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Abstract   Mesh-based techniques are well studied and established methods for 

solving continuum biomechanics problems. When the problem at hand involves 

extreme deformations or artificial discontinuities, meshless methods provide sev-

eral advantages over the mesh-based methods. This work discusses the Moving 

Least Square approximation-based meshless collocation method for simulating de-

formable objects and presents a verification technique that is based on the 

Hertzian theory of non-adhesive elastic contact. The effectiveness of the Hertzian 

contact theory as a means for verification was first tested and proven through a 

well-established FEM code, FEBio. The meshless method was implemented as a 

reusable component for the SOFA framework, an open source software library for 

real-time simulations. Through experimentation, the Hertzian theory has been 

tested against SOFA hexahedral FEM and the meshless models within the SOFA 

framework. Convergence studies and L2 error curves are provided for both mod-

els. Experimental results demonstrated the effectiveness of the implementation of 

the meshless method. 

1 Introduction 

Soft tissue models have a wide range of application areas with particular focus 

on real-time medical simulations. As a result, accurate interactive modeling of soft 

tissue is an important and well-established research field in continuum biomechan-

ics studies. 

A continuum model typically relies on an underlying mesh structure either in 

2D or 3D depending on the nature and the requirements of the problem. A 

breadth-first classification of mesh-based continuum models includes mass-spring 

networks [1], Finite Element Methods [2], Finite Volume Methods [3], and Finite 

Difference Methods [4]. 

Originally developed for molecular dynamics problems and astrophysical simu-

lations, meshless (mesh-free) methods offer an appealing alternative to mesh-

based methods when the problem involves large deformations and imposed dis-
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continuities such as cracks and cuts. In this work, the meshless method is imple-

mented as a component under the open-source SOFA library, which focuses on 

real-time interactive simulations with an emphasis on medical simulations. In con-

junction with the interactive simulation requirement, we assume the linear proper-

ty of the soft tissue model within a specific range of the strain-stress curve. This 

assumption is parallel with the small strain and linear material assumptions of the 

Hertzian contact theory. 

There have been numerous approaches to modeling mechanics of soft tissues. 

Among those is the early work of Sederberg and Parry [5] that presented a tech-

nique for deforming solid geometric models in an intuitive free-form manner. The 

deformations were based on interpolating trivariate Bernstein polynomials, and 

could be applied either globally or locally with volume preservation. Free-form 

deformation is an approximate and simple method for deforming solid objects; 

however the lack of physical basis is grounds for excluding it as an option for real-

istic medical simulations. The work of Frisken-Gibson [6] modified the traditional 

voxel based representation of volumetric objects and presented a linked volume 

representation that was capable of handling interactive object manipulations such 

as carving, cutting, tearing, and joining, but still unable to produce physically real-

istic results. An alternative to volumetric methods is to use mass-spring models [7] 

and membrane based approximations that utilize spring meshes [8]. A spring mesh 

is composed of vertices and edges, in which each edge is realized as a spring that 

connects vertices pair-wise, and each vertex is idealized as a point mass. Although 

spring meshes employ physical equations like Hooke’s law, it is difficult to repro-

duce specific elastic material properties even with very careful distribution of 

spring stiffness through the mesh and suffer from poor numerical stability. 

The early work of Bro-Nielsen discussed a fast adaptation of finite element 

modeling to satisfy speed and robustness requirements in a surgical simulation set-

ting [9]. In this work, the body part was modeled as a 3D linear elastic solid that 

consisted of particles, which were deformed into a new shape when forces were 

applied to the elastic solid. The author incorporated a technique called condensa-

tion in order to achieve interactive simulation. In the finite element modeling con-

text, condensation translates into obtaining a more compact version of the system 

model by rearranging the terms of the matrix equations. In this work, the author 

condensed the equations by only considering the finite element nodes on the sur-

face of the model.  

