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Motivation: multiscale fracture of engineering structures and materials
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» Reduce the problem size while controlling the error (in Qol)
when solving very large (multiscale) mechanics problems 10



Motivation: multiscale fracture of engineering structures and materials

Solder joint durability (microelectronics), Bosch GmbH
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o Error control

\_®Sogeometric analysis

"\, ™implicit boundaries __#
-— / v XFEM: goal-oriented error estimates

» used by CENAERO (Morfeo XFEM)

g Vv meshless methods for fracture

| v error estimation for reduced models
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Adaptive method for fracture

> |ntroduction: Multiscale methods for Fracture

> Adaptive multiscale method

» Strategy
Fine scale problem

Coarse scale problem
« FE2 method
» Adaptive mesh refinement

Coupling fine and coarse discretisations
Results

» L-shape problem
* Notched bar under Uni-axial tension
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Error control in multiscale modelling

Domain FE2
Decomposition
Method method
\ \
A | \

error

_________________________ Critical_level of error

omogenisation error

>
Coarse Element size

Critical size

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION
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Multiscale methods for Fracture

= Non-concurrent = Concurrent
Damage zone is modelled by a Damage zone is modelled
macroscopic _coheswe grack directly at the microscale and
that homogenises the failure coupled to the coarse scale.
zone.

:

V.P. Nguyen 2012 |

L/l >>1 L/1>1
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Adaptive mUItiscale methOd: A Concurrent approach

>Strategy:
» control the coarse scale »  control the
discretization error modelling error .
I Of
A A B
4 A\ 4 A\
- - - - - - - FCf
Mesh refinement Hybrid method
| > | =
A
FE2 FE2+ Domain
Decomposition

Method uni.lu
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Fine Scale: micro-structure

>Microscale problem:

/ o(u): de dQ—l—/ T-[[éu]]dQ:/ f.dudl
QT r. 99

»Orthotropic grains

Vxe Q/T.,, o=C:e¢

sCohesive interface

vxel,, T,=T ((“u]|'7')7'£t)
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Coarse Scale

>Macroscale problem: =R

« FE2 Method
Based on averaging theorem
(computational homogenisation)

= Adaptive mesh refinement
Error estimation by Zienkiewicz-Zhu-type recovery technique

- € -

<

- € -

Mesh refinement

| >
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Coarse Scale: FE?2

A
v
WA

time step, i
v

Macroscale problem
lteration, j

_________________

RVE problem
[teration, k

Cr

o' = (af>

% Shortcoming of the FE2 Method :

Lack of scale separation
RVE cannot be found in the

UNIVERSITE DU

LUXEMBOURG

[ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



Coarse Scale: Adaptive mesh refinement

>Coarse scale Adaptive mesh refinement

* Error estimation by Zienkiewicz-Zhu-type
recovery technique

el / (0" —a): (22
e|l=[ (6" —0o): [ —
0. -\ 0e

-1
) (0" — o)d)
"

Element to refine Refined mesh
‘ [
| Error due to the
-Convergence criterion: el g discretisation of { )
o]l neglected IIIII.III
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Fine-Coarse scales Coupling

What is the solution for the FE>
shortcoming:
“Hybrid Multiscale Method”

*FE2for non-critical region
(hierarchical multiscale)

*Domain decomposition for critical
region (concurrent multiscale)

/
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Results: L-shape
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Results: L-shape

Direct Numerical Solution

\

Adaptive Multiscale method

/\ AVAN
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Results: uni-axial tension

x10~

% Sizes are in mm i lu
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Results: uni-axial tension

von-Mises stress (Pa) ™" "
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“ 100X (magnification of displacement)
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Results: uni-axial tension

von-Mises stress (Pa) ™~
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“ 100X (magnification of displacement)
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Results: uni-axial tension

von-Mises stress (Pa) ™~

“ 100X (magnification of displacement)

r 10
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Results: uni-axial tension

von-Mises stress (Pa) ™"
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“ 100X (magnification of displacement)
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Results: uni-axial tension

von-Mises stress (Pa) ™"
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“ 100X (magnification of displacement)
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Verification

DNS

The adaptive multiscale method

TN ™ ——
q,mm
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Verification

total dissipated energy, D, (

\A
X0

Traction force, v f4, (MPa)
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Adaptive Multiscale Method

An adaptive multiscale method was developed for
discrete fracture in polycrystalline materials:

An unstructured mesh is used for the coarse scale
problem

A local arc-length was used to control crack speed in the
fully resolved region.

