
Software	Verification	and	Validation	Laboratory:

A Model-Driven	Approach	to	Offline	Trace	Checking	of

Temporal	Properties	with	OCL

Wei	Dou, Domenico	Bianculli	and	Lionel	Briand

Interdisciplinary	Centre	for	Security, Reliability	and	Trust

University	of	Luxembourg

TR-SnT-2014-5

ISBN:	978-2-87971-125-6

Last	update: March	31, 2016

Published	on: March	20, 2014

A Model-Driven Approach to Offline Trace Checking of Temporal
Properties with OCL

Wei Dou, Domenico Bianculli, and Lionel Briand

Abstract

Offline trace checking is a procedure for evaluating require-
ments over a log of events produced by a system. The
goal of this paper is to present a practical and scalable
solution for the offline checking of the temporal require-
ments of a system, which can be used in contexts where
model-driven engineering is already a practice, where tem-
poral specifications should be written in a domain-specific
language not requiring a strong mathematical background,
and where relying on standards and industry-strength tools
for property checking is a fundamental prerequisite. The
main contributions are: the TemPsy language, a domain-
specific specification language based on common property
specification patterns, and extended with new constructs;
a model-driven offline trace checking procedure based on
the mapping of requirements written in TemPsy into OCL
(Object Constraint Language) constraints on a conceptual
model on execution traces, which can be evaluated using
an OCL checker; the implementation of this trace check-
ing procedure in the TemPsy-Check tool; the evaluation
of the scalability of TemPsy-Check and its comparison
to a state-of-the-art alternative technology. The proposed
approach has been applied to a case study developed in
collaboration with a public service organization, active in
the domain of business process modeling for eGovernment.
Index terms— Trace checking, temporal properties,

property specification patterns, model-driven engineering,
OCL

1 Introduction

Modern enterprise information systems are often designed
and built using the principles and technologies of business
process modeling, based on business process languages like
BPMN (Business Process Model and Notation) [53]. Re-
cently, the design and implementation of business processes
have started leveraging model-driven engineering (MDE)
methodologies [19] and code generation techniques. For ex-
ample, our public service partner CTIE (Centre des tech-
nologies de l’information de l’Etat, the Luxembourg na-
tional center for information technology1), from which we
draw the main motivation of this work and our case study,
has developed in-house a model-driven methodology for de-
signing eGovernment business processes.

These business processes are usually very complex and
are realized as compositions of services provided by differ-
ent administrations, and third-party suppliers. They act
as the “glue” to orchestrate different information systems,
possibly by many different organizations, in an effort to fos-
ter cooperation of various administrations. Designing and

1www.ctie.public.lu.

operating effective and efficient processes to drive e-service
delivery is one of the most challenging tasks for public ad-
ministrations. The correct enactment of business processes
is of utmost importance to guarantee reliable digital solu-
tions to citizens and enterprises, as well as to foster an
effective cooperation of the various public administrations
in a state.

From a more general standpoint, in information systems,
the correct enactment of a business process can be en-
sured [4] by: 1) precisely specifying its requirements; 2) us-
ing a verification technique to check the compliance of the
business process with respect to its requirements.

Regarding the specification of requirements of business
processes, the analysis of the requirements of various ap-
plications developed as business processes by our partner
revealed that the majority of these requirements could be
expressed as temporal constraints, enriched with timing
information. Examples of these properties are constraints
on the sequence and number of occurrences of events, with
additional constraints on the temporal distance between
events. This type of properties has been widely studied
in the context of concurrent, real-time critical systems [27]
and, more recently, also in other domains like service-based
applications [15,41,48,58] and automotive [55]. There have
been several proposals to formally specify these properties;
many of these proposals rely on some temporal logic, ei-
ther the classic LTL or CTL, or more specialized versions
like SOLOIST [16]. However, the problem in using these
specification approaches is twofold: 1) they require strong
theoretical and mathematical background, which are rarely
found among practitioners; 2) the support in terms of veri-
fication tools is limited and often based on prototypes that
do not scale for industrial applications. To partially mit-
igate the first problem, researchers have proposed cata-
logues of property specification patterns [2, 15, 27, 38, 43],
which collect generalized, proven solutions for expressing
recurrent, common types of specifications. In some cases,
catalogues include a restricted natural language grammar
front-end to express the patterns, and a mapping of the se-
mantics of (restricted) natural language constructs to tem-
poral logic formalisms; this mapping can be automated
with tools like PSPWizard [49]. While property specifica-
tion patterns can make the formal specification of require-
ments easier, their concrete application results in the gen-
eration of a specification in a temporal logic, which leaves
the second issue mentioned above still open. From the
MDE side of specification languages there is OCL [54].
Although also based on mathematical foundations such
as first-order logic and set theory, OCL includes many
helper functions—to keep the constraints compact—and
navigation expressions that reflect the structure of class
diagrams (conceptual models)—to help with writing ex-
pressions that look more alike to program code. These fea-

1

tures made OCL the de-facto constraints specification lan-
guage in MDE practice and an international standard [54],
which is supported by mature constraint checking tech-
nology, such as the constraint/query evaluator included in
Eclipse OCL [28]. However, OCL does not support na-
tively the specification of temporal constraints in an in-
tuitive fashion. To overcome this limitation, several tem-
poral extensions of OCL have been proposed in the lit-
erature [18, 23, 33, 46, 59, 62]; however, these extensions in-
clude temporal logic operators and thus intrinsically inherit
the limitations of other specification approaches based on
temporal logic. Other temporal extensions of OCL, such
as [34, 42, 45, 57], explicitly support property specification
patterns. Nevertheless, these pattern-based temporal ex-
tensions of OCL have limited expressiveness. For example,
based on our analysis of a case study in eGovernment sys-
tems, none of the current pattern-based temporal exten-
sions of OCL could support a property like “If the physical
information of the card requester is collected within three
days after the second approval notification, the card will
be produced and then issued to the requester”, which con-
tains a reference to a specific occurrence of an event (“after
the second approval notification . . . ”) as well as an ex-
plicit temporal distance from an event (“. . . within three
days. . . ”).

As for the second step towards the correct enactment
of business processes, the compliance of a business process
with respect to its requirements can be checked with differ-
ent verification techniques, such as model checking [17,35],
run-time monitoring [3, 41, 56, 58], and offline trace check-
ing [13]; in this work we focus on the latter. Offline trace
checking, also called trace validation [51] or history check-
ing [31], is a procedure for evaluating requirements (usually
specified in a temporal logic) over a log of recorded events
produced by a system. Traces can be produced at run time
by a proper monitoring/logging infrastructure, and made
available at the end of a business process execution to per-
form offline trace checking. Offline trace checking comple-
ments verification activities performed before the deploy-
ment of a system, by allowing for the post-mortem analysis
of actual behaviors emerged at run time and recorded on
a log. These behaviors include the ones of the business
process as well as those derived from the interaction of the
business process with the various third-parties (e.g., other
administrations, suppliers) involved in the execution of the
process itself. Offline trace checking is thus also a way to
check whether third-party providers fulfill their guarantees
and to assess how they interact with the rest of the parties
involved in the business process.

The goal of this paper is to present a practical and scal-
able solution for the offline checking of the temporal re-
quirements of a business process, which is expected to be
advantageous in contexts where the following requirements
hold: R1) when analysts do not have adequate skills to
make use of temporal logic, an alternative domain-specific
language should be provided to facilitate the specification
of business process requirements; R2) to be viable in the
long term, any solution shall rely on standard and stable
MDE technology for checking the compliance of a business
process to the application requirements; R3) any solution
shall be scalable, such that a trace with millions of events
could be checked within seconds. This goal is motivated
by specific requirements from our partner in the context of

business process models for eGovernment systems. Never-
theless, we believe, based on experience, that these require-
ments can be generalized to other contexts in which ana-
lysts cannot handle the mathematical background required
by temporal logic and solutions have to be engineered by
using MDE technologies already in place in the targeted
development environment.

To achieve the above objectives, the paper will make
the following contributions: i) the TemPsy (Temporal
Properties made easy) language, a pattern-based domain-
specific language for the specification of temporal proper-
ties; ii) a model-driven trace checking procedure, which
relies on a mapping of temporal requirements written in
TemPsy into OCL constraints on a conceptual model of
execution traces; iii) a publicly available tool (TemPsy-
Check) implementing this model-driven trace checking
procedure; iv) an evaluation of the scalability of TemPsy-
Check, applied to the verification of real properties de-
rived from a case study of our public service partner, in-
cluding a comparison with a state-of-the-art alternative
technology. As a separate contribution, we also make avail-
able the artifacts used in the evaluation to contribute to
the building of a public repository of case studies for eval-
uating trace checking/run-time verification procedures.
TemPsy2 is a domain-specific language for the specifi-

cation of temporal properties based on the catalogue of
property specification patterns defined by Dwyer et al. [27]
(with some extensions). To fulfill requirement R1 above,
based on the discussions with our partner business ana-
lysts, we decided that the language should have the follow-
ing features: be as close to natural language as possible,
make no use of mathematical constructs, and support the
commonly understood concepts used in the specification of
requirements in the domain of business process modeling.
Regarding the latter feature, we analyzed the requirements
specifications of our industrial case study, to understand
the type of specifications written (in natural language) by
business analysts and to characterize them in terms of the
property specification patterns in [27] (with some exten-
sions). The relevant concepts and patterns found through
this analysis drove the design of TemPsy , which resulted
in a language sporting a syntax close to natural language,
with all the constructs required to express the property
specification patterns found in our case study, and a pre-
cise semantics expressed in terms of linear temporal traces.
By design, TemPsy does not aim at being as expressive as
a full-fledged temporal logic. Instead, its goal is to make as
easy as possible the specification of the temporal require-
ments of business processes, by supporting—in an intu-
itive way—only the constructs needed to express temporal
requirements commonly found in business process appli-
cations. TemPsy has received positive feedback from our
partner, which has deemed it as suitable communication
mechanism to express the requirements specifications of
business processes. Our partner has integrated TemPsy
into the SoftwareAG ARIS modeling tool [60], and its an-
alysts have started using it to annotate business process
models with TemPsy specifications. In this paper, we show
the application of TemPsy for the specification of an ex-
cerpt of a business process extracted from the case study
developed with our partner.

2The language can be viewed as a profound revision of our previous
proposal [25].

2

Our offline trace checking procedure fulfills requirement
R2 above since it follows a model-driven approach, based
on industry-strength OCL checkers. The procedure re-
lies on a generic conceptual model of system execution
traces and leverages a mapping of TemPsy properties into
OCL constraints defined over this trace model. This map-
ping is optimized based on the structure of the TemPsy
property to check, in order to achieve better performance.
More specifically, we show how the problem of checking a
TemPsy property over an execution trace (i.e., the TemPsy
trace checking problem) can be reduced to evaluating an
OCL constraint (derived from the TemPsy property to
check and semantically-equivalent to it) on an instance of
the trace model; this check can be executed using standard
OCL checkers.

To show the fulfillment of requirement R3 above, we
extensively evaluated the scalability of the proposed of-
fline trace checking procedure, by assessing the relation-
ship among the checking time, the structural properties of
a trace (e.g., length, distribution of events), and the type
of property to check. We evaluated the scalability of our
TemPsy-Check tool on 38 properties extracted from our
case study, on traces with length ranging from 100K to 1M.
We also compared the performance of TemPsy-Check
with a state-of-the-art alternative technology, selected from
the participants to the “offline monitoring” track of the first
international Competition on Software for Runtime Veri-
fication [8] (CSRV 2014). The experimental results show
that TemPsy-Check can analyze very large traces (with
one million events) in about two seconds and that it scales
linearly with respect to the length of the trace to check.
The results also show that TemPsy-Check compares fa-
vorably with the state-of-the-art.

The rest of the paper is structured as follows. Section 2
provides some background concepts. In section 3 we in-
troduce TemPsy , presenting its syntax and its (informal)
semantics. In section 4 we show the application of TemPsy
in a case study in the domain of eGovernment. Section 5
presents the formal semantics of TemPsy . Section 6 de-
scribes our model-driven approach for trace checking of
TemPsy properties. Section 7 reports on the evaluation
conducted with TemPsy-Check. Section 8 discusses re-
lated work. Section 9 concludes the paper, providing di-
rections for future work.

2 Background: Property Specifica-
tion Patterns

A pattern represents a reusable solution for a recurrent
problem [1]. Though initially proposed in the context of
architecture [1], this concept has been adopted also in dif-
ferent sub-domains of software engineering, including soft-
ware design, with design patterns [36], and formal verifica-
tion, with property specification patterns [2].

Property specification patterns have been initially pro-
posed by Dwyer et al. [27] in the late ‘90s in the context of
formal verification, as a means to express recurring prop-
erties in a generalized form, which could be formalized in
different specification languages, such as temporal logic.
The goal of property specification patterns is to facilitate
the writing of formal specifications, which can then be used
with formal verification tools (e.g., model checkers).

Several catalogues of property specification patterns
have been proposed in the literature [15, 27, 38, 39, 43]. In
the rest of this section we provide a brief overview of the
catalogue of property specification patterns by Dwyer et
al. [27], which have been included (with some extensions)
in the definition of the TemPsy language.

This catalogue3 contains nine parametrizable patterns,
representing high-level abstractions of formal specifica-
tions, and five scopes, which indicate the portions of a
system execution in which a certain pattern should hold.
In the following, we use the letters W, X, Y, and Z, to de-
note events or states of a system execution The five scopes,
depicted in Fig. 1, are:

Globally. This scope corresponds to the entire system
execution (i.e., the entire trace).

Before. It identifies a portion of a trace up to a certain
boundary.

After. It identifies a portion of a trace starting from a
certain boundary.

Between-And. It identifies portion(s) of a trace delim-
ited by two boundaries.

After-Until. This scope is similar to Between-and,
with the difference that each identified segment extends to
the right in case the event defined by the second boundary
does not occur.

The nine patterns are:
Absence. It describes a portion of a system’s execution

that is free of certain events or states, as in “it is never the
case that X holds”.

Universality. It describes a portion of a system’s exe-
cution that contains only states that have a desired prop-
erty, as in “it is always the case that X holds”.

Existence. It describes a portion of a system’s execu-
tion that contains an instance of certain events or states,
as in “X eventually holds”.

Bounded existence. It describes a portion of a sys-
tem’s execution that contains at most a specified number
of instances of a designated state transition or event, as in
“it is always the case that event X occurs at most 2 times”.

Precedence. It describes relationships between a pair
of events (or states), where the occurrence of the first is a
necessary pre-condition for an occurrence of the second, as
in “it is always the case that if X holds, then Y previously
held”.

Response. It describes cause-effect relationships be-
tween a pair of events (or states), where an occurrence
of the first must be followed by an occurrence of the sec-
ond, as in “it is always the case that if X holds, then Y
eventually holds”.

Response chains. It is a generalization of the response
pattern, as it describes relationships between sequences of
individual states (or events), as in “it is always the case
that if W holds, and is succeeded by X, then Z eventually
holds after Y”.

Precedence chains. It is a generalization of the prece-
dence pattern, as it describes relationships between se-
quences of individual states (or events), as in “it is always
the case that if X holds, then Y previously held and was
preceded by X”.

Constrained chain patterns. It describes a variant
of response and precedence chain patterns that restricts

3A detailed description is available at http://patterns.projects.
cis.ksu.edu.

3

X Y YX X YX
Global
Before X
After X
Between X and Y
After X until Y

Fig. 1: Scopes in the catalogue of property specification patterns in [27]

user specified events from occurring between pairs of states
(or events) in the chain sequences. This pattern has not
been included in the definition of TemPsy .

Absence, Universality, Existence and Bounded Existence
belong to the Occurrence category, while Precedence, Re-
sponse, and Chains belong to the Order category.

3 The TemPsy language

As discussed in section 1, the ultimate goal of this work is
to present a practical and scalable solution for the offline
checking of the temporal requirements of a system with re-
spect to a business process model, motivated by real and
specific requirements in eGovernment systems. In this sec-
tion we present the first step to achieve this goal, which is
represented by the definition of the TemPsy language for
the specification of temporal requirements of business pro-
cesses, which will then be checked on an execution trace
using the procedure described in section 6.

3.1 Eliciting the requirements of the lan-
guage

The design of TemPsy has been driven by the analysis of
the requirements of various applications developed as busi-
ness processes by CTIE. We analyzed several applications
and scrutinized the requirements specifications associated
with all use cases and business process descriptions.

This analysis revealed that the vast majority of these
requirements could be expressed as temporal properties,
enriched with timing information. More specifically, we
were able to recast most of specifications written in natu-
ral language using the system of property specification pat-
terns of Dwyer et al. [27]. In some cases, we extended the
original definitions proposed in [27] to match the specifica-
tions. For example, we extended the definitions of scopes
to support references to a specific occurrence of an event
(not only the first one as in [27]), as in the requirement
“event A shall occur before the second occurrence of event
X”. Another variant of this type of scope boundary that we
found is the one with requirements on the distance between
events, such as “event A shall occur five time units before
the second occurrence of event X”. In other cases, the re-
quirements specifications had to be expressed in terms of
some real-time specification patterns [38, 43], which quan-
titatively define distance among events and durations of
events.

3.2 Design

The analysis of the requirements specifications mentioned
above made us ponder over the design of the specification
language for expressing them.

The intrinsic temporal nature of the requirements spec-
ifications we found, including also constraints on the dis-
tance between events, could have suggested to follow the di-
rection of building on some (metric) temporal logic. How-
ever, this decision would have not allowed us to fulfill re-
quirement R1 (see section 1). One of the motivations be-
hind this requirement is that specification languages based
on temporal logic require a certain mathematical knowl-
edge that is not common among practitioners.

Another design option would have been to consider the
specification languages defined in the MDE community,
namely temporal extensions of OCL, such as [18,23,33,34,
42, 45, 46, 57, 59, 62]. However, these temporal extensions
either include temporal logic operators—thus intrinsically
inheriting the limitations of other specification approaches
based on temporal logic, and not fulfilling requirement
R1—or are pattern-based but have limited expressiveness.
For example, none of the pattern-based OCL temporal ex-
tensions can express a property like “If the physical infor-
mation of the card requester is collected within three days
after the second approval notification, the card will be pro-
duced and then issued to the requester”, which contains a
reference to a specific occurrence of an event in a scope
boundary, as well as an explicit temporal distance from
the scope boundary event.

Based on the discussions with business analysts, and
keeping in mind the goal of fulfilling requirement R1
above, we decided that TemPsy should have the follow-
ing features: be as close to natural language as possi-
ble, make no use of mathematical constructs, and support
the commonly-understood concepts (i.e., property specifi-
cation patterns) used in the specification of requirements
in the domain of business process modeling.

We designed TemPsy as a language sporting a syntax
close to natural language, with all the constructs required
to express the property specification patterns found in the
business process applications developed by our partner,
and a precise semantics expressed in terms of linear tem-
poral traces. TemPsy supports all the patterns and scopes
defined in [27], with the following extensions:

• The possibility, in the definition of a scope bound-
ary, to refer to a specific occurrence of an event, as in
“before the second occurrence of event X. . . ”. In the
original definition of the pattern systems, boundaries
of scopes refer implicitly to the first occurrence of an
event.

• The possibility to indicate a time distance with respect
to a scope boundary, as in “at least two time units
before the n-th occurrence of event X. . . ”.

• Support for expressing time distance between events
occurrences in the precedence and response patterns as
well as in their chain versions, for expressing properties

4

〈TemPsyBlock〉 ::= 〈TemPsyExpression〉+
〈TemPsyExpression〉 ::= [‘temporal’ 〈Id〉 ‘:’]

〈Scope〉 〈Pattern〉
〈Scope〉 ::= ‘globally’

| ‘before’ 〈Boundary1 〉
| ‘after’ 〈Boundary1 〉
| ‘between’ 〈Boundary2 〉

‘and’ 〈Boundary2 〉
| ‘after’ 〈Boundary2 〉

‘until’ 〈Boundary2 〉
〈Pattern〉 ::= ‘always’ 〈Event〉

| ‘eventually’ 〈RepeatableEventExp〉
| ‘never’ [‘exactly’ 〈Int〉] 〈Event〉
| 〈EventChainExp〉 ‘preceding’

[〈TimeDistanceExp〉]
〈EventChainExp〉

| 〈EventChainExp〉 ‘responding’
[〈TimeDistanceExp〉]
〈EventChainExp〉

〈Boundary1 〉 ::= [〈Int〉] 〈Event〉 [〈TimeDistanceExp〉]
〈Boundary2 〉 ::= [〈Int〉] 〈Event〉 [‘at least’ 〈Int〉 ‘tu’]
〈EventChainExp〉 ::= 〈Event〉

(‘,’ [‘#’ 〈TimeDistanceExp〉] 〈Event〉)*
〈TimeDistanceExp〉 ::= 〈ComparingOp〉 〈Int〉 ‘tu’
〈RepeatableEventExp〉 ::= [〈ComparingOp〉 〈Int〉] 〈Event〉
〈ComparingOp〉 ::= ‘at least’ | ‘at most’ | ‘exactly’
〈Event〉 ::= 〈Id〉
〈Id〉 ::= 〈IdStartChar〉 〈IdChar〉*

| 〈Id〉 (〈IdConnector〉 〈Id〉)*
〈IdStartChar〉 ::= [A-Z] | ‘_’ | [a-z]
〈IdChar〉 ::= 〈IdStartChar〉 | [0-9]
〈IdConnector〉 ::= ‘.’ | ‘::’
〈Int〉 ::= [1-9] ([0-9])*

Fig. 2: Syntax of TemPsy

such as “event B should occur in response to event A
within 2 time units”.

• Additional variants for the bounded existence and ab-
sence patterns.

3.3 Syntax

The syntax of TemPsy is shown in Fig. 2: non-terminals
are enclosed in angle brackets, terminals are enclosed in
single quotes, optional elements are enclosed in brackets,
the character ‘+’ indicates one or more occurrences of an el-
ement, the character ‘*’ indicates zero or more occurrences
of an element.

A 〈TemPsyBlock〉 comprises a set of conjuncted
〈TemPsyExpression〉s. Each TemPsy expression starts
with an optional ‘temporal’ keyword plus an alphanumeric
identifier, followed by a 〈Scope〉 and a 〈Pattern〉. The
keywords indicating the five 〈Scope〉s identify univocally
the corresponding scopes from [27] (see section 2). As
for the 〈Pattern〉s, ‘always’ corresponds to universality,
‘eventually’ to existence, ‘never’ to absence, ‘preceding’
to precedence and precedence chain, ‘responding’ to re-
sponse and response chain.

The definitions of 〈Scope〉s and 〈Pattern〉s refer to the
concept of 〈Event〉. We assume that an 〈Event〉 is rep-

resented by an alphanumeric string, to match the event
strings logged in the execution trace on which the prop-
erties specified in TemPsy are meant to be checked.
〈Scope〉s contain boundaries (expressed with 〈Boundary1 〉
or 〈Boundary2 〉) that denote a specific occurrence of an
event as a boundary, possibly with a time distance; no-
tice that 〈Boundary2 〉 represents a syntactic restriction of
〈Boundary1 〉. Chains of events, used in precedence and
response patterns, are defined as 〈EventChainExp〉, which
denotes a comma-separated list of events, possibly with
a time distance (〈TimeDistanceExp〉) between each pair
of events (denoted with the ‘#‘ symbol). Time distances
are expressed with an integer value, followed by the ‘tu’
keyword, which represents a generic time unit (i.e., any
denomination of time).

3.4 TemPsy at Work
We now present some examples of properties that can be
expressed with TemPsy , in order to provide the reader
with a high-level, intuitive understanding of the language.
We consider the execution trace shown in Fig. 3 and for
each property4 indicate whether it is violated or not by
the trace. First, we define the properties in English:

p1) “Event C shall happen 8 time units after the second
occurrence of event X.” (satisfied)

p2) “Event A shall happen within 30 time units after the
first occurrence of event X.” (satisfied)

p3) “Event C shall eventually happen after at least 3 time
units since the first occurrence of event X; and it shall
happen before event Y if the latter happens.” (vio-
lated because event C occurs after event Y)

p4) “After the second occurrence of event X, event C shall
eventually happen exactly twice.” (satisfied)

p5) “Event C shall happen at least once between every
first occurrence of event X and the next event Y ; the
time interval between event X and the first occurrence
of event C shall be at least 5 time units.” (violated
because event C does not occur between the first seg-
ment delimited by event X on the left and event Y on
the right)

p6) “Event B shall happen at least 3 time units before the
first occurrence of event Y .” (satisfied)

p7) “Before the first occurrence of event Y , once event X
occurs, event A shall happen followed by event B; the
time interval between X and A shall be at least 3 time
units.” (satisfied)

The corresponding TemPsy expressions are shown below:

• temporal p1: after 2 X exactly 8 tu eventually
C

• temporal p2: after X at most 30 tu eventually
A

• temporal p3: after 1 X at least 3 tu until Y
eventually C

4These properties are given as an example and should be consid-
ered individually, rather than together as a set; they do not corre-
spond to the specification of a real system.

5

X

2

A

6

B

10

Y

16

Y

20

X

22

X

26

C

30

C

34

Y

38

X

40

Fig. 3: An event trace on which to evaluate the properties described in section 3.4; events are above the line, timestamps
below

X Y Y X X Y X

Fig. 4: A sample trace for the description of scopes

• temporal p4: after 2 X eventually exactly 2 C

• temporal p5: between X at least 5 tu and Y
eventually at least 1 C

• temporal p6: before Y at least 3 tu eventually
B

• temporal p7: before Y A, B responding at
least 3 tu X

3.5 Informal Semantics

In this section we present the informal semantics of the
scopes and the patterns supported in TemPsy expressions;
they correspond to non-terminals 〈Scope〉 and 〈Pattern〉,
respectively. In the following, symbols A,B,C,D,X, Y, Z
represent strings that can be derived from non-terminal
〈Event〉; ‘m’, ‘m1’, ‘m2’, ‘n’, ‘n1’, and ‘n2’ are integers derived
from the non-terminal 〈Int〉; ‘tu’ stands for “time unit(s)”.
The complete definition of the formal semantics of TemPsy
can be found in section 5.

