Paradigm	
  2	
  :	
  IGA	
  

Couple	
  Geometry	
  and	
  ApproximaIon  

1



3

Isogeometric	
  analysis	
  (with	
  BEM)

Approximate	
   the	
  unknown	
  fields	
  with	
   the	
   same	
  basis	
   	
   	
   funcIons	
  
(	
  NURBS,	
  T-­‐splines	
  …	
  )	
  as	
  that	
  used	
  to	
  generate	
  the	
  CAD	
  model	
  

direct	
  calcula@on

meshing

calcula@on

stress analysis•Exact	
  geometry.	
  
•High	
  order	
  conInuity.	
  
•hpk-­‐refinement



3 KEY QUESTIONS FOR IGA 
!

1. Generate a volume discretization using the surface geometry only? 
!
2. Realistic solids can in general not be represented by only one volume 
(patch) and multiple patches must be glued together to avoid 
“leaks” (Nitsche, T-splines, PHT-splines, RL/LR-splines) 
!
3. Refinement must be done everywhere in the domain (T, PHT…
splines) 

51
With Gang Xu: Generalized IGA - Field-independent geometry approximation



 IGABEM

           Domain	
  
representaIon

           Boundary	
  

	
  	
  	
  	
  representaIon

Isogeometric	
  Analysis	
  with	
  BEM

1.	
  IGABEM	
  with	
  NURBS	
  for	
  2D	
  elasIc	
  problems	
  (Simpson,	
  et	
  al.	
  	
  	
  	
  
CMAME,	
  2011).	
  
!
2.	
  IGABEM	
  with	
  T-­‐splines	
  for	
  3D	
  elasIc	
  problems	
  (Sco],	
  et	
  al.	
  
CMAME,	
  2012).	
  
!
3.	
  IGABEM	
  with	
  T-­‐splines	
  for	
  3D	
  acousIc	
  problems	
  (Simpson,	
  et	
  al.	
  
2013	
  -­‐	
  MAFELAP2013	
  TH1515).

DifficulIes	
  in	
  dealing	
  with	
  nonlinear	
  problems	
  and	
  non-­‐homogeneous	
  	
  
materials.



4

Knot	
  vector	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  a	
  non-­‐decreasing	
  set	
  of	
  coordinates	
  in	
  the	
  parametric	
  space.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  
B-­‐spline	
  basis	
  func@on	
  
!
!
!
!
!
!
!
NURBS	
  basis	
  func@on

Non-­‐uniform	
  raIonal	
  B-­‐splines



5

•	
  ParIIon	
  of	
  Unity	
  
!
!
!
	
  	
  
•	
  Non-­‐negaIve	
  
!
•	
  p-­‐1	
  conInuous	
  derivaIves	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
•	
  Tensor	
  product	
  property	
  
	
  	
  	
  	
  
!
!
!
!
!
!
No	
  Kronecker	
  delta	
  property

	
  ProperIes	
  of	
  NURBS



	
  NURBS	
  to	
  T-­‐splines

(NURBS	
  geometry) (T-­‐splines	
  geometry)

NURBS	
  to	
  T-­‐splines

!
NURBS	
  

•	
  No	
  waterIght	
  geometry	
  
•	
  No	
  local	
  refinement	
  scheme

!
T-­‐splines	
  
•	
  	
  	
  Local	
  knot	
  vector	
  (as	
  Point-­‐

based	
  splines)	
  
•	
  	
  	
  Global	
  topology	
  	
  

www.tsplines.com

Y.	
  Bazilevs,	
  V.M.	
  Calo,	
  J.A.	
  Co]rell,	
  J.A.	
  Evans,	
  T.J.R.	
  Hughes,	
  S.	
  Lipton,	
  M.A.	
  Sco],	
  and	
  T.W.	
  
Sederberg.	
  Isogeometric	
  analysis	
  using	
  T-­‐splines.	
  CMAME,	
  199(5-­‐8):229–263,	
  2010.

www.tsplines.com

http://www.tsplines.com
http://www.tsplines.com


where	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  are	
  field	
  point	
  and	
  source	
  point	
  respecIvely,	
  	
  	
  	
  	
  	
  and	
  
	
  	
  	
  	
  	
  are	
  displacement	
  and	
  tracIon	
  around	
  the	
  boundary,	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  are	
  	
  
fundamental	
  	
  soluIons.