A recovery based error indicator was employed to limit
discretization error at each time step.
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Y-coordinate (Angstroms)

Perspectives

* coarsening once the crack is open
* molecular dynamics at the fine scale

200l a 20 o a 200 .
b o
w 15 w 150§
150"‘ 5 5
- ] R
100} o 100 o 100
® .
s [~}
50}~ g 5 — T o 50
g - g
of - ? ot — ? of —
i i i i > R . X . R > N R N R N
0 100 200 300 0 50 100 150 200 250 0 50 100 150 200 250
X-coordinate (Angstroms) X-coordinate (Angstroms) X-coordinate (Angstroms)

* real-life problems! :)

« coupling with algebraic model reduction
(POD)

. I
UNIVERSITE DU 3
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Part I. Streamlining the CAD-analysis transition
Part Il. Some advances in enriched FEM

Part lll. Application to H cutting of Si wafers

Part IV. Interactive cutting sim.
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Part I. Streamlrining the CAD-analysis transition

Coupling, or decoupling?
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Motivation: free boundary problems - mesh burden




CAD to Analysis

vM stress distribution
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Compute interactions between the geometry and the mesh

RN

rurp#z
\ /

T AVAVAVAVAY &

N

41

2
VAViVa

\/

RS




Perform the analysis




Paradigm 1: Separate field and boundary discretisation

o Immersed boundary method (Mittal, et al. 2005) I AVA"(VAVAYAVA :\
e Fictitious domain (Glowinski, et al. 1994) <] ,/”T >
 Embedded boundary method (Johansen, et al. 1998) i @ l |
e Virtual boundary method (Saiki, et al. 1996) L¥ﬁJ |

e Cartesian grid method (Ye, et al. 1999, Nadal, 2013) AFINALAL g

v' Easy adaptive refinement + error estimation (Nadal, 2013)
v Flexibility of choosing basis functions
e Accuracy for complicated geometries? BCs on implicit surfaces?

= An accurate and implicitly-defined geometry from arbitrary
parametric surfaces including corners and sharp edges
(Moumnassi, et al. 2011)




Ex: Moumnassi et al, CMAME DOI:10.1016/j.cma.2010.10.002

® (Objectives ~— )
» insert surfaces in a structured mesh [ )
= without meshing the surfaces (boundary, cracks, holes, < /

inclusions, etc.)
= directly from the underlying CAD model
= model arbitrary solids, including sharp edges and vertices

P keep as much as possible of the mesh as the CAD model
evolves, i.e. reduce mesh dependence of the implicit
boundary representation

» maintain the convergence rates and implementation simplicity o

the FEM

Advance by CRP Henri Tudor in 2011
(Moumnassi et al, CMAME DOI: 10.1016/
j.cma.2010.10.002

— .

c /Singl’é Multiple level sets
44

Level Set representation of a surface defined by a para
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® multiple level sets

x

single (left) versus multiple (right)

Institute of Mechanics and Advanced Materials


http://www.researcherid.com/rid/A-1858-2009
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CARDY®

® Laplace equation on a cube

® convergence rates
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w w
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http://www.researcherid.com/rid/A-1858-2009
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H-adaptive refinement based on error estimation
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Paradigm 2 IGA

Couple Geometry and Approximation
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Isogeometric analysis (with BEM)

-

(

Approximate the unknown fields with the same basis functions
NURBS, T-splines ... ) as that used to generate the CAD model

-

e Exact geometry.
e High order continuity.
e hpk-refinement

-
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1. Generate a volume discretization using the surface geometry only?

