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Abstract 

Purpose The study aimed to compare thermal sensation in response to a fixed warm stimulus across 

31 body locations in resting and active males and females.  

 

Methods Twelve males (20.6 ± 1.0 yrs, 78.1 ± 15.6 kg, 180 ± 8.9 cm, 34.4 ± 5.2 ml·kg-1·min-1) and 12 

females (20.6 ± 1.4 yrs, 62.9 ± 5.5 kg, 167 ± 5.7 cm, 36.5 ± 6.6 ml·kg-1·min-1) rested in a 

thermoneutral (22.2 ± 2.2°C, 35.1 ± 5.8% RH) room whilst a thermal probe (25 cm2), set at 40°C was 

applied in a balanced order to 31 locations across the body. Participants reported their thermal 

sensation 10 seconds after initial application. Following this, participants began cycling at 50% 

Vሶ O2max for 20 minutes, which was then lowered to 30% Vሶ O2max and the sensitivity test repeated.  

 

Results Females had significantly warmer magnitude sensations than males at all locations (4.7 ± 1.8 

vs 3.6 ± 2.2, p<0.05, respectively). Regional differences in thermal sensation were evident but were 

more prominent for females. Thermal sensation was greatest at the head then the torso and declined 

towards the extremities. In comparison to rest, exercise caused a significant reduction in thermal 

sensation for males (∆thermal sensation; 0.86 ± 0.3, p<0.05) but only at select locations in females 

(0.31 ± 0.56, p>0.05).  

 

Conclusion The data provides evidence that the thermal sensation response to warmth varies between 

genders and between body regions and reduces during exercise. These findings have important 

implications for clothing design and thermophysiological modelling. 

 

Key words: Warm sensation, body mapping, gender, exercise, regional, thermal sensitivity 

Abbreviations 

 

BSA; Body surface area (m2) 

Db;  total body density (g/cc) 

EIA; Exercise induced analgesia 

Tb ; Body temperature (°C) 

Tc ; Core temperature (°C) 

TRPV; transient receptor potential vanilloid 
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Tsk ; Skin temperature (°C) 

%BF; body fat percentage (%) 

Introduction 

A large body of literature indicates a variety of gender linked differences in physiological responses to 

cold and heat exposure (Cunningham et al. 1978; Davies, 1979; Fournet et al. 2013; Havenith, 1997; 

Havenith 2001a;b; Havenith et al. 2008; Hensel, 1973; Smith and Havenith, 2011, 2012) yet research 

on thermal sensitivity tends to be limited to male participants (Nakamura et al., 2008; Ouzzahra et al. 

2012; Stevens et al., 1974). Females have been shown to be more sensitive than males to a variety of 

stimuli (Fillingim et al. 1998; Otto and Doygher, 1985; Velle, 1987), yet there is a gap in the literature 

surrounding gender differences in innocuous thermal sensitivity. A common technique to measure 

thermal sensitivity is the method of limits (or threshold detection) in which participants respond to a 

stimulus once they feel a temperature change. Using this technique, Golja et al. (2003) and 

Lautenbacher and Strian (1991) aimed to investigate the temperature thresholds as an indicator of 

thermal sensitivity. Both studies found females to have a higher sensitivity for warmth and Golja et al. 

(2003) confirmed the same findings for cold. Research on gender differences has been limited to the 

threshold detection and gender differences have been found, but whether females are more sensitive to 

the degree of the sensation experienced (using magnitude estimation) in response to a fixed stimulus 

uncertain. Magnitude estimation is influenced by the difference between skin temperature and 

stimulus temperature and initial sensations are referred to as transient responses but if held for a given 

amount of time, they can reflect a steady state response to a given stimulus, removing the effect of the 

initial skin temperature (Tsk) (Ouzzahra et al. 2012).  

 

Studies on gender differences in thermal sensitivity have been limited to one or two body areas such 

as the forearm, hand and/or foot (Golja et al. 2003; Lautenbacher and Strian, 1991). Regional 

differences in regulatory functions of the human thermoregulatory system are well documented 

(Cotter and Taylor, 2005; Fournet et al. 2013; Hensel, 1973; Havenith et al. 2008; Nadel et al. 1973; 

Smith and Havenith, 2011, 2012) but further research is required to assess the sensory functions 

across more locations. Using magnitude estimation, Stevens et al. (1974) investigated regional 

sensitivity to the warmth by applying various warm stimuli (thermal irradiance) on up to 10 body 

regions on 18 male participants, resting in a neutral room (21°C, 50% RH). They determined regional 

differences in the following order of high to low sensitivity: forehead, cheek, chest, abdomen, 

shoulder, back, forearm, upper arm, thigh and calf. Despite a large number of receptors detected in the 

hands and feet (Strughold and Porz, 1931; Rein, 1935, both cited in Parsons, 2003, p.59; Jasper and 