3.5.1 Scopes

For the description of scopes, we refer to the trace of events
depicted in Fig. 4; to avoid cluttering, the figure does not
show the events not used in the explanations. We use sym-
bols X and Y as shorthands for events that can be derived
from the non-terminal 〈Event〉.

Globally. This scope corresponds to the entire trace
shown in Fig. 4.

Before. The general template for this scope in TemPsy
is “before [m]X [〈ComparingOp〉 n tu]”; it can be expanded
in four forms: 1) “beforeX”, 2) “beforeX 〈ComparingOp〉
n tu”, 3) “before m X”, 4) “before m X 〈ComparingOp〉 n
tu”. The first two forms are convenient shorthands for
the third and fourth ones, respectively, with m = 1. The
form “before m X” selects the portion of the trace up to
the m-th occurrence of event X; see, for example, the top
row in Fig. 5a, where the interval from the origin of the
trace up to the third occurrence of X is highlighted with
a thick line. The form “before m X 〈ComparingOp〉 n tu”
has three variants, depending on the possible expansions
of non-terminal 〈ComparingOp〉:

• “before m X at least n tu” identifies the scope from
the origin of the trace up to n time units before the
m-th occurrence of X;

• “before m X at most n tu” identifies the scope start-
ing at n time units before the m-th occurrence of X
and bounded to the right by the m-th occurrence of
X;

• “before mX exactly n tu” pinpoints the time instant
at n time units before the m-th occurrence of X.

Examples of the first two variants of scopes are shown with
thick segments in the second and third rows of Fig. 5a; for
the last variant, see the last row of Fig. 5a, where the time
instant selected by the scope is enclosed with a circle. In
all examples, we have m=3 and n=2.

After. It has a dual semantics with respect to the be-
fore scope. We provide an intuition of its semantics using
Fig. 5b.

Between-And. The general template for this scope in
TemPsy is “between [m1] X [at least n1 tu] and [m2] Y [at
least n2 tu]”; it can be expanded in four forms:

• “between m1 X [at least n1 tu] and m2 Y [at least
n2 tu]”;

• “between X [at least n1 tu] and m2 Y [at least n2

tu]”;

• “between m1 X [at least n1 tu] and Y [at least n2

tu]”;

• “between X [at least n1 tu] and Y [at least n2 tu]”.

The first form is the most general: it selects the single
segment of the trace delimited by the m1-th occurrence
of event X and the m2-th occurrence of event Y happen-
ing after the m1-th occurrence of X. The second and third
forms are shorthands for the first one, with m1=1 and m2=1,
respectively. The fourth form is the closest to the original
definition in [27], since it selects all the segments in the
trace delimited by the boundaries. In this regard, notice
the difference with respect to the expression “between 1 X
and 1 Y ”, which selects the segment delimited by the first
occurrence of X and the first occurrence of Y after X. In
all forms it is possible to use the expression at least n
tu when defining boundaries, with the same meaning de-
scribed for the scope before. Four examples of the Between-
and scope are shown in Fig. 5c.

After-Until. This scope is similar to Between-and,
with the difference that each identified segment extends
to the right in case the event defined by the second bound-
ary does not occur; this peculiarity can be noticed in the
first two rows of Fig. 5d (also by comparing them with the
corresponding ones in Fig. 5c), as well as in the last row.

Note that all scopes are open on the bounds delimited
by the boundary events themselves, i.e., in general5, the
before scope is closed on the left bound and open on the
right bound; the after scope is open on the left bound, and
closed on the right bound; the between-and scope is open on
both bounds; the after-until scope is open on both bounds
when the right boundary event occurs, or is open on the
left and closed on the right when the right boundary event
does not occur.

5The scopes that contain constraints on time distance from the
boundary events (with “at least” and “exactly”) are closed on the
bounds

6

X Y Y X X Y X
before 3 X
before 3 X at least 2 tu
before 3 X at most 2 tu
before 3 X exactly 2 tu

2 tu

(a) Scope: before

X Y Y X X Y X
after 3 X
after 3 X at least 2 tu
after 3 X at most 2 tu
after 3 X exactly 2 tu

2 tu

(b) Scope: after

X Y Y X X Y X
between X and Y

between X and Y at least 2 tu

between 1 X at least 2 tu and 2 Y

between 2 X at least 2 tu and 1 Y at least 2 tu

2 tu 2 tu

2 tu

2 tu 2 tu

(c) Scope: between-and

X Y Y X X Y X
after X until Y

after X until Y at least 2 tu

after 1 X at least 2 tu until 2 Y

after 2 X at least 2 tu until 1 Y at least 2 tu

after 2 X until 1 Z

2 tu 2 tu

2 tu

2 tu 2 tu

(d) Scope: after-until

Fig. 5: Examples of TemPsy scopes

3.5.2 Patterns

TemPsy supports eight of the nine patterns defined in [27].
Their semantics has been already briefly explained in sec-
tion 2; below we only highlight the semantics for the pat-
terns that have been extended upon inclusion in TemPsy .

Existence. This pattern comes in four forms:

• “eventually A” indicates that event A will eventually
happen at least once;

• “eventually at least m A” indicates that event A
will eventually happen at least m times;

• “eventually at most m A” indicates that event A will
eventually happen at most m times;.

• “eventually exactly m A” indicates that event A will
eventually happen exactly m times.

The last three forms are variants of the bounded existence
pattern, a subclass [2] of the existence one.

Absence. In addition to stating that a certain event
never occurs in the given scope, TemPsy makes also possi-
ble to specify that a specific number of occurrences of the
same event should not happen, as in “never exactly 2 X”,
which indicates that X should never occur exactly twice.

Precedence. This pattern (also available in the vari-
ant called precedence chain) indicates the precondition re-
lationship between a pair of events (respectively, the two
blocks of a chain) in which the occurrence of the second
event (respectively, block) depends on the occurrence of
the first event (respectively, block). Based on this origi-
nal definition, we added support for timing information to
enable expressing the time distance between two adjacent
events. The semantics can be explained using the follow-
ing example and the event trace in Fig. 6; the expression
“A preceding at most 10 tu B, #at least 5 tu C” indi-
cates that the event A is the precondition of the block “B
followed by C”, that the time distance between A and B
should be at most 10 time units, and the time distance
(expressed using the # symbol) between events B and C
should be at least 5 time units. Here, A (left-hand side of
‘preceding’) represents the first block of the chain, while
the expression “B, #at least 5 tu C” represents the sec-
ond block (right-hand side of ‘preceding’).

Response. This pattern (also available in the variant
called response chain) specifies the cause-effect relation-
ship between a pair of events (respectively, the two blocks
of a chain) in which the occurrence of the first event (re-

7

A B C D

4 tu 6 tu 4 tu

Fig. 6: Example trace for illustrating the precedence and
response patterns

spectively, first block) leads to the occurrence of the second
event (respectively, second block). Similarly to the previ-
ous pattern, we added support for timing information to
enable expressing the time distance between two adjacent
events. The semantics can be explained using the follow-
ing example and the event trace in Fig. 6; the expression
“C, D responding at most 10 tu A, #at least 5 tu B”
specifies that two successive events A and B stimulate the
sequential occurrence of C and D, the time interval be-
tween A and B should be at least 5 time units, and the
time interval between B (second element of the first block)
and C (first element of the second block) should be at most
10 time units. This property is violated by the example in
Fig. 6, because the time distance between A and B is only
4 time units.

3.6 Expressivity

As discussed earlier, the main goal of TemPsy is to make as
easy as possible the specification of the temporal require-
ments of business processes, by supporting—in an intuitive
way—only the constructs needed to express temporal re-
quirements commonly found in business process applica-
tions. Hence, by design, TemPsy does not aim at being as
expressive as a full-fledged temporal logic.

More precisely, TemPsy can specify only the expressions
resulting from the combination of one of the five supported
scopes (and their variants) with one of the eight supported
patterns (and their variants). For each of these expres-
sions, it is possible to write a formula with the same mean-
ing in a full-fledged temporal logic like MTL [44] (see, for
example, the syntax-directed translation of property spec-
ification patterns, targeting MTL, proposed in [2]). On
the other hand, all the MTL formulae that do not corre-
spond to one of the 〈scope, pattern〉 combinations cannot
be expressed in TemPsy .

In our context, this limitation turns out to be more the-
oretical than practical, since we were able to express in
TemPsy all the requirements of the business processes of
our case study. Nevertheless, as part of future work, we
plan to assess the expressivity of TemPsy by applying it
for the specification of business processes in other applica-
tion domains.

4 Applying TemPsy in an eGovern-
ment scenario

In this section we report on the application of TemPsy for
the specification of a business process extracted from the
case study developed with our partner. After illustrating
the conceptual and behavioral models of some fragments of
the business process application, we present some require-
ments specifications associated with these business process
fragments and show how these specifications can be ex-
pressed in TemPsy . We also discuss the adoption and use

of TemPsy by our partner.
Notice that the case study description has been sani-

tized, for the purpose of not disclosing confidential infor-
mation, and simplified, to obtain a model at the minimum
level of detail required to illustrate and express the require-
ment specifications.

4.1 Business process models

We consider the Identity Card Management (ICM) busi-
ness process, which is in charge of issuing and managing
the ID cards of the diplomatic personnel of the country. Its
conceptual model is shown in Fig. 7, while three activity
diagrams corresponding to process fragments are sketched
in Fig. 8.

The conceptual model includes the ICM class, which man-
ages Cards and Requests (for new cards). The ICM class
has methods that deal with approval/rejection of card re-
quests, card production and issuance, and card loss/expi-
ration. Class Card has methods to query about the state
of the card, which can be lost, found, expired, or returned
(to the administration).

The activity diagram in Fig. 8a shows the business pro-
cess fragment for processing a card request. Once a request
for a card is submitted to the ICM system, it is evaluated
and then either approved or rejected. Afterwards, a notifi-
cation letter of approval or rejection is sent to the requester.
Upon approval, the requester is asked to provide her phys-
ical information (e.g., hair and eye color, height) to the
ICM system. In case this information is not provided, a
second notification is sent; if the requester does not show
up after two notifications, the request is then rejected and
the requester notified about it. If the requester provides
her information, the ICM system requests the production
of the physical card, which is then issued to the requester.

The business process fragment executed in case of card
loss is depicted in Fig. 8b. The ICM system first registers
the card loss case and issues a temporary card to the card
holder. If the lost card is found before the production of
a new one, the ICM system recalls the temporary card.
After the production of a new card, the ICM system will
recall the temporary card and issue the new one. If the
lost card is found after the production of the new one but
before the recall of the temporary one, the ICM system
will recall the old card before recalling the temporary one.

The activity diagram in Fig. 8c corresponds to the busi-
ness process fragment executed in case of card expiration.
When a card expires, the ICM system sends the card
holder a letter to recall the card. If the card is returned,
a confirmation receipt is then sent to the card holder; oth-
erwise, another recall letter is sent to her. If, after two
notification letters, the card holder has not returned the
card yet, the ICM system reports the case to the police
and the card holder will be fined.

4.2 Requirement specifications

We now list some requirements specifications associated
with the three fragments of the ICM business process, and
show how they can be expressed in TemPsy . These nine
specifications (three for each business process fragment)
have been selected out of the 47 available for the ICM ap-
plication. Notice that these specifications have been writ-
ten by the business analysts of our partner, who have do-

8

request

1

card 1

card

1

holder

1

1*

requests

Card

isLost()
isFound()
isReturned()
isExpired()

ICM

approveRequest()
rejectRequest()
notifyApproval()
notifyRejection()
collectPhysicalInfo()
produceCard()
issueTempCard()
issueCard()
recallTempCard()
recallCard()
reportToPolice()
fine()
confirmCardReturned()

Request

CardHolder

tempCard

0..1
newCard
0..1

cards
* 1

Fig. 7: Conceptual model of the ICM business process

Card Request

Notify
Rejection

Evaluate
card request

Notify
approval

Collect
physical info

Issue
card

Approved

Rejected

Notify
approval

No-show

Present

No-show

Present

Approve
request

Reject
request

Produce
card

(a) card request fragment

Card Loss

Register
card loss case

Issue
temporary card

Produce
card

Card found

Card found

Not found

Not found

Recall
temporary card

Issue
new card

Recall
old card

Recall
temporary card

(b) card loss fragment

Card Expiration

Recall
expired card

Recall
expired card

Confirm
receipt

Card returned

Report
to police

Card returned

No reply

No reply

Fine

(c) card expiration fragment

Fig. 8: Activity diagrams of three fragments of the ICM business process

main knowledge, and represent realistic properties being
used in practice.

Card Request:

R1 Once a card request is approved, the requester is no-
tified within three days; this notification has to occur
before the production of the card is started.

R2 The requester has to show up for the collection of her
physical information within five days from the first no-
tification.

R3 If the physical information of the requester is collected
within three days after the second approval notifica-
tion, the card will be produced and then issued to the
requester.

These requirements specifications can be expressed in
TemPsy as follows:

1 temporal R1:
2 before ICM.issueCard
3 ICM.notifyApproval
4 responding at most 3*24*3600 tu
5 ICM.approveRequest
6 temporal R2:
7 after 1 ICM.notifyApproval
8 at most 5*24*3600 tu
9 eventually ICM.collectPhysicalInfo

10 temporal R3:
11 after 2 ICM.notifyApproval
12 at most 3*24*3600 tu
13 ICM.collectPhysicalInfo
14 preceding
15 ICM.produceCard, ICM.issueCard

Property R1 is expressed in lines 1–5. The before
scope is delimited by the event ICM.issueCard. The re-
sponse pattern is bounded (time units are expressed in
seconds) and requires the notification to the requester

(ICM.notifyApproval) to happen in response to the ac-
tion of approving the request (ICM.approveRequest). Prop-
erty R2 (lines 6–9) combines an after scope with an exis-
tence pattern. In R3, the after scope (line 11) is bounded
by the second occurrence of ICM.notifyApproval; this
scope is associated with a precedence chain pattern, where
ICM.collectPhysicalInfo represents the first block and the
events chain ICM.produceCard, ICM.issueCard, the second
block.

Card Loss:

L1 If a card is reported as lost, a temporary card will be
issued to the card holder within one day, and will be
recalled in ten days after the issuance.

L2 After a card has been registered as lost, a new card
should be produced at least two days before its is-
suance.

L3 If the lost card is found after the production of a new
card, the old card and the temporary one should be
recalled within three days.

These requirements specifications can be expressed in
TemPsy as follows:

1 temporal L1:
2 after Card.isLost
3 at most 24*3600 tu
4 ICM.recallTempCard
5 responding at most 10*24*3600 tu
6 ICM.issueTempCard
7 temporal L2:
8 after Card.isLost
9 ICM.produceCard

10 preceding at least 2*24*3600 tu
11 ICM.issueCard
12 temporal L3:
13 after Card.isLost
14 until ICM.issueCard

9

15 ICM.recallCard,
16 ICM.recallTempCard,
17 responding at most 3*24*3600 tu
18 ICM.produceCard,
19 Card.isFound

Property L1 contains an after scope and a response pat-
tern, where the scope boundary contains a time constraint,
and the pattern also restricts the time distance between
the issuance of a temporary card (ICM.issueTempCard) and
the corresponding card recall event (ICM.recallTempCard).
Property L3 combines an after-until scope with a prece-
dence chain pattern, where the first block corresponds
to the events chain ICM.recallCard, ICM.recallTempCard,
and the second block corresponds to the events chain
ICM.produceCard, Card.isFound.

Card Expiration:

E1 Once a card expires, the holder is notified to return the
card at most twice.

E2 In case the expired card has not been returned after
five days from the second notification to the holder,
the latter will be fined after the case will be reported
to the police.

E3 Once a card is returned, the holder will receive a con-
firmation within one day.

These requirements specifications can be expressed in
TemPsy as follows:

1 temporal E1:
2 after Card.isExpired
3 until Card.isReturned
4 eventually at most 2 ICM.recallCard
5 temporal E2:
6 after 2 ICM.recallCard
7 at least 5*24*3600 tu
8 until Card.isReturned
9 ICM.fine

10 responding
11 ICm.reportToPolice
12 temporal E3:
13 globally
14 ICM.confirmCardReturned
15 responding at most 24*3600 tu
16 Card.isReturned

Property E1 uses an after-until scope, where the left
boundary event corresponds to the expiration of the card
(Card.isExpired) and the right boundary event corre-
sponds to the return of the card (Card.isReturned). A
bounded existence pattern is used to specify the maxi-
mum amount of notifications (ICM.recallCard) that can
occur. In property E2 we use an after-until scope com-
bined with the keyword ‘at least’ for the first bound-
ary, to delimit the period during which the card holder
will be fined once the expiration case is reported to
the police (ICM.reportToPolice). Property E3 states an
invariant of the system (using the globally scope) for
the response pattern that correlates the return of the
card (Card.isReturned) to the confirmation to the holder
(ICM.confirmCardReturned).

4.3 Adoption of TemPsy by our partner
Our partner has adopted TemPsy as the specification lan-
guage for expressing the requirements of its business pro-

Activity
A1

Event
start

Activity
A4

Event
end

at least 1000 tu
Response
Example C

event E1

Activity
A2

Fig. 9: Example of the graphical notation for TemPsy

Table 1: Distribution of requirements from the ICM busi-
ness process in terms of the combination of scopes and
patterns

scope+pattern # of requirements

globally+universality 1
globally+absence 1
globally+existence 2
globally+precedence 4
globally+response 4
before+absence 1
before+existence 2
before+precedence 3
before+response 2
after+universality 1
after+absence 1
after+existence 4
after+precedence 3
after+response 2
between-and+universality 2
between-and+absence 2
between-and+existence 1
between-and+precedence 1
between-and+response 1
after-until+universality 1
after-until+absence 1
after-until+existence 4
after-until+precedence 1
after-until+response 2

cess models. TemPsy specifications have provided business
analysts with a means to reason and formalize business
process requirements, and have replaced informal speci-
fications written in natural language. Our partner has
also developed, for internal use, a graphical version of
TemPsy , which has been integrated into the SoftwareAG
ARIS modeling tool [60], as part of the Prometa business
process modeling framework6; although the illustration of
the graphical notation for TemPsy is out of the scope of
this paper, we provide an example of it in Fig. 9.

In terms of expressiveness, we recall that TemPsy has
been designed based on the analysis of the structure of the
requirements specifications written by our partner. Hence,
all the requirements of the case study presented in the pre-
vious section could be expressed with TemPsy . Table 1
shows the distribution of the 47 requirements of the ICM
business process, in terms of the combination of scopes and
patterns.

6https://joinup.ec.europa.eu/community/nifo/case/prometa-
organisational-interoperability-framework-eservice-design-
luxemburg.

10

5 Formal Semantics of TemPsy

This section presents the formal semantics of TemPsy , us-
ing the concept of temporal linear traces.

5.1 Events and Trace
Event. An atomic event e is an element of the set Σ, which
contains all the symbolic strings corresponding to opera-
tions recorded in a trace or log.

EventChain. An EventChain is a chain of Events oc-
curring in sequence, with an optional quantification of
the time distance between each pair of adjacent ele-
ments. An m-length EventChain (m > 1) is denoted as
e1, t1, e2, . . . , tm−1, em. The symbol ti (with 1 ≤ i ≤ m−1)
represents the time distance between ei and ei+1 (if de-
fined) and has the form ti = # ./i δi tu with δi ∈ N+ and
./i∈ {at least, at most, exactly}; when ti is undefined
we use the notation ti = ⊥. Function len(EC) returns the
length m of an m-length EventChain EC .

Trace. A n-length trace λ is a finite sequence of atomic
events (e0, . . . , en−1), where e0 is its starting event and n
is the length. The universal set of sub-traces is denoted as
Λ.

We assume that each event in a trace is timestamped
and that there is a function τ : N → N, which returns the
timestamp τ(i) at which the event in position i of the trace
occurred. The timestamp is a natural number and repre-
sents the absolute value of time with respect to the time
unit defined for the system. Given a trace λ we assume
that the sequence of timestamps τ(0), τ(1), . . . , τ(n − 1)
is strictly monotonic, i.e., τ(i) < τ(i + 1) for all i, with
0 ≤ i ≤ n− 2.

We now introduce some notations used in the rest of the
section. Given an n-length trace λ,

• λ(i) denotes the atomic event at position i in the trace,
with 0 ≤ i ≤ n− 1;

• td(i, j) denotes the time distance between λ(i) and
λ(j) and is defined as td(i, j) ≡ τ(j)− τ(i), with 0 ≤
i ≤ j ≤ n− 1;

• λ(i : j) denotes the sub-trace of λ from λ(i) to λ(j)
including both bounds, with 0 ≤ i ≤ j ≤ n− 1;

• #(λ, i, j, e) denotes the number of occurrences of event
e in the sub-trace λ(i : j) of λ.

5.2 Temporal Expressions
In the following definitions, let e, e1, e2 be atomic events;
EC 1,EC 2 be event chains; n be the length of a trace; b, d
be positive natural numbers denoting time distances; a, c
denote the specific occurrence of a scope boundary event
and range over {0, . . . , n−1} if defined or be equal to {⊥} if
undefined; α, α′, β′, γ, θ, θ′, η, η′ be auxiliary variables rang-
ing over {0, . . . , n− 1}.

Scopes. Let S be the set of scopes that can be derived
from the non-terminal 〈Scope〉 in the grammar in Fig. 2.
A scope s ∈ S is a set of sub-traces of an n-length trace
λ ∈ Λ defined by the function φ[s](λ) : Λ→ 2Λ as follows:
globally: φ[globally](λ) = {λ}

before:

• φ[before a e](λ) =
{
λ(0 : θ − 1) | θ ≥ 1, λ(θ) = e,

#(λ, 0, θ, e) = m
}

• φ[before a e at least b tu](λ) =
{
λ(0 : θ′) | λ(θ) =

e, θ′ = max({γ | td(γ, θ) ≥ b}),#(λ, 0, θ, e) =
m
}

• φ[before a e at most b tu](λ) =
{
λ(θ′ : θ− 1) | λ(θ) =

e, θ′ = max({γ | td(γ, θ) ≥ b}),#(λ, 0, θ, e) =
m
}

• φ[before a e exactly b tu](λ) =
{
λ(θ′ : θ′) | λ(θ) =

e, θ′ = max({γ | td(γ, θ) ≥ b}),#(λ, 0, θ, e) =
m
}

where m =

{
1, if a = ⊥
a, else

after:

• φ[after a e](λ) =
{
λ(θ + 1 : n − 1) | θ ≤ n −

2, λ(θ) = e,#(λ, 0, θ, e) = m
}

• φ[after a e at least b tu](λ) =
{
λ(θ′ : n− 1) | λ(θ) =

e, θ′ = min({γ | td(θ, γ) ≥ b}),#(λ, 0, θ, e) = m
}

• φ[after a e at most b tu](λ) =
{
λ(θ + 1 : θ′) | λ(θ) =

e, θ′ = min({γ | td(θ, γ) ≥ b}),#(λ, 0, θ, e) = m
}

• φ[after a e exactly b tu](λ) =
{
λ(θ′ : θ′) | λ(θ) =

e, θ′ = min({γ | td(θ, γ) ≥ b}),#(λ, 0, θ, e) = m
}

where m =

{
1, if a = ⊥
a, else

between-and:

• φ[between e1 and e2](λ) =
{
λ(αk + 1 : βk − 1) |

∀k ≥ 0, αk < βk < αk+1, λ(αk) = e1, λ(βk) =
e2,∀j, αk < j < βk, λ(j) 6= e2,∀i, βk < i <
αk+1, λ(i) 6= e1

}
• φ[between e1 and e2 at least d tu](λ) =

{
λ(αk + 1 :

β′k) | ∀k ≥ 0, αk < βk < αk+1, λ(αk) =
e1, λ(βk) = e2,∀j, αk < j < βk, λ(j) 6=
e2,∀i, βk < i < αk+1, λ(i) 6= e1, β

′
k = max({γ |

td(γ, βk) ≥ d})
}

• φ[between e1 at least b tu and e2](λ) =
{
λ(α′k : βk −

1) | ∀k ≥ 0, αk < βk < αk+1, λ(αk) =
e1, λ(βk) = e2,∀j, αk < j < βk, λ(j) 6=
e2,∀i, βk < i < αk+1, λ(i) 6= e1, α

′
k = min({γ |

td(αk, γ) ≥ b})
}

• φ[between e1 at least b tu and e2 at least d tu](λ) ={
λ(α′k : β′k) | ∀k ≥ 0, αk < βk < αk+1, λ(αk) =
e1, λ(βk) = e2,∀j, αk < j < βk, λ(j) 6=
e2,∀i, βk < i < αk+1, λ(i) 6= e1, α

′
k = min({γ |

td(αk, γ) ≥ b}), β′k = max({γ | td(γ, βk) ≥ d}
}

• φ[between a e1 and c e2](λ) =
{
λ(α + 1 : β − 1) |

λ(α) = e1,#(λ, 0, α, e1) = x, λ(β) = e2,#(λ, α+
1, β, e2) = y

}
• φ[between a e1 and c e2 at least d tu](λ) =

{
λ(α + 1 :

β′) | λ(α) = e1,#(λ, 0, α, e1) = x, λ(β) =
e2,#(λ, α + 1, β, e2) = y, β′ = max({γ |
td(γ, β) ≥ d}

}
• φ[between a e1 at least b tu and c e2](λ) =

{
λ(α′ : β −

1) | λ(α) = e1,#(λ, 0, α, e1) = x, λ(β) =
e2,#(λ, α + 1, β, e2) = y, α′ = min({γ |
td(α, γ) ≥ b}

}
11

• φ[between a e1 at least b tu and c e2 at least d tu](λ) ={
λ(α′ : β′) | λ(α) = e1,#(λ, 0, α, e1) =
x, λ(β) = e2,#(λ, α+1, β, e2) = y, α′ = min({γ |
td(α, γ) ≥ b}, β′ = max({γ | td(γ, β) ≥ d}

}
where x =

{
1, if a = ⊥
a, else

and y =

{
1, if c = ⊥
c, else .

after-until:

• φ[after e1 until e2](λ) = φ[between e1 and e2](λ) ∪{
λ(η+1 : n−1) | η = min({γ | γ ≤ n−2, λ(γ) =

e1,∀k, γ < k ≤ n− 1, λ(k) 6= e2})
}

• φ[after e1 until e2 at least d tu](λ) =

φ[between e1 and e2 at least d tu](λ) ∪
{
λ(η + 1 :

n − 1) | η = min({γ | γ ≤ n − 2, λ(γ) =
e1,∀k, γ < k ≤ n− 1, λ(k) 6= e2})

}
• φ[after e1 at least b tu until e2](λ) =

φ[between e1 at least b tu and e2](λ) ∪
{
λ(η′ : n − 1) |

η′ = min({γ | td(η, γ) ≥ b}), η = min({γ |
λ(γ) = e1,∀k, γ < k ≤ n− 1, λ(k) 6= e2})

}
• φ[after e1 at least b tu until e2 at least d tu](λ) =
φ[between e1 at least b tu and e2 at least d tu](λ) ∪{
λ(η′ : n − 1) | η′ = min({γ | td(η, γ) ≥ b}), η =

min({γ | λ(γ) = e1,∀k, γ < k ≤ n − 1, λ(k) 6=
e2})

}
• φ[after a e1 until c e2](λ) =

φ[between a e1 and c e2](λ) ∪
{
λ(η + 1 : n − 1) |

η ≤ n − 2, λ(η) = e1,#(λ, 0, η, e1) =
x,#(λ, η + 1, n− 1, e2) < y

}
• φ[after a e1 until c e2 at least d tu](λ) =

φ[between a e1 and c e2 at least d tu](λ) ∪
{
λ(η + 1 :

n − 1) | η ≤ n − 2, λ(η) = e1,#(λ, 0, η, e1) =
x,#(λ, η + 1, n− 1, e2) < y

}
• φ[after a e1 at least b tu until c e2](λ) =

φ[between a e1 at least b tu and c e2](λ) ∪
{
λ(η′ :

n − 1) | η′ = min({γ | td(η, γ) ≥ b}), λ(η) =
e1,#(λ, 0, η, e1) = x,#(λ, η + 1, n− 1, e2) < y

}
• φ[after a e1 at least b tu until c e2 at least d tu](λ) =
φ[between a e1 at least b tu and c e2 at least d tu](λ) ∪{
λ(η′ : n − 1) | η′ = min({γ |

td(η, γ) ≥ b}), λ(η) = e1,#(λ, 0, η, e1) =
x,#(λ, η + 1, n− 1, e2) < y

}
where x =

{
1, if a = ⊥
a, else

and y =

{
1, if c = ⊥
c, else .