2. Realistic solids can in general not be represented by only one volume
(patch) and multiple patches must be glued together to avoid
“leaks” (Nitsche, T-splines, PHT-splines, RL/LR-splines)

3. Refinement must be done everywhere in the domain (T, PHT...
splines)

3 KEY QUESTIONS FOR IGA

UNIVERSITE DU
LUXEMBOURG

1
With Gang Xu: Generalized IGA - Field-independent geometry approximation




Isogeometric Analysis with BEM

\

(

G

Domain
representation

Boundary C\!i .
representation <

1. IGABEM with NURBS for 2D elastic problems (Simpson, et al.
CMAME, 2011).

2. IGABEM with T-splines for 3D elastic problems (Scott, et al.
CMAME, 2012).

3. IGABEM with T-splines for 3D acoustic problems (Simpson, et al.
2013 - MAFELAP2013 TH1515).

J

Difficulties in dealing with nonlinear problems and non-homogeneous

materials.

J




Non-uniform rational B-splines

-
Knot vector
a non-decreasing set of coordinates in the parametric space.

== {gl ’ E',z >0 §n+p+1} Knot Parametric mesh
. . : \ £
B-spline basis function bog . - R
4 . )
N (f) _ 17 if §a S f < ga-l—l
a0 0, otherwise.
Napl€) = =50 Ny 1(6) + 228 N (6).
§a+p T ﬁa fa+p+1 — fa+1
\§ _/
NURBS basis function
Na (6) Wq Na (é-) Wyq Control point
Ra, §) = = — n = 9
(&) W(¢) > a1 Napwa




Properties of NURBS

o Partition of Unity

e Tensor product property

~ 0.97 N
ERi’p(g):]‘ 0‘7_
i=1 | N
Nap(§) 05
e Non-negative
e p-1 continuous derivatives =

-

SEM=X3 R, 6R , ()8,
S5e,©m. 00,00

\_

J

J




NURBS to T-splines
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(NURBS geometry) (T-splines geometry)
~ N [ N

NURBS T-splines

e No watertight geometry ° g—gscjé E’;ﬂt}‘e/i)cmr (as Point-

e No local refinement scheme
e Global topology
_ J U Y

Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, and T.W.
Sederberg. Isogeometric analysis using T-splines. CMAME, 199(5-8):229-263, 2010.

-
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IGABEM formulation

4 )
Regularised form of boundary integral equation for 2D linear elasticity

/ T(s, x)[u(x) — u(s)] dI'(x) = / U(s, x)t(x) dI'(x) ]
r r

where x and g are field point and source point respectively, u and
t are displacement and traction around the boundary, Tand {J are
fundamental solutions.

Discretise the geometry and solution field using NURBS

4 na )
x =Y Na(€)Ba=Na(£)Ba
A=1
u=>» Na(§us = Na(Hua
A=1
t = ZB Np(€)ts = Np(§)ts

. J




Nuclear reactor

(25, 75)

(45, 100)

(45, 75)

(0, 15)

(0, 0)

E =2.07x 10°
v =20.15

----- IGABEM
_— FEM

(100, 100)

(100, 60)

NURBS curve

O Control points

X Collocation points
O Elementedges

18—

e GABEM
—B— Quadratic BEM

quadratic BEM

4500

4500
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o
o
|7
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) 120 .
—— NURBS curve
O Control points
e X Collocation points
! O Element edges
:
:
0

Stress analysis without meshing: isogeometric boundary-element method
9 ICE Proceeding, 2013, H Lian, RN Simpson, SPA Bordas

IGABEM
FEM



http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=xhdGcjkAAAAJ&citation_for_view=xhdGcjkAAAAJ:ufrVoPGSRksC

Propeller: NURBS would require several patches - single patch T-splines

4 )
Displacement Magnitude
623.9811
EéOO
400
200
0

von Mises stress

1.54e+06 von Mises stress
E] .00e+06 1 54e+06
-1,006+05 oo
| 1 .00e+05
E] .00e+04 E] 00e+04
E.l 00e+03 F .00e+03
oo 100.