IGABEM formulation

Regularised	
  form	
  of	
  boundary	
  integral	
  equaIon	
  for	
  2D	
  linear	
  elasIcity

 DiscreIse	
  the	
  geometry	
  and	
  soluIon	
  field	
  using	
  NURBS

IGABEM	
  formulaIon



Nuclear reactorNuclear	
  reactor

L2

DOFs
4500

IGABEM

quadratic BEM



DamDam

Stress	
  analysis	
  without	
  meshing:	
  isogeometric	
  boundary-­‐element	
  method	
  
ICE	
  Proceeding,	
  2013,	
  H	
  Lian,	
  RN	
  Simpson,	
  SPA	
  Bordas	
  

http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=xhdGcjkAAAAJ&citation_for_view=xhdGcjkAAAAJ:ufrVoPGSRksC


PropellerPropeller:	
  NURBS	
  would	
  require	
  several	
  patches	
  -­‐	
  single	
  patch	
  T-­‐splines

Isogeometric	
  boundary	
  element	
  analysis	
  using	
  unstructured	
  T-­‐splines	
  
MA	
  Sco],	
  RN	
  Simpson,	
  JA	
  Evans,	
  S	
  Lipton,	
  SPA	
  Bordas,	
  TJR	
  Hughes,	
  TW	
  Sederberg	
  
CMAME,	
  2013.	
  

http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=xhdGcjkAAAAJ&citation_for_view=xhdGcjkAAAAJ:WF5omc3nYNoC
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!

Part	
  II.	
  Some	
  recent	
  advances	
  in	
  enriched	
  FEM 

 
 

1
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!

Handling	
  discon@nui@es	
  in	
  isogeometric	
  
formula@ons 

!
with	
  Nguyen	
  Vinh	
  Phu,	
  Marie	
  Curie	
  Fellow 

 
 

1



PUM	
  enriched	
  methods	
  

Discon@nui@es	
  modeling	
  

!
• IGA:	
  link	
  to	
  CAD	
  and	
  
accurate	
  stress	
  fields	
  

•XFEM:	
  no	
  remeshing
62

Mesh	
  conforming	
  methods	
  

!
• IGA:	
  link	
  to	
  CAD	
  and	
  
accurate	
  stress	
  fields	
  

•Apps:	
  delaminaIon



PUM	
  enriched	
  methods	
  (XIGA)	
  

1. E.	
  De	
  Luycker,	
  D.	
  J.	
  Benson,	
  T.	
  Belytschko,	
  Y.	
  Bazilevs,	
  and	
  M.	
  C.	
  Hsu.	
  X-­‐FEM	
  
in	
  isogeometric	
  analysis	
  for	
  linear	
  fracture	
  mechanics.	
  IJNME,	
  87(6):541–565,	
  
2011.	
  	
  

2. S.	
  S.	
  Ghorashi,	
  N.	
  Valizadeh,	
  and	
  S.	
  Mohammadi.	
  Extended	
  isogeometric	
  
analysis	
  for	
  simulaIon	
  of	
  staIonary	
  and	
  propagaIng	
  cracks.	
  IJNME,	
  89(9):
1069–1101,	
  2012.	
  	
  

3. D.	
  J.	
  Benson,	
  Y.	
  Bazilevs,	
  E.	
  De	
  Luycker,	
  M.-­‐C.	
  Hsu,	
  M.	
  Sco],	
  T.	
  J.	
  R.	
  Hughes,	
  
and	
  T.	
  Belytschko.	
  A	
  generalized	
  finite	
  element	
  formulaIon	
  for	
  arbitrary	
  basis	
  
funcIons:	
  From	
  isogeometric	
  analysis	
  to	
  XFEM.	
  IJNME,	
  83(6):765–785,	
  2010.	
  	
  

4. A.	
  Tambat	
  and	
  G.	
  Subbarayan.	
  Isogeometric	
  enriched	
  field	
  approximaIons.	
  
CMAME,	
  245–246:1	
  –	
  21,	
  2012.	
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NURBS	
  basis	
  funcIons enrichment	
  funcIons



Delamina@on	
  analysis	
  with	
  cohesive	
  elements	
  (standard	
  approach)

Z

⌦
�u · bd⌦+

Z

�t

�u · t̄d�t =

Z

⌦
�✏ : �(u)d⌦+

Z

�d

�JuK · tc([[u]])d�d

!
• No link to CAD

• Long preprocessing

• Refined meshes 



Isogeometric	
  cohesive	
  elements

1. C.	
  V.	
  Verhoosel,	
  M.	
  A.	
  Sco],	
  R.	
  de	
  Borst,	
  and	
  T.	
  J.	
  R.	
  Hughes.	
  An	
  
isogeometric	
  approach	
  to	
  cohesive	
  zone	
  modeling.	
  IJNME,	
  87(15):336–360,	
  
2011.	
  	