Penfield, 1954), higher sensitivity has been reported by numerous researchers in the head and torso 
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region (Arens et al. 2005a;b; Nadel et al. 1973; Nakamura et al. 2008; Stevens et al. 1974). Nakamura 

et al. (2008) speculated that the central nervous system assigns weighing factors for each body 

segment and that this is what determines the regional differences in sensitivity rather than receptor 

density. The weighing factors are related to basic functioning of temperature regulation which must 

maintain the temperature of the torso and head due to the vital organs located there (Nakamura et al. 

2008).  

 

Using the magnitude estimation method, Ouzzahra et al. (2012) recently assessed regional distribution 

of thermal sensitivity to cold during rest and exercise in male participants. Their methods involved the 

application of a fixed cold stimulus (25cm2 thermal probe), set at 20°C on 16 body locations across 

the torso and arms. Regional differences in steady state perceptual responses were apparent, with the 

lateral areas of the abdomen and mid back being significantly more sensitive to the cold stimulus than 

medial areas of the torso. In addition, they found that thermal sensitivity at rest was significantly 

greater than during exercise at almost all regions measured. The reduction in thermal sensation to a 

cold stimulus was likely a result of exercise induced analgesia (EIA). EIA is associated with the 

activation of the endogenous opioid system during exercise in which various peptides are released that 

has a similar effect to that of morphine (i.e. they cause a reduction in pain sensitivity) (Beaumont and 

Hughes, 1979). Work in this field supports this theory as exercise has also been reported to cause a 

reduction in perceptual responses, particularly tactile and pain sensitivity (Guieu et al. 1992; 

Kemppainen et al. 1986; Kemppainen et al. 1985; Pertovaara et al. 1984). Large amounts of research 

exist regarding EIA and pain sensitivity (Guieu et al. 1992; Kemppainen et al. 1986; Kemppainen et 

al. 1985; Pertovaara et al. 1984) but few studies have investigated thermal sensitivity.  

 

As is evident from the above, thermal sensitivity has been studied in depth yet many questions remain 

unanswered. The most prevalent is the gender difference in magnitude sensation to a warm stimulus.  

Secondary to this is how exercise influences magnitude sensation and finally how this sensitivity 

varies across the body. Therefore, the aims of this investigation are to explore the regional differences 

in thermal sensitivity to a warm stimulus using magnitude estimation on both males and females 

during rest and exercise.  

 

Methods 

Participants 

Twelve Caucasian males and twelve Caucasian females of similar fitness were recruited from the staff 

and student population of Loughborough University (see table 1 for participant characteristics). The 

selection criteria included only Caucasian males and females, aged between 18-45 years to reduce any 
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systemic errors due to ethnic or age-related differences in thermoregulatory responses.  Nine of the 

twelve female participants were taking oral contraceptives. Female menstrual cycle phase was not 

controlled for during the experimental session. However the stage of menstrual cycle in each 

participant was noted and a range of stages was tested during the experiment, thus providing a 

representative sample of menses state in the results. 

Experimental design 

The aim of the investigation was to compare sensitivity to a warm stimulus between the following: 

males versus females, rest versus exercise and regional variations across the body. To achieve these 

aims a repeated measures design was opted for, with males and females taking part in both rest and 

exercise (cycling) while regional thermal sensitivities to a thermal probe with a surface temperature of 

40°C were investigated. A total of 31 regional body segments were chosen to ensure that each area of 

the body was fully investigated (detailed later). These included the front and back torso, the arms and 

legs (upper, lower, front and back), head, face and neck and the extremities.  The testing sequence of 

the segments was balanced to prevent any order effects. However, the order of rest and exercise in the 

tests were not randomised as rest had to precede exercise due to the elevation of Tc caused by the 

latter. This increase could have had a lasting effect in any following rest exposures. To counteract any 

order effect, participants were thoroughly familiarised with the procedure before the start of the actual 

test. 

Experimental protocol   

Each participant completed a pre-test session for anthropometric measurements; stature, body mass 

and skin folds thickness. For males, the 7-point caliper method (Jackson and Pollock, 1987) was used 

to measure skinfold thickness and the 4-point method for females (Jackson, Pollock and Ward, 1980). 