Isogeometric boundary element analysis using unstructured T-splines
MA Scott, RN Simpson, JA Evans, S Lipton, SPA Bordas, TIR Hughes, TW Sederberg

CMAME, 2013. )
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(PUM enriched methods
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e IGA: link to CAD and

accurate stress fields
e XFEM: no remeshing

-

\-




PUM enriched methods (XIGA)

u’(x) = ZR[(X)H[ + Z Rjy(x)P(x)ay

Ies Jese

NURBS basis functions enrichment functions

. E. De Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, and M. C. Hsu. X-FEM
. S. S. Ghorashi, N. Valizadeh, and S. Mohammadi. Extended isogeometric
. D. J. Benson, Y. Bazilevs, E. De LuK_cker, M.-C. Hsu, M. Scott, T. J. R. Hughes,

. A. Tambat and G. Subbarayan. Isogeometric enriched field approximations.

~N

iznOisogeometric analysis for linear fracture mechanics. IJINME, 87(6):541-565,
11.

analysis for simulation of stationary and propagating cracks. JNME, 89(9):
1069-1101, 2012.

and T. Belytschko. A generalized finite element formulation for arbitrary basis
functions: From isogeometric analysis to XFEM. IJNME, 83(6):765-785, 2010.

CMAME, 245-246:1 - 21, 2012.




Delamination analysis with cohesive elements (standard approach)

(

e No link to CAD
e Long preprocessing

° Refined meshes

/ s
continuum element /
S
Y\ 3 P e 4
[ N /
I \ 2
> \ \ » /zrack path
* ~ N
TA 3 \ {2 4
—
’]’0 ______ : 1 Ol 2
interface element
N |/
k|
E Ge
A° A A

\_

/ ou-bdQ)+ | du-tdly = / de : o(u)dQ2 +
Q T Q

5[[11]] : thuﬂ)drd




Isogeometric cohesive elements

s N
1 1 7 /\//
09 . 0.9
o \quadrati Si% .
0.7 ua at C asof solid elements
06 0.6 ]
05 R 0.5 - ~ ] 5‘ 6. 7. 8.
0.4 0.4 |
03 0.3 - CP~1 interface elements
02 0.2 !
0.1 0.1 ] 1 2‘ 3. 4?
% 010203 040506070809 1 0 01020304050607 0808 1 ] /I/
(a) = = {0,0,0,1,1,1} (b) 2 = {0,0,0,0.5,0.5,0.5,1,1,1} oo Na(6)
- oo\ Nye)  Ny(©)
25 0.7} -
0.6
02 0.2 0.5l / AN
0.4} / \
0.15 0.15 0.3} / \
0.2} //
0.1 0.1 0.1} P
% o2 0.4 0.6 0.8 1
0.05 0.05
" A A " A " A A A A A A A A o o
% 0.1 02 03 04 05 0607 0809 1 0 0102 03 04 05 06 07 08 0.9 KI"IOt insertion
\

2011.

2. V.P. Nguyen, P. Kerfriden, S. Bordas. Isogeometric cohesive elements for two
and three dimensional composite delamination analysis, 2013, Arxiv.

(1. C. V. Verhoosel, M. A. Scott, R. de Borst, and T. J. R. Hughes. An
isogeometric approach to cohesive zone modeling. IJINME, 87(15):336-360,

\\

D,




Isogeometric cohesive elements: advantages

( N

e Direct link to CAD

e Exact geometry

e Fast/straightforward generation
of interface elements

e Accurate stress field

e Computationally cheaper
- y,

-

e 2D Mixed mode bending test (MMB)
e 2 x 70 quartic-linear B-spline elements
® Run time on a laptop 4GBi7: 6 s

e Energy arc-length control
-

J

V. P. Nguyen and H. Nguyen-Xuan. High-order B-splines based finite elements for
delamination analysis of laminated composites. Composite Structures, 102:261-275, 2013.