  

2. V.P.	
  Nguyen,	
  P.	
  Kerfriden,	
  S.	
  Bordas.	
  Isogeometric	
  cohesive	
  elements	
  for	
  two	
  
and	
  three	
  dimensional	
  composite	
  delaminaIon	
  analysis,	
  2013,	
  Arxiv.

Knot	
  inser@on

quadratic basis



Isogeometric	
  cohesive	
  elements:	
  advantages

!
•	
  Direct	
  link	
  to	
  CAD	
  
•	
  Exact	
  geometry	
  
•	
  Fast/straighvorward	
  generaIon	
    
	
  	
  	
  	
  of	
  interface	
  elements	
  
•	
  Accurate	
  stress	
  field	
  
•	
  ComputaIonally	
  cheaper

!
•	
  2D	
  Mixed	
  mode	
  bending	
  test	
  (MMB)	
  	
  
•	
  2	
  x	
  70	
  quarIc-­‐linear	
  B-­‐spline	
  elements	
  
•	
  Run	
  Ime	
  on	
  a	
  laptop	
  4GBi7:	
  6	
  s	
  
•	
  Energy	
  arc-­‐length	
  control	
  

V.	
  P.	
  Nguyen	
  and	
  H.	
  Nguyen-­‐Xuan.	
  High-­‐order	
  B-­‐splines	
  based	
  finite	
  elements	
  for	
  
delaminaIon	
  	
  analysis	
  of	
  laminated	
  composites.	
  	
  Composite	
  Structures,	
  102:261–275,	
  2013.	
  



Isogeometric	
  cohesive	
  elements:	
  2D	
  example

!
•Exact	
  geometry	
  by	
  NURBS	
  +	
  direct	
  link	
  to	
  CAD	
  
• It	
  is	
  straighvorward	
  to	
  vary	
  
	
  	
  	
  	
  (1)	
  the	
  number	
  of	
  plies	
  and	
  
	
  	
  	
  	
  (2)	
  #	
  of	
  interface	
  elements:	
  
•	
  Suitable	
  for	
  parameter	
  studies/design	
  	
  
•	
  Solver:	
  energy-­‐based	
  arc-­‐length	
  method	
  (GuIerrez,	
  2007)	
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Isogeometric	
  cohesive	
  elements:	
  2D	
  example

69



Isogeometric	
  cohesive	
  elements:	
  3D	
  example	
  with	
  shells

!
•RotaIon	
  free	
  B-­‐splines	
  shell	
  elements	
  (Kiendl	
  et	
  al.	
  CMAME)	
  
•	
  Two	
  shells,	
  one	
  for	
  each	
  lamina	
  
•	
  Bivariate	
  B-­‐splines	
  cohesive	
  interface	
  elements	
  in	
  between	
  
!



Isogeometric	
  cohesive	
  elements:	
  3D	
  examples

!
•	
  cohesive	
  elements	
  for	
  3D	
  
meshes	
  the	
  same	
  as	
  2D	
  
•	
  large	
  deformaIons	
  



Isogeometric	
  cohesive	
  elements

!
•	
  singly	
  curved	
  thick-­‐wall	
  laminates	
  
•	
  geometry/displacements:	
  NURBS	
  
•	
  trivariate	
  NURBS	
  from	
  NURBS	
  surface(*)	
  
•	
  cohesive	
  surface	
  interface	
  elements

(*)V. P. Nguyen, P. Kerfriden, S.P.A. Bordas, and T. Rabczuk. An integrated design-analysis !
framework for three dimensional composite panels. Computer Aided Design, 2013. submitted.



•Nitsche	
  coupling	
  -­‐	
  NURBS-­‐NURBS

Future	
  work:	
  model	
  selecIon	
  (conInuum,	
  plate,	
  beam,	
  shell?)

73

Model	
  selec@on	
  	
  
•	
  Model	
  with	
  shells	
  
•	
  IdenIfy	
  “hot	
  spots”	
  -­‐	
  dual	
  	
  
•	
  Couple	
  with	
  conInuum	
  	
  
•	
  Coarse-­‐grain	
  

le
ve

l 0
 

gl
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ca
l 

RVE

load

thesis A. Akbari 
thesis O. Goury 
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!