Different sum of skinfolds where used for males and females based on the accuracy of the estimation 

of body fat observed in different genders (Sinning and Wilson, 1984; Sinning et al. 1985). Sum of 

skin folds was used to estimate total body density (Db) and then used to derive total percentage of 

body fat (%BF) (Siri 1956, cited in Heyward and Wagner, 2004, p.7). Body surface area was 

calculated using the equation proposed by DuBois and DuBois (1916, cited in ACSM, 2005). They 

then completed a submaximal fitness test based on the Åstrand Rhyming methods (ACMS, 2005). 

The test comprised of four progressive exercise stages on an electromagnetically braked cycle 

ergometer (Lode Excalibur, Groningen, Netherlands) each lasting 5 minutes. Heart rate (Polar Electro 

Oy, Kemple, Finland) was recorded during the last minute of each stage.  Estimation of Vሶ O2max was 

then calculated from the ACSM metabolic equation for cycling (Franklin et al. 2000). 

During the test, participants were familiarised with the thermal probe and sensation scales across a 

number of locations. Participants were then invited back to the laboratory on a different occasion to 
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conduct the main trial. For the main trial, pre- and post-test nude weight was recorded. Participants 

self-inserted a rectal probe 10 cm beyond the anal sphincter. Four skin thermistors (Grant Instrument 

Ltd, Cambridge, UK) were attached at the chest, upper arm, thigh and calf using 3MTM TransporeTM 

surgical tape, (3M United Kingdom PLC). Mean skin temperature ( തܶsk) was estimated using the 

following calculations as proposed by Ramanathan (1964): 

തܶ௦௞ 	ൌ ሺ0.3 ∗ ሻݏ݌݁ܿ݅ݎܶ ൅	ሺ0.3 ∗ ሻݐݏ݄݁ܥ ൅ ሺ0.2 ∗ ሻݏ݌݁ܿ݅ݎ݀ܽݑܳ ൅ ሺ0.2 ∗  ሻ݂݈ܽܥ

 

Body temperature (Tb) was estimated using the following calculations of Tc and തܶ௦௞ in an 8:2 ratio 

(Hardy and DuBois, 1938): 

௕ܶ ൌ 0.8 ∗ ௖ܶ ൅ 0.2 ∗ തܶ௦௞ 

Markings were made on the body using a washable pen to indicate each measurement site for the 

application of the thermal probe. The locations of each stimulus application are shown in Figure 1. 

Dressed in shorts, socks and trainers (and sports bra for females) participants sat in a thermoneutral 

environment (22.2 ± 2.2°C, 35.1 ± 5.8% RH) for 15 minutes to allow physiological responses to 

stabilise. During the rest period participants were once again familiarised with the sensation scales 

and allowed to practise rating their sensations to a range of warm stimuli across different regions on 

the body. 

 

After the rest period, thermal sensitivity of each body site along the left hand side of the body to a 

40°C stimulus was investigated in a balanced order. Each stimulus site was subjected to the following: 

the measurement of local Tsk using an infrared thermometer (FLUKE 566 IR THERMOMETER, 

Fluke Corporation, Eindhoven, Netherlands), immediately followed by probe application for 10 

seconds. The temperature controlled thermal probe was similar to that described by Fowler et al. 

(1987) and Ouzzahra et al. (2012). The thermal probe (NTE-2, Physitemp Instruments, Inc, USA) 

consisted of a 25 cm2 metal surface that was controlled at 40°C. The probe was applied to the skin by 

the same investigator to ensure consistent pressure was applied to each location and individual. The 

pen markings served as reference points for each location. Participants rated their thermal sensation 

after 10 seconds to indicate a steady state response; removing the effect of initial Tsk has on the 

transient response (Ouzzahra et al. 2012). The thermal sensation scale was similar to that used by 

Ouzzahra et al. (2012) with 0 indicating ‘no hot sensation’ and 10 indicating ‘extremely hot’ with 

intermediary numbers. This scale was an adapted version of a scale for noxious heat stimulation 

(Casey and Morrow, 1984). From pilot testing, the stimulus site Tsk  was found to be similar to probe 

temperature after the 10 second application and thus the sensation reported indicated steady state 

magnitude sensation. For magnitude sensation, the higher the number reported the higher the 

sensitivity. 
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Following the rest period, participants began cycling for 20 minutes at 50% ሶܸ ܱ2max; after which the 

exercise intensity was lowered to 30% ሶܸ ܱ2max to ensure participants could maintain a high level of 

concentration on the thermal ratings whilst still exercising and to maintain an elevated but stable 

physiological state. The test was then repeated in the same order as the rest condition. Any sweat 

produced due to exercise was briefly wiped away before the probe was applied. During lower limb 

assessments, participants ceased exercise whilst the probe was applied and continued thereafter. 