Isogeometric cohesive elements: 2D example

O\

1) the number of

[
u
- — 30
25
0/90/0/90/...] .
g 20
!
© 15 |
__________ + 10 |
0
2 5t no initial crack
Y small initial crack
Y A 0 . . ‘ large initial crack ‘
“ND. 0 0.2 0.4 0.6 0.8 1 1.2 1.4
L» : Ny displacement u [mm
. 7)) P [mm]
~

lies and

2) # of interface elements:

e Suitable for parameter studies/design
e Solver: energy-based arc-length method (Gutierrez, 2007)

e Exact geometry by NURBS + direct link to CAD
e It is straightforward to vary




20

23
c
S 15
&
@
10
5

no init@al crack
small !n!t!al crack
large initial crack 1

1 '

0.2

04 06 08 1 1.2 14
displacement u [mm]




Isogeometric cohesive elements: 2D example

reaction [N]

O | | 1 1 http:/ /www.frontiersin.org/peoplef —no L |
NguyenPhu/94150/video

0 02 04 06 0.8 1 T2 14
displacement u [mm]




Isogeometric cohesive elements: 3D example with shells

\_

\_

-
damage
0.2 0.5 0.7
II|I|I|I|III|IIIII|III|I|II
U 1
-

e Rotation free B-splines shell elements (Kiend| et al. CMAME)

e Two shells, one for each lamina

e Bivariate B-splines cohesive interface elements in between




Isogeometric cohesive elements: 3D examples

(" N\

e cohesive elements for 3D
meshes the same as 2D
e |arge deformations




Isogeometric cohesive elements

4 )

® singly curved thick-wall laminates

e geometry/displacements: NURBS

e trivariate NURBS from NURBS surface(*)
® cohesive surface interface elements

\_ J

damage

0.25 0.75

w |||||||(|)|'§|||||| 0

0 1
(*)V. P. Nguyen, P. Kerfriden, S.P.A. Bordas, and T. Rabczuk. An integrated design-analysis
framework for three dimensional composite panels. Computer Aided Design, 2013. submitte-)c.




Future work: model selection (continuum, plate, beam, shell?)

( Model selection ( eNitsche coupling - NURBS-NURBS
® Model with shells

e |dentify “hot spots” - dual
® Couple with continuum

(wr, Bur, Bar)

® Coarse-grain

(wr,vr,wr)

\_ J \_
load
/2 concurrent
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Numerical Modeling of
SOl Wafer Splitting




Physical process

4 N\ ( )
Manufacturing process: SmartCut™ <
* H*ionization of a thin surface of Si | A,
_
* Bonding to a handle-wafer (stiffener) y o
l Y Y Y oy

 High temperature thermal annealing

re-use

« Nucleation and growth of cavities filled with H, ¥ Fondere

* Pressure driven micro crack growth

e Coalescence and post-split fracture roughness




Objectives

Determine:
micro crack nucleation points and direction

multiple crack paths until coalescence

time to complete fracture

final surface roughness




-

-

Modeling cavities by zero thickness surfaces
e discontinuities in the displacement field
Linear elastic fracture mechanics (LEFM)
 infinite stress at crack tip, i.e. singularity

-

statistically distributed discontinuity subjected ]
discontinuities to H, pressure }

SiO2 (linear isotropic)
Si (linear isotropic) Cohesive interface with
variation in surface energy

fracture criterion at the
discontinuity tip

|




XFEM formulation

4 N
Approximation function:

= Z Ni(x)u' + Z Ny(x)H(x)a’ + Z Nk (x Zfa )bfe

IeNT JEN 5 KeNgk
|\ J J J
Y Y . Y .
standard part discontinuous singular tip
\_ enrichment enrichment )
) +1 if x above crack
H(x) = .
—1 if x below crack
4 LRI 0 0 0 0
~——-E— R {fa(r,0),a=1,4} = {ﬁsina\/Fcosﬁ,ﬁsingsine,\/Fcos§sin9}
11 m m m \
L= =) [N} [N L ‘
- s S N\
OO O/’(jﬁ] H t '\
O //r\ Y ) \T}\ | e ‘'
(/. J \V I/ [N .
Enriched nodes - -
O- “Heaviside” k B ! -
[ "crack tip” L : V T