Part	
  III.	
  ApplicaIon	
  to	
  mulI-­‐crack	
  propagaIon	
  
with	
  Danas	
  Sutula,	
  President	
  Scholar 

 
 

1



Numerical	
  Modeling	
  of	
  	
  
SOI	
  Wafer	
  Spli\ng



Physical	
  process

Manufacturing	
  process:	
  SmartCutTM	
  
• H+	
  ionizaIon	
  of	
  a	
  thin	
  surface	
  of	
  Si	
  

• Bonding	
  to	
  a	
  handle-­‐wafer	
  (sIffener)	
  

• High	
  temperature	
  thermal	
  annealing	
  

• NucleaIon	
  and	
  growth	
  of	
  caviIes	
  filled	
  with	
  H2	
  

• Pressure	
  driven	
  micro	
  crack	
  growth	
  

• Coalescence	
  and	
  post-­‐split	
  fracture	
  roughness

re
-­‐u
se

A

B

A

A

B

B

B

A

A

A
concerned	
  with

Si	
  wafer



Objec@ves

Determine:	
  
• micro	
  crack	
  nucleaIon	
  points	
  and	
  direcIon	
  

• mulIple	
  crack	
  paths	
  unIl	
  coalescence	
  

• Ime	
  to	
  complete	
  fracture	
  

• final	
  surface	
  roughness



Model

Modeling	
  cavi@es	
  by	
  zero	
  thickness	
  surfaces	
  
• disconInuiIes	
  in	
  the	
  displacement	
  field	
  
Linear	
  elas@c	
  fracture	
  mechanics	
  (LEFM)	
  
• infinite	
  stress	
  at	
  crack	
  Ip,	
  i.e.	
  singularity

staIsIcally	
  distributed	
  
disconInuiIes

Cohesive	
  interface	
  with	
  
variaIon	
  in	
  surface	
  energy

fracture	
  criterion	
  at	
  the	
  
disconInuity	
  Ip	
  

disconInuity	
  subjected	
  
to	
  H2	
  pressure



XFEM	
  formula@on

Approxima@on	
  func@on:

singular	
  Ip	
  
enrichment

disconInuous	
  
enrichment

standard	
  part

Enriched nodes 
         - “Heaviside” 
         - ”crack tip”



XFEM	
  formula@on



Discre@za@on:	
  XFEM

Extended	
  Finite	
  Element	
  Method	
  (XFEM)	
  
• Introduced	
  by	
  Ted	
  Belytschko	
  (1999)	
  for	
  elasIc	
  problems

Fracture	
  of	
  “XFEM”	
  using	
  XFEM



Plate	
  with	
  300	
  cracks	
  -­‐	
  ver@cal	
  extension	
  BCs

	
  

	
  

Fracture	
  process



Ver@cal	
  extension	
  of	
  a	
  plate	
  with	
  300	
  cracks

Example	
  #1

Post-­‐split	
  roughness



Example	
  #2

Mechanical	
  spli\ng	
  of	
  a	
  wafer	
  sample	
  
• Post-­‐split	
  roughness	
  as	
  a	
  funcIon	
  of	
  micro	
  crack	
  distribuIon	
  

3 (mm)

1.
5 

(m
m

)

0.5 (mm)

	
  

	
  

damaged	
  zone	
  
(studied	
  area)



Example	
  #2

Mechanical	
  spli\ng	
  of	
  a	
  wafer	
  sample	
  
• DiscreIsaIon	
  (≈1mln.	
  DOF,	
  he	
  =	
  150	
  nm)

	
  

Fracture	
  control	
  parameters	
  
-­‐	
  iniIal	
  cracked	
  length:	
  
-­‐	
  damage	
  thickness:



Fracture	
  roughness	
  results	
  
• Case	
  example:	
   	
   ,	
  
!
!
!
!

!
!
• Case	
  example:	
   	
   ,

Example	
  #2

more	
  rough

less	
  rough



Evaluation of stress intensity factors (SIF)  
• The interaction integral (Yau 1980) 
!
!

!
Crack growth criterion for mixed mode fracture 
• Direction that maximises the energy release (Nuismer 1975) 
!
!
Crack growth direction 
• orthogonal to maximum hoop stress 
!

(1) – from current solution 
(2) – known auxiliary solution 

 Crack growth: classical approach (LEFM)



• Energy release rate w.r.t crack increment direction: 
!
!
!
• The rates of the energy release rate are given by: 
!
!
!
!

• where, in a discrete setting, the potential energy is: 
!
!
!

 Crack growth: classical approach (LEFM)



• The discrete potential energy: 
!

!
• The discrete energy release rate: 
!
!

!
!

• The rates of the energy release rate 
!
!
!

, where

, where                  

 Crack growth: optimization of direction



• The discrete potential energy: 
!

!
• The discrete energy release rate: 
!
!

!
!