A number of recent techniques have addressed the fidelity versus efficiency 

trade-off. Another important work in the area is the finite element model based on 

Total Lagrangian Explicit Dynamics (TLED) by Miller et al. [10]. The difference 

between the TLED based finite element model and other approaches is using the 

original reference configuration of the object to calculate the stress and strain ten-

sors during a simulation step. As a result of expressing computations in the refer-

ence coordinates, the authors were able to pre-compute spatial derivatives. The 

pre-computation of the spatial derivatives leads to efficiency in terms of computa-

tional resources, while being capable of handling geometric and material non-
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linearities. In their work, the authors employed the central difference based explic-

it integration rather than the implicit integration scheme. With this choice, they 

were able to avoid solving the set of non-linear algebraic equations that are re-

quired by the implicit integration at each time step. However, the use of explicit 

integration brings limitation on the time step size. The authors justified their im-

plementation choice by stating that the relatively lower stiffness (Young’s modu-

lus) value of the soft tissue relaxes the time step limitation considerably compared 

to the typical simulations involving more stiff material like steel or concrete. 

Another attempt to increase the computational efficiency of the elastic model in 

the context of interactive simulation was discussed in the work of Marchesseau et 

al. [11]. The authors presented a new discretization method called Multiplicative 

Jacobian Energy Decomposition (MJED), which allows the simulation to assem-

ble the stiffness matrix of the system faster than the traditional Galerkin FEM 

formulation. The authors reported up to five times faster computations for the St. 

Venant Kirchoff materials. For validation purposes, the authors compared the 

MJED approach to the traditional FEM implementation in the SOFA framework 

[12], referred to as the standard FEM implementation. 

FEM techniques have dominated the field of computational mechanics in the 

past several decades. They have been widely used for modeling physical phenom-

ena such as elasticity, heat transfer, and electromagnetism and they heavily rely on 

the assumption of a continuous domain. When the problem domain no longer 

complies with this continuum assumption, the rationale behind using an FEM 

based solution disappears. FEM is also not well suited to problems involving ex-

treme mesh distortions that result in degenerate element shapes, moving disconti-

nuities that do not align with the element edges such as propagating cracks, and 

advanced material transformations such as melting of a solid or freezing. To ad-

dress these issues, significant interest has been developed towards a different class 

of methods for solving PDEs, namely meshless or mesh-free methods [13, 14]. 

The very first meshless method dated back to 1977 [15] and proposed a smoothed 

particle hydrodynamics (SPH) method that was used to model theoretical astro-

physical phenomena such as galaxy formation, star formation, stellar collisions, 

and dust clouds. Its meshless Lagrangian nature allowed diverse usage areas be-

sides astrophysics such as fluid flow, ballistics, volcanology, and oceanography 

[16]. 

Although the SPH method eliminates the necessity of a mesh structure and al-

lows the solution of unbounded problems, it also has its limitations. Because of its 

simplistic kernel based approximation scheme, it fails to reproduce even first order 

polynomials, resulting in severe consistency problems [13]. To alleviate this prob-

lem, methods that utilize moving least squares (MLS) approximations have been 

developed. The first work that used MLS approximations in a Galerkin method is 

the work of Nayroles et al. [17], which was refined by Belytschko et al. [18] and 

named Element-Free Galerkin (EFG) method. This class of methods, different 

from the SPH method, use shape functions in approximations that are essentially 

corrected versions of compact supported weight functions. The shape functions 
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are obtained by first representing the approximation as a product of a polynomial 

basis and a vector of unknown coefficients. Then, a functional is created by taking 

the weighted sum of square of the approximation error. By taking the derivative of 

this functional with respect to the unknown coefficients and setting it to zero for 

minimizing the approximation error, we obtain a set of equations that are reor-

ganized to solve for the MLS shape functions. The order of consistency of the 

MLS approximation scheme depends on the order and completeness of the used 

basis function. If the basis function used in the approximation is a complete poly-

nomial of order k, then the MLS approximation is said to be k
th

 order consistent. 

This fact makes the MLS based approximations more consistent than the SPH 

method. 

Another technique that has used the MLS approximation is the work of Mueller 

et al. [19] and forms the basis of the meshless method discussed in this paper. In 

this work, the authors calculated the spatial derivatives of the deformation gradient 

only at the particle locations similar to the meshless collocation methods. This 

technique is capable of simulating a wide range of material properties from very 

stiff materials to soft ones and also handles plastic deformations as well. 