Event and EventChain matching function. Let λ be
an n-length trace, EC be an m-length EventChain (1 ≤
m ≤ n). The matching function match returns true if
there is an occurrence of an event (or of an EventChain) in
a certain position of the trace. For a 1-length EventChain
EC = e, i.e., a single event, we have match(λ,EC, i) =
true, with i, 0 ≤ i ≤ n− 1, if λ(i) = e. For an event chain
EC = e1, t1, e2, . . . , tm−1, em, we have match(λ,EC , i) =
true, with i, 0 ≤ i ≤ n −m, if there exist i1, i2, . . . , im ∈
{0, . . . , n − 1}, such that i1 = i, ik+1 = ik + 1, 1 ≤ k ≤
m − 1, λ(i1) = e1, λ(i2) = e2, . . . , λ(im) = em and for all
j, 1 ≤ j ≤ m− 1, such that tj 6= ⊥, we have:

td(ij , ij+1) ≥ δj if ./j= at least;
td(ij , ij+1) ≤ δj if ./j= at most;
td(ij , ij+1) = δj if ./j= exactly.

For an events chain EC = e1, t1, e2, . . . , tm−1, em we
also define two auxiliary functions first(λ,EC , i) and
last(λ,EC , i), which return, respectively, the timestamp
of the first and the last event of EC when the chain is
matched in position i of the trace λ.

Patterns. Let P be the set of patterns that can be derived
from the non-terminal 〈Pattern〉 in the grammar in Fig. 2.
The semantics of a pattern p ∈ P is given by the function
ψ[p](λ) : Λ→ {true, false} defined as follows:

universality: ψ[always e](λ)⇔ ∀i, 0 ≤ i ≤ n− 1, λ(i) = e
absence:

• ψ[never e](λ)⇔ ∀i, 0 ≤ i ≤ n− 1, λ(i) 6= e

• ψ[never exactly m e](λ)⇔ #(λ, 0, n− 1, e) 6= m

existence:

• ψ[eventually e](λ)⇔ ∃i, 0 ≤ i ≤ n− 1, λ(i) = e

• ψ[eventually ./ m E](λ)⇔ #(λ, 0, n− 1, e)4 m

where 4 =


≥, if ./= at least;

≤, if ./= at most;

=, if ./= exactly.

precedence:

• ψ[EC1 preceding EC2](λ) ⇔ ∀i, 0 ≤ i < n −
1,match(λ,EC 2, i) ⇒ ∃j, 0 ≤ j ≤ i −
len(EC 1),match(λ,EC 1, j)

• ψ[EC1 preceding ./ b tu EC2](λ) ⇔ ∀i, 0 ≤ i <
n − 1,match(λ,EC 2, i) ⇒ ∃j, 0 ≤ j ≤ i −
len(EC 1),match(λ,EC 1, j) and
(first(λ,EC2, i)− last(λ,EC1, j))4 b

where 4 =


≥, if ./= at least;

≤, if ./= at most;

=, if ./= exactly.
response:

• ψ[EC1 responding EC2](λ) ⇔ ∀i, 0 ≤ i < n −
1,match(λ,EC 2, i) ⇒ ∃j, i + len(EC 2) ≤ j ≤
n− 1,match(λ,EC 1, j)

• ψ[EC1 responding ./ b tu EC2](λ) ⇔ ∀i, 0 ≤ i < n −
1,match(λ,EC 2, i) ⇒ ∃j, i + len(EC 2) ≤ j ≤
n− 1,match(λ,EC 1, j) and
(first(λ,EC1, i)− last(λ,EC2, j))4 b

where 4 =


≥, if ./= at least;

≤, if ./= at most;

=, if ./= exactly.

Temporal Expression. The semantics over a trace λ
of a temporal expression derived from the non-terminal
〈TemPsyExpression〉 containing a scope s ∈ S and a pat-
tern p ∈ P, represented as a pair 〈s, p〉, is defined as:
λ |= 〈s, p〉 ⇔ ∀λ′ ∈ φ[s](λ), ψ[p](λ

′).

6 Model-driven Trace Checking of
TemPsy properties

The idea at the basis of our model-driven trace checking
approach is to reduce the problem of checking a TemPsy
property ρ over a trace λ, to the problem of evaluating
an OCL constraint (semantically equivalent to ρ) on an

12

traceElements*

Trace

properties : EList<TemPsyExpression>

applyScopeGlobally(Scope):Elist<EList<TraceElement>>
applyScopeBefore(Scope):Elist<EList<TraceElement>>
applyScopeAfter(Scope):Elist<EList<TraceElement>>
applyScopeBetweenAnd(Scope):Elist<EList<TraceElement>>
applyScopeAfterUntil(Scope):Elist<EList<TraceElement>>
checkPatternUniversality(EList<TraceElement>, Pattern):Boolean
checkPatternExistence(EList<TraceElement>, Pattern):Boolean
checkPatternAbsence(EList<TraceElement>, Pattern):Boolean
checkPatternPrecedence(EList<TraceElement>, Pattern):Boolean
checkPatternResponse(EList<TraceElement>, Pattern):Boolean

TraceElement

event : EString
timestamp : EInt

Fig. 10: Conceptual model for execution traces

instance of a conceptual model for execution traces (equiv-
alent to λ).

This reduction allows us to rely on standard and stable
MDE technology to perform offline trace checking. Indeed,
standard OCL checkers, such as Eclipse OCL [28], can be
used to evaluate OCL constraints on model instances. The
use of a model-driven approach and of standard technolo-
gies fulfills requirement R2 stated in section 1, and enables
us to provide a practical and scalable solution for trace
checking of temporal properties, which is also viable in the
long term.

In the rest of this section, we first introduce the concep-
tual model we have defined to represent execution traces;
afterwards, we provide an overview of our approach and
show how TemPsy properties (decomposed in scopes and
patterns) can be expressed as OCL constraints on the con-
ceptual model. We conclude the section with an example
of the application of the trace checking procedure and with
some notes about the implementation of the approach in
our TemPsy-Check tool.

6.1 Conceptual model for execution traces

The definition of a conceptual model for execution traces
is a key element of our approach, since the transformation
of TemPsy properties into efficiently checkable OCL con-
straints defined on such model is a key strategy for us to
achieve scalability.

We propose a simple and yet generic model of system ex-
ecution traces; it can be extended (by enriching the type of
event) depending on the actual type of system (e.g., busi-
ness process, access control framework) and the type of
properties to check. The model, depicted in Fig. 10 with a
UML class diagram, contains a Trace, which is composed
of a sequence of TraceElements, accessed through the as-
sociation traceElements. Each TraceElement contains an
attribute event of type string, which represents the actual
event recorded in the trace, and an attribute timestamp of
type integer, which indicates the time at which the event
occurred. Class Trace contains also an attribute proper-
ties, which is a collection of TemPsyExpressions7, repre-
senting the properties to be checked on the trace.

We have defined some side-effect-free operations in OCL

7Class TemPsyExpression belongs to the meta-model of the language
(not shown here for space reasons) and represents objects correspond-
ing to the non-terminal 〈TemPsyExpression〉 of the grammar shown
in Fig. 2.

Parse
properties

Log

Instances of
TemPsyExpression

Read Trace

Instance of
class trace

Check OCL invariant
on trace instance True/False

1a

TemPsy
properties

1b

2

Fig. 11: Overview of the approach

for the Trace class; these operations consist of two types of
functions. The first type, of the form applyScope*S*, are
named after the different types of scope (e.g., applyScope-
Before, applyScopeBetweenAnd) and return segment(s) of a
trace (i.e., sub-traces) as determined by the parameters of
the scope provided in input. The second type, of the form
checkPattern*P*, are named after the different types of
pattern (e.g., checkPatternExistence, checkPatternPrece-
dence) and check whether the pattern provided in input as
the second parameter holds on the sub-trace(s) represented
by the first parameter.

6.2 Overview of the approach

Our approach for model-driven trace checking is sketched
in Fig. 11: parallelogram shapes correspond to input/out-
put artifacts, while rectangles correspond to steps in the
approach. The two inputs are represented by a log, cor-
responding to the trace one wants to check, and by a set
of TemPsy properties. The log file is read and converted
(step 1a) to an instance of the class trace in the model
shown in Fig. 10. The TemPsy properties are parsed and
converted (step 1b) to instances of class TemPsyExpression.

The key step (#2 in the figure) of our approach is to eval-
uate an OCL invariant on the trace instance. The check-
ing of this invariant, which can be done using standard
OCL checking tools, is semantically equivalent to perform-
ing trace checking of the TemPsy properties provided in
input.

We have defined this invariant on the Trace class, as
shown in Fig. 12. For every TemPsy property provided in
input (and referenced in the instance of the trace through
the attribute self.properties, line 2), the invariant evalu-
ates a boolean function, which conceptually corresponds to
applying the semantics of the pattern used in the property
(accessed through the expression property.pattern) on a
set of sub-traces, as defined by the scope used in the prop-
erty (accessed through the expression property.scope).

More specifically, the body of the invariant expression is
a multi-way branch (defined through a sequence of if state-
ments), which selects a certain branch based on the specific
scope type used within the property. Within the body of a
branch, first a function of the form applyScope*S* is called.

13

1 context Trace
2 inv: self.properties->forAll(property:TemPsy::TemPsyExpression |
3 let scope:TemPsy::Scope = property.scope, pattern:TemPsy::Pattern = property.pattern in
4 if scope.type = TemPsy::ScopeType::GLOBALLY then
5 let subtraces:Sequence(OrderedSet(TraceElement)) = applyScopeGlobally(scope) in
6 if pattern.type = TemPsy::PatternType::UNIVERSALITY then
7 subtraces->forAll(subtrace | checkPatternUniversality(subtrace, pattern))
8 else if pattern.type = TemPsy::PatternType::EXISTENCE then
9 subtraces->forAll(subtrace | checkPatternExistence(subtrace, pattern))

10 else if pattern.type = TemPsy::PatternType::ABSENCE then
11 subtraces->forAll(subtrace | checkPatternAbsence(subtrace, pattern))
12 else if pattern.type = TemPsy::PatternType::PRECEDENCE then
13 subtraces->forAll(subtrace | checkPatternPrecedence(subtrace, pattern))
14 else if pattern.type = TemPsy::PatternType::RESPONSE then
15 subtraces->forAll(subtrace | checkPatternResponse(subtrace, pattern))
16 endif endif endif endif endif
17 else if scope.type = TemPsy::ScopeType::BEFORE then
18 ...
19 else if scope.type = TemPsy::ScopeType::AFTER then
20 ...
21 else if scope.type = TemPsy::ScopeType::BETWEENAND then
22 ...
23 else if scope.type = TemPsy:ScopeType::AFTERUNTIL then
24 ...
25 endif endif endif endif endif)

Fig. 12: OCL invariant for checking TemPsy properties on a trace

This function takes the scope used in the property as in-
put and returns a collection of sub-traces, as defined by the
scope semantics. Afterwards, the invariant invokes a func-
tion of the form checkPattern*P*, which checks whether
the pattern used in the property holds on each sub-trace.

For instance, let us assume that the type of the scope
of the TemPsy property provided in input is globally and
that the type of the pattern used in the property is re-
sponse. As shown in line 5, the function applyScopeGlob-
ally is invoked to compute the sub-trace(s) defined by the
scope parameter; the return value of this function is as-
signed to variable subtraces. The branch indicated on
line 15 is then taken, which results in the evaluation of
the boolean function checkPatternResponse on all the ele-
ments8 of subtraces, to check whether the input parameter
pattern holds on each sub-trace.

The complete OCL definition of the functions of the form
applyScope*S* and checkPattern*P* is available in the ap-
pendix A. We illustrate examples of the applyScope*S* and
checkPattern*P* operations in subsections 6.3 and 6.4, re-
spectively; to ease legibility and conciseness, all the code
snippets presented in these subsections are written using
pseudocode.

6.3 OCL functions for scopes

In this section we illustrate two examples of the OCL
functions that are used to apply a scope definition on a
trace. We show the pseudocode of functions applyScope-
Before and applyScopeBetweenAnd, corresponding to the be-
fore and the between-and scopes. These functions take as
input an object representing a scope in TemPsy and yield
one or more segments of the trace (i.e., sub-trace(s)), as
determined by the semantics of the scope.

8In the case of scope globally, only the variable subtraces will
contain, by definition, only one trace.

6.3.1 Before

The definition of the function applyScopeBefore is shown in
Algorithm 1. The input parameter scope is an instance of
the before scope, and the output is a list that contains the
trace segments as determined by the structure of scope. We
assume the parameter scope to have the form “before [m]
X [op n tu]” (see section 3.5), in which op stands for the
comparison operator (i.e., “at least”, “at most”, or “ex-
actly”) used in the constraint that defines the time dis-
tance from the scope boundary event X.

The function starts by reading the parameters X, m, op,
and n from the instance of the before scope (lines 1–4).
In addition, we define and initialize to an empty list both
variable result (to store the output value) and the aux-
iliary variable segment (for collecting intermediate trace
elements). If the parameter m is omitted in the scope def-
inition, variable m is replaced with the value 1 (line 6),
according to the default semantics of the before scope. We
then assign to variable t the timestamp of the m-th oc-
currence of event X in the trace (line 7). If t is defined,
it means that the m-th occurrence of the event has been
found in the trace. Lines 9–22 select a segment from the
trace, based on the value of op. For example, when op is
“at least”, line 11 selects all the trace elements that occur
at least n time unit(s) before the m-th occurrence of event
X. If no time distance constraint is specified in the scope
(line 20), the function selects the trace segment starting at
the beginning of the trace and ending at the m-th occur-
rence of event X. The function ends by adding the segment
selected from the trace to the output variable result.

6.3.2 Between-and

Algorithm 2 presents the definition of the function ap-
plyScopeBetweenAnd. This function takes as input an ob-
ject representing an instance of the between-and scope and

14

Algorithm 1: applyScopeBefore
Input: scope : an instance of the before scope

structured as “before [m] X [op n tu]”
Output: result : a list containing the trace segment

as determined by the parameters of scope
1 X ← event name of the scope boundary
2 m← index of the specific occurrence of event X
3 op ← comparison operator of the constraint on time

distance
4 n← time distance from the m-th occurrence of X
5 result ← [], segment ← []
6 if m = null then m← 1
7 t← timestamp of the m-th occurrence of event X
8 if t 6= null then
9 switch op do

10 case “at least” do
11 segment ← trace elements with timestamp

t′ satisfying t′ ≤ t− n
12 end
13 case “at most” do
14 segment ← trace elements with timestamp

t′ satisfying t− n ≤ t′ < t

15 end
16 case “exactly” do
17 segment ← trace elements with timestamp

equal to t− n
18 end
19 otherwise do
20 segment ← trace elements with timestamp

t′ satisfying t′ < t

21 end
22 end
23 end
24 result .append(segment)
25 return result

returns a lists of trace segments. We assume the parameter
scope to have the form “between [m1] X [at least n1 tu]
and [m2] Y [at least n2 tu]”.

The function applyBetweenAnd starts by reading the
parameters from the instance of the between-and scope
(lines 1–6): variables X and Y correspond to the event
names of the left and right scope boundaries; m1 and m2
represent the (optional) index of the specific occurrence of
event X and event Y referred to in the scope definition;
n1 and n2 are the (optional) lower bounds on the time
distances from the two scope boundaries. Optional param-
eters are initialized to null if they are not defined. The
output variable result is initialized to an empty list.

If both m1 and m2 are not defined, we compute the re-
turn value by calling the auxiliary function applyOriginal-
BetweenAnd (line 9), which retrieves all the trace segments
delimited by the two boundary events (taking into account
the distances from the boundaries, if defined). Otherwise,
if either m1 or m2 is undefined, we compute the return
value by calling the auxiliary function applySpecialBe-
tweenAnd (line 14), which retrieves only one trace segment,
as determined by the specific occurrences of the boundary
events and by the time distance from the scope boundaries
(if defined). Notice that in the latter case we consider as
boundary the first occurrence of event X or Y (see assign-

Algorithm 2: applyScopeBetweenAnd
Input: scope : an instance of the between-and scope

structured as “between [m1] X [at least
n1 tu] and [m2] Y [at least n2 tu]”

Output: result : a list of trace segments, as
determined by the parameters of scope

1 X ← event name of the left boundary
2 Y ← event name of the right boundary
3 m1← index of the specific occurrence of event X
4 m2← index of the specific occurrence of event Y
5 n1← lower bound of the time distance from the

m1-th occurrence of event X
6 n2← lower bound of the time distance from the

m2-th occurrence of event Y
7 result ← []
8 if m1 = null && m2 = null then
9 result ← applyOriginalBetweenAnd(X, n1, Y , n2)

10 end
11 else
12 if m1 = null then m1← 1
13 if m2 = null then m2← 1
14 result .append(applySpecialBetweenAnd(m1, X, n1,

m2, Y , n2))
15 end

ments at lines 12–13).
Function applyOriginalBetweenAnd is shown in Algo-

rithm 3. It takes in input the parameters X, Y, n1, n2
of a between-end scope of the form “between X [at least
n1 tu] and Y [at least n2 tu]” and returns a list of the
trace segments determined by the scope semantics. The
function goes through all the elements of the list and iden-
tifies all the segments delimited by the events X and Y,
taking into account the parameters for the time distance
from the scope boundaries.

Besides the output variable result, we define an integer
tuple (i1, t1) to keep track of the starting point of a trace
segment. More precisely, element i1 refers to the index
of the trace element that comes after the left bound of the
segment (characterized by an occurrence of event X), while
element t1 points to the instant that is n1 time units after
the occurrence of the left bound of the segment. The tuple
(i2, t2) is defined in a similar way, to keep track of the end
point of a trace segment (characterized by an occurrence
of event Y).

At each iteration of the loop (lines 5–24), for each ele-
ment of the trace, the function first increments the variable
index and assigns the event of the trace element to variable
e as well as its timestamp to variable t (lines 6–8). Within
the loop, a value of i1 equal to 0 means that the left bound
of the segment has not been found yet. When the current
event matches X (line 10), i1 is assigned the next index of
the current event; t1 is assigned the value of the timestamp
of the current event incremented by n1 time units (line 11).
When variable i1 is different than 0, it means that the left
boundary has been found while the right boundary has not
been found yet. In this case, the function keeps scanning
the remaining trace elements until it finds an occurrence of
event Y. If the current event matches Y and if the current
index is more than i1 (line 14), i2 is assigned the previous
index of the current event; t2 is assigned the value of the
timestamp of the current event decremented by n2 time

15

Algorithm 3: applyOriginalBetweenAnd
Input: strings X,Y and integers n1, n2 (n1 = 0,

n2 = 0 by default), i.e., the parameters of a
between-and scope structured as “between X
[at least n1 tu] and Y [at least n2 tu]”

Output: result : a list of trace segments, as
determined by the parameters of the scope

1 result ← []
2 index ← 0
3 (i1 , t1)← (0, 0)
4 (i2 , t2)← (0, 0)
5 for elem ∈ self .traceElements do
6 index ← index + 1
7 e ← elem.event
8 t ← elem.timestamp
9 if i1 = 0 then

10 if e = X then
11 (i1 , t1)← (index + 1, t + n1)

12 end
13 end
14 else if e = Y && index > i1 then
15 (i2 , t2)← (index − 1, t − n2)
16 segment ← self .traceElements[i1 .. i2]
17 if n1 6= 0 ‖ n2 6= 0 then
18 segment ← trace elements in segment with

timestamps t′ satisfying t1 ≤ t′ ≤ t2
19 end
20 result .append(segment)
21 (i1 , t1)← (0, 0)
22 (i2 , t2)← (0, 0)

23 end
24 end
25 return result

units (line 15). At this point, the function extracts a trace
segment comprised between indexes i1 and i2 (line 16),
whose trace elements have a timestamp comprised between
t1 and t2 (line 18). This segment is added to the output
variable result and then the tuples (i1, t1) and (i2, t2) are
reset (for the next loop iteration).

Function applySpecialBetweenAnd (not shown here) is
defined similarly to function applyOriginalBetweenAnd, but
is extended with two additional parametersm1 andm2, re-
ferring to the specific index of the occurrence of each of the
two boundary events. This function identifies a single seg-
ment of the trace between the m1 -th occurrence of event X
and the m2 -th occurrence of event Y, taking into account
the constraints on the time distances from the two scope
boundaries. The function body is similar to that in Algo-
rithm 3 and is extended with a counter that keeps track
of the number of occurrences of a boundary event found
while traversing the trace elements. Since only one seg-
ment has to be identified with this function, the main loop
is interrupted as soon as such a segment is found.

6.4 OCL functions for patterns
In this section we present two examples of OCL functions
that are used to check if a pattern holds on a sub-trace.
We show the pseudocode of functions checkPatternExis-
tence and checkPatternPrecedence. These functions take
as input a sub-trace and an object representing a pattern

Algorithm 4: checkPatternExistence
Input: a trace segment subtrace and an instance of

the existence pattern pattern, in the form
“eventually [op n] E”

Output: true if pattern holds on subtrace; false
otherwise

1 E ← event name in pattern
2 op ← comparison operator of the bound on the

number of occurrences of event E
3 n← threshold of the occurrence number of event E
4 count ← the number of occurrences of event E in

subtrace
5 return compare(count , op, n)

in TemPsy , and return whether the pattern holds on the
input sub-trace.

6.4.1 Existence

Function checkPatternExistence (see Algorithm 4) takes
in input a trace segment (denoted by the variable sub-
trace) and an instance of the existence pattern (denoted
by the variable pattern). First, the function retrieves some
parameters from variable pattern: the event name E, the
comparison operator op, and the threshold on the number
of event occurrences n (lines 1–3). Then, variable count is
set to the number of occurrences of event E in the input
subtrace (line 4). The function returns the result of the in-
vocation of the auxiliary function compare, which compares
the value of count against the value of parameter n using
the comparison operation defined by op (which can be “at
least”, “at most”, or “exactly”). The auxiliary function
compare, not shown here for space reasons, takes into ac-
count also the case in which op is null, meaning that the
function returns true if the value of count is greater than
0.

6.4.2 Precedence

The definition of function checkPatternPrecedence comes
in four variants, to consider the case whether no time dis-
tance is specified between the two blocks of the patterns,
and the three cases with the different comparison operators
(i.e., “at least”, “at most”, and “exactly”). In the rest of
this section we describe the function checkPatternPrece-
denceAtLeast, shown in Algorithm 5; the functions for the
other cases are similar and omitted for space reasons.

The function checkPatternPrecedenceAtLeast takes in
input a trace segment and the parameters of an instance of
a precedence pattern: block1, block2, and the optional time
distance n between them. Notice that block1 and block2

can be either an atomic event or a chain of events with
optional constraints on the time distances in between.