XFEM formulation

if x above crack

if x below crack

L H(x):{

B(r,e):{\/;cos% \/;sin% \/;sinﬁsin% ﬁsin@cos%D

Hix,y)

L

l_\l__l

y

JAR
L

\D

D

/}__I

A\,

~

At an
' A, .
Dom ey &0




Discretization: XFEM

N
Extended Finite Element Method (XFEM)
* Introduced by Ted Belytschko (1999) for elastic problems
. y
4
4 L Fracture of “XFEM” using XFEM J







Example #1

-

Vertical extension of a plate with 300 cracks

Profile, y

40

30

20

10

o

L
o

|
N
o

-30

[ Post-split roughness )

I I I T I I T I I

—— v, (R, =2.195e+01)

| | | | | | | [ I
100 200 300 400 500 600 700 800 900
Position, x




Example #2

4 ™
Mechanical splitting of a wafer sample
* Post-split roughness as a function of micro crack distribution

1000

T damaged zone
(studied area)

I

-500—

-1000 —

|
-2000 -1500 -1000 -500 0 500 1000 1500 2000




Example #2

-

Mechanical splitting of a wafer sample
o Discretisation (x1mlIn. DOF, h,= 150 nm)

Fracture control parameters
- initial cracked length: p ., =110,30,50,70} (%)
- damage thickness: ¢, ={100,300, 500 } (nm)

" z ~. ~ ¥ ‘ > a‘\r,x\ e S AR s 7 AAE v L Vi I 7 T
0 50 100 150 200 250 300 350 400 450 500



Example #2

s

Fracture rot
Case exat

Profile, y

Profile, y

=
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!
2
o

|
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o
o

|
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RMS roughness of profile, Rq (um)
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Roughness vs. Percentage cracked

(mechanical splitting)
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i N ¥ ]
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Crack growth: classical approach (LEFM)

Evaluation of stress intensity factors (SIF)
« The interaction integral (Yau 1980) [ (1) from current solution j

(2) — known auxiliary solution

1042 = / a.@—a“gz) +o? ou” _ w2, | 2o — 2 (KWE® 4 g0 )
q 1] axl %] 8.’]31 J axj £ 1 I 17 “*11

Crack growth criterion for mixed mode fracture
» Direction that maximises the energy release (Nuismer 1975)

k%<KI7 KII) einc) + k%](KI) KII> einc)
E’/
Crack growth direction . w
« orthogonal to maximum hoop stress v

Ll K K\’
QC(KI,KH) — 2tan ! [4 (K]I] _Slgn<KH)\/(K—III) +8>] crack

= G,

\_ new tip

tip

UUUUUUUUUUUU
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Crack growth: classical approach (LEFM)

* Energy release rate w.r.t crack increment direction:

Ol11
Gs; = —
’ 96,
* The rates of the energy release rate are given by:
0G's; 0411
Hs; = vtrsi —
’ 00, 00,00

 where, in a discrete setting, the potential energy is:

1
II = §u’Ku—u'f

UUUUUUUUUUUU
UUUUUUUUUU
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Crack growth: optimization of direction

The discrete potential energy:

1
IT = §u’Ku—u'f

The discrete energy release rate:

1
Gs; = —§u’5iKu +u'd; f — diu' (Ku — f)

_ 1 / / . 0
Gsz——?u, O, Ku+ ud;f , where 5i_8_6?7;
 The rates of the energy release rate
Hs;j = : 65 K 67 dju (6; Ku — 6 where §;; = o
sij = — | g0 Ku—u af ) —oju’ (0 Ku —6;f) 7= 56,6,