Horton et al. [20] proposed a new kind of meshless method named meshless to-

tal Lagrangian explicit dynamics method. In this work, the authors extended their 

previous TLED algorithm [10] to the meshless discretization methodology by 

precomputing the strain-displacement matrices. Their method is a fully explicit 

method, meaning not requiring implicit time integration and costly solution of 

large system of equations. Different than our nodal integration approach, their 

proposed algorithm integrates over a regular background grid with single integra-

tion point per cell. 

In this work, we present the details of the MLS approximation-based meshless 

collocation method for soft-tissue deformation. Specific contributions are SOFA 

implementation of the presented meshless method, a new verification technique 

with the Hertzian non-adhesive contact theory, and verification of the algorithm 

with well-established FEM code and our SOFA component that implements the 

presented meshless method. 

The rest of the paper is organized as follows. Section 2 describes the details of 

the meshless elasticity algorithm, including node distribution, construction of sup-

port domains, used weight function, and calculation of nodal simulation values 

such as mass, volume, and density. Operations involved in the MLS approxima-

tion of the deformation gradient are discussed, followed by the internal elastic 

force calculation procedure. Section 3 describes the implementation details of the 

presented meshless method in SOFA and presents the verification techniques for 

the elasticity model along with the virtual experiment setup and the results. Sec-

tion 4 concludes the paper and discusses possible future extensions to the present-

ed work. 
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2 Algorithm 

2.1 Discretization of the Continuum 

Node distribution is the first step in the presented meshless collocation algo-

rithm, which supports both regular and hierarchical distribution of the nodes 

through the simulation domain. In the case of a simulation domain with a regular 

geometric shape, regular distribution of the nodes is the natural choice. On the 

other hand, if the simulation domain has a complex geometry, the regular distribu-

tion simply becomes inapplicable. In this case, we sample the volumetric simula-

tion domain bounded by the complex boundary surface by hierarchically sampling 

the volume. In the work of Pauly et al.[21], the authors used a balanced octree data 

structure to distribute the nodes inside the volume. In this work, we first 

tetrahedralize the simulation domain with well-established computational geome-

try libraries like TetGen [22] and CGAL [23] and then use the set of vertices of 

the tetrahedra as the meshless node locations. In this way, similar to graded finite 

element meshing techniques, we can have higher node density close to the domain 

boundary and fewer nodes towards the interior of the volume where the material is 

continuous. 

Meshless methods represent a deformable body by a cloud of particles with 

overlapping support domains. Quantities such as mass, volume, support size, 

strain, and stress are stored and updated per particle for the duration of the simula-

tion. In this work, the support domains of the particles are spherical and their radii 

are computed by finding the average distance of the central node to its k-nearest 

neighbors. For efficient neighborhood search purposes, a k-d tree data structure is 

used. 

Weight (kernel) function in the meshless method context is an element that de-

scribes the way meshless nodes affect each other and how the material values of 

the continuum such as mass, volume, and density are distributed among the nodes. 

The neighboring particles that fall inside the support domain of a central particle 

are weighted using the polynomial kernel function 
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 , where ix  and jx  are the current locations of the neighbor-

ing and central particles, respectively and ih  is the support radius of the central 

particle i. 

The mass and density of a meshless node are assigned at the beginning and 

kept fixed throughout the simulation. The mass values are initialized with 
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where ρ is the material density value, 
ir  is the average distance of the i

th
 node to 

its k-nearest neighbors, and s  is a scaling factor that is chosen so that the average 

of the assigned densities is close to the actual material density. The assigned mass 

value of a meshless node is spread around the node with the kernel function. 

Therefore the density of a meshless node is calculated after the mass allocation 

step by taking the weighted average of the masses of the neighboring nodes 

 ( )i j ij

j

m w r    (3) 

In this work, spatial integration is performed through the nodal integration 

technique. Compared to other spatial integration techniques that utilize a back-

ground mesh or grid with multiple integration points per region, nodal integration 

is fast and efficient with the added disadvantage of decreased stability. We calcu-

late the spatial derivatives of the deformation gradient only at the particle loca-

tions similar to the meshless collocation methods. 