The semantics of the pattern prescribes that each occur-
rence of block2 is preceded, possibly with a certain time
distance, by an occurrence of block1. In practice, we need
to check whether there is an occurrence of block1 before the
first occurrence of block2 (and at a certain time distance,
if required), since this implies that any other occurrence of
block2 occurring after the first one is preceded by an occur-
rence of block1. We report a violation if we cannot find an
occurrence of block1 before the first occurrence of block2 or
if the distance between the two blocks is less than n.

16

Algorithm 5: checkPatternPrecedenceAtLeast
Input: a trace segment subtrace and the parameters

of an instance of precedence pattern of the
form “block1 preceding [at least n tu]
block2”: two events (chains) block1 and block2,
and a threshold n (n=1 by default) of the
time distance between block1 and block2

Output: true if pattern holds on subtrace; false
otherwise

1 size1 , size2 ← the sizes of block1 and block2

2 firstOfBlock1 ← block1.first().event
3 firstOfBlock2 ← block2.first().event
4 flag1 ← true
5 (i1 , pt1)← (1, 0)
6 (i2 , pt2)← (1, 0)
7 for elem ∈ subtrace do
8 e ← elem.event
9 t ← elem.timestamp

10 if flag1 then
11 op ← block1[i1].timeDistance.op
12 t ′ ← pt1 + block1[i1].timeDistance.value
13 if e = firstOfBlock1 then (i1 , pt1)← (2, t)
14 else if e = block1[i1].event && compare(t , op,

t ′) then
15 (i1 , pt1)← (i1 + 1, t)
16 if i1 = size1 + 1 then flag1 ← false
17 end
18 else (i1 , pt1)← (1, 0)

19 end
20 op ← block2[i2].timeDistance.op
21 t ′ ← pt2 + block2[i2].timeDistance.value
22 if e = firstOfBlock2 then
23 if flag1 ‖ t < pt1 + n then
24 if size2 = 1 then return false
25 else (i2 , pt2)← (2, t)

26 end
27 else return true
28 end
29 else if e = block2[i2].event && compare(t , op, t ′)

then
30 if i2 = size2 then return false
31 else (i2 , pt2)← (i2 + 1, t)

32 end
33 else (i2 , pt2)← (1, 0)

34 end
35 return true

The algorithm uses some auxiliary variables: size1 and
size2 keep track of the number of events to match in each
block; firstOfBlock1 and firstOfBlock2 contain the event
of each block’s first element; flag1 is a boolean that be-
comes false when the first occurrence of block1 has been
fully matched, i.e., all its individual events have been
matched. Moreover, the integer tuple (i1, pt1) (respectively
(i2, pt2)) is used to determine whether the trace element
being checked is a match of the next event in block1 (respec-
tively, block2). More specifically, element i1 (respectively,
i2) stores the position within block1 (respectively, block2)
of the next event to be matched; element pt1 (respectively,
pt2) stores the timestamp of the previous trace element
matched at block1[i1 − 1] (respectively, block2[i2 − 1]).

The function contains a loop that iterates through all
the elements of the input subtrace, trying to match each
element with block1[i1] (lines 10–19) and with block2[i2]
(lines 20–33). As for matching block1, until flag1 is true,
the algorithm checks whether the current element is part
of an occurrence of block1. If it matches the first event of
block1 (line 13), the variable i1 is set to 2 and pt1 is updated
with the current timestamp. Otherwise, if the current trace
element is an occurrence of the event defined at block1[i1]
(with i1 being greater than 1)) and the constraint on the
distance (if defined9) from the previous event at block1[i1−
1] holds (line 14), index i1 is incremented and variable pt1

is updated with the timestamp of the current trace element
(line 15). Moreover, if the matched event is the last event
of block1, variable flag1 is set to false (line 16). Otherwise,
the tuple (i1, pt1) is reset on line 18.

Within each single iteration of the loop, the algorithm
also checks whether the current trace element is part of an
occurrence of block2. If the occurrence of the first event
of block2 is detected (line 22), there are two cases that
may lead to a violation. Either block1 has not been fully
matched yet (i.e., variable flag1 is true) or it has been fully
matched but the timestamp of the current trace element
(that matches the first element of block2) violates the con-
straint on the distance between block1 and block2. If one of
these two conditions holds (line 23), if block2 is composed
of only one event, a violation is reported (line 24), other-
wise (line 25) the algorithm goes on to match10 the rest of
block2 (lines 29–32), since the current element might actu-
ally not be part of an instance of block2. If both of these
conditions are not satisfied (line 27), it means that there is
no violation, i.e., the first block has been fully matched and
the distance constraint between the two blocks is satisfied;
hence, there is no need to match11 the remainder of block2

and the algorithm returns true. If the occurrence of the
first event of block2 is not detected (line 29), if the current
trace element is a match for the event at block2[i2] (with
i2 being greater than 1) and the constraint on the distance
(if defined) from the previous event at block2[i2− 1] holds,
the algorithm either reports a violation when block2 is fully
matched (line 30) or moves the match one step further: the
index i2 is incremented by 1 and pt2 is updated with the
timestamp of the current trace element (line 31). If the
current element is not part of an occurrence of block2, the
tuple (i2, pt2) is reset (line 33).

The algorithm returns true (line 35) when there is no
violation reported in the loop.

6.5 The approach at work: an example

We now show how the approach works on a simple exam-
ple. Consider the trace shown in Fig. 3 and the property
“Event X shall happen at least twice before the third oc-
currence of event Y ”, which can be expressed in TemPsy
as “before 3 Y eventually at least 2 X”, using a before
scope combined with an existence pattern.

9The pseudocode for dealing with the case when the distance be-
tween block elements is not defined has been omitted for simplicity.

10Notice that in this case a violation is reported only if block2 is
fully matched (line 30).

11This is derived from the formal semantics of the preceding opera-
tor, in which the match of the first block, at the proper time distance,
is defined as the consequent of the logical implication that formalizes
the semantics of the operator.

17

Checking this property on the trace using our model-
driven approach is reduced to the evaluation of the OCL
invariant shown in Fig. 12; this evaluation goes as follows.

After extracting the scope and pattern from the property
and assigning them to variables scope and pattern (line 3
in Fig. 12), function applyScopeBefore (detailed in Algo-
rithm 1) is invoked to select the sub-traces determined by
the parameters of scope. In this example, parameter m is
3, the event name X is “Y”, and parameters op and n are
undefined because the scope has no constraint on the time
distance from the scope boundary.

The statement at line 7 of Algorithm 1 will determine
the timestamp of the third occurrence of event Y (38 in this
case) and assign it to variable t. Since the parameter op is
undefined, the case statement at line 20 of the algorithm
will be executed, selecting the sub-trace containing events
with a timestamp less than or equal to 38, i.e., the sub-
trace having the event X at timestamp 2 as first event
and the event Y at timestamp 38 as last event. This sub-
trace is the only element contained in the list returned by
Algorithm 1.

The evaluation of the OCL invariant shown in
Fig. 12 continues with the evaluation of the expres-
sion subtraces->forAll(subtrace | checkPatternPrece-
dence(subtrace, pattern)); in this case, variable subtraces
contains the list returned by function applyScopeBefore, as
discussed above. Function checkPatternExistence will be
invoked once (because list subtraces contains only one ele-
ment), taking in input the sub-trace and variable pattern,
to check the pattern over the sub-trace. In this example,
for Algorithm 4, the parameter corresponding to the event
name E is “X”, the comparison operator op is “at least”,
and the parameter n is 2. The execution of the statement
at line 4 in Algorithm 4 will yield 3 in the variable count,
since there are three occurrences of event X in the input
sub-trace. Afterwards, the value of count is compared to
the parameter n using the comparison operator op; in this
case, the algorithm will return true (since 3 > 2), indicating
that the property is satisfied on this sub-trace.

Since there are no more sub-traces on which to apply
function checkPatternExistence, the evaluation of the in-
variant will return true, indicating that the input property
is not violated by the trace.

6.6 Tool Implementation

We have implemented our model-driven approach for trace
checking of TemPsy properties in a tool named TemPsy-
Check. The tool is based on Xtext [29] and Eclipse
OCL; it is publicly available at http://weidou.github.io/
TemPsy-Check.

TemPsy-Check takes in input a log file in CSV format
and converts it to an intermediary representation (called
“trace description”), defined as a domain-specific language
using the Xtext framework. We have introduced this inter-
mediate representations for traces to support, in the future,
multiple input raw formats for trace logs. The trace de-
scription is then used to generate an XMI file corresponding
to an instance of the trace model. The tool also takes in
input a list of TemPsy properties (defined using the tex-
tual notation shown in Fig. 2) and converts them into an
XMI-based format. The evaluation of the OCL constraints
corresponding (as described in the previous subsections) to

the properties to check on the trace is done using the OCL
checker included in Eclipse OCL [28].

7 Evaluation

In this section we report on the evaluation of TemPsy-
Check. The evaluation focuses on the scalability of the
tool, to assess the relationship between the time taken to
check a property on a trace and the structural properties of
the trace (e.g., length, distribution of events) and the type
of property to check. We also compare the performance of
TemPsy-Check with a state-of-the-art alternative tech-
nology.

We have conducted our evaluation using a benchmark
consisting of a subset of the properties extracted from the
requirements specification documents of the eGovernment
application developed by our public service partner, de-
scribed in section 4. Out of the 47 properties documented
in the case study, we left out of the benchmark the nine
properties using the after-until pattern. Properties of this
type can be rewritten using the between-and scope, pos-
sibly in conjunction with an after scope: for this reason,
they would not have provided additional insights to our
scalability analysis. The 38 properties used for the evalu-
ation are listed in a sanitized form in Table 2. The actual
textual description of each property has been omitted for
confidentiality reasons; for each property we only detail its
structure in terms of scope + pattern. The events involved
in the property (e.g., “a citizen requests a certificate”) are
denoted using uppercase letters.

These properties have been checked on synthesized
traces. We use synthesized traces instead of real ones be-
cause: 1) based on our experience, real traces are often
inadequate to cover a large range of trace lengths and a
variety of properties; 2) we wanted to have great diver-
sity in terms of occurrences of patterns in the traces, while
being able to control this diversity; 3) real traces are valu-
able to assess fault detection capabilities, while in our case
we focus on the scalability of the approach; 4) if we had
used real traces, they could not be shared for forming a
public benchmark, even when sanitized. By using synthe-
sized traces we are able to control in a systematic way the
factors (such as trace length, sub-trace(s) length and posi-
tion, frequency and distance of events) that could impact
the execution time for a specific type of property. At the
same time, we are also able to randomly set other factors,
to avoid any bias.

To synthesize these traces we implemented a trace gener-
ator program. This program allows for generating diverse
(in terms of size, patterns, scopes, event positions and fre-
quency) and realistic traces, without introducing bias. The
generator takes in input a property, the desired length of
the trace to generate and additional parameters depend-
ing on the type of property given in input and the factors
one wants to control. To determine the position in the
trace of the events occurring in the input property, the
generator takes into account the temporal and timing con-
straints prescribed by the semantics of the scope and the
pattern used in the property. Positions in the trace that
are deemed not relevant for the evaluation of the property
are filled with a dummy event. The details of the trace
generation strategy depend on the scope and pattern used
in the properties and are discussed in the next subsections.

18

As an additional contribution of the paper, we also make
available in the TemPsy-Check GitHub repository the ar-
tifacts used in the evaluation, to contribute to the building
of a public repository of case studies for evaluating trace
checking/run-time verification procedures.

Table 2: TemPsy properties used for the evaluation
P1: globally always A
P2: globally never B
P3: globally eventually at least 2 A
P4: globally eventually at most 3 A
P5: globally A responding at most 1000 tu B
P6: globally A responding exactly 1000 tu B
P7: globally A preceding at most 6000 tu B
P8: globally A preceding at least 100 tu B
P9: globally A preceding exactly 100 tu B
P10: globally A, B preceding at least 1000 tu C, D
P11: globally A responding at least 1000 tu B, C
P12: globally A responding B
P13: before A eventually B
P14: before 3 A eventually at least 2 B
P15: before 2 A never B
P16: before A B responding at most 3000 tu C
P17: before A at least 1000 tu B responding at least 1000 tu C
P18: before A B, # at most 6000 tu C preceding D
P19: before 3 A B, # at least 1000 tu C preceding D
P20: before A B preceding C
P21: after A at most 5000 tu eventually B
P22: after A always B
P23: after 2 A exactly 5000 tu eventually B
P24: after A B responding at least 1000 tu C
P25: after A B preceding at most 3000 tu C, D
P26: after 2 A at most 3000 tu B preceding C, D
P27: after 2 A never B
P28: after A at most 1000 tu B responding at most 10 tu C
P29: after A B preceding at least 2000 tu C
P30: after A eventually at most 6 B
P31: after 2 A at least 5000 tu eventually B
P32: between A and B always C
P33: between A at least 1000 tu and B at least 500 tu never C
P34: between A and B C responding at least 1000 tu D
P35: between A and B never exactly 2 C
P36: between 3 A and B always C
P37: between A at least 1000 tu and 2 B C preceding at least 1000 tu D
P38: between 2 A and 2 B eventually at most 10 C

The next three subsections report on the checking of
properties using, respectively, the globally, before/after,
and between-and scopes. For each group of properties
we first describe the trace generation strategy and then
present and discuss the results. The section ends with a
discussion of the results and of the threats to validity. No-
tice that out of the three types of scope considered for the
evaluation, the properties using a globally scope represent
the most challenging in terms of scalability, since the se-
mantics of this scope guarantees that the pattern (used in
the property to check) will be evaluated through the entire
length of the trace.

Moreover, to assess scalability, we also need a baseline
of comparison. Such baseline should be the best available
tool that can be considered an alternative to TemPsy-
Check. We identified such a tool among the partici-
pants to the “offline monitoring” track of the first interna-
tional Competition on Software for Runtime Verification [8]
(CSRV 2014), held in September 2014 as a satellite event
of the 14th International conference on Runtime Verifica-
tion (RV’14). Out of the four tools (RiTHM2 [52], Mon-
Poly [9], STePr, QEA [7]) qualified for the final round of
the competition, RiTHM2 and STePr were not publicly
available12 at the time of writing. Between the remain-
ing two, we chose MonPoly over QEA because only the
former supports a real specification language (MFOTL, a

12The first version of RiTHM is available but it only supports
run-time verification of C programs. As for STePr, no reference is
available in the competition report [8] or online.

metric first-order temporal logic) that is conceptually close
to TemPsy . On the other hand, QEA does not support any
input language and uses an automata-based formalism: the
user has to write a Java program that builds the automa-
ton corresponding to the property to check. To perform
the comparison with MonPoly, we manually translated
the properties into MFOTL formulae; these formulae are
also available in the TemPsy-Check GitHub repository.
We remark that our goal, in this comparison, is not to
fare better than existing technology, but to verify that an
MDE approach to offline trace checking is viable from a
scalability standpoint.

The results reported in this section have been mea-
sured on a desktop computer with a 3 GHz Intel Dual-
Core i7 CPU and 16GB of memory, running Eclipse DSL
Tools v. 4.6.0M3 (Neon Milestone 3), JavaSE-1.7 (Java SE
v. 1.8.0_25-b17, Java HotSpot (TM) 64-Bit Server VM
v. 25.25-b02, mixed mode), Eclipse OCL v. 6.0.1, and
MonPoly v. 1.1.6. All measurements reported correspond
to the average value over 100 runs of the check procedure
(on the same trace, for the same property).

7.1 Properties using the Globally scope
Properties defined with the globally scope are the most
important for assessing the scalability of our approach
with respect to the trace length. Indeed, the semantics of
this scope requires the tool to check the property pattern
through the entire trace, while in the case of the other
scopes, property patterns are checked only on some seg-
ments of the input trace (i.e., on sub-traces). In our col-
lection of properties there are 12 using the scope globally,
in combination with various patterns; they correspond to
properties P1–P12 listed in Table 2.

For this type of properties, given that they are the most
challenging in terms of scalability, we address the following
research questions:

RQ-G1) What is the relation between the execution time
of the trace checking procedure and the length of
a trace?

RQ-G2) What are the types of pattern most taxing on the
execution time?

RQ-G3) How does TemPsy-Check compare with Mon-
Poly in terms of execution time?

7.1.1 Trace Generation Strategy

In the case of the globally scope the generation of the trace
is determined only by the semantics of the pattern used in
the property.

For the universality pattern, we repeat the event occur-
ring in it through the entire trace.

For the existence pattern, we first determine the number
n of occurrences to generate, based on the bound indicated
in the property. If the bound is expressed as “at least m”
or “at mostm” we randomly generate n with a uniform dis-
tribution on the range [m, trace length], respectively [0,m];
if the bound is expressed as “exactly m”, n is set to m.
Afterwards, we randomly generate (with a uniform distri-
bution on the range [1, trace length]) n positions in the
trace where to put the occurrences of the event specified
in the property.

19

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

500

1,000

1,500

Trace length (·103)

T
im

e
(m

s)

(a) P1

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

500

1,000

1,500

Trace length (·103)

T
im

e
(m

s)

(b) P2

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

1,000

2,000

3,000

Trace length (·103)

T
im

e
(m

s)

(c) P3

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

2,000

4,000

6,000

8,000

Trace length (·103)

T
im

e
(m

s)

(d) P4

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

500

1,000

1,500

2,000

Trace length (·103)

T
im

e
(m

s)

(e) P5

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

1,000

2,000

Trace length (·103)

T
im

e
(m

s)

(f) P6

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

500

1,000

1,500

2,000

Trace length (·103)

T
im

e
(m

s)

(g) P7

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

500

1,000

Trace length (·103)

T
im

e
(m

s)

(h) P8

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

500

1,000

1,500

2,000

Trace length (·103)

T
im

e
(m

s)

(i) P9

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

1,000

2,000

3,000

Trace length (·103)

T
im

e
(m

s)

(j) P10

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

1,000

2,000

3,000

Trace length (·103)

T
im

e
(m

s)

(k) P11

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

500

1,000

1,500

Trace length (·103)

T
im

e
(m

s)

(l) P12

Fig. 13: Comparison between the execution time of TemPsy-Check () and of MonPoly () for properties with the
globally scope

For the absence pattern, if the property has the form
never A, the trace is generated without any occurrence of
the event A. If the property has the form never exactly
m A, we randomly generate n with a uniform distribution
on the range [0, . . . ,m− 1,m+ 1, . . . , trace length].

In the case of a property containing a precedence or re-
sponse pattern, we generate a number of occurrences of
events (involved in the property) equal to 10% of the length
of the trace. This value has been selected based on the
frequency of events observed in the application whose re-
quirements are expressed through the properties shown in
Table 2. The simplest case is for a property like globally
B responding at most 10 tu A: assuming a trace length of
1M, we would generate 50K occurrences of the pattern (i.e.,
pairs of A and B), for a total of 100K occurrences of A and
B. More complex cases have to take into account the event
chains used in the property. For the distribution of the
occurrences of the pattern across the trace we have to con-
sider the distance between events. For example, for the
property aforementioned, each occurrence of the response
pattern would span over at most 10 time units; this is the
maximum distance between an occurrence of A and the
corresponding occurrence of B. The number of pattern oc-
currences to generate and the maximum time span of each
pattern occurrence are the parameters used to randomly
allot the pattern occurrences over the trace, according to
a uniform distribution.

7.1.2 Evaluation

We run the trace checking procedure for properties P1–
P12; each property was checked on ten different traces,
with length (i.e., number of events) varying from 100K to
1M. The twelve plots in Fig. 13 depict the execution time
of TemPsy-Check (denoted by) and of MonPoly (de-
noted by) for each of the properties P1–P12, for different
trace lengths. The execution time for both tools has been
measured using the time Unix command.

We answer RQ-G1 by observing that the time taken by
TemPsy-Check ranges from about one hundred millisec-
onds to a bit more than two seconds, and increases linearly
with the length of the trace, depending on the type of prop-
erty. To answer RQ-G2, the results show that the prop-
erties more taxing on the execution time are those with
a response or precedence pattern (e.g., P5, P6, P7, P9,
P11). Regarding RQ-G3, we observe that the time taken
by MonPoly ranges from about one hundred milliseconds
to a bit less than eight seconds, and is also linear with re-
spect to the length of the trace. MonPoly takes longer
for checking properties with a (bounded) existence pattern
(e.g., P3, P4) and with a precedence pattern that contains a
distance constraint of type “at least” (e.g., P10). We can
answer RQ-G3 stating that, except for the case of proper-
ties P3, P4, and P10, the two tools perform almost sim-
ilarly, with absolute differences between execution times
that are quite small (less than one second). In the case

20

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0

0
0

0

100

200

300

400

500

600

Trace length (·103)

T
ra

ce
lo

ad
in

g
ti

m
e

(m
s)

Fig. 14: Trace loading time of TemPsy-Check for traces
with various lengths

of properties P3, P4, and P10, TemPsy-Check performs
much better than MonPoly. A possible explanation for
the slower time of MonPoly for these properties could
be the structure of the corresponding MFOTL formulae,
which contain several nested temporal operators to express
the “eventually at least/at most” pattern (P3, P4) and an
event chain (P10).

The execution times discussed above include not only
the time to perform the actual check, but also the time to
parse/load the trace to check13. As shown in Fig. 14, the
average trace loading time for TemPsy-Check, measured
through instrumentation, ranges from 55 ms to 550 ms,
growing linearly for various trace lengths. Notice that
for checking a single property on a trace with TemPsy-
Check, the trace loading time can take, for larger traces,
from one-fourth to one-third of the total execution time.
Although these values for the trace loading time can seem
high, we expect the loading time not to impact on the total
execution time in the case of batch property checking, i.e.,
checking multiple properties at the same time on a trace.
Checking in batch mode a set of properties, rather than in-
dividual ones, is common in enterprise scenarios in which,
for example, the set of properties to check is decided by
the entity that has invoked a business process [5].

To further investigate this aspect, we compared the exe-
cution time of TemPsy-Check and MonPoly for batch
checking ten properties (P3–P12), over ten traces, with
length ranging from 1M to 10M. These traces have been
obtained by concatenating the traces used for the experi-
ment described above, and by renaming the events within
each trace being concatenated, to avoid name clashes. We
executed TemPsy-Check by providing in input the list
of the ten properties to check. We executed MonPoly
by providing in input one formula corresponding to the
conjunction of the ten formulae equivalent to properties
P3–P12. Figure 15 shows the result of the comparison:
the performance of the two tools are similar for traces of
length up to six millions; over this threshold, MonPoly
gets slower.

13The trace loading time is not available in the output of Mon-
Poly.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Trace length (·106)

E
xe

cu
ti

on
ti

m
e

(s
)

TemPsy-Check

MonPoly

Fig. 15: Comparison of the execution time for the batch
checking of ten properties with the globally scope

7.2 Properties using the Before/After
scopes

Properties defined using the before/after scopes, differently
from the ones using a globally scope, have to be checked
only on the portion of the trace delimited by the scope
boundary. Hence, their scalability does not relate in a di-
rect way with the length of the trace. Nevertheless, they
can help us assess whether and how the type of property
(e.g., the scope used within the property) impacts on the
total execution time. We have checked eight properties
with the before scope (properties P13–P20 in Table 2) and
eleven properties with the after scope (properties P21–P31
in Table 2).

For this type of properties, to assess how the type of
scope used in them impacts on the total execution time,
we address the following research questions:

RQ-BEAF1) What is the relation between the time to
compute the boundary of the scope and the
position of the boundary?

RQ-BEAF2) What are the types of scope most expensive
to compute?

Notice that we do not compare with MonPoly since the
concept of “scope” is not a first-class object in MFOTL
formulae.

7.2.1 Trace Generation Strategy

As remarked above, for this type of properties the scala-
bility of the checking procedure does not relate in a direct
way with the length of the trace. Hence, for both types of
scopes, we fix the length of the generated trace to 100K.
To answer the research questions above, we vary the length
of the sub-trace as determined by the scope boundary, i.e.,
we vary the position of the boundary event in the trace.
In the case of properties with a before scope, the bound-
ary event is placed in positions from 10K to 100K, with a
10K step increment; similarly, for properties with an after
scope, the position of the boundary event varies from 10K
to 90K, with a 10K step increment.

For properties referring to a specific occurrence of
an event in their scope part, such as before 3 B. . . or
after 4 A. . . , we only control the position of the ac-
tual scope boundary (e.g., the third occurrence of B
or the fourth occurrence of A in the examples above).
The other previous occurrences of the boundary event

21

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(a) P13

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(b) P14

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(c) P15

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

300

Position of the bound (·103)

T
im

e
(m

s)

(d) P16

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

300

400

Position of the bound (·103)

T
im

e
(m

s)

(e) P17

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

50

100

150

200

Position of the bound (·103)

T
im

e
(m

s)

(f) P18

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

50

100

150

200

Position of the bound (·103)

T
im

e
(m

s)

(g) P19

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

50

100

150

200

Position of the bound (·103)

T
im

e
(m

s)

(h) P20

Fig. 16: Scope time and pattern time of TemPsy-Check for checking properties with a before scope

are generated in random positions using a uniform
distribution ove the range [0, position of the boundary]
(for properties with a before scope), and over the
range [position of the boundary, trace length] (for proper-
ties with an after scope).

The generation of the patterns corresponding to the ac-
tual properties follows the steps described in section 7.1.1.

7.2.2 Evaluation

We instrumented TemPsy-Check to report the time
taken to compute the boundary of a scope (i.e., to deter-
mine the sub-trace on which to check each property pat-
tern), hereafter referred to as scope time, as well as the
time to check the pattern on the sub-trace, hereafter re-
ferred to as pattern time. More specifically, scope time
corresponds to the time taken to evaluate expressions of
type applyScope*S* in Fig. 12, while pattern time corre-
sponds to the time taken to evaluate expressions of type
checkPattern*P* in Fig. 12.