• The rates of the energy release rate 
!
!
!

 

remote interaction

 Crack growth: optimization of direction

expensive



Updated directions:

 Crack growth: optimization of direction



• Energy minimization w.r.t. to a finite crack propagation 
• The growth direction is given by satisfying: 

• Using the maximum hoop-stress criterion as initial guess 

!
• Numerical examples: 
!

!
!

 Crack growth: optimization of direction



Mechanical splitting of a wafer 
• Post-split roughness as a function of micro crack distribution 

• Consider a representative material sample 

• BC: blade loading = fixed displacements (RHS) 

• 20 initial micro cracks within the damage zone  

2 (mm)

1.
5 

(m
m

)

damaged zone 
(pre-existing flaws)

F

Physical experiment

 Application to Si-wafer splitting



Mechanical splitting of a wafer 
• Fracture path comparison: max-hoop crit. VS. energy min. 

• NOTE: non-uniform scaling of axis, y / x = 400 

 Application to Si-wafer splitting



Mechanical splitting of a wafer 
• Comparison of post-split fracture surface roughness

 Application to Si-wafer splitting



 Application to Si-wafer splitting
Mechanical splitting of a wafer 
• Comparison of total (potential) energy
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Part	
  IV.	
  ApplicaIon	
  to	
  surgical	
  simulaIon	
  
with	
  InsItue	
  of	
  Advanced	
  Studies	
  (iCube,	
  University	
  of	
  Strasbourg,	
  France:	
  Hadrien	
  

Courtecuisse),	
  INRIA,	
  SHACRA	
  Team	
  (Stéphane	
  CoIn,	
  ChrisIan	
  Duriez);	
  Karol	
  Miller,	
  UWA. 

 
 

1RealTcut  
Interactive multiscale 
cutting simulations 



bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

iMAM

Surgical simulation (real time/interactivity)

SimLearning AssistancePlanning

PrecisionRealTcut  
The ERC RealTcut project

‣ Reduce the problem size while controlling error in solving 
very large multiscale mechanics problems  

complex 
microstructure

Courtecuisse et al. PBMB 2011

Discretise
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Approach

Concrete	
  objec@ve:	
  compute	
  the	
  response	
  of	
  organs	
  during	
  surgical	
  
procedures	
  (including	
  cuts)	
  in	
  real	
  Ime	
  (50-­‐500	
  soluIons	
  per	
  second)
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Two	
  schools	
  of	
  thought	
  
‣ constant	
  (me	
  

➡accuracy	
  o.en	
  controlled	
  
visually	
  only	
  

‣ model	
  reduc(on	
  or	
  “learning”	
  

➡scarce	
  development	
  for	
  
biomedical	
  problems	
  

➡no	
  results	
  available	
  for	
  
cu9ng	
  

Proposed	
  approach:	
  maximize	
  accuracy 
for	
  given	
  computa(onal	
  (me.	
  Error	
  control

A

4.30 A

10�7

2.6⇥

U
Q

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100  120  140

 

 

   

U Q
15%

3.4
U

Q

x

c Wc

1%

25 U

[Courtecuisse	
  et	
  al.,	
  MICCAI,	
  2013]	
  
Collabora(on	
  INRIA	
  

!
!

First	
  implicit,	
  interac@ve	
  method	
   
for	
  cu\ng	
  with	
  contact	
  

Model	
  
reduc@on



Error	
  control	
  
!
•interac(vity	
  
•space-­‐(me	
  discre(za(on?	
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  use	
  of	
  compute	
  
resources	
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Complex	
  geometries	
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medical	
  images	
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Topological	
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  contact	
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Model	
  
reduc9on

Advanced	
  
discre9za9on	
  



6=

enriched  
zone

calculs	
  offline	
   calculs	
  online:	
  interac(vité

ac(on	
  de	
  l’instrument

généra9on	
  solu(ons	
  
par(culières

tri	
  
pré-­‐opératoire	
  	
  
!!!!!
“mapping”	
  
spécifique	
  	
  
pa(ent	
  

~10^3	
  	
  
snapshots

POD	
  

O(10)	
  fonc9ons

espace	
  
réduit	
  de	
  
pe(te	
  
dimension	
  ! approxima(on	
  

POD	
  globale
Local	
  (FE)

Local	
  (FE)

~10^6	
  
snapshots

!
enrichissement	
  “pointe	
  

de	
  coupe”
r

u

calcul	
  champs	
  asympto(ques	
  

représenta(on	
  
locale
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Results	
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  Dr	
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  Courtecuisse,	
  PhD	
  INRIA
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