Data analysis 

Statistical analysis was conducted using Statistical Package (SPSS) version 18.0. Differences in 

thermal sensation during rest and exercise across different body regions were analysed using three-

way ANOVA with gender as a between subject factor and location (n=31) and activity (rest and 

exercise) as repeated measures with post-hoc comparisons. The large number of locations increases 

the risk of inflating type I errors when doing multiple post-hoc zone comparisons therefore Bonferroni 

corrections were applied to adjust for this. However applying a conservative correction factor such as 

Bonferroni decreases the limit P value for significance to <0.002 and lower still for gender 

comparisons. This in turn would drastically increase the risk of a type II error. Therefore data 

corrected and uncorrected for multiple comparisons are presented to provide the reader insight in this 

issue (Havenith et al 2008). Unless otherwise stated, all measurements are expressed as means with 

standard deviations (± S.D) and significance is defined as p<0.05. 

Results 

Participant characteristics are displayed in Table 1. Independent samples t-tests revealed that males in 

comparison to females were significantly taller (180 ± 8.9cm vs 167 ± 5.7cm,  p<0.05, respectively),  

heavier (78.1 ± 15.6 kg vs 62.9 ± 5.5kg, p<0.05, respectively)  and as such had a significantly larger 

body surface area (55.8 ± 6.5 m2 vs 48.1 ± 2.8 m2, p<0.05, respectively). The %BF was within the 

normal range for the respective genders, with females having a significantly higher %BF than males. 

Fitness and age were not significantly different between genders.  

Mean Tc, Tb and തܶsk of each condition are presented in Table 2. Tc, Tb and തܶsk did not significantly 

increase with exercise. There were no significant differences observed between genders. Mean gross 

sweat loss was 282.2 ± 135.2g for the males and 253.4 ± 277.6 g for the females and they were not 

significantly different.  

  

Gender differences in regional thermal sensitivity 

Female and male magnitude thermal sensations are illustrated in Figure 2 and 3, respectively. A 

significant overall effect of gender was observed for sensations magnitude as females provided a 
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warmer sensation score than males (4.7 ± 1.8 vs 3.6 ± 2.2, p<0.05, respectively). A significant overall 

effect of location was observed (p<0.05) and a significant interaction between gender and location 

(p<0.05). Due to the large number of comparisons, the data was checked with and without Bonferroni 

corrections. No locations were found significantly different with Bonferroni corrections due to the 

extreme correction applied due to the large number of regions (n=31) and limited number of 

participants. However, without corrections, the results revealed that all locations were sensed as 

significantly warmer for females than males (p<0.05). The regional differences are similar between 

genders, with the head and torso reported to be warmer (more sensitive) than the extremities.  

When the effect of location was analysed for males and females separately, the results indicated no 

significant overall effect of location (p=0.4) for males but a significant overall effect for females 

(p<0.05). Female pairwise comparisons are highlighted in Table 3. For females, there was little 

variation in sensitivity between zones of the head region; the cheek however was the only location in 

the head region to decline during exercise. All regions of the head scored a significantly warmer 

thermal sensation than areas within the legs (p<0.05, without Bonferroni corrections). Overall the 

torso (posterior and anterior) rates a warmer thermal sensation than the extremities. Overall, no 

significant differences were observed within the anterior torso or within the posterior torso. The 

lateral aspect of the anterior torso had higher values than medial parts but this was not mirrored on the 

posterior torso. The extremities scored lower sensations than most locations of the head and torso 

region. At the arms the posterior aspects scored a warmer thermal sensation than the anterior, whilst 

the opposite is true of the legs. At the legs, sensation decreases proximal-distal as the upper legs 

generally scored a warmer thermal sensation than the lower legs. The lower legs scored a significantly 

lower thermal sensation than most locations across the body (p<0.05).  

The influence of exercise on thermal sensitivity 

A significant overall effect of activity was found as thermal sensation was warmer during rest than 

exercise (4.4 ± 2.1 and 3.9 ± 2.0, respectively, p<0.05). The differences between rest and exercise for 

each location and the significant differences are displayed in Table 4; the larger the number the bigger 

the difference between rest and exercise. Negative numbers in Table 4 indicate where sensitivity 

increased with exercise, though none of these are significant (p>0.05). The males had the largest 

differences between rest and exercise and thus more significant differences (15 of 31) than the 

females (6 out of 31). In both groups, the largest differences between rest and exercise were at the 

lower legs (p<0.05). Regional differences that were observed in the females at the torso region tended 

to diminish with exercise.  