1
Hs;j = — (§u’5z-2iKu — u’5i2iF> + (6;Ku — 6 f) K1 (6; Ku — 6; f)

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



Crack growth: optimization of direction

The discrete potential energy:
1

IT = §u’Ku—u'f

The discrete energy release rate: 0

1
Gsi = —zu'0;Ku+u's;f - diu’(ly/]:)

1
Gs; = —§u’5iKu +u'o; f

The rates of the energy release rate —
ou=—K "(0Ku—6f)
1
2 expensive
1

HSz’j = — <§u’522%Ku — u’5Z2,LF) -|—\(5JK’UJ — 5Jf){K_1(5zKu — (52]0)]}

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



Crack growth: optimization of direction

.

L

N
K, = / (6 B"DB + B"DéB) det(J) dQ + / B DB ddet(J) dQ
Qe Qe
K, = / (6B"DB + 26B" DB + B"D§’B) det(J) dQ2 + / 2 (6B"DB + B D0B) ddet(J) dQ + / B DB §%det(J) dQ
Qe Qe Qe
J
Differentiation of the stiffness matrix f' ~N
w.r.t. crack increment direction
Ke = T"Ko + K. T
Ko = 2(TTK.T — Ko)
y,
~N

—o—rotated crack

Updated directions:

- o -original crack 0k+1 - Hk — HS_IGS
S

. Ishifted standard el. ||
| Ishifted crack vtx. el.
Il original enriched el.

Bl rotated enriched el.

UNIVERSITE DU
LLLLLL OURG




Crack growth: optimization of direction

 Energy minimization w.r.t. to a finite crack propagation
« The growth direction is given by satisfying: 81_[/89- — 0

« Using the maximum hoop-stress criterion as initial guess

 Numerical examples:

Fracture path by energy minimization
for a double-edge crack problem
(using max—hoop stress criterion as predictor)

0.12
0.01
0.1F _
N
\= mm
0.08f X
-0.01
0.06 1 2 3 4 5 6 7 8
increment step, i
0.04
IS
£ 0.02f
>
0 L
-0.02}
-0.04
—0.06} —O— Path obtained by energy minimization
—=e— lterations of increment direction (N.R.)
-0.08 L I I I L
0.4 0.45 0.5 0.55 0.6
X (mm)

y (mm)

0.5}

0.4

0.3}

Fracture path by energy minimization
for a double cantilever problem
(using max—hoop stress criterion as predictor)

0.01

0.005
0

o
:C= q
-0.005

-0.01

1 2 3 45 6 7
increment step, i

—o0— Path obtained by energy minimization

—=e— |[terations of increment direction (N.R.)

0.4 0.5 0.6 0.7 0.8
x (mm)
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Application to Si-wafer splitting ¢ sotec

Mechanical splitting of a wafer
» Post-split roughness as a function of micro crack distribution

» Consider a representative material sample -

« BC: blade loading = fixed displacements (RHS)

« 20 initial micro cracks within the damage zone

damaged zone
(pre-existing flaws)

v

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



Application to Si-wafer splitting ¢ softec

Mechanical splitting of a wafer
* Fracture path comparison: max-hoop crit. VS. energy min.

 NOTE: non-uniform scaling of axis, y / x =400

Si-wafer splitting using a wedge blade
(comparison of two growth criteria)

UUUUUUUUUUUU
UUUUUUUUUU
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| | | | | -
Application to Si-wafer splitting ¢ Soitec
w
Mechanical splitting of a wafer
« Comparison of post-split fracture surface roughness
Surface profile roughness
x 10~ (using growth criterion: max—hoop)

£ 1 |

E

> & | | } (S L -

g 0 l/—Jj e ’/—1

= —Y, (R =9.987e-06)

£ —1F q |

0.05 0!1 0.‘15 0[2 o.és 0i3 0.35 0.4 0.45
Position, x (mm)
Surface profile roughness
x 10~ (using growth criterion: energy—mm