Figures 16 and 17 show the scope time (denoted by)
and the pattern time (denoted by) for checking, respec-
tively, properties P13–P20 (with a before scope) and prop-
erty P21–P31 (with an after scope), when varying the posi-
tion of the scope boundary. Notice that while in the case of
a before scope a higher position of the bound corresponds
to a longer length of the sub-trace, in the case of an af-
ter scope a lower position of the bounds corresponds to a
longer length.

To answer RQ-BEAF1, we observe from the plots that
both in the case of the before scope and in the case of
the after scope, the scope time grows linear with respect
to the position of the scope boundary. This is due to the
increase of the length of the sub-trace delimited by the
scope boundary.

We answer RQ-BEAF2 by looking at the scope time for
properties P17, P21, P23, P26, P28, P31. These properties
are the most taxing in terms of scope time because the
scope boundary is defined with a distance constraint. This
is particularly true for the cases in which the boundary is
defined using an “at most” constraint (see P21, P26, and

P28).

7.3 Properties using the Between-and
scope

Properties with a between-and scope, similarly to the ones
with a before/after scope, are checked on a portion of trace
provided in input. Depending on the variant of this scope,
the portion of the trace on which properties are checked
might include one or more segments. The scopes used
in properties P32–P35 can potentially select multiple seg-
ments on a trace, while the scopes in properties P36–P38
select exactly one segment on a trace, as determined by
the specific event occurrence used in the scope boundaries
(e.g., as in the case of between 3 A and 2 B).

For this type of properties, given the two variants of
the between-and scope, we address the following research
questions:

RQ-BA1) For the scope variant that can select multiple
segments on the trace, given a fixed length for
the segments, what is the relation between the
number of segments and the time to compute
the scope?

RQ-BA2) For the scope variant that can select multiple
segments on the trace, given a fixed number
of segments, what is the relation between the
length of the segment and the time to compute
the scope?

RQ-BA3) For the scope variant that can select only a sin-
gle segment, given a fixed length for this seg-
ment, what is the relation between the position
of the segment and the time to compute the
scope?

RQ-BA4) For the scope variant that can select only a sin-
gle segment, given a fixed position of this seg-
ment, what is the relation between the length of
the segment and the time to compute the scope?

22

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(a) P21

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

50

100

150

Position of the bound (·103)

T
im

e
(m

s)

(b) P22

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(c) P23

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

50

100

150

Position of the bound (·103)

T
im

e
(m

s)

(d) P24

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(e) P25

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(f) P26

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

50

100

150

Position of the bound (·103)

T
im

e
(m

s)

(g) P27

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)

(h) P28

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

50

100

150

Position of the bound (·103)

T
im

e
(m

s)

(i) P29

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

50

100

150

Position of the bound (·103)

T
im

e
(m

s)

(j) P30

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

Position of the bound (·103)

T
im

e
(m

s)
(k) P31

Fig. 17: Scope time and pattern time of TemPsy-Check for checking properties with an after scope

Notice that also in this case we do not compare with Mon-
Poly because the concept of “scope” is not a first-class
object in MFOTL formulae.

7.3.1 Trace Generation Strategy

For both types of between-and scope variants, we fix the
length of the generated trace to 100K. To answer RQ-BA1
and RQ-BA2 we consider properties P32–P35. For these
properties, we control two parameters for the trace gener-
ation: the length L of each segment selected by the scope
and the number of segments N . By fixing L to 2000, we
can split the 100K trace into 50 segments. The generator
varies the number N of actual segments to generate from
5 to 50, with a 5-step increment. By fixing N to 20, and
assuming a minimum length of 2000 for a segment (given
the time constraints in P33), the generator produces traces
with segments of length varying from 2000 to 5000, with
1K-step increment.

To answer RQ-BA3 and RQ-BA4 we consider properties
P36–P38. For these properties we control two parameters:
the length L′ of the segment and the position P of one of
its bounds. By fixing L′ to 10K, we vary the position of the
right bound from position 10K to position 100K with 10K-
step increment, i.e., we vary the position of the segment in
the trace. By fixing the position P to 10001, we can vary
L′ from 10000 to 90000, with 10K-step increments.

7.3.2 Evaluation

As done above for the case of properties with a before/after
scope, we also distinguish between scope time and pattern
time for checking properties with a between-and scope.

To answer RQ-BA1 we observe the plot in Fig. 18. The
scope time for properties P32–P35 when varying the num-
ber of segments (as determined by the scope) on which
to check the property pattern, slightly increases with the
number of segments to consider; the higher scope time for
property P33 is due to the presence of a time distance con-
straint for the (left) scope boundary.

We answer RQ-BA2 by looking at the plot in Fig. 19.
In the case of checking properties P32–P35 when fixing
the number of segments to 20 and varying the segment
length from 2000 to 5000, the scope time is almost constant
(about 200 ms) for all properties but P33, because of the
time distance constraint for the (left) scope boundary.

The answer to RQ-BA3 can be found by looking at the
plot in Fig. 20. In the case of checking properties P36–
P38 when varying the position of the segment on which the
property pattern is checked and keeping the segment length
constant, the scope time increases linearly with respect to
the position of the segment.

We answer RQ-BA4 by observing the plot in Fig. 21.
In the case of checking properties P36–P38 when varying
the length of the segment, the scope time increases linearly
with respect to the length of the segment.

7.4 Discussion

The results presented in the previous subsections have
shown the feasibility of applying our model-driven ap-
proach for offline trace checking in realistic settings.

Our TemPsy-Check tool is a viable technology from a
performance standpoint point as it can analyze very large
traces (with one million events) in about two seconds. The

23

5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

100

200

300

Number of segments

T
im

e
(m

s)

(a) P32

5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

100

200

300

400

Number of segments

T
im

e
(m

s)

(b) P33

5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

100

200

300

Number of segments

T
im

e
(m

s)

(c) P34

5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

100

200

300

Number of segments

T
im

e
(m

s)

(d) P35

Fig. 18: Scope time and pattern time of TemPsy-Check for checking properties with a between-and scope (multiple
segments, fixed length)

2 3 4 5
0

100

200

Segment length (·103)

T
im

e
(m

s)

(a) P32

2 3 4 5
0

100

200

300

400

Segment length (·103)

T
im

e
(m

s)

(b) P33

2 3 4 5
0

100

200

300

Segment length (·103)

T
im

e
(m

s)
(c) P34

2 3 4 5
0

100

200

Segment length (·103)

T
im

e
(m

s)

(d) P35

Fig. 19: Scope time and pattern time of TemPsy-Check for checking properties with a between-and scope (fixed
number of segments, various lengths)

tool scales linearly with respect to the length of the input
trace to check. Notice that “the input trace to check” can
correspond also to a sub-trace of an actual, larger execution
trace. This can be the case for properties referring to events
occurring in time windows (see, for example, the service
provisioning patterns presented in [15]). In these cases,
one can first isolate from the original trace the window of
interest and then feed the latter to our tool.

We have also compared the performance of our imple-
mentation to MonPoly, a comparable, state-of-art tool.
Despite the fact that MonPoly is a tool that implements
a dedicated algorithm [11] for trace checking of temporal
logic properties, our TemPsy-Check tool (which relies on
a generalist OCL checker) not only achieves similar results,
but in some cases it also performs better than MonPoly.

We also remark that writing some of the properties in
MFOTL was challenging (despite previous knowledge of
MFOTL), much more than when using TemPsy . This chal-
lenge could be overcome by defining properties in TemPsy
and then providing an automatic translation to MFOTL
formulae or, dually, by building a system of property spec-
ification patterns on top of MFOTL. In both cases, one
would have satisfied one of our requirements (R1, see sec-
tion 1) and could have then relied on MonPoly for trace
checking. While this could be in principle a viable ap-
proach, it would not fulfill another requirement (R2, see
section 1), which entails to rely on standard and stable
MDE technology for checking temporal properties. We
remark that these requirements are not specific to this
project, but are more general because 1) analysts may not
be able to handle the mathematical background required
by temporal logic; and 2) there are many contexts where so-
lutions have to be engineered by using standardized MDE
technologies.

Overall, we can conclude that a model-driven approach
to offline trace checking of realistic temporal properties is

viable, even on very large traces, and compares favorably
with the state-of-the-art.

7.4.1 Threats to validity

The main threat to validity to the results presented above
is the intrinsic presence of errors in the toolchain we de-
veloped. We tried to compensate for this by thoroughly
testing the checker with traces and properties for which
the oracle was previously known. Another potential threat
is the fact that we have performed trace checking on syn-
thesized traces. Real execution traces might be different, in
terms of events occurrences and time distances. However,
this threat does not affect our research question on scala-
bility, as we want to analyze the execution time as a func-
tion of a number of parameters (e.g., trace length), while
varying randomly other aspects (e.g., position of certain
events). As explained at the beginning of this section, for
that purpose, synthesized traces are better than real ones
as they guarantee we have the data to perform our analysis
by controlling certain factors and varying others randomly.
Nevertheless, real traces (with faults in the system) could
be helpful to assess the cost-benefit of the proposed trace
checking procedure; this is out of the scope of this paper.
Finally, as for the comparison with MonPoly, we remark
that its specification language (MFOTL) is more expressive
than TemPsy (see also section 3.6), hence the performance
of MonPoly could have been negatively affected by the
more complex implementation needed to support a richer
specification language. Moreover, the MFOTL properties
that we wrote to perform the comparison described in sub-
section 7.1 could be written in a different, but semantically-
equivalent form that could lead to different results. We
tried to mitigate this aspect by having the MFOTL for-
mulae written by a person with ten years of experience in
formal specification (and verification) with temporal logics.
Furthermore, we believe that in practice, it might be hard

24

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

Position of the right bound (·103)

T
im

e
(m

s)

(a) P36

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

Position of the right bound (·103)

T
im

e
(m

s)

(b) P37

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

100

200

Position of the right bound (·103)

T
im

e
(m

s)

(c) P38

Fig. 20: Scope time and pattern time of TemPsy-Check for checking properties with a between-and scope (single
segment of fixed length, different positions)

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

300

Segment length (·103)

T
im

e
(m

s)

(a) P36

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

200

400

Segment length (·103)

T
im

e
(m

s)

(b) P37

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

100

200

300

Segment length (·103)

T
im

e
(m

s)

(c) P38

Fig. 21: Scope time and pattern time of TemPsy-Check for checking properties with a between-and scope (single
segment, various lengths)

anyway for practitioners (with limited background in tem-
poral logic) to find out what is the optimal way to express
a property in MFOTL.

8 Related Work

The work presented in this paper is related to MDE ap-
proaches for specifying temporal properties and to ap-
proaches for trace checking/run-time verification. We re-
view these areas in the next two subsections.

8.1 MDE approaches for specifying tem-
poral properties

There have been several proposals in the MDE community
to define high-level specification languages for expressing
temporal properties; all these proposals are realized as tem-
poral extensions of OCL. In the rest of this section we sum-
marize them and discuss their differences and limitations
with respect to TemPsy .

8.1.1 Pattern-based temporal extensions of OCL

The approaches that are most similar to TemPsy are those
that extend OCL with support for Dwyer et al.’s property
specification patterns.

Flake and Mueller [34] define a state-oriented OCL ex-
tension for expressing Dwyer et al.’s patterns over UML
Statecharts configurations. The extension is based on the
introduction of a special temporal operation, which can be
applied to objects that have an associated Statechart. The
evaluation of this operation at a certain time point yields
the set of state configuration sequences in the time interval
defined by the parameters of the operation. The extension,
in addition to allowing for expressing the original definition

Table 3: Comparison between pattern-based temporal
extensions of OCL and TemPsy

Language Features Tool

NOOP TDOP SOS TDS support

[34] - + - - -
[45] - - - * -
[57] + * - * n/a
[42] + * - * +
TemPsy + + + + +

Legend. NOOP: Number of Occurrences in occurrence
Patterns; TDOP: Time Distance in order Patterns; SOS:
Specific Occurrence in Scopes; TDS: Time Distance in
Scopes; *: partial support; n/a: tool mentioned in the
paper but not available.

of patterns in [27], adds also the support for specifying time
distances in order patterns.

Küster-Filipe and Anderson [45] propose a liveness tem-
plate for OCL to define future-oriented time-bounded con-
straints that are expressed with a time-bounded after scope
and an existence pattern. This template is defined in terms
of the real-time temporal logic of knowledge, interpreted
over timed automata, to allow for formal reasoning. The
expressiveness of this extension is very limited since it sup-
ports only one scope/pattern combination.

Robinson [57] presents a temporal extension of OCL
called OCLTM, developed in the context of a framework for
monitoring of requirements expressed using a goal model.
OCLTM includes all the operators corresponding to stan-
dard LTL modalities, and supports Dwyer et al.’s patterns
and time distances in patterns. In this regard, it is very
close to the expressiveness of TemPsy , though it supports
neither the reference to a specific occurrence of an event in
scopes nor two types of constraints (as TemPsy does with

25

the keywords ‘at least’ and ‘exactly’) on time distances
in scopes and order patterns.

Kanso and Taha [42] introduce Temporal OCL, a
pattern-based temporal extension of OCL. Although the
support for temporal patterns is very similar between the
two languages, Temporal OCL does not allow references
to specific event occurrences in scope boundaries and does
not fully support constraints on the time distance from a
scope boundary (it only supports state-change events).

Table 3 provides a comparison of these four approaches
with TemPsy , in terms of the following language features,
derived from the analysis of the requirements specifications
of our case study (see section 3.1): 1) the possibility of
referring to the number of occurrences of an event in oc-
currence patterns (NOOP); 2) the possibility of defining a
time distance between events in order patterns (TDOP);
3) the possibility of referring to a specific occurrence of an
event in scopes (SOS); 4) the possibility of defining a con-
straint on the time distance from scope boundaries (TDS).
The table also indicates whether the proposed language
extension includes tool support.

As you can see, TemPsy is the only pattern-based lan-
guage that provides support for all the specific features
needed for the specification of requirements in the context
of our case study.

8.1.2 Other temporal extensions of OCL

Temporal extensions of OCL that are not pattern-based
are mainly realized by extending the language with tem-
poral operators borrowed from standard temporal logic,
such as “always”, “until”, “eventually”, “next”. A prelimi-
nary work in this direction appeared in [23]. OCL/RT [22]
extends OCL with the notion of timestamped events (based
on the original UML abstract meta-class Event) and two
temporal operators, “always” and “sometimes”. Events are
associated with instances of classifiers and, by means of
a special satisfaction operator, it is possible to evaluate
an expression at the time instant when a certain event
occurred. The OCL/RT extension allows for expressing
real-time deadline and timeout constraints but requires to
reason explicitly at the lowest-level of abstraction, in terms
of time instants. Lavazza et al. [46] define the Object Tem-
poral Logic (OTL), which allows users to write temporal
constraints on Real-time UML (UML-RT) models. In par-
ticular, it supports the concepts of Time, Duration, and
Interval to specify the time distance between events. Nev-
ertheless, the language is modeled after the TRIO tem-
poral logic [50], and the properties are written using a
low level of abstraction. Ziemann and Gogolla [62] pro-
pose TOCL, an extension of OCL with LTL operators, to
specify constraints on the temporal evolution of the sys-
tem states. Being based on LTL, TOCL does not support
real-time constraints. Bill et al. [18] define cOCL, an ex-
tension of OCL with CTL temporal operators to express
properties over the lifetime of an instance model. These
properties are then verified with an explicit state space
model checking framework. Being based on CTL, cOCL
does not support real-time constraints. The work on Flake
and Mueller [33] goes in a similar direction, proposing an
extension of OCL that allows for the specification of past-
and future-oriented time-bounded constraints. They do
not support event-based specifications; moreover, the pro-
posed mapping into Clocked LTL does not allow to rely on

standard OCL tools. Soden and Eichler [59] propose Lin-
ear Temporal OCL (LT-OCL) for languages defined over
MOF meta-models in conjunction with operational seman-
tics. LT-OCL contains the standard LTL operators. The
interpretation of LT-OCL formulae is defined in the context
of a MOF meta-model and its dynamic behavior specified
by action semantics using the M3Actions framework.

Since all these temporal extensions of OCL are based
on some temporal logic and include temporal logic op-
erators, they intrinsically inherit the limitations of other
specification approaches based on temporal logic: 1) they
require strong theoretical and mathematical background,
which are rarely found among practitioners; 2) they pro-
vided limited tool support, often based on prototypes that
do not scale for industrial applications.

A different type of support for temporal constraints is
proposed by Cabot et al. [21]. They extend UML to use
UML/OCL as a temporal conceptual modeling language,
introducing the concepts of durability and frequency for the
definition of temporal features of UML classifiers and asso-
ciations. They define temporal operations in OCL through
which it is possible to refer to any past state of the system.
These operations are mapped into standard OCL by re-
lying on the mapping of the temporally-extended concep-
tual schema into a conventional UML one, which explic-
itly instantiates the concepts of time interval and instant.
However, the temporal operations are geared to express
temporal integrity constraints on the model, rather than
temporal properties correlating events of the system.

8.2 Trace Checking and Run-time Verifi-
cation

Model-driven technologies have been used in various work
on (run-time) trace and/or assertion checking. The model-
driven approach for assertion checking proposed in [61] re-
lies on the principles of aspect-oriented programming and
uses a technique called two-level aspect weaving. First,
cross-cutting assertions defined using ECL, an extension
of OCL, are weaved into a model defined within GME
(Generic Modeling Environment [24]) and then the code
for checking the contracts specified in the models is gen-
erated using model-driven program transformations [37].
ECL does not support the expression of temporal con-
straints. An approach conceptually similar to ours is pro-
posed in [30], in which pre- and post-conditions are ex-
pressed with visual contracts defined using graph trans-
formations and then transformed into a code-level repre-
sentation as JML (Java Modeling Language) assertions.
The pre- and post-conditions that can be expressed in
this framework are functional and do not support tempo-
ral expressions. Reference [58] proposes a model-driven
approach for monitoring Web services in which tempo-
ral properties, expressed using property specification pat-
terns [27], are defined with a subset of UML 2.0 Sequence
Diagrams and checked at run time by translating sequence
diagrams into non-deterministic finite automata. However,
the properties used in this work, differently from those that
can be expressed with TemPsy , do not support expressing
timing requirements. Our model-driven approach for trace
checking can be easily applied in scenarios where other
trace models are used, as long as OCL invariants can be
expressed on them; examples of these models are those

26

proposed in [20] (designed for the reverse engineering of
UML sequence diagrams from traces) and [40] (tailored for
the exchange of traces corresponding to large program call
trees).

This work is also related to the more general area of
run-time verification [47]. The majority of the approaches
proposed in this area (e.g., [6,10,11,32], including previous
work of some of the authors [12,14]) focuses on the verifica-
tion of temporal properties expressed using some temporal
logic. These approaches define the trace checking/run-time
verification problem in terms of a word problem, i.e., the
problem of whether a given word is included in some lan-
guages, and rely on formal verification tools like model
checkers or SAT/SMT solvers. In our approach, we use a
domain-specific specification language (TemPsy) and rely
on standard MDE technologies.

9 Conclusion and Future Work

Offline trace checking is a procedure for checking the com-
pliance of a system with respect to its requirements, by
analyzing the log of events produced by the system at run
time. We are interested in the offline trace checking of
business processes and apply it, as a case study, to the
particular context of eGovernment, in collaboration with
our public service partner CTIE.

The goal of this paper is to present a practical and scal-
able solution for the offline checking of the temporal re-
quirements of business processes, which can be used in
contexts where model-driven engineering is already a prac-
tice, where temporal specifications should be written in
a domain-specific language not requiring a strong mathe-
matical background, and where relying on standards and
industry-strength tools for property checking is a funda-
mental prerequisite.

This paper has made the following contributions: 1) the
TemPsy language, a domain-specific specification language
based on common property specification patterns and ex-
tended with new constructs, to facilitate the specification
of business process requirements to be checked on traces;
2) a model-driven trace checking procedure, which relies
on the efficient mapping of temporal requirements written
in TemPsy into OCL constraints on a conceptual model
of execution traces, which can be evaluated using an OCL
checker; 3) the implementation of this trace checking pro-
cedure in the TemPsy-Check tool, which has been made
publicly available; 4) the evaluation of the scalability of
TemPsy-Check, applied to the verification of real proper-
ties derived from a case study of our public service partner,
including a comparison with a state-of-the-art alternative
technology based on temporal logic.

The results of the evaluation show the feasibility of ap-
plying our model-driven approach for offline trace checking
in realistic settings. TemPsy-Check scales linearly with
respect to the length of the input trace to check and is
able to analyze traces with one million events in about two
seconds. Moreover, it compares favorably with the state-
of-the-art.

This work is part of a broader project in collaboration
with CTIE, on model-driven run-time verification of busi-
ness processes [26]. The next step is to embed our trace
checking approach in the business process execution plat-
form of our partner, to realize an efficient run-time verifica-

tion platform for temporal properties of business process-
based applications.

In addition, as part of future work, we plan to conduct
a usability study of TemPsy , to assess the improved us-
ability with respect to other specification methods (e.g.,
temporal logic). We also plan to apply our model-driven
trace checking approach in other contexts different from
business process modeling, with the possibility of extend-
ing TemPsy with additional constructs, as needed by the
new application domains.

Acknowledgments

This work has been supported by the National Research
Fund, Luxembourg (FNR/P10/03). We would like to
thank the members of the Prometa team at CTIE, in
particular Ludwig Balmer, Manuel Rouard, and Mathieu
Syben, for their help with the analysis of the case study.

References

[1] Christopher Alexander, Sara Ishikawa, Murray Sil-
verstein, Max Jacobson, Ingrid Fiksdahl-King, and
Shlomo Angel. A pattern language. Towns, buildings,
construction. Oxford University Press, 1977.

[2] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and
A. Tang. Aligning qualitative, real-time, and proba-
bilistic property specification patterns using a struc-
tured English grammar. IEEE Trans. Softw. Eng.,
41(7):620–638, 2015.

[3] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti.
Dynamo + astro: An integrated approach for BPEL
monitoring. In Proc. ICWS ’09, pages 230–237. IEEE,
July 2009.

[4] Luciano Baresi, Domenico Bianculli, Carlo Ghezzi,
Sam Guinea, and Paola Spoletini. Validation of web
service compositions. IET Softw., 1(6):219–232, De-
cember 2007.

[5] Luciano Baresi and Sam Guinea. Towards dynamic
monitoring of WS-BPEL processes. In Proc. ICSOC
2005, volume 3826 of LNCS, pages 269–282. Springer,
2005.

[6] Benjamin Barre, Mathieu Klein, Maxime Soucy-
Boivin, Pierre-Antoine Ollivier, and Sylvain Hallé.
MapReduce for parallel trace validation of LTL prop-
erties. In Proc. RV 2012, volume 7687 of LNCS, pages
184–198. Springer, 2013.

[7] Howard Barringer, Yliès Falcone, Klaus Havelund,
Giles Reger, and David Rydeheard. Quantified event
automata: Towards expressive and efficient runtime
monitors. In Proc. FM 2012, volume 7436 of LNCS,
pages 68–84. Springer, 2012.

[8] Ezio Bartocci, Borzoo Bonakdarpour, and Yliès Fal-
cone. First international competition on software for
runtime verification. In Proc. RV 2014, volume 8734
of LNCS, pages 1–9. Springer, 2014.

27

[9] David Basin, Matúš Harvan, Felix Klaedtke, and Eu-
gen Zălinescu. MONPOLY: Monitoring usage-control
policies. In Proc. RV 2011, volume 7186 of LNCS,
pages 360–364, 2012.

[10] David Basin, Felix Klaedtke, Srdjan Marinovic, and
Eugen Zălinescu. Monitoring of temporal first-order
properties with aggregations. In Proc. RV 2013, vol-
ume 8174 of LNCS, pages 40–58. Springer, 2013.

[11] David Basin, Felix Klaedtke, Samuel Müller, and Bir-
git Pfitzmann. Runtime monitoring of metric first-
order temporal properties. In Proc. FSTTCS ’08,
pages 49–60. IBFI Schloss Dagstuhl, 2008.

[12] Marcello Maria Bersani, Domenico Bianculli, Carlo
Ghezzi, Srđan Krstić, and Pierluigi San Pietro. SMT-
based checking of SOLOIST over sparse traces. In
Proc. FASE 2014, volume 8411 of LNCS, pages 276–
290. Springer, April 2014.

[13] Marcello Maria Bersani, Domenico Bianculli, Carlo
Ghezzi, Srđan Krstić, and Pierluigi San Pietro. Effi-
cient large-scale trace checking using MapReduce. In
Proc. ICSE 2016. ACM, May 2016. to be published.

[14] Domenico Bianculli, Carlo Ghezzi, and Srđan Krstić.
Trace checking of metric temporal logic with aggre-
gating modalities using MapReduce. In Proc. SEFM
2014, volume 8702 of LNCS, pages 144–158. Springer,
September 2014.

[15] Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso,
and Patrick Senti. Specification patterns from re-
search to industry: a case study in service-based ap-
plications. In Proc. ICSE 2012, pages 968–976. IEEE,
2012.

[16] Domenico Bianculli, Carlo Ghezzi, and Pierluigi
San Pietro. The tale of SOLOIST: a specification
language for service compositions interactions. In
Proc. FACS’12, volume 7684 of LNCS, pages 55–72.
Springer, 2013.

[17] Domenico Bianculli, Carlo Ghezzi, and Paola Spole-
tini. A model checking approach to verify BPEL4WS
workflows. In Proc. SOCA ’07, pages 13–20. IEEE,
June 2007.

[18] Robert Bill, Sebastian Gabmeyer, Petra Kaufmann,
and Martina Seidl. Model checking of CTL-extended
OCL specifications. In Proc. SLE 2014, volume 8706
of LNCS, pages 221–240. Springer, 2014.

[19] Marco Brambilla, Stefano Butti, and Piero Fraternali.
WebRatio BPM: A tool for designing and deploying
business processes on the web. In Proc. ICWE 2010,
volume 6189 of LNCS, pages 415–429. Springer, 2010.