Discussion 
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Three main findings can be drawn from this investigation; firstly, females had a stronger thermal 

warmth sensation (i.e. more sensitive) than males to a warm stimulus (40°C). Secondly, regional 

variations in thermal sensation exist for both genders, but are more prominent for females. Thirdly, 

exercise caused a reduction in thermal warmth sensation to a hot thermal stimulus in males but only at 

select locations for females. These findings will be discussed in detail below. 

Gender differences  

Gender differences in thermoregulatory responses exist, particularly in response to heat stress 

(Cunningham et al. 1978; Davies 1979; Havenith 1997; Havenith 2001a:b; Havenith et al. 2008; 

Smith and Havenith 2012) but thermal sensitivity research is generally limited to male participants 

(Arens et al. 2005; Cotter and Taylor, 2005; Nakamura et al. 2008; Ouzzahra et al. 2012). The present 

study compared male and female thermal sensation to a 40°C stimulus and overall (mean of rest and 

exercise), females scored a significantly warmer thermal sensation than males (4.7 ± 1.8 vs 3.6 ± 2.2, 

p<0.05, respectively). According to post hoc analysis, females were significantly more sensitive than 

males at all locations across the body (p<0.05, Figure 2 and Figure 3). The findings add to the current 

body of literature surrounding the general concept of perception to a variety of stimuli between 

genders. Previous research has found females to be significantly more sensitive than males to heat 

using the method of limits (Golja et al. 2003; Lautenbacher and Strain, 1991; Kenshalo, 1986) and this 

study adds to the literature to confirm gender differences to heat using magnitude estimation. It has 

been suggested that body measures may correlate with the density of receptive units in the skin and 

thereby the number of stimulated afferent nerve fibres (Lautenbacher and Strain, 1991). Females had a 

significantly lower body surface area compared to males (1.3 ± 0.1 m2 vs 1.6 ±0.2 m2 , p<0.05, 

respectively) speculatively given a higher sensor density. However as the actual density and 

distribution of thermoreceptors on individuals of different sizes have not been directly measured in 

this study or that of Lautenbacher and Strain (1991), there is no supporting evidence for this 

hypothesis.   

Across all conditions, Tc, Tb or Tsk did not significantly differ between genders or significantly 

increase due to exercise. Therefore the gender differences observed between males and females cannot 

be due to differences in the thermal state of the body.  Paulson et al. (1998) also noted gender 

differences to 5 seconds of noxious (50°C) and innocuous (40°C) thermal stimuli. They claimed that 

these differences were indicative of different neural mechanisms that mediate thermal sensitivity 

between genders.  Upon noxious heat stimulation (50°C) females had a greater perception of pain than 

males which was also detected in a greater activation in the contralateral thalamus and interior insula 

(Paulson et al. 1998). Although not statistically significant they also found a similar trend for 

innocuous stimuli (40°C). Reasons as to why females are more sensitive to noxious and innocuous 

stimuli as indicated by perceptual responses and neural mechanisms still remains unclear but we 
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hypothesise that it is associated with behavioural thermoregulation. According to Inoue et al. (2005) 

females produce less sweat than males and rely upon convective heat loss more than evaporative heat 

loss. Therefore, it would be beneficial for females to be more sensitive to a heat stimulus than males in 

order to encourage behavioural responses to maintain thermal balance. With this in mind, these 

findings offer considerable evidence to support more gender specific testing in the areas of thermal 

sensitivity and behavioural thermoregulation. A large amount of research exists utilising male 

participants and often this data is applied to both genders, but data from the present study provides 

evidence to suggest that this is not appropriate.  

Thermal pain sensitivity differences have consistently been found between males and females, which 

typically involves stimulating the noxious thermal pain receptors; TRPV1 (>42°C) (Filingim et al. 

1998; Lautenbacher and Strain, 1991; Paulson et al. 1998).  The stimulus used in the present study 

(40°C) was specifically chosen not to stimulate the TRPV1 family but rather TRPV3, which responds 

to temperatures >33°C. The findings of this study add to the growing body of literature that gender 

differences in thermal sensitivity not only occur in noxious stimulation (as shown by others; Filingim 

et al. 1998; Lautenbacher and Strain, 1991; Paulson et al. 1998) but also in innocuous stimuli as 

presented in this paper. But the reason for those gender differences requires further investigation. It is 

possible that a higher sensitivity to innocuous heat may act as a preventive measure against an 

increased heat load.  