2.2 Moving Least Square (MLS) Approximation with Taylor Series 

In continuum solid mechanics, the elastic stresses inside a deformable body are 

computed based on the displacement vector field, which is typically defined by a 

deformable model with two configurations named the reference and the current 

configurations, respectively. The coordinates of the particles in the reference and 

current configurations are represented by the material ( , , )X Y ZX  and spatial

( , , z)x yx  coordinates respectively. The displacement vector of a particle is 

therefore defined as  
T

X Y Zu u u  u x X . 

The Green-St.Venant strain tensor is used to measure the strain 

 
T T    u u u u  , (4) 

where the gradient of the continuous displacement vector fieldu  is essentially 

the derivatives of ( , , )x y zu u u  with respect to ( , , )X Y Z  arranged in the Jacobian 

format. For an isotropic linear-elastic material, the strain  is mapped to the stress 

   by the C tensor that approximates the material properties and is composed of 

two independent coefficients, Young’s Modulus and Poisson’s Ratio 

  C  . (5) 

We need the partial derivatives of the displacement vector field in order to 

compute the strain, stress, and the internal elastic forces applied to the meshless 

particles. Moving Least Squares (MLS) approximation is used to compute this 

gradient (u ). 
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For a central meshless particle i and its neighbor j, the value of xu  at the loca-

tion of j can be approximated by the first order Taylor expansion as 

 .( )
j i

X
x x j i

i

u
u u


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
X X

X
 . (6) 

 

The weighted sum of squared differences between the displacement vector and 

its approximation obtained from the equation (6) gives the error measure of the 

MLS approximation 
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The expanded equation of the error measure for a particle i is therefore ob-

tained by 
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We want to minimize this error measure for some values of (∂ux)/∂X, (∂ux)/∂Y, 

and (∂ux)/∂Z, therefore we set the derivative of the error measure e  with respect 

to the partial derivatives of the displacement vector to zero, resulting in three 

equations for three unknowns 
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j
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 X X X X X X

X
. (9) 

The coefficient of the partial derivative on the left-hand side of the equation (9) 

is the 3x3 matrix called the moment matrix (A). A can be inverted and pre-

multiplied with both of the sides of the equation for computing the partial deriva-

tives. 

2.3 Force Calculation 

The elastic body forces that are applied to the individual particles in the 

meshless collocation method are calculated through the strain energy density, 

which is a function of the particle displacements. For a particle i with volume
iv , 

strain i  , and stress i , the strain energy density becomes 

 
1

( )
2

i i i iU v    . (10) 

The elastic force per unit volume at a meshless node’s location is the negative 

directional derivative of the above strain energy density with respect to this node’s 

displacement. The forces applied to the particle i and its neighbors j are then 
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Eq. (11) is iterated over all particles and the total force applied to a particle is 

the sum of all the forces with the same index as that particle. These force compo-

nents are obtained by using the Green-Saint-Venant strain tensor, which measures 

the linear and shear elongation. In case of a volume inverting displacement 

though, this strain becomes zero. In order to introduce restoring body forces in 

cases of volume inversion, Muller et al. [19] added another energy term to the sys-

tem that penalizes deviations from a volume conserving transformation 

 
21

( 1)
2

i v iU k J  . (12) 

In this energy term, 
iJ  is the Jacobian of the displacement vector field map-

ping and 
vk  is the volume restoration constant. Although in our experiments we 

have not worked on cases that cause the inversion of the volume, the effect of this 

term and the volume restoration constant parameter in cases of large deformations 

is yet to be examined. 

For each of the meshless nodes, these force components are accumulated in the 

force vectors and then passed to the SOFA time integration module. The modular 

implementation of the SOFA library allows the use of different time integration 

schemes without changing the actual implementation of the algorithm. In this 

work, we used the 4
th

 order Runge-Kutta integration scheme.  