[20] Lionel C. Briand, Yvan Labiche, and Johanne Leduc.
Toward the reverse engineering of UML sequence di-
agrams for distributed Java software. IEEE Trans.
Softw. Eng., 32(9):642–663, September 2006.

[21] Jordi Cabot, Antoni Olivé, and Ernest Teniente. Rep-
resenting temporal information in UML. In Proc.
UML 2003, volume 2863 of LNCS, pages 44–59.
Springer, 2003.

[22] MaríaVictoria Cengarle and Alexander Knapp. To-
wards OCL/RT. In Proc. FME 2002, volume 2391 of
LNCS, pages 390–409. Springer, 2002.

[23] Stefan Conrad and Klaus Turowski. Temporal OCL:
Meeting specification demands for business compo-
nents. In Unified Modeling Language, pages 151–165.
IGI Global, 2001.

[24] James Davis. GME: The generic modeling environ-
ment. In Companion of the Proc. of OOPSLA ’03,
pages 82–83. ACM, 2003.

[25] Wei Dou, Domenico Bianculli, and Lionel Briand.
OCLR: a more expressive, pattern-based temporal ex-
tension of OCL. In Proc. ECMFA 2014, volume 8569
of LNCS, pages 51–66. Springer, July 2014.

[26] Wei Dou, Domenico Bianculli, and Lionel Briand. Re-
visiting model-driven engineering for run-time verifi-
cation of business processes. In Proc. SAM 2014, vol-
ume 8769 of LNCS, pages 190–197. Springer, Septem-
ber 2014.

[27] Matthew B Dwyer, George S Avrunin, and James C
Corbett. Patterns in property specifications for finite-
state verification. In Proc. ICSE 1999, pages 411–420.
IEEE, 1999.

[28] Eclipse. Eclipse OCL tools. http://www.eclipse.org/
modeling/mdt/?project=ocl, September 2015.

[29] Eclipse. Xtext–Language Engineering Made Easy!
http://www.eclipse.org/Xtext/, November 2015.

[30] Gregor Engels, Marc Lohmann, Stefan Sauer, and
Reiko Heckel. Model-driven monitoring: An appli-
cation of graph transformation for design by contract.
In Proc. ICGT 2006, volume 4178 of LNCS, pages
336–350. Springer, 2006.

[31] Miguel Felder and Angelo Morzenti. Validating real-
time systems by history-checking TRIO specifications.
ACM Trans. Softw. Eng. Methodol., 3(4):308–339, Oc-
tober 1994.

[32] Bernd Finkbeiner, Sriram Sankaranarayanan, and
HennyB. Sipma. Collecting statistics over runtime ex-
ecutions. Form. Method Syst. Des., 27:253–274, 2005.

[33] Stephan Flake and Wolfgang Mueller. Past- and
future-oriented time-bounded temporal properties
with OCL. In Proc. SEFM 2004, pages 154–163.
IEEE, 2004.

[34] Stephan Flake and Wolfgang Müller. Expressing prop-
erty specification patterns with OCL. In Proc. SERP
’03, pages 595–603. CSREA Press, 2003.

[35] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of
interacting BPEL web services. In Proc. WWW ’04,
pages 621–630. ACM, 2004.

[36] Erich Gamma, Richard Helm, Ralph E. Johnson,
and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1995.

28

[37] Jeff Gray, Jing Zhang, Yuehua Lin, Suman Roychoud-
hury, Hui Wu, Rajesh Sudarsan, Aniruddha Gokhale,
Sandeep Neema, Feng Shi, and Ted Bapty. Model-
driven program transformation of a large avionics
framework. In Proc. GPCE 2004, volume 3286 of
LNCS, pages 361–378. Springer, 2004.

[38] Volker Gruhn and Ralf Laue. Patterns for timed prop-
erty specifications. Electron. Notes Theor. Comput.
Sci., 153(2):117–133, 2006.

[39] Lars Grunske. Specification patterns for probabilistic
quality properties. In Proc. ICSE 2008, pages 31–40.
ACM, 2008.

[40] Abdelwahab Hamou-Lhadj and Timothy C. Leth-
bridge. A metamodel for the compact but lossless
exchange of execution traces. Softw. Syst. Model.,
11(1):77–98, February 2012.

[41] Slim Kallel, Anis Charfi, Tom Dinkelaker, Mira
Mezini, and Mohamed Jmaiel. Specifying and mon-
itoring temporal properties in web services composi-
tions. In Proc. ECOWS ’09, pages 148–157. IEEE
Computer Society, 2009.

[42] Bilal Kanso and Safouan Taha. Specification of tem-
poral properties with OCL. Sci. Comput. Program.,
96, Part 4:527–551, 2014.

[43] Sascha Konrad and Betty H. C. Cheng. Real-time
specification patterns. In Proc. ICSE ’05, pages 372–
381. ACM, 2005.

[44] Ron Koymans. Specifying real-time properties with
metric temporal logic. Real-Time Syst., 2(4):255–299,
November 1990.

[45] Juliana Küster-Filipe and Stuart Anderson. On a time
enriched OCL liveness template. STTT, 8(2):156–166,
2006.

[46] Luigi Lavazza, Sandro Morasca, and Angelo Morzenti.
A dual language approach extension to UML for
the development of time-critical component-based sys-
tems. Electron. Notes Theor. Comput. Sci., 82(6):121–
132, 2003.

[47] Martin Leucker and Christian Schallhart. A brief ac-
count of runtime verification. Journal of Logic and Al-
gebraic Programming, 78(5):293–303, May/June 2009.

[48] Zheng Li, Jun Han, and Yan Jin. Pattern-based
specification and validation of web services interac-
tion properties. In Proc. ICSOC 2005, volume 3826
of LNCS, pages 73–86. Springer, 2005.

[49] Markus Lumpe, Indika Meedeniya, and Lars Grunske.
PSPWizard: machine-assisted definition of temporal
logical properties with specification patterns. In Proc.
ESEC/FSE ’11, pages 468–471. ACM, 2011.

[50] Angelo Morzenti, Dino Mandrioli, and Carlo Ghezzi.
A model parametric real-time logic. ACM Trans. Pro-
gram. Lang. Syst., 14:521–573, October 1992.

[51] Aouatef Mrad, Samatar Ahmed, Sylvain Hallé, and
Èric Beaudet. BabelTrace: A collection of transducers
for trace validation. In Proc. RV 2012, volume 7687
of LNCS, pages 126–130. Springer, 2013.

[52] Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay
Berkovich, Ramy Medhat, Borzoo Bonakdarpour, and
Sebastian Fischmeister. RiTHM: A tool for enabling
time-triggered runtime verification for C programs. In
Proc. ESEC/FSE 2013, pages 603–606. ACM, 2013.

[53] OMG. BPMN Specification. http://www.bpmn.org,
January 2011.

[54] OMG. ISO/IEC 19507 (OCL v2.3.1). http://www.
omg.org/spec/OCL/ISO/19507/PDF, April 2012.

[55] Amalinda Post, Igor Menzel, Jochen Hoenicke, and
Andreas Podelski. Automotive behavioral require-
ments expressed in a specification pattern system: A
case study at BOSCH. Requir. Eng., 17(1):19–33,
March 2012.

[56] Franco Raimondi, James Skene, and Wolfgang Em-
merich. Efficient online monitoring of web-service
SLAs. In Proc. SIGSOFT ’08/FSE-16, pages 170–
180. ACM, 2008.

[57] William N. Robinson. Extended OCL for goal moni-
toring. ECEASST, 9, 2008.

[58] J. Simmonds, Y. Gan, M. Chechik, S. Nejati,
B. O’Farrell, E. Litani, and J. Waterhouse. Runtime
monitoring of web service conversations. IEEE Trans.
Serv. Comput., 2(3):223–244, 2009.

[59] Michael Soden and Hajo Eichler. Temporal extensions
of OCL revisited. In Proc. ECMDA-FA, volume 5562
of LNCS, pages 190–205. Springer, 2009.

[60] Software AG. ARIS. http://www.softwareag.com/
corporate/products/aris/default.asp, 2014.

[61] Jing Zhang, Jeff Gray, and Yuehua Lin. A model-
driven approach to enforce crosscutting assertion
checking. In Proc. MACS ’05, pages 1–5. ACM, 2005.

[62] Paul Ziemann and Martin Gogolla. OCL extended
with temporal logic. In Proc. PSI 2003, volume 2890
of LNCS, pages 351–357. Springer, 2003.

29

Appendix A OCL definitions

In this section we present the full definition of the OCL functions sketched in section 6. For implementation reasons,
they have been defined in the context of the Monitor class.

A.1 Auxiliary Operations

functions invoked when applying scopes and checking patterns

1 context Monitor
2
3 =======
4 def: ordinalIndexOf(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer):Integer =
5 //find the index of the n-th occurrence of the event 'eventName'
6 let result:Tuple(index:Integer, ordinal:Integer) = trace->iterate(elem:trace::TraceElement;
7 iter:Tuple(index:Integer, ordinal:Integer) = Tuple{index:Integer = 0, ordinal:Integer = 0}
8 |
9 if iter.ordinal = n then

10 iter
11 else
12 if elem.event = eventName then
13 Tuple{index:Integer = iter.index + 1, ordinal:Integer = iter.ordinal + 1}
14 else
15 Tuple{index:Integer = iter.index + 1, ordinal:Integer = iter.ordinal}
16 endif
17 endif
18)
19 in
20 if result.ordinal = n then
21 result.index
22 else
23 -1
24 endif
25 =======
26 def: compare(a:Integer, b:Integer, which:Integer):Boolean =
27 if which = 1 then // at least b tu
28 a >= b
29 else
30 if which = 2 then // at most b tu
31 a <= b
32 else
33 if which = 3 then // exactly b tu
34 a = b
35 else
36 true // no comparison is needed
37 endif
38 endif
39 endif
40
41 =======
42 def: loadDistances(distances:Sequence(TemPsy::TimeDistance))
43 :Sequence(Tuple(which:Integer, value:Integer)) =
44 if distances->forAll(elem | elem->isEmpty()) then
45 Sequence{}
46 else
47 distances->iterate(elem:TemPsy::TimeDistance;
48 iter:Sequence(Tuple(which:Integer, value:Integer)) = Sequence{}
49 |
50 if elem->isEmpty() then
51 iter->append(Tuple{which:Integer=0, value:Integer=1})
52 else
53 if TemPsy::ComparingOperator::ATLEAST = elem.comparingOperator then
54 iter->append(Tuple{which:Integer=1, value:Integer=elem.value})
55 else
56 if TemPsy::ComparingOperator::ATMOST = elem.comparingOperator then
57 iter->append(Tuple{which:Integer=2, value:Integer=elem.value})
58 else
59 iter->append(Tuple{which:Integer=3, value:Integer=elem.value})
60 endif

30

61 endif
62 endif)
63 endif

A.2 Scopes
functions for selecting segment(s) from the input trace, according to a scope definition

1 context Monitor
2
3 =======
4 def: applyScopeGlobally(trace:trace::Trace,
5 scope:TemPsy::Scope):OrderedSet(trace::TraceElement) =
6 trace.traceElements
7
8 =======
9 def: applyScopeBefore(trace:trace::Trace, scope:TemPsy::Scope):OrderedSet(trace::TraceElement) =

10 //return the scope of 'before boundary'
11 //'boundary' : '[n] eventName [comparingOperator timeDistance tu]'
12 let boundary:TemPsy::Boundary = scope.oclAsType(TemPsy::UniScope).boundary, eventName:String = boundary.event.name in
13 if boundary.timeDistance->notEmpty() then
14 let comparingOperator:TemPsy::ComparingOperator = boundary.timeDistance.comparingOperator, timeDistance:Integer =

boundary.timeDistance.value in
15 if boundary.ordinal > 0 then
16 let n:Integer = boundary.ordinal in
17 if TemPsy::ComparingOperator::ATLEAST = comparingOperator then
18 self.atLeastBefore(trace.traceElements, eventName,n,timeDistance)
19 else
20 if TemPsy::ComparingOperator::ATMOST = comparingOperator then
21 self.atMostBefore(trace.traceElements, eventName,n,timeDistance)
22 else
23 self.exactlyBefore(trace.traceElements, eventName,n,timeDistance)
24 endif
25 endif
26 else
27 if TemPsy::ComparingOperator::ATLEAST = comparingOperator then
28 self.atLeastBefore(trace.traceElements, eventName,1,timeDistance)
29 else
30 if TemPsy::ComparingOperator::ATMOST = comparingOperator then
31 self.atMostBefore(trace.traceElements, eventName,1,timeDistance)
32 else
33 self.exactlyBefore(trace.traceElements, eventName,1,timeDistance)
34 endif
35 endif
36 endif
37 else
38 if boundary.ordinal > 0 then
39 let n:Integer = boundary.ordinal in
40 self.atLeastBefore(trace.traceElements, eventName,n,1)
41 else
42 self.atLeastBefore(trace.traceElements, eventName,1,1)
43 endif
44 endif
45
46 =======
47 def: atLeastBefore(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):

OrderedSet(trace::TraceElement) =
48 //return the scope of 'before [n] eventName at least timeDistance tu'
49 let position:Integer = ordinalIndexOf(trace, eventName, n) in
50 if 1 <> position.abs() then
51 if 1 = timeDistance then
52 trace->subOrderedSet(1, position-1)
53 else
54 let toTimeStamp:Integer = trace->at(position).timestamp in
55 trace->select(elem | toTimeStamp - timeDistance >= elem.timestamp)
56 endif
57 else
58 OrderedSet{}
59 endif

31

60
61 =======
62 def: atMostBefore(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):

OrderedSet(trace::TraceElement) =
63 //return the scope of 'before [n] eventName at most timeDistance tu'
64 let position:Integer = ordinalIndexOf(trace, eventName, n) in
65 if -1 <> position then
66 let toTimeStamp:Integer = trace->at(position).timestamp in
67 trace->select(elem | toTimeStamp - timeDistance <= elem.timestamp and toTimeStamp >= elem.timestamp)
68 else
69 OrderedSet{}
70 endif
71
72 =======
73 def: exactlyBefore(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):

OrderedSet(trace::TraceElement) =
74 //return the scope of 'before [n] eventName exactly timeDistance tu'
75 let position:Integer = ordinalIndexOf(trace, eventName, n) in
76 if -1 <> position then
77 let toTimeStamp:Integer = trace->at(position).timestamp in
78 trace->select(elem | toTimeStamp - timeDistance = elem.timestamp)
79 else
80 OrderedSet{}
81 endif
82
83 =======
84 def: applyScopeAfter(trace:trace::Trace, scope:TemPsy::Scope):OrderedSet(trace::TraceElement) =
85 //return the scope of 'after boundary'
86 //'boundary' : '[n] eventName [comparingOperator timeDistance tu]'
87 let boundary:TemPsy::Boundary = scope.oclAsType(TemPsy::UniScope).boundary, eventName:String = boundary.event.name in
88 if boundary.timeDistance->notEmpty() then
89 let comparingOperator:TemPsy::ComparingOperator = boundary.timeDistance.comparingOperator, timeDistance:Integer =

boundary.timeDistance.value in
90 if boundary.ordinal > 0 then
91 let n:Integer = boundary.ordinal in
92 if TemPsy::ComparingOperator::ATLEAST = comparingOperator then
93 self.atLeastAfter(trace.traceElements, eventName, n, timeDistance)
94 else if TemPsy::ComparingOperator::ATMOST = comparingOperator then
95 self.atMostAfter(trace.traceElements, eventName,n,timeDistance)
96 else
97 self.exactlyAfter(trace.traceElements, eventName, n, timeDistance)
98 endif
99 endif

100 else
101 if TemPsy::ComparingOperator::ATLEAST = comparingOperator then
102 self.atLeastAfter(trace.traceElements, eventName, 1,timeDistance)
103 else if TemPsy::ComparingOperator::ATMOST = comparingOperator then
104 self.atMostAfter(trace.traceElements, eventName, 1, timeDistance)
105 else
106 self.exactlyAfter(trace.traceElements, eventName, 1, timeDistance)
107 endif
108 endif
109 endif
110 else
111 if boundary.ordinal > 0 then
112 let n:Integer = boundary.ordinal in
113 self.atLeastAfter(trace.traceElements, eventName, n, 1)
114 else
115 self.atLeastAfter(trace.traceElements, eventName, 1, 1)
116 endif
117 endif
118
119 =======
120 def: atLeastAfter(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):

OrderedSet(trace::TraceElement) =
121 //return the scope of 'after [n] eventName at least timeDistance tu'
122 let position:Integer = ordinalIndexOf(trace, eventName, n), size:Integer = trace->size() in
123 if -1 <> position and size <> position then
124 if 1 = timeDistance then

32

125 trace->subOrderedSet(position+1, size)
126 else
127 let fromTimeStamp:Integer = trace->at(position).timestamp in
128 trace->select(elem | fromTimeStamp + timeDistance <= elem.timestamp)
129 endif
130 else
131 OrderedSet{}
132 endif
133
134 =======
135 def: atMostAfter(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):OrderedSet

(trace::TraceElement) =
136 //return the scope of 'after [n] eventName at most timeDistance tu'
137 let position:Integer = ordinalIndexOf(trace, eventName, n) in
138 if -1 <> position then
139 let fromTimeStamp:Integer = trace->at(position).timestamp in
140 trace->select(elem | fromTimeStamp <= elem.timestamp and fromTimeStamp + timeDistance >= elem.timestamp)
141 else
142 OrderedSet{}
143 endif
144
145 =======
146 def: exactlyAfter(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):

OrderedSet(trace::TraceElement) =
147 //return the scope of 'after [n] eventName exactly timeDistance tu'
148 let position:Integer = ordinalIndexOf(trace, eventName, n) in
149 if -1 <> position then
150 let fromTimeStamp:Integer = trace->at(position).timestamp in
151 trace->select(elem | fromTimeStamp + timeDistance = elem.timestamp)
152 else
153 OrderedSet{}
154 endif
155
156 =======
157
158 def: applyScopeBetweenAnd(trace:trace::Trace,
159 scope:TemPsy::Scope)
160 :OrderedSet(OrderedSet(trace::TraceElement)) =
161 // return the scope of 'between boundaryBegin and boundaryEnd'
162 // i.e., 'between [nBegin] eventNameBegin [at least timeDistanceBegin]
163 // and [nEnd] eventNameEnd [at least timeDistanceEnd]'
164 let boundaryBegin:TemPsy::Boundary
165 = scope.oclAsType(TemPsy::BiScope).boundaryBegin,
166 boundaryEnd:TemPsy::Boundary
167 = scope.oclAsType(TemPsy::BiScope).boundaryEnd,
168 eventNameBegin:String
169 = boundaryBegin.event.name,
170 eventNameEnd:String
171 = boundaryEnd.event.name
172 in
173 if boundaryBegin.timeDistance->notEmpty() then
174 let timeDistanceBegin:Integer = boundaryBegin.timeDistance.value in
175 if boundaryEnd.timeDistance->notEmpty() then
176 let timeDistanceEnd:Integer = boundaryEnd.timeDistance.value in
177 if boundaryBegin.ordinal > 0 then
178 let result:OrderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
179 nBegin:Integer = boundaryBegin.ordinal
180 in
181 if boundaryEnd.ordinal > 0 then
182 let nEnd:Integer = boundaryEnd.ordinal in
183 result->append(
184 self.applySpecialBetweenAnd(trace.traceElements,
185 eventNameBegin, nBegin, timeDistanceBegin,
186 eventNameEnd, nEnd, timeDistanceEnd))
187 else
188 result->append(
189 self.applySpecialBetweenAnd(trace.traceElements,
190 eventNameBegin, nBegin, timeDistanceBegin,
191 eventNameEnd, 1, timeDistanceEnd))

33

192 endif
193 else
194 if boundaryEnd.ordinal > 0 then
195 let result:OrderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
196 nEnd:Integer = boundaryEnd.ordinal
197 in
198 result->append(
199 self.applySpecialBetweenAnd(trace.traceElements,
200 eventNameBegin, 1, timeDistanceBegin,
201 eventNameEnd, nEnd, timeDistanceEnd))
202 else
203 self.applyOriginalBetweenAnd(trace.traceElements,
204 eventNameBegin, timeDistanceBegin,
205 eventNameEnd, timeDistanceEnd)
206 endif
207 endif
208 else
209 if boundaryBegin.ordinal > 0 then
210 let result:OrderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
211 nBegin:Integer = boundaryBegin.ordinal
212 in
213 if boundaryEnd.ordinal > 0 then
214 let nEnd:Integer = boundaryEnd.ordinal in
215 result->append(
216 self.applySpecialBetweenAnd(trace.traceElements,
217 eventNameBegin, nBegin, timeDistanceBegin,
218 eventNameEnd, nEnd, 1))
219 else
220 result->append(
221 self.applySpecialBetweenAnd(trace.traceElements,
222 eventNameBegin, nBegin, timeDistanceBegin,
223 eventNameEnd, 1, 1))
224 endif
225 else
226 if boundaryEnd.ordinal > 0 then
227 let result:OrderedSet(OrderedSet(trace::TraceElement))
228 = OrderedSet{},
229 nEnd:Integer = boundaryEnd.ordinal
230 in
231 result->append(
232 self.applySpecialBetweenAnd(trace.traceElements,
233 eventNameBegin, 1, timeDistanceBegin,
234 eventNameEnd, nEnd, 1))
235 else
236 self.applyOriginalBetweenAnd(trace.traceElements,
237 eventNameBegin, timeDistanceBegin, eventNameEnd)
238 endif
239 endif
240 endif
241 else
242 if boundaryEnd.timeDistance->notEmpty() then
243 let timeDistanceEnd:Integer = boundaryEnd.timeDistance.value in
244 if boundaryBegin.ordinal > 0 then
245 let result:OrderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
246 nBegin:Integer = boundaryBegin.ordinal
247 in
248 if boundaryEnd.ordinal > 0 then
249 let nEnd:Integer = boundaryEnd.ordinal in
250 result->append(
251 self.applySpecialBetweenAnd(trace.traceElements,
252 eventNameBegin, nBegin, 1, eventNameEnd,
253 nEnd, timeDistanceEnd))
254 else
255 result->append(
256 self.applySpecialBetweenAnd(trace.traceElements,
257 eventNameBegin, nBegin, 1,
258 eventNameEnd, 1, timeDistanceEnd))
259 endif
260 else

34

261 if boundaryEnd.ordinal > 0 then
262 let result:OrderedSet(OrderedSet(trace::TraceElement))
263 = OrderedSet{},
264 nEnd:Integer = boundaryEnd.ordinal
265 in
266 result->append(
267 self.applySpecialBetweenAnd(trace.traceElements,
268 eventNameBegin, 1, 1,
269 eventNameEnd, nEnd, timeDistanceEnd))
270 else
271 self.applyOriginalBetweenAnd(trace.traceElements,
272 eventNameBegin, eventNameEnd, timeDistanceEnd)
273 endif
274 endif
275 else
276 if boundaryBegin.ordinal > 0 then
277 let result:OrderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
278 nBegin:Integer = boundaryBegin.ordinal
279 in
280 if boundaryEnd.ordinal > 0 then
281 let nEnd:Integer = boundaryEnd.ordinal in
282 result->append(
283 self.applySpecialBetweenAnd(trace.traceElements,
284 eventNameBegin, nBegin, 1,
285 eventNameEnd, nEnd, 1))
286 else
287 result->append(
288 self.applySpecialBetweenAnd(trace.traceElements,
289 eventNameBegin, nBegin, 1,
290 eventNameEnd, 1, 1))
291 endif
292 else
293 if boundaryEnd.ordinal > 0 then
294 let result:OrderedSet(OrderedSet(trace::TraceElement))
295 = OrderedSet{},
296 nEnd:Integer = boundaryEnd.ordinal
297 in
298 result->append(
299 self.applySpecialBetweenAnd(trace.traceElements,
300 eventNameBegin, 1, 1,
301 eventNameEnd, nEnd, 1))
302 else
303 self.applyOriginalBetweenAnd(trace.traceElements, eventNameBegin, eventNameEnd)
304 endif
305 endif
306 endif
307 endif
308
309 =======
310 def: applyOriginalBetweenAnd(trace:OrderedSet(trace::TraceElement), eventNameBegin:String, eventNameEnd:String):

Sequence(OrderedSet(trace::TraceElement)) =
311 //return the scope of 'between eventNameBegin and eventNameEnd'
312 trace->iterate(elem:trace::TraceElement;
313 iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer)
314 =Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{}, i:Integer = 0} |
315 if iter.i = 0 then
316 let currentIndex:Integer = iter.index + 1 in
317 if elem.event = eventNameBegin then
318 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

currentIndex}
319 else
320 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

iter.i}
321 endif
322 else
323 if elem.event = eventNameEnd then
324 let i:Integer = iter.i+1, j:Integer = iter.index in
325 if i <= j then
326 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result->append(trace->

35

subOrderedSet(i, j)), i:Integer = 0}
327 else
328 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0}
329 endif
330 else
331 Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer

= iter.i}
332 endif
333 endif
334).result
335
336 =======
337 def: applyOriginalBetweenAnd(trace:OrderedSet(trace::TraceElement), eventNameBegin:String, distanceBegin:Integer,

eventNameEnd:String):Sequence(OrderedSet(trace::TraceElement)) =
338 //return the scope of 'between eventNameBegin at least distanceBegin tu and eventNameEnd'
339 trace->iterate(elem:trace::TraceElement;
340 iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer, criticalTime:Integer)
341 =Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{}, i:Integer = 0,

criticalTime:Integer = 0} |
342 let e:String = elem.event in
343 if iter.i = 0 then
344 let currentIndex:Integer = iter.index + 1 in
345 if e = eventNameBegin then
346 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

currentIndex, criticalTime:Integer = elem.timestamp + distanceBegin}
347 else
348 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

iter.i, criticalTime:Integer = iter.criticalTime}
349 endif
350 else
351 if e = eventNameEnd then
352 let t:Integer = elem.timestamp, i:Integer = iter.i + 1, j:Integer = iter.index, t1:Integer = iter.criticalTime

in
353 if i <= j and t1 < t then
354 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result->append(trace->

subOrderedSet(i, j)->select(segElem | segElem.timestamp >= t1)), i:Integer = 0, criticalTime:Integer =
iter.criticalTime}