Regional differences 

Regional variation in thermal sensitivity is evident (see Figure 2 and 3) and generally the pattern is 

similar between genders, but the analysis indicated a significant overall effect of location for females 

only (p<0.05). As far as we are aware this is the first study to report findings that females only 

demonstrated regional differences in thermal sensitivity, though this could also reflect a smaller 

difference in males and a limited statistical power of this sample size. At each location thermal 

sensation was always significantly higher for females than males (p<0.05). The following section on 

regional differences will focus upon female sensitivity, unless stated otherwise.  

In agreement with the literature, the pattern over the body indicated a higher sensitivity at the head 

and the torso and the lowest at the extremities. For females the areas around the head were 

significantly more sensitive than a large number of other locations, but particularly those areas within 

the leg region (p<0.05). The head has consistently been defined as a sensitive area due to the large 

number of thermoreceptors and the importance of keeping the brain within a thermo-prescriptive zone 

(Cabanac, 1993; Nadel et al. 1973; Strughold and Porz, 1931, cited in Parsons, 2003 p59; Nagasaka et 

al. 1998). The torso also contains vital organs and research has shown this to be an area less sensitive 

than the face but more sensitive than the extremities for various other parameters than studied here 

(Arens et al. 2005; Cotter and Taylor, 2005; Havenith et al. 2008; Nadel et al. 1973; Nakamura et al. 
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2008; Smith and Havenith 2012; Stevens et al. 1974). The findings from the present study are in 

agreement with the literature as areas within the front torso were significantly more sensitive than 

areas within the leg region (p<0.05).  Both genders were more sensitive on the lateral aspects of the 

front torso compared to their respective medial parts (excluding the chest for females). Using the same 

methods but a cold stimulus (20°C), Ouzzahra et al. (2012) found the lateral aspects of the torso to be 

more sensitive than the medial aspects. The lateral sites of the front torso can be particularly sensitive 

to touch and often described as ticklish areas. As the probe makes contact with the skin, it stimulates 

both thermoreceptors and mechanoreceptors simultaneously. The possibility of a ‘dual’ neural 

stimulus between mechanoreceptors and thermoreceptors of any region cannot be excluded, 

particularly in areas such as the lateral torso which may be more sensitive to touch.  

A reduction in the distribution of thermoreceptors towards the extremities (Lee and Tamura, 1995; 

Strughold and Porz, 1931, cited in Parsons, 2003, pg59) will account for the sensitivity differences 

between the extremities and the torso and head. For the females the upper legs are more sensitive than 

the lower legs suggesting that sensitivity is in the order of proximal-distal, which is also supported by 

the head being more sensitive than the torso and the torso more sensitive than the extremities.  During 

exercise, the opposite is true of the arms and hands as sensitivity increases from the hands towards the 

upper arm. Literature suggests that the hand is densely packed with various types of receptors yet only 

the females demonstrated a high sensitivity in this area compared to other locations across the body 

(Jasper and Penfield, 1954; Strughold and Porz, 1931; Rein, 1935, both cited in Parsons, 2003, p.59).  

Although using ‘method of limits’ Lautenbacher and Strian (1991) also found that females were more 

sensitive to a warm stimulus than males at the hand.  

Rest and exercise 

Exercise itself has been reported to cause a reduction in perception to a variety of stimuli, particularly 

tactile and pain sensitivity (Guieu et al. 1992; Kemppainen et al. 1986; Kemppainen et al. 1985; 

Pertovaara et al. 1984; Paalasmaa et al. 1991). This effect is referred to as EIA (exercise induced 

analgesia) in which neural and hormonal changes occur as a result of exercise (Koltyn, 2000). 

Ouzzahra et al. (2012) found that during exercise, thermal sensation to a cold stimulus decreased in 

comparison to at rest, which they associated with EIA.  However, in their study, Tc significantly 

increased from rest to exercise, which may have accounted for some of the changes in sensitivity 

between the two conditions. In the present study, Tc did not significantly increase from rest to exercise 

for males (no change) or females (+0.2°C, p>0.05), yet thermal sensation was significantly cooler 

during exercise compared to rest (4.4 ± 2.1 and 3.9 ± 2.0, p<0.05). Therefore the reduction in thermal 

sensation could be a result of EIA. It has been reported that exercise induced stress hormones might 

play a key role in the reduction of somatic sensitivity by dynamic exercise (Janal et al. 1984; 

Kemppainen et al., 1985; Pertovaara et al., 1984). Circulating hormones were not monitored in the 



 

12 
 

present study or by Ouzzahra et al. (2012) and future research is required see if they are accountable 

for a reduced sensitivity and determine any gender differences.  