£ 1t

E

Z: ol ';‘L /—LV ‘\_—J—\/—}

:;,g, ‘ ¥, (R, =1.100e- o5
n? -1 ymean |

0.05 0!1 0.;5 0i2 0.f25 013 0.35 0.4 0.45
Position, x (mm)

~ unram

UNIVERSITE DU
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Application to Si-wafer splitting

Mechanical splitting of a wafer
« Comparison of total (potential) energy

Potential energy vs. fracture surface
for different growth criteria

N
AN
o

I T T

— max-hoop

N

N

o
T

——energy min. |

180

Potential energy, I1
N
o
2

186 0.47 0.48 0.49 0.5 0.51 0.52

Combined crack surface, a

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

| Soitec
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Discretise

P Reduce the problem size while controlling error in solving

very large multiscale mechanics problems
Courtecuisse et al. PBMB 2011

3 RealTcut m


mailto:email@cardiff.ac.uk

Approach

r . : )
Concrete objective: compute the response of organs during surgica
procedures (including cuts) in real time (50-500 solutions per second)

e )
Two schools of Tchought First implicit, interactive method
» constant time

for cutting with contact
B accuracy often controlled
visually only

» model reduction or “learning”

) scarce development for
biomedical problems

B no results available for
cutting

[Courtecuisse et al., MICCAI, 2013]
Collaboration INRIA

Proposed approach: maximize accuracy \_ )
for given computational time. Error control

\_ 99)




Four main difficulties

Complex geometries from
_medical images

¥ i ] >
Segmentatlon

Region of interest (Rol)

Error control

e interactivity

espace-time discretization?
e optimize use of compute
resources

100

Topological changes & contact

Model
reduction

Advanced

L discretization




calculs offline calculs online: interactivité

génération solutions tri POD
particulieres pre-operatoire

1

| L

0

e =——

1 [ ] ]
il 1]

~10"6 ~1013
snapshots snapshots
“mapping
spécifique
calcul champs asvmptotiaues patient

0(10) fonctions

espace

i------‘=
réduit de 4 I O O

petite

! dimension = _ ' L
|: S approximation
r | enrichissement “pointe POD globale

artinn da l'inctriimant de COUpe”

101



©

A semi-implicit method for real-time
deformation, topological changes, and
contact of soft tissues

Paper ID : 269
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TWO FACULTY POSITIONS AVAILABLE

OPEN SOURCE CODES

PERMIX: Multiscale, XFEM, large deformation, coupled 2 LAMMPS, ABAQUS, OpenMP -
Fortran 2003, C++

MATLAB Codes: XFEM, 3D ISOGEOMETRIC XFEM, 2D ISOGEOMETRIC BEM, 2D MESHLESS
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* P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-Spline Finite
Element approach for geometrical design and mechanical
analysis. INME, 41(3):435-458, 1998.

e [, Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: a new
paradigm for thin-shell finite-element analysis. INME, 47(12):
2039-2072, 2000.

e Constructive solid analysis: a hierarchical, geometry-based
meshless analysis procedure for integrated design and analysis.
D. Natekar, S. Zhang,and G. Subbarayan. CAD, 36(5): 473--486,
2004.

* T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. CMAME, 194(39-41):4135-4195, 2005.

). A. Cottrell, T. J.R. Hughes, and Y. Bazilevs. Isogeometric
Analysis: Toward Integration of CAD and FEA. Wiley, 2009.
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TWO POST DOCS
TWO FACULTY POSITIONS AVAILABLE

OPEN SOURCE CODES

PERMIX: Multiscale, XFEM, large deformation, coupled 2 LAMMPS, ABAQUS, OpenMP -
Fortran 2003, C++

MATLAB Codes: XFEM, 3D ISOGEOMETRIC XFEM, 2D ISOGEOMETRIC BEM, 2D MESHLESS
DOWNLOAD @ http://cmechanicsos.users.sourceforge.net/

COMPUTATIONAL MECHANICS DISCUSSION GROUP
Request membership @
http://groups.google.com/group/computational mechanics discussion/about
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