355 else
356 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0,

criticalTime:Integer = iter.criticalTime}
357 endif
358 else
359 Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer

= iter.i, criticalTime:Integer = iter.criticalTime}
360 endif
361 endif
362).result
363
364 =======
365 def: applyOriginalBetweenAnd(trace:OrderedSet(trace::TraceElement), eventNameBegin:String, eventNameEnd:String,

distanceEnd:Integer):Sequence(OrderedSet(trace::TraceElement)) =
366 //return the scope of 'between eventNameBegin and at least distanceEnd tu eventNameEnd'
367 trace->iterate(elem:trace::TraceElement;
368 iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer, criticalTime:Integer)
369 =Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{}, i:Integer = 0,

criticalTime:Integer = 0} |
370 let e:String = elem.event in
371 if iter.i = 0 then
372 let currentIndex:Integer = iter.index + 1 in
373 if e = eventNameBegin then
374 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

currentIndex, criticalTime:Integer = elem.timestamp + 1}
375 else
376 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

iter.i, criticalTime:Integer = iter.criticalTime}
377 endif
378 else
379 if e = eventNameEnd then
380 let t:Integer = elem.timestamp, i:Integer = iter.i + 1, j:Integer = iter.index, t1:Integer = iter.criticalTime,

36

t2:Integer = t - distanceEnd in
381 if i <= j and t1 <= t2 then
382 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result->append(trace->

subOrderedSet(i, j)->select(segElem | segElem.timestamp <= t2)), i:Integer = 0, criticalTime:Integer =
iter.criticalTime}

383 else
384 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0,

criticalTime:Integer = iter.criticalTime}
385 endif
386 else
387 Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer

= iter.i, criticalTime:Integer = iter.criticalTime}
388 endif
389 endif
390).result
391
392 =======
393 def: applyOriginalBetweenAnd(trace:OrderedSet(trace::TraceElement), eventNameBegin:String, distanceBegin:Integer,

eventNameEnd:String, distanceEnd:Integer):Sequence(OrderedSet(trace::TraceElement)) =
394 //return the scope of 'between eventNameBegin at least distanceBegin tu and at least distanceEnd tu eventNameEnd'
395 trace->iterate(elem:trace::TraceElement;
396 iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer, criticalTime:Integer)
397 =Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{}, i:Integer = 0,

criticalTime:Integer = 0} |
398 let e:String = elem.event in
399 if iter.i = 0 then
400 let currentIndex:Integer = iter.index + 1 in
401 if e = eventNameBegin then
402 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

currentIndex, criticalTime:Integer = elem.timestamp + distanceBegin}
403 else
404 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =

iter.i, criticalTime:Integer = iter.criticalTime}
405 endif
406 else
407 if e = eventNameEnd then
408 let t:Integer = elem.timestamp, i:Integer = iter.i + 1, j:Integer = iter.index, t1:Integer = iter.criticalTime,

t2:Integer = t - distanceEnd in
409 if i <= j and t1 <= t2 then
410 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result->append(trace->

subOrderedSet(i, j)->select(segElem | segElem.timestamp >= t1 and segElem.timestamp <= t2)), i:Integer =
0, criticalTime:Integer = iter.criticalTime}

411 else
412 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0,

criticalTime:Integer = iter.criticalTime}
413 endif
414 else
415 Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer

= iter.i, criticalTime:Integer = iter.criticalTime}
416 endif
417 endif
418).result
419
420 =======
421 def: applySpecialBetweenAnd(trace:OrderedSet(trace::TraceElement), eventNameBegin:String, nBegin:Integer,

timeDistanceBegin:Integer, eventNameEnd:String, nEnd:Integer, timeDistanceEnd:Integer):OrderedSet(trace::
TraceElement) =

422 //return the scope of 'between nBegin eventNameBegin at least timeDistanceBegin tu and nBegin eventNameEnd at least
timeDistanceEnd tu'

423 let t:Tuple(index:Integer, indexBegin:Integer, indexEnd:Integer, count:Integer) = trace->iterate(elem:trace::
TraceElement;

424 iter:Tuple(index:Integer, indexBegin:Integer, indexEnd:Integer, count:Integer) = Tuple{index:Integer = 0,
indexBegin:Integer = 0, indexEnd:Integer = 0, count:Integer = 0} |

425 if iter.indexBegin = 0 then
426 let currentIndex:Integer = iter.index + 1 in
427 if elem.event = eventNameBegin then
428 let currentBeginCount:Integer = iter.count+1 in
429 if currentBeginCount = nBegin then
430 Tuple{index:Integer = currentIndex, indexBegin:Integer = currentIndex + 1, indexEnd:Integer = iter.indexEnd

37

, count:Integer = 0}
431 else
432 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.indexEnd,

count:Integer = currentBeginCount}
433 endif
434 else
435 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.indexEnd,

count:Integer = iter.count}
436 endif
437 else
438 if iter.indexEnd = 0 then
439 let currentIndex:Integer = iter.index + 1 in
440 if elem.event = eventNameEnd then
441 let currentEndCount:Integer = iter.count+1 in
442 if currentEndCount = nEnd then
443 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = currentIndex

-1, count:Integer = nEnd}
444 else
445 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.

indexEnd, count:Integer = currentEndCount}
446 endif
447 else
448 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.indexEnd,

count:Integer = iter.count}
449 endif
450 else
451 iter
452 endif
453 endif
454)
455 in
456 let
457 i:Integer = t.indexBegin,
458 j:Integer = t.indexEnd,
459 timestampBegin:Integer = trace->at(i-1).timestamp+timeDistanceBegin,
460 timestampEnd:Integer = trace->at(j+1).timestamp-timeDistanceEnd
461 in
462 if i > 0 and j > 0 and i <= j then
463 if timeDistanceBegin = 1 and timeDistanceEnd = 1 then
464 trace->subOrderedSet(i, j)
465 else
466 trace->subOrderedSet(i, j)->select(elem | elem.timestamp >= timestampBegin and elem.timestamp <= timestampEnd)
467 endif
468 else
469 OrderedSet{}
470 endif

A.3 Patterns

functions for checking a given pattern on the trace segment(s) determined by a scope

1 context Monitor
2
3 =======
4 def: checkPatternUniversality(subtrace:OrderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =
5 // check the satisfiability of the universality pattern 'always eventName'
6 let eventName:String = pattern.oclAsType(TemPsy::Universality).event.name in
7 subtrace->forAll(event = eventName)
8
9 =======

10 def: checkPatternExistence(subtrace:OrderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =
11 --check the satisfiability of the existence pattern 'pattern'
12 if subtrace->isEmpty() then
13 true
14 else
15 let occPattern:TemPsy::OccurrencePattern = pattern.oclAsType(TemPsy::OccurrencePattern), eventName:String =

occPattern.event.name in
16 if occPattern.comparingOperator->notEmpty() then

38

17 let comparingOperator:TemPsy::ComparingOperator = occPattern.comparingOperator, n:Integer = occPattern.times,
count:Integer = subtrace.event->count(eventName) in

18 if TemPsy::ComparingOperator::ATLEAST = comparingOperator then
19 count >= n
20 else
21 if TemPsy::ComparingOperator::ATMOST = comparingOperator then
22 count <= n
23 else
24 count = n
25 endif
26 endif
27 else
28 subtrace.event->includes(eventName)
29 endif
30 endif
31
32 =======
33 def: checkPatternAbsence(subtrace:OrderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =
34 --check the satisfiability of the absence pattern 'pattern'
35 if subtrace->isEmpty() then
36 true
37 else
38 let occPattern:TemPsy::OccurrencePattern = pattern.oclAsType(TemPsy::OccurrencePattern), eventName:String =

occPattern.event.name in
39 if occPattern.comparingOperator->notEmpty() then
40 subtrace.event->count(eventName) <> occPattern.times
41 else
42 subtrace.event->excludes(eventName)
43 endif
44 endif
45
46 =======
47 else
48 self.checkPatternPrecedenceOneManyRight(subtrace, cause,
49 effects, effectDistances)
50 endif
51 else
52 self.checkPatternPrecedenceManyManyRight(subtrace, causes,
53 effects, effectDistances)
54 endif
55 else
56 if causeSize = 1 then
57 let cause:String=causes->first() in
58 if effectSize = 2 then
59 let effectDistance:Tuple(which:Integer, value:Integer)
60 =effectDistances->first()
61 in
62 self.checkPatternPrecedenceOneTwoMidRight(subtrace, cause,
63 orderPattern.timeDistance,
64 effects->first(),
65 effectDistance, effects->at(2))
66 else
67 let distance:Tuple(which:Integer, value:Integer)
68 =self.loadDistance(orderPattern.timeDistance)
69 in
70 self.checkPatternPrecedenceOneManyMidRight(subtrace, cause,
71 distance, effects,
72 effectDistances)
73 endif
74 else
75 let distance:Tuple(which:Integer, value:Integer)
76 =self.loadDistance(orderPattern.timeDistance)
77 in
78 self.checkPatternPrecedenceManyManyMidRight(subtrace, causes,
79 distance, effects, effectDistances)
80 endif
81 endif
82 endif
83 else

39

84 if effectDistances->isEmpty() then
85 if orderPattern.timeDistance->isEmpty() then
86 if effectSize = 1 then
87 let effect:String=effects->first() in
88 if causeSize = 2 then
89 let causeDistance:Tuple(which:Integer, value:Integer)
90 =causeDistances->first()
91 in
92 self.checkPatternPrecedenceTwoOneLeft(subtrace, causes->first(),
93 causeDistance, causes->at(2), effect)
94 else
95 self.checkPatternPrecedenceManyOneLeft(subtrace, causes,
96 causeDistances, effect)
97 endif
98 else
99 self.checkPatternPrecedenceManyManyLeft(subtrace, causes,

100 causeDistances, effects)
101 endif
102 else
103 let distance:Tuple(which:Integer, value:Integer)
104 =self.loadDistance(orderPattern.timeDistance)
105 in
106 if effectSize = 1 then
107 let effect:String=effects->first() in
108 self.checkPatternPrecedenceManyOneLeftMid(subtrace, causes,
109 causeDistances, distance, effect)
110 else
111 self.checkPatternPrecedenceManyManyLeftMid(subtrace, causes,
112 causeDistances, distance, effects)
113 endif
114 endif
115 else
116 if orderPattern.timeDistance->isEmpty() then
117 self.checkPatternPrecedenceManyManyLeftRight(subtrace, causes, causeDistances,
118 effects, effectDistances)
119 else
120 let distance:Tuple(which:Integer, value:Integer)
121 =self.loadDistance(orderPattern.timeDistance)
122 in
123 self.checkPatternPrecedenceManyManyLeftMidRight(subtrace, causes, causeDistances,
124 distance, effects, effectDistances)
125 endif
126 endif
127 endif
128 endif
129
130 =======
131 def: checkPatternPrecedenceOneOnePlain(subtrace:OrderedSet(trace::TraceElement), cause:String, effect:String):Boolean

=
132 //"cause preceding effect"
133 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer) = Tuple{flag:Boolean = true,

result:Integer = 0}
134 |
135 if iter.flag then
136 let e:String = elem.event in
137 if e = cause then
138 Tuple{flag:Boolean = false, result:Integer = -1}
139 else
140 if e = effect then
141 Tuple{flag:Boolean = false, result:Integer = -2} // violation
142 else
143 iter
144 endif
145 endif
146 else
147 iter
148 endif
149).result >= -1
150

40

151 =======
152 def: checkPatternPrecedenceOneOneAtLeastMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effect:String):Boolean =
153 //"cause preceding at least distance tu effect"
154 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstant:Integer) = Tuple{flag:Boolean

= true, midCriticalInstant:Integer = 0}
155 |
156 if iter.flag then
157 let e:String = elem.event in
158 if iter.midCriticalInstant = 0 and e = cause then //catch the first occurrence of cause
159 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance}
160 else
161 if e = effect then
162 if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then
163 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2} // violation
164 else
165 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1}
166 endif
167 else
168 iter
169 endif
170 endif
171 else
172 iter
173 endif
174).midCriticalInstant >= -1
175
176 =======
177 def: checkPatternPrecedenceOneOneAtMostMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effect:String):Boolean =
178 //"cause preceding at most distance tu effect"
179 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstant:Integer) = Tuple{flag:Boolean

= true, midCriticalInstant:Integer = 0}
180 |
181 if iter.flag then
182 let e:String = elem.event in
183 if e = cause then //latest cause
184 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance}
185 else
186 if e = effect and elem.timestamp > iter.midCriticalInstant then
187 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null} // violation
188 else
189 iter
190 endif
191 endif
192 else
193 iter
194 endif
195).flag
196
197 =======
198 def: checkPatternPrecedenceOneOneExactlyMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effect:String):Boolean =
199 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer)) = Tuple{

flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}} |
200 if iter.flag then
201 let e:String = elem.event in
202 if e = cause then
203 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.

timestamp+distance)}
204 else
205 if e = effect then
206 let t:Integer = elem.timestamp in
207 if iter.midCriticalInstants->includes(t) then
208 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t)}
209 else
210 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null}
211 endif

41

212 else
213 iter
214 endif
215 endif
216 else
217 iter
218 endif
219).flag
220
221 =======
222 def: checkPatternPrecedenceOneOneMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:TemPsy::

TimeDistance, effect:String):Boolean =
223 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
224 if which = TemPsy::ComparingOperator::ATLEAST then
225 self.checkPatternPrecedenceOneOneAtLeastMid(subtrace, cause, value, effect)
226 else
227 if which = TemPsy::ComparingOperator::ATMOST then
228 self.checkPatternPrecedenceOneOneAtMostMid(subtrace, cause, value, effect)
229 else
230 self.checkPatternPrecedenceOneOneExactlyMid(subtrace, cause, value, effect)
231 endif
232 endif
233
234 =======
235 def: checkPatternPrecedenceOneManyPlain(subtrace:OrderedSet(trace::TraceElement), cause:String, effects:Sequence(

String)):Boolean =
236 let
237 effectSize:Integer = effects->size(),
238 firstEffect:String = effects->first()
239 in
240 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, i2:Integer) = Tuple{flag:Boolean

= true, result:Integer = 0, i2:Integer = 1}
241 |
242 if iter.flag then
243 let e:String = elem.event in
244 if e = cause then //catch the first occurrence of cause
245 Tuple{flag:Boolean = false, result:Integer = -1, i2:Integer = null}
246 else
247 if e = effects->at(iter.i2) then
248 if iter.i2 = effectSize then
249 Tuple{flag:Boolean = false, result:Integer = -2, i2:Integer = null}
250 else
251 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = iter.i2 + 1}
252 endif
253 else
254 if e = firstEffect then
255 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 2}
256 else
257 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 1}
258 endif
259 endif
260 endif
261 else
262 iter
263 endif
264).result >= -1
265
266 =======
267 def: checkPatternPrecedenceOneManyAtLeastMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer

, effects:Sequence(String)):Boolean =
268 let
269 effectSize:Integer = effects->size(),
270 firstEffect:String = effects->first()
271 in
272 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer) = Tuple{

flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1}
273 |
274 if iter.flag then
275 let e:String = elem.event in

42

276 if iter.midCriticalInstant = 0 and e = cause then //catch the first occurrence of cause
277 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}
278 else
279 if iter.i2 > 1 and e = effects->at(iter.i2) then
280 if iter.i2 = effectSize then
281 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i2:Integer = null}
282 else
283 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2

+ 1}
284 endif
285 else
286 if e = firstEffect then
287 if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then
288 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2}
289 else
290 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null}
291 endif
292 else
293 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
294 endif
295 endif
296 endif
297 else
298 iter
299 endif
300).midCriticalInstant >= -1
301
302 =======
303 def: checkPatternPrecedenceOneManyAtMostMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effects:Sequence(String)):Boolean =
304 let
305 effectSize:Integer = effects->size(),
306 firstEffect:String = effects->first()
307 in
308 subtrace->iterate(elem:trace::TraceElement;
309 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer) = Tuple{flag:Boolean = true, midCriticalInstant:

Integer = 0, i2:Integer = 1} |
310 let e:String = elem.event in
311 if iter.flag then
312 if e = cause then
313 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}
314 else
315 if iter.i2 > 1 and e = effects->at(iter.i2) then
316 if iter.i2 = effectSize then
317 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i2:Integer = null}
318 else
319 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2

+ 1}
320 endif
321 else
322 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
323 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2}
324 else
325 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
326 endif
327 endif
328 endif
329 else
330 iter
331 endif
332).flag
333
334 =======
335 def: checkPatternPrecedenceOneManyExactlyMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer

, effects:Sequence(String)):Boolean =
336 let
337 effectSize:Integer = effects->size(),
338 firstEffect:String = effects->first()
339 in

43

340 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i2:
Integer) = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i2:Integer = 1}

341 |
342 if iter.flag then
343 let e:String = elem.event in
344 if e = cause then
345 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.

timestamp+distance), i2:Integer = 1}
346 else
347 if iter.i2 > 1 and e = effects->at(iter.i2) then
348 if iter.i2 = effectSize then
349 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i2:Integer = null}
350 else
351 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:

Integer = iter.i2 + 1}
352 endif
353 else
354 if e = firstEffect then
355 let t:Integer = elem.timestamp in
356 if iter.midCriticalInstants->includes(t) then
357 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t), i2:Integer = 1}
358 else
359 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:

Integer = 2}
360 endif
361 else
362 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:

Integer = 1}
363 endif
364 endif
365 endif
366 else
367 iter
368 endif
369).flag
370
371 =======
372 def: checkPatternPrecedenceOneManyMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:TemPsy::

TimeDistance, effects:Sequence(String)):Boolean =
373 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
374 if which = TemPsy::ComparingOperator::ATLEAST then
375 self.checkPatternPrecedenceOneManyAtLeastMid(subtrace, cause, value, effects)
376 else
377 if which = TemPsy::ComparingOperator::ATMOST then
378 self.checkPatternPrecedenceOneManyAtMostMid(subtrace, cause, value, effects)
379 else
380 self.checkPatternPrecedenceOneManyExactlyMid(subtrace, cause, value, effects)
381 endif
382 endif
383
384
385 =======
386 def: checkPatternPrecedenceOneManyRight(subtrace:OrderedSet(trace::TraceElement), cause:String, effects:Sequence(

String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
387 let
388 effectSize:Integer = effects->size(),
389 firstEffect:String = effects->first(),
390 secondEffectDistance:Integer = effectDistances->at(2).value
391 in
392 subtrace->iterate(elem:trace::TraceElement;
393 iter:Tuple(flag:Boolean, result:Integer, i2:Integer, effectCriticalInstant:Integer)
394 = Tuple{flag:Boolean = true, result:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
395 |
396 if iter.flag then
397 let e:String = elem.event in
398 if e = cause then
399 Tuple{flag:Boolean = false, result:Integer = -1, i2:Integer = null, effectCriticalInstant:Integer = null}
400 else

44

401 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,
effectDistances->at(iter.i2).which) then

402 if iter.i2 = effectSize then
403 Tuple{flag:Boolean = false, result:Integer = -2, i2:Integer = null, effectCriticalInstant:Integer = null}
404 else
405 let i22:Integer = iter.i2 + 1 in
406 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = i22, effectCriticalInstant:

Integer = elem.timestamp + effectDistances->at(i22).value}
407 endif
408 else
409 if e = firstEffect then
410 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 2, effectCriticalInstant:Integer

= elem.timestamp + secondEffectDistance}
411 else
412 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 1, effectCriticalInstant:Integer

= iter.effectCriticalInstant}
413 endif
414 endif
415 endif
416 else
417 iter
418 endif
419).result >= -1
420
421 =======
422 def: checkPatternPrecedenceOneManyAtLeastMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance

:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
423 let
424 effectSize:Integer = effects->size(),
425 firstEffect:String = effects->first(),
426 secondEffectDistance:Integer = effectDistances->at(2).value
427 in
428 subtrace->iterate(elem:trace::TraceElement;
429 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer)
430 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
431 |
432 if iter.flag then
433 let e:String = elem.event in
434 if iter.midCriticalInstant = 0 and e = cause then //catch the first occurrence of cause
435 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
436 else
437 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
438 if iter.i2 = effectSize then
439 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i2:Integer = null, effectCriticalInstant:

Integer = null}
440 else
441 let i22:Integer = iter.i2 + 1 in
442 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i22,

effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
443 endif
444 else
445 if e = firstEffect then
446 if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then
447 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,

effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
448 else
449 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null, effectCriticalInstant:

Integer = null}
450 endif
451 else
452 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
453 endif
454 endif
455 endif
456 else
457 iter

45

458 endif
459).midCriticalInstant >= -1
460
461 =======
462 def: checkPatternPrecedenceOneManyAtMostMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance:

Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
463 let
464 effectSize:Integer = effects->size(),
465 firstEffect:String = effects->first(),
466 secondEffectDistance:Integer = effectDistances->at(2).value
467 in
468 subtrace->iterate(elem:trace::TraceElement;
469 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer)
470 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
471 |
472 if iter.flag then
473 let e:String = elem.event in
474 if e = cause then
475 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
476 else
477 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
478 if iter.i2 = effectSize then
479 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i2:Integer = null, effectCriticalInstant:

Integer = null}
480 else
481 let i22:Integer = iter.i2 + 1 in
482 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i22,

effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
483 endif
484 else
485 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
486 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,

effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
487 else
488 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
489 endif
490 endif
491 endif
492 else
493 iter
494 endif
495).flag
496
497 // added on 18/08/2015
498 def: checkPatternPrecedenceOneManyExactlyMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance

:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
499 let
500 effectSize:Integer = effects->size(),
501 firstEffect:String = effects->first(),
502 secondEffectDistance:Integer = effectDistances->at(2).value
503 in
504 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i2:

Integer, effectCriticalInstant:Integer)
505 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i2:Integer = 1,

effectCriticalInstant:Integer = 0}
506 |
507 if iter.flag then
508 let e:String = elem.event in
509 if e = cause then
510 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.

timestamp+midDistance), i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
511 else
512 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
513 if iter.i2 = effectSize then
514 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i2:Integer = null,

46

effectCriticalInstant:Integer = null}
515 else
516 let i22:Integer = iter.i2 + 1 in
517 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:

Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
518 endif
519 else
520 if e = firstEffect then
521 let t:Integer = elem.timestamp in
522 if iter.midCriticalInstants->includes(t) then
523 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t), i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
524 else
525 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:

Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
526 endif
527 else
528 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:

Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
529 endif
530 endif
531 endif
532 else
533 iter
534 endif
535).flag
536
537 =======
538 def: checkPatternPrecedenceOneManyMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance:TemPsy

::TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean
=

539 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator=midDistance.comparingOperator in
540 if midWhich = TemPsy::ComparingOperator::ATLEAST then
541 self.checkPatternPrecedenceOneManyAtLeastMidRight(subtrace, cause, midValue, effects, effectDistances)
542 else
543 if midWhich = TemPsy::ComparingOperator::ATMOST then
544 self.checkPatternPrecedenceOneManyAtMostMidRight(subtrace, cause, midValue, effects, effectDistances)
545 else
546 self.checkPatternPrecedenceOneManyExactlyMidRight(subtrace, cause, midValue, effects, effectDistances)
547 endif
548 endif
549
550 =======
551 def: checkPatternPrecedenceManyOnePlain(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), effect:

String):Boolean =
552 let
553 causeSize:Integer = causes->size(),
554 firstCause:String = causes->first()
555 in
556 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, i1:Integer) = Tuple{flag:Boolean

= true, result:Integer = 0, i1:Integer = 1}
557 |
558 if iter.flag then
559 let e:String = elem.event in
560 if iter.i1 > 1 and e = causes->at(iter.i1) then
561 if iter.i1 = causeSize then
562 Tuple{flag:Boolean = false, result:Integer = -1, i1:Integer = null}
563 else
564 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = iter.i1 + 1}
565 endif
566 else
567 if e = firstCause then
568 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2}
569 else
570 if e = effect then
571 Tuple{flag:Boolean = false, result:Integer = -2, i1:Integer = null}
572 else
573 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1}
574 endif

47

575 endif
576 endif
577 else
578 iter
579 endif
580).result >= -1
581
582 =======
583 def: checkPatternPrecedenceManyOneAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effect:String):Boolean =
584 let
585 causeSize:Integer = causes->size(),
586 firstCause:String = causes->first()
587 in
588 subtrace->iterate(elem:trace::TraceElement;
589 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer) = Tuple{flag:Boolean = true, midCriticalInstant:

Integer = 0, i1:Integer = 1}
590 |
591 if iter.flag then
592 let e:String = elem.event in
593 if iter.i1 > 1 and e = causes->at(iter.i1) then
594 if iter.i1 = causeSize then
595 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1}
596 else
597 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 +

1}
598 endif
599 else
600 if iter.midCriticalInstant = 0 and e = firstCause then
601 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2}
602 else
603 if e = effect then
604 if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then
605 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i1:Integer = null}
606 else
607 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null}
608 endif
609 else
610 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1}
611 endif
612 endif
613 endif
614 else
615 iter
616 endif
617).midCriticalInstant >= -1
618
619 =======
620 def: checkPatternPrecedenceManyOneAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effect:String):Boolean =
621 let
622 causeSize:Integer = causes->size(),
623 firstCause:String = causes->first()
624 in
625 subtrace->iterate(elem:trace::TraceElement;
626 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer) = Tuple{flag:Boolean = true, midCriticalInstant:

Integer = 0, i1:Integer = 1}
627 |
628 if iter.flag then
629 let e:String = elem.event in
630 if iter.i1 > 1 and e = causes->at(iter.i1) then
631 if iter.i1 = causeSize then
632 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1}
633 else
634 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 +