The majority of research associated with EIA has been associated with noxious stimulation. The 

current study adds to this body of literature as the stimulus was set purposefully so not to stimulate 

noxious heat >42°C, but close to the upper limits of innocuous heat (40°C). This suggests that EIA is 

not limited to pain sensitivity but also affects innocuous thermal sensitivity. Table 4 shows the 

locations across the body that had significant changes in sensitivity from rest to exercise; the larger the 

number the bigger the difference between rest and exercise. The males displayed the greatest 

difference between rest and exercise and the differences were significantly greater than females (0.86 

± 0.31 vs 0.31 ± 0.56, respectively, p<0.05). Despite different methodologies (magnitude vs. method 

of limits), the forehead has frequently been reported as a thermosensitive area (Cotter and Taylor, 

2005; Nadel et al. 1973; Stevens et al. 1974), which was also found using magnitude estimation in the 

present study. Interestingly though the results in Table 4 suggests that the sensitivity of the forehead is 

reduced with exercise so that it becomes similar to other sites within the facial area. Areas which 

displayed no significant differences between rest and exercise generally have a low sensitivity in 

comparison to other sites, suggesting that EIA is site specific or a given level of sensitivity is required 

for EIA to have an effect.  

Applications 

The application of these findings is important for the design of clothing, in particular sports clothing 

and protective clothing.  The data can enhance the valuation of such clothing using thermal manikins, 

modelling of human thermophysiological responses, and climate control in cars or buildings in an 

attempt to avoid skin temperature fluctuations in areas sensitive to heat. It is now evident that previous 

research based on male participants regarding thermal sensitivity cannot be directly applied to both 

genders. Future research should consider gender specific testing in the areas of thermal sensitivity and 

behavioural thermoregulation. 

Limitations 

It is important to note that the duration of the stimulus was 10sec to achieve steady state scores and 

the surface area stimulated was the same across all locations (25 cm2); it is possible that a stimulation 

of varying durations and of different surfaces areas may results in different regional sensations 

reported by individuals. In addition the experiment was conducted under thermoneutral conditions 

(22.2 ± 2.2°C, 35.1 ± 5.8% RH) and responses may varying in hot and cold conditions as previously 

shown by Nakamura et al. (2008). Therefore the results discussed above are limited to the realms of 

this study. 
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Conclusions 

The findings from the present study confirm that females are more sensitive (i.e. reported warmer 

thermal sensation) to innocuous heat (40°C) stimulation than males. In addition, females display more 

regional differences in thermal sensitivity than males, with the head being the most sensitive, followed 

by the torso and then the extremities. These finding are consistent with previous literature in the area. 

In addition, exercise causes a reduction in warmth sensation to a hot stimulus in males and females but 

this is only observed at select locations in females.  In addition to this, thermosensitivity data based 

upon male participants should not be directly applied to the female population. 
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Table 1: Male (n=12) and female (n=12) characteristics (mean ± SD). * Indicates significant 

difference between genders (p<0.05). 

 

Age 

(years) 
Mass (kg) 

Height 

(cm) 
BSA (m2) 

ሶܸO2max 

(ml·kg-1·min-1) 
%BF 

Males 20.6 ± 1.0 78.1 ± 15.6* 180 ± 8.9* 1.6 ± 0.1* 34.3 ± 5.2 15.0 ± 6.1* 

Females 20.6 ± 1.4 62.9 ± 5.5 167 ± 5.7 1.3 ± 0.1 36.5 ± 6.6 22.0 ± 4.2 

Mean 

 (± SD) 20.6 ± 1.2 70.5 ±13.8 174 ± 10.2 1.4 ± 0.2 34.4 ± 5.8 18.5 ± 6.2 
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Table 2: Mean Tc, Tb and ࢀഥsk (± SD) at rest and during exercise (inclusively) for males (n=12) and 

females (n=12). No significant differences found. 