3 Implementation and Verification Techniques 

In modeling and simulation studies, verification and validation of the model is 

a crucial step. For interactive simulations with a focus on training in particular, it 

is important to validate the behavior of the deformable body in order to prevent 

false learning outcomes. Specifically, realistic contact representation and force 

feedback are significant features for ensuring the validity of physically based sim-

ulators. 

3.1 Meshless Method Implementation in SOFA 

SOFA [12] is an open-source object-oriented software library that is targeted 

towards interactive medical simulations. SOFA has a modular structure that al-

lows users to quickly prototype simulation scenes with ready-to-use components. 

Its object-oriented, modular architecture makes it easy for developers to extend the 
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functionalities of the library by deriving new components from the existing ones. 

The meshless elastic model described in this work has been implemented as a 

force field component, which is easily interchangeable with the existing force field 

components such as hexahedral finite elements or mass-spring networks. The re-

quired component interfaces such as initialization and force accumulation were 

implemented according to the algorithm steps described in the previous section. 

Due to the nature of the presented verification method, accurate contact han-

dling is essential to obtain precise results. Unfortunately, because of the approxi-

mating nature of the meshless methods, imposing Dirichlet boundary conditions is 

a challenging task on its own [24]. In this work, we have followed the approaches 

that were originally adopted in the SOFA library. In SOFA, constraints are filter 

like components, which cancel out the forces and displacements applied to their 

associated particles. For example for fixed node boundary conditions, SOFA's 

fixed constraint component is used to attach a meshless particle to a fixed point in 

the current configuration. 

SOFA has support for several contact handling methods such as penalty-based 

and constraint-based methods. Among these, the constraint-based methods are 

more appealing than the former class of methods because they use Lagrange mul-

tipliers to handle complex constraints and produce physically accurate results with 

the additional computation cost. Lagrange multipliers with unilateral interaction 

laws are used to handle complex constraints. The constraints depend on the rela-

tive positions of the interacting objects, which are the meshless particles and the 

spherical rigid indenter in our case [12]. 

3.2 Contact Mechanics Theory 

Hertzian theory of non-adhesive elastic contact [25] defines analytical solutions 

for the interaction of elastic half-spaces with simple shapes in terms of applied 

force and object indentation. For example, the amount of indentation of an elastic 

half-space under a spherical load is given by 

 
* 3 24

3
F E Rd ,  (13) 

where F is the vertical force applied on the spherical load, R is the radius of the 

spherical load, d is the indentation amount, and
*E is the combined Young’s 

modulus of the two materials and calculated using the Young’s moduli ( 1 2,E E ) 

and Poisson’s ratios ( 1 2,v v ) of the two materials as 
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The Hertzian theory assumes 1) small strains within the elastic material, 2) 

much smaller area of contact compared to the areas of the objects in contact, and 

3) continuous and frictionless contact surfaces. 

The Hertzian theory is an important stepping stone in the field of contact me-

chanics; therefore there have been numerous finite element analysis studies about 

the subject that use both research and commercial finite element code [26-29]. 

3.3 Verification Experiments 

In order to verify the usability of the Hertzian contact theory as a means of ver-

ification of soft-tissue deformation, we first conducted experiments using well-

established finite element code. FEBio is an open-source software suite that is 

primarily targeted towards biomechanics and biophysics problems with a specific 

focus on nonlinear large deformation problems in biosolid mechanics [30]. FEBio 

provides several models and options to represent the non-adhesive Hertzian con-

tact theory. In our experiments, we selected the facet-to-facet sliding algorithm 

that is based on Laursen’s contact formulation [31]. In this algorithm, the contact 

constraints are enforced through Lagrange multipliers. 

The FEBio experiment was setup by defining the fixed-position boundary con-

ditions of the deformable block at its bottom and side faces, facet-to-facet sliding 

contact between the top face of the deformable block and the rigid spherical in-

denter, and the sphere’s indentation amount. The simulation was run for 10 time 

steps of 0.1s each and the simulation runtime took over 4 minutes. The node at the 

middle of the top of the deformable block was tracked for the vertical displace-

ment and the vertical component of the contact force. We compared the obtained 

load-displacement curve to the theoretical solution, which were in very good 

agreement (Figure 1), therefore verifying the usefulness of the Hertzian contact 

theory as a verification method. 