 Males Females 

 Rest Exercise Rest Exercise 

Tc (°C) 37.4 ± 0.3 37.4 ± 0.5 37.6 ± 0.2 37.8 ± 0.2 

Tb  (°C) 36.0 ± 0.3 36.1 ± 0.5 36.1 ± 0.2 36.2 ± 0.2 

തܶsk  (°C) 30.2 ± 0.7 30.5 ± 0.9 30.0 ± 0.2 30.2 ± 0.9 
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Table 3: The numbers correspond to the locations indicated in Figure 1 and the table shows the statistical findings from the pairwise 

comparisons of the females data (+ p<0.1, # p<0.05, † p<0.001, without Bonferroni corrections). No significant differences with Bonferroni 

correction. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

2 
 3 

4 # # #
5 + 
6 
7 
8 + + # # 
9 #
10 #
11 +
12        
13        
14 # # #      
15      +  
16 +       
17   #   # # # # # + +  
18      + #  
19   +  + + # +  
20       #  
21   +    # #  
22      #  
23      + +  
24 # # # +
25 + + +      +  
26   +  +  # # # +  +  
27      # #   
28      # #   
29 +       +  
30 + + #     + # + # # # # + # # 
31     # # +   
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Table 4: The differences in thermal sensation between rest and exercise for each location in females 

(first column) and males (second column). *p<0.05 (without Bonferroni corrections). No significant 

differences with Bonferroni correction. 

Location 
∆ thermal sensation 

(rest-exercise) 

 Females Males 

Forehead -0.6 ±1.4 0.9 ± 0.9* 

Cheek 1.0 ± 1.6 0.7 ± 0.7* 

Anterior neck 0.0 ± 1.5 0.4 ± 1.4 

Posterior neck -0.3 ± 1.7 1.2 ± 1.1* 

Medial chest 0.4 ± 1.3 0.7 ± 1.2 

Lateral chest 0.3 ± 1.4 0.3 ± 1.3 

Medial torso 0.3 ± 1.4 0.9 ± 1.6 

Lateral torso  0.8 ± 1.1* 0.7 ± 1.2* 

Medial abdomen 1.2 ± 1.4* 1.1 ± 1.9 

Lat abdomen 0.4 ± 1.5 1.2 ± 1.3* 

Midaxillary -0.1 ± 0.9 1.4 ± 2.2* 

Suprailiac 0.9 ± 1.1* 0.5± 2.2 

Upper medial back 0.0 ± 1.5 1.4 ±1.9* 

Scapula 0.4 ± 1.4 0.8 ± 1.3 

Middle medial back 1.2 ± 1.7* 1.4 ± 1.2* 

Middle lateral back 0.7 ± 1.4 0.8 ± 1.1 

Lower medial back 0.5 ± 1.2 0.3 ± 1.3 
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 Lower lateral back 0.2 ± 1.6 1.0 ± 1.1* 

Biceps 0.1 ± 1.5 1.0 ± 2.0 

Triceps 0.3 ± 1.5 0.9 ± 1.0* 

Anterior forearm 0.3 ± 1.5 0.7 ± 1.6 

Posterior forearm 0.4 ± 0.5* 0.3 ± 1.6 

Palm -1.0 ± 1.9 0.8 ± 1.5 

Back of hand -0.7 ± 1.4 0.7 ± 0.8* 

Quadriceps 0.4 ± 1.6 0.3 ± 1.3  

Front knee -0.4 ± 1.4 1.2 ± 1.7* 

Lateral gastrocnemius -0.1 ± 1.0 0.6 ± 1.7 

Hamstring 0.5 ± 1.2 1.0 ± 1.4* 

Posterior knee 0.1 ± 1.3 0.9 ± 1.7 

Post. gastrocnemius 0.9 ± 1.2* 1.2 1.6* 

Medial gastrocnemius 1.4 ± 1.6* 1.5 ± 1.6* 

Mean 0.31 ± 1.5 0.86 ±0.1.4* 
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Figure 1: Number, name and location of the 31 body sites investigated for thermal 

sensitivity. Location number 10 and 11 are donated on the figure by symbols * and #, 

respectively.  
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Figure 2: Male (♂) and female (♀) regional magnitude sensation to a warm stimulus (40°C) during 

rest. All female locations were significantly warmer than males (p<0.05). All measurements were 

taken from the left hand side of the body but for presentation symmetry was assumed (Claus et al. 

1987; Meh and Deništič, 1994). Areas in grey were not investigated.  A value of 0 indicated ‘no hot 

sensation’ and 10 indicated ‘extremely hot’ with intermediary numbers 
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Figure 3: Male (♂) and female (♀) regional magnitude sensation to a warm stimulus (40°C) during 

exercise. All female locations were significantly warmer than males (p<0.05). All measurements were 

taken from the left hand side of the body but for presentation symmetry was assumed (Claus et al. 

1987; Meh and Deništič, 1994). Areas in grey were not investigated.  A value of 0 indicated ‘no hot 

sensation’ and 10 indicated ‘extremely hot’ with intermediary numbers 

 