 
Figure 1 Comparison of the FEBio FEM Code and the theoretical solution of 

the Hertzian non-adhesive frictionless contact theory. 
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The contact mechanics experiment was setup as a SOFA scene. In order to as-

sess the ground-truth performance of the contact handling in SOFA, the rectangu-

lar deformable block was represented with the hexahedral finite element model in 

addition to the described meshless method. The validation of the hexahedral FEM 

implementation of SOFA is studied by Marchal et al. [32]. For a given sphere ra-

dius, simulations were performed for varying force values (F) applied to the spher-

ical load (Figure 2). With the applied force, the rigid sphere comes into contact 

with the block and deforms it. The vertical velocity of the sphere is monitored and 

the indentation of the material (d) is measured when the sphere comes to rest. This 

F-d pair is compared to the theoretical solution. 

 

  

(a) (b) 

Figure 2 (a) Initial setup of the indentation experiment for the SOFA FEM 

model, (b) the close-up view of the indented deformable material. SOFA al-

lows the user to track and monitor simulation values of indexed particles. 

 

The meshless nodes are distributed uniformly inside a cubical volume with 2m 

long edge length. The indentation experiment is repeated for several distribution 

configurations, which play critical role especially for the MLS approximation-

based collocation methods. The convergence rate in the L2 (vector) error norm of 

the force-indentation pairs with respect to the theoretical values (Figure 3) is in-

vestigated. The effect of different distribution schemes on the accuracy, stability, 

and performance of the meshless collocation methods is yet to be examined. In our 

implementation, the number of neighboring nodes is limited to 16 for each of the 

meshless nodes. 
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Figure 3 Error in the L2 norm with respect to the theoretical solution as func-

tions of total number of the degrees of freedom for the (a) FEM model and 

(b) meshless method. 

 

We compared the SOFA FEM implementation and the meshless collocation 

method with close accuracy (Figure 4). For our meshless collocation method with 

nodal integration, we used an explicit time integration scheme with a time step of 

0.001s without any stability problem. For the SOFA FEM implementation, we had 

to use implicit integration with a time step of 0.01s. The calculations were per-

formed within the SOFA application on a single Intel Core i5 CPU running at 2.67 

GHz with 16 GB of RAM under Windows 7 operating system. The SOFA FEM 

implementation took 195ms of calculations per time step, whereas the meshless 

method consumed 20.11ms for calculations per time step. Therefore, the meshless 

collocation implementation in SOFA (along with other SOFA related operations 

such as collision detection) is roughly 25 times slower than the real-time opera-

tion, which is slightly better than the 30 times slower performance reported by the 

Meshless TLED algorithm [20]. The calculation speed of the meshless collocation 

algorithm is governed by the number of particles and the number of neighbors as-

signed to each particle. 

 

 
Figure 4 Comparison of the SOFA FEM implementation and the meshless 

collocation method with close indentation accuracy and the theoretical solu-

tion. 
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We also performed a mesh convergence study for the meshless collocation 

method by investigating the convergence of the indentation amount to the theoret-

ical value for a fixed amount of force (Figure 5). After around 6000 particles, the 

indentation value converges to the theoretical indentation value. 

 

 
Figure 5 Convergence of the indentation value with increasing number of 

meshless particles. 

4 Conclusions and Future Work 

The discussed Moving Least Square approximation-based meshless method 

may be useful in continuum problems with extreme deformations or moving dis-

continuities such as cracks or cuts. The presented algorithm for the meshless col-

location method was implemented as a component for the open source SOFA li-

brary, which is primarily targeted at real-time medical simulation. Contact 

mechanics-based verification experiments were conducted with FEBio FEM code, 

SOFA hexahedral FEM method, and the presented meshless collocation method. 

The convergence study results and L2 error norm curves are promising for the 

meshless deformable model. For the meshless collocation methods, the influence 

of the meshless node distribution and the size of the nodal support radii of the 

nodes are not well studied. The findings of our own experiments also suggest fur-

ther studies of these important aspects of the meshless collocation methods. 
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