1}
635 endif
636 else
637 if e = firstCause then

48

638 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2}
639 else
640 if e = effect and elem.timestamp > iter.midCriticalInstant then
641 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i1:Integer = null}
642 else
643 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1}
644 endif
645 endif
646 endif
647 else
648 iter
649 endif
650).flag
651
652 =======
653 def: checkPatternPrecedenceManyOneExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effect:String):Boolean =
654 let
655 causeSize:Integer = causes->size(),
656 firstCause:String = causes->first()
657 in
658 subtrace->iterate(elem:trace::TraceElement;
659 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i1:Integer)
660 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i1:Integer = 1}
661 |
662 if iter.flag then
663 let e:String = elem.event in
664 if iter.i1 > 1 and e = causes->at(iter.i1) then
665 if iter.i1 = causeSize then
666 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem

.timestamp+distance), i1:Integer = 1}
667 else
668 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:Integer

= iter.i1 + 1}
669 endif
670 else
671 if e = firstCause then
672 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:Integer

= 2}
673 else
674 if e = effect then
675 let t:Integer = elem.timestamp in
676 if iter.midCriticalInstants->includes(t) then
677 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t), i1:Integer = 1}
678 else
679 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i1:Integer = null}
680 endif
681 else
682 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1}
683 endif
684 endif
685 endif
686 else
687 iter
688 endif
689).flag
690
691 =======
692 def: checkPatternPrecedenceManyOneMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), distance:

TemPsy::TimeDistance, effect:String):Boolean =
693 let value:Integer = distance.value, which:TemPsy::ComparingOperator=distance.comparingOperator in
694 if which = TemPsy::ComparingOperator::ATLEAST then
695 self.checkPatternPrecedenceManyOneAtLeastMid(subtrace, causes, value, effect)
696 else
697 if which = TemPsy::ComparingOperator::ATMOST then
698 self.checkPatternPrecedenceManyOneAtMostMid(subtrace, causes, value, effect)
699 else

49

700 self.checkPatternPrecedenceManyOneExactlyMid(subtrace, causes, value, effect)
701 endif
702 endif
703
704 =======
705 def: checkPatternPrecedenceManyOneLeft(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effect:String):Boolean =
706 let
707 causeSize:Integer = causes->size(),
708 firstCause:String = causes->first(),
709 secondCauseDistance:Integer = causeDistances->at(2).value
710 in
711 subtrace->iterate(elem:trace::TraceElement;
712 iter:Tuple(flag:Boolean, result:Integer, i1:Integer, causeCriticalInstant:Integer)
713 = Tuple{flag:Boolean = true, result:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0}
714 |
715 if iter.flag then
716 let e:String = elem.event in
717 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
718 if iter.i1 = causeSize then
719 Tuple{flag:Boolean = false, result:Integer = -1, i1:Integer = null, causeCriticalInstant:Integer = null}
720 else
721 let i11:Integer = iter.i1 + 1 in
722 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = i11, causeCriticalInstant:Integer

= elem.timestamp + causeDistances->at(i11).value}
723 endif
724 else
725 if e = firstCause then
726 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, causeCriticalInstant:Integer =

elem.timestamp + secondCauseDistance}
727 else
728 if e = effect then
729 Tuple{flag:Boolean = false, result:Integer = -2, i1:Integer = null, causeCriticalInstant:Integer = null}
730 else
731 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, causeCriticalInstant:Integer

= iter.causeCriticalInstant}
732 endif
733 endif
734 endif
735 else
736 iter
737 endif
738).result >= -1
739
740 =======
741 def: checkPatternPrecedenceManyOneLeftAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
742 let
743 causeSize:Integer = causes->size(),
744 firstCause:String = causes->first(),
745 secondCauseDistance:Integer = causeDistances->at(2).value
746 in
747 subtrace->iterate(elem:trace::TraceElement;
748 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer)
749 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0}
750 |
751 if iter.flag then
752 let e:String = elem.event in
753 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then//imply iter.midCriticalInstant = 0
754 if iter.i1 = causeSize then
755 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant}
756 else
757 let i11:Integer = iter.i1 + 1 in
758 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).value}
759 endif

50

760 else
761 if iter.midCriticalInstant = 0 and e = firstCause then
762 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance}
763 else
764 if e = effect then
765 if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then
766 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i1:Integer = null, causeCriticalInstant:

Integer = null}
767 else
768 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, causeCriticalInstant:

Integer = null}
769 endif
770 else
771 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant}
772 endif
773 endif
774 endif
775 else
776 iter
777 endif
778).midCriticalInstant >= -1
779
780 =======
781 def: checkPatternPrecedenceManyOneLeftAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
782 let
783 causeSize:Integer = causes->size(),
784 firstCause:String = causes->first(),
785 secondCauseDistance:Integer = causeDistances->at(2).value
786 in
787 subtrace->iterate(elem:trace::TraceElement;
788 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer)
789 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0}
790 |
791 if iter.flag then
792 let e:String = elem.event in
793 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
794 if iter.i1 = causeSize then
795 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant}
796 else
797 let i11:Integer = iter.i1 + 1 in
798 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).value}
799 endif
800 else
801 if e = firstCause then
802 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance}
803 else
804 if e = effect and elem.timestamp > iter.midCriticalInstant then
805 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:

Integer = null}
806 else
807 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant}
808 endif
809 endif
810 endif
811 else
812 iter
813 endif
814).flag
815
816 =======
817 def: checkPatternPrecedenceManyOneLeftExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

51

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
818 let
819 causeSize:Integer = causes->size(),
820 firstCause:String = causes->first(),
821 secondCauseDistance:Integer = causeDistances->at(2).value
822 in
823 subtrace->iterate(elem:trace::TraceElement;
824 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i1:Integer, causeCriticalInstant:Integer)
825 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i1:Integer = 1,

causeCriticalInstant:Integer = 0}
826 |
827 if iter.flag then
828 let e:String = elem.event in
829 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
830 if iter.i1 = causeSize then
831 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem

.timestamp+midDistance), i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
832 else
833 let i11:Integer = iter.i1 + 1 in
834 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:Integer

= i11, causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).value}
835 endif
836 else
837 if e = firstCause then
838 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:Integer

= 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance}
839 else
840 if e = effect then
841 let t:Integer = elem.timestamp in
842 if iter.midCriticalInstants->includes(t) then
843 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t), i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
844 else
845 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i1:Integer = null,

causeCriticalInstant:Integer = null}
846 endif
847 else
848 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
849 endif
850 endif
851 endif
852 else
853 iter
854 endif
855).flag
856
857 =======
858 def: checkPatternPrecedenceManyOneLeftMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effect:String):
Boolean =

859 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator=midDistance.comparingOperator in
860 if midWhich = TemPsy::ComparingOperator::ATLEAST then
861 self.checkPatternPrecedenceManyOneLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effect)
862 else
863 if midWhich = TemPsy::ComparingOperator::ATMOST then
864 self.checkPatternPrecedenceManyOneLeftAtMostMid(subtrace, causes, causeDistances, midValue, effect)
865 else
866 self.checkPatternPrecedenceManyOneLeftExactlyMid(subtrace, causes, causeDistances, midValue, effect)
867 endif
868 endif
869
870 =======
871 def: checkPatternPrecedenceManyManyPlain(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), effects:

Sequence(String)):Boolean =
872 let
873 causeSize:Integer = causes->size(),
874 firstCause:String = causes->first(),

52

875 effectSize:Integer = effects->size(),
876 firstEffect:String = effects->first(),
877 lastEffect:String = effects->last()
878 in
879 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, i1:Integer, i2:Integer) = Tuple{

flag:Boolean = true, result:Integer = 0, i1:Integer = 1, i2:Integer = 1}
880 |
881 if iter.flag then
882 let e:String = elem.event in
883 if iter.i2 = effectSize and e = lastEffect then
884 Tuple{flag:Boolean = false, result:Integer = -2, i1:Integer = null, i2:Integer = null}
885 else
886 if iter.i1 > 1 and e = causes->at(iter.i1) then
887 if iter.i1 = causeSize then
888 Tuple{flag:Boolean = false, result:Integer = -1, i1:Integer = null, i2:Integer = null}
889 else
890 if e = effects->at(iter.i2) then
891 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = iter.i1 + 1, i2:Integer = iter

.i2 + 1}
892 else
893 if e = firstEffect then
894 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = iter.i1 + 1, i2:Integer = 2}
895 else
896 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = iter.i1 + 1, i2:Integer = 1}
897 endif
898 endif
899 endif
900 else
901 if e = firstCause then
902 if e = effects->at(iter.i2) then
903 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, i2:Integer = iter.i2 + 1}
904 else
905 if e = firstEffect then
906 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, i2:Integer = 2}
907 else
908 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, i2:Integer = 1}
909 endif
910 endif
911 else
912 if e = effects->at(iter.i2) then
913 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, i2:Integer = iter.i2 + 1}
914 else
915 if e = firstEffect then
916 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, i2:Integer = 2}
917 else
918 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, i2:Integer = 1}
919 endif
920 endif
921 endif
922 endif
923 endif
924 else
925 iter
926 endif
927).result >= -1
928
929 =======
930 def: checkPatternPrecedenceManyManyAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effects:Sequence(String)):Boolean =
931 let
932 causeSize:Integer = causes->size(),
933 firstCause:String = causes->first(),
934 effectSize:Integer = effects->size(),
935 firstEffect:String = effects->first(),
936 lastEffect:String = effects->last()
937 in
938 subtrace->iterate(elem:trace::TraceElement;
939 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer) = Tuple{flag:Boolean = true,

midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1} |

53

940 if iter.flag then
941 let e:String = elem.event in
942 if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticalInstant then
943 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, i2:Integer = null} //

satisfaction
944 else
945 if iter.i2 = effectSize and e = lastEffect then
946 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i1:Integer = null, i2:Integer = null} //

violation
947 else
948 if iter.i1 > 1 and e = causes->at(iter.i1) then
949 if iter.i1 = causeSize then
950 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1,

i2:Integer = 1}
951 else
952 if e = effects->at(iter.i2) then
953 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter

.i1 + 1, i2:Integer = iter.i2 + 1} // a potential violation to time distance
954 else
955 if e = firstEffect then
956 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

iter.i1 + 1, i2:Integer = 2} // a potential violation
957 else
958 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

iter.i1 + 1, i2:Integer = 1}
959 endif
960 endif
961 endif
962 else
963 if iter.midCriticalInstant = 0 and e = firstCause then
964 if e = effects->at(iter.i2) then
965 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = iter.i2 + 1}
966 else
967 if e = firstEffect then
968 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = 2} // a potential violation
969 else
970 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = 1}
971 endif
972 endif
973 else
974 if e = effects->at(iter.i2) then
975 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = iter.i2 + 1}
976 else
977 if e = firstEffect then
978 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 2} // a potential violation
979 else
980 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 1}
981 endif
982 endif
983 endif
984 endif
985 endif
986 endif
987 else
988 iter
989 endif
990).midCriticalInstant >= -1
991
992 =======
993 def: checkPatternPrecedenceManyManyAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effects:Sequence(String)):Boolean =
994 let
995 causeSize:Integer = causes->size(),

54

996 firstCause:String = causes->first(),
997 effectSize:Integer = effects->size(),
998 firstEffect:String = effects->first(),
999 lastEffect:String = effects->last()

1000 in
1001 subtrace->iterate(elem:trace::TraceElement;
1002 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer) = Tuple{flag:Boolean = true,

midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1}
1003 |
1004 if iter.flag then
1005 let e:String = elem.event in
1006 if iter.i2 = effectSize and e = lastEffect then
1007 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null}
1008 else
1009 if iter.i1 > 1 and e = causes->at(iter.i1) then
1010 if iter.i1 = causeSize then
1011 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1, i2:

Integer = 1}
1012 else
1013 if iter.i2 > 1 and e = effects->at(iter.i2) then
1014 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1 + 1, i2:Integer = iter.i2 + 1}
1015 else
1016 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1017 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter

.i1 + 1, i2:Integer = 2}
1018 else
1019 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter

.i1 + 1, i2:Integer = 1}
1020 endif
1021 endif
1022 endif
1023 else
1024 if e = firstCause then
1025 if iter.i2 > 1 and e = effects->at(iter.i2) then
1026 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = iter.i2 + 1}
1027 else
1028 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1029 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = 2}
1030 else
1031 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = 1}
1032 endif
1033 endif
1034 else
1035 if iter.i2 > 1 and e = effects->at(iter.i2) then
1036 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = iter.i2 + 1}
1037 else
1038 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1039 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 2}
1040 else
1041 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 1}
1042 endif
1043 endif
1044 endif
1045 endif
1046 endif
1047 else
1048 iter
1049 endif
1050).flag
1051
1052 =======
1053 def: checkPatternPrecedenceManyManyExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

55

distance:Integer, effects:Sequence(String)):Boolean =
1054 let
1055 causeSize:Integer = causes->size(),
1056 firstCause:String = causes->first(),
1057 effectSize:Integer = effects->size(),
1058 firstEffect:String = effects->first(),
1059 lastEffect:String = effects->last()
1060 in
1061 subtrace->iterate(elem:trace::TraceElement;
1062 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i1:Integer, i2:Integer)
1063 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i1:Integer = 1, i2:Integer = 1}
1064 |
1065 if iter.flag then
1066 let e:String = elem.event in
1067 if iter.i2 = effectSize and e = lastEffect then
1068 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i1:Integer = null, i2:Integer = null}
1069 else
1070 if iter.i1 > 1 and e = causes->at(iter.i1) then
1071 if iter.i1 = causeSize then
1072 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(

elem.timestamp+distance), i1:Integer = 1, i2:Integer = 1}
1073 else
1074 if iter.i2 > 1 and e = effects->at(iter.i2) then
1075 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = iter.i1 + 1, i2:Integer = iter.i2 + 1}
1076 else
1077 if e = firstEffect then
1078 let t:Integer = elem.timestamp in
1079 if iter.midCriticalInstants->includes(t) then
1080 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = iter.i1 + 1, i2:Integer = 1}
1081 else
1082 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = iter.i1 + 1, i2:Integer = 2}
1083 endif
1084 else
1085 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = iter.i1 + 1, i2:Integer = 1}
1086 endif
1087 endif
1088 endif
1089 else
1090 if e = firstCause then
1091 if iter.i2 > 1 and e = effects->at(iter.i2) then
1092 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, i2:Integer = iter.i2 + 1}
1093 else
1094 if e = firstEffect then
1095 let t:Integer = elem.timestamp in
1096 if iter.midCriticalInstants->includes(t) then
1097 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = 2, i2:Integer = 1}
1098 else
1099 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, i2:Integer = 2}
1100 endif
1101 else
1102 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, i2:Integer = 1}
1103 endif
1104 endif
1105 else
1106 if iter.i2 > 1 and e = effects->at(iter.i2) then
1107 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, i2:Integer = iter.i2 + 1}
1108 else
1109 if e = firstEffect then
1110 let t:Integer = elem.timestamp in
1111 if iter.midCriticalInstants->includes(t) then

56

1112 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), i1:Integer = 1, i2:Integer = 1}

1113 else
1114 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, i2:Integer = 2}
1115 endif
1116 else
1117 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, i2:Integer = 1}
1118 endif
1119 endif
1120 endif
1121 endif
1122 endif
1123 else
1124 iter
1125 endif
1126).flag
1127
1128 =======
1129 def: checkPatternPrecedenceManyManyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), distance:

TemPsy::TimeDistance, effects:Sequence(String)):Boolean =
1130 let value:Integer = distance.value, which:TemPsy::ComparingOperator=distance.comparingOperator in
1131 if which = TemPsy::ComparingOperator::ATLEAST then
1132 self.checkPatternPrecedenceManyManyAtLeastMid(subtrace, causes, value, effects)
1133 else
1134 if which = TemPsy::ComparingOperator::ATMOST then
1135 self.checkPatternPrecedenceManyManyAtMostMid(subtrace, causes, value, effects)
1136 else
1137 self.checkPatternPrecedenceManyManyExactlyMid(subtrace, causes, value, effects)
1138 endif
1139 endif
1140
1141 =======
1142 def: checkPatternPrecedenceManyManyLeft(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String)):Boolean =
1143 let
1144 causeSize:Integer = causes->size(),
1145 firstCause:String = causes->first(),
1146 secondCauseDistance:Integer = causeDistances->at(2).value,
1147 effectSize:Integer = effects->size(),
1148 firstEffect:String = effects->first(),
1149 lastEffect:String = effects->last()
1150 in
1151 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, i1:Integer, causeCriticalInstant

:Integer, i2:Integer) = Tuple{flag:Boolean = true, result:Integer = 0, i1:Integer = 1, causeCriticalInstant:
Integer = 0, i2:Integer = 1}

1152 |
1153 if iter.flag then
1154 let e:String = elem.event in
1155 if iter.i2 = effectSize and e = lastEffect then
1156 Tuple{flag:Boolean = false, result:Integer = -2, i1:Integer = null, causeCriticalInstant:Integer = null, i2:

Integer = null}
1157 else
1158 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
1159 if iter.i1 = causeSize then
1160 Tuple{flag:Boolean = false, result:Integer = -1, i1:Integer = null, causeCriticalInstant:Integer = null, i2

:Integer = null}
1161 else
1162 let i11:Integer = iter.i1 + 1 in
1163 if e = effects->at(iter.i2) then
1164 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = i11, causeCriticalInstant:

Integer = elem.timestamp + causeDistances->at(i11).value, i2:Integer = iter.i2 + 1}
1165 else
1166 if e = firstEffect then
1167 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = i11, causeCriticalInstant:

Integer = elem.timestamp + causeDistances->at(i11).value, i2:Integer = 2}
1168 else

57

1169 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = i11, causeCriticalInstant:
Integer = elem.timestamp + causeDistances->at(i11).value, i2:Integer = 1}

1170 endif
1171 endif
1172 endif
1173 else
1174 if e = firstCause then
1175 if e = effects->at(iter.i2) then
1176 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, causeCriticalInstant:

Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
1177 else
1178 if e = firstEffect then
1179 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, causeCriticalInstant:

Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}
1180 else
1181 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, causeCriticalInstant:

Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
1182 endif
1183 endif
1184 else
1185 if e = effects->at(iter.i2) then
1186 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, causeCriticalInstant:

Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
1187 else
1188 if e = firstEffect then
1189 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, causeCriticalInstant:

Integer = iter.causeCriticalInstant, i2:Integer = 2}
1190 else
1191 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, causeCriticalInstant:

Integer = iter.causeCriticalInstant, i2:Integer = 1}
1192 endif
1193 endif
1194 endif
1195 endif
1196 endif
1197 else
1198 iter
1199 endif
1200).result >= -1
1201
1202 =======
1203 def: checkPatternPrecedenceManyManyLeftAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

1204 let
1205 causeSize:Integer = causes->size(),
1206 firstCause:String = causes->first(),
1207 secondCauseDistance:Integer = causeDistances->at(2).value,
1208 effectSize:Integer = effects->size(),
1209 firstEffect:String = effects->first(),
1210 lastEffect:String = effects->last()
1211 in
1212 subtrace->iterate(elem:trace::TraceElement;
1213 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer) = Tuple{

flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:
Integer = 1}

1214 |
1215 if iter.flag then
1216 let e:String = elem.event in
1217 if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticalInstant then
1218 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, causeCriticalInstant:Integer =

null, i2:Integer = null} // satisfaction
1219 else
1220 if iter.i2 = effectSize and e = lastEffect then
1221 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i1:Integer = null, causeCriticalInstant:Integer

= null, i2:Integer = null} // violation
1222 else
1223 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then

58

1224 if iter.i1 = causeSize then
1225 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer =

1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
1226 else
1227 let i11:Integer = iter.i1 + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11

).value in
1228 if e = effects->at(iter.i2) then // for instance {causes: [a,b,c], effects: [d,a,b]}, when i1 = 1, i2 = 2

or i1 = 2, i2 = 3. But it is not possible i1 equals to causeSize, since causes cannot be a sublist
of effects.

1229 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,
causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = iter.i2 + 1}

1230 else
1231 if e = firstEffect then
1232 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2} // a potential
violation

1233 else
1234 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1}
1235 endif
1236 endif
1237 endif
1238 else
1239 if iter.midCriticalInstant = 0 and e = firstCause then
1240 if e = effects->at(iter.i2) then
1241 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
1242 else
1243 if e = firstEffect then
1244 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2} // a
potential violation

1245 else
1246 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
1247 endif
1248 endif
1249 else
1250 if e = effects->at(iter.i2) then
1251 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
1252 else
1253 if e = firstEffect then
1254 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2} // a potential
violation

1255 else
1256 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
1257 endif
1258 endif
1259 endif
1260 endif
1261 endif
1262 endif
1263 else
1264 iter
1265 endif
1266).midCriticalInstant >= -1
1267
1268 =======
1269 def: checkPatternPrecedenceManyManyLeftAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

1270 let
1271 causeSize:Integer = causes->size(),
1272 firstCause:String = causes->first(),
1273 secondCauseDistance:Integer = causeDistances->at(2).value,
1274 effectSize:Integer = effects->size(),

59

1275 firstEffect:String = effects->first(),
1276 lastEffect:String = effects->last()
1277 in
1278 subtrace->iterate(elem:trace::TraceElement;
1279 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer)
1280 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1}
1281 |
1282 if iter.flag then
1283 let e:String = elem.event in
1284 if iter.i2 = effectSize and e = lastEffect then
1285 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer

= null, i2:Integer = null}
1286 else
1287 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
1288 if iter.i1 = causeSize then
1289 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
1290 else
1291 let i11:Integer = iter.i1 + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).

value in
1292 if iter.i2 > 1 and e = effects->at(iter.i2) then
1293 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = iter.i2 + 1}
1294 else
1295 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1296 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2}
1297 else
1298 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1}
1299 endif
1300 endif
1301 endif
1302 else
1303 if e = firstCause then
1304 if iter.i2 > 1 and e = effects->at(iter.i2) then
1305 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
1306 else
1307 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1308 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}
1309 else
1310 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
1311 endif
1312 endif
1313 else
1314 if iter.i2 > 1 and e = effects->at(iter.i2) then
1315 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
1316 else
1317 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1318 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}
1319 else
1320 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
1321 endif
1322 endif
1323 endif
1324 endif
1325 endif
1326 else
1327 iter
1328 endif
1329).flag

60

1330
1331 =======
1332 def: checkPatternPrecedenceManyManyLeftExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

1333 let
1334 causeSize:Integer = causes->size(),
1335 firstCause:String = causes->first(),
1336 secondCauseDistance:Integer = causeDistances->at(2).value,
1337 effectSize:Integer = effects->size(),
1338 firstEffect:String = effects->first(),
1339 lastEffect:String = effects->last()
1340 in
1341 subtrace->iterate(elem:trace::TraceElement;
1342 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i1:Integer, causeCriticalInstant:Integer, i2:

Integer)
1343 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i1:Integer = 1,

causeCriticalInstant:Integer = 0, i2:Integer = 1}
1344 |
1345 if iter.flag then
1346 let e:String = elem.event in
1347 if iter.i2 = effectSize and e = lastEffect then
1348 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i1:Integer = null,

causeCriticalInstant:Integer = null, i2:Integer = null}
1349 else
1350 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
1351 if iter.i1 = causeSize then
1352 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(

elem.timestamp+midDistance), i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,
i2:Integer = 1}

1353 else
1354 let i11:Integer = iter.i1 + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).

value in
1355 if iter.i2 > 1 and e = effects->at(iter.i2) then
1356 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = iter.i2 + 1}
1357 else
1358 if e = firstEffect then
1359 let t:Integer = elem.timestamp in
1360 if iter.midCriticalInstants->includes(t) then
1361 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = i11, causeCriticalInstant:Integer =
nextCauseCriticalInstant, i2:Integer = 1}

1362 else
1363 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2}
1364 endif
1365 else
1366 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1}
1367 endif
1368 endif
1369 endif
1370 else
1371 if e = firstCause then
1372 if iter.i2 > 1 and e = effects->at(iter.i2) then
1373 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.
i2 + 1}

1374 else
1375 if e = firstEffect then
1376 let t:Integer = elem.timestamp in
1377 if iter.midCriticalInstants->includes(t) then
1378 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance, i2:Integer = 1}

1379 else
1380 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

61

Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer =
2}

1381 endif
1382 else
1383 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
1384 endif
1385 endif
1386 else
1387 if iter.i2 > 1 and e = effects->at(iter.i2) then
1388 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
1389 else
1390 if e = firstEffect then
1391 let t:Integer = elem.timestamp in
1392 if iter.midCriticalInstants->includes(t) then
1393 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant, i2:Integer = 1}

1394 else
1395 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}
1396 endif
1397 else
1398 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
1399 endif
1400 endif
1401 endif
1402 endif
1403 endif
1404 else
1405 iter
1406 endif
1407).flag
1408
1409 =======
1410 def: checkPatternPrecedenceManyManyLeftMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String)):Boolean =

1411 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator=midDistance.comparingOperator in
1412 if midWhich = TemPsy::ComparingOperator::ATLEAST then
1413 self.checkPatternPrecedenceManyManyLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effects)
1414 else
1415 if midWhich = TemPsy::ComparingOperator::ATMOST then
1416 self.checkPatternPrecedenceManyManyLeftAtMostMid(subtrace, causes, causeDistances, midValue, effects)
1417 else
1418 self.checkPatternPrecedenceManyManyLeftExactlyMid(subtrace, causes, causeDistances, midValue, effects)
1419 endif
1420 endif
1421
1422 =======
1423 def: checkPatternPrecedenceManyManyRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), effects:

Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
1424 let
1425 causeSize:Integer = causes->size(),
1426 firstCause:String = causes->first(),
1427 effectSize:Integer = effects->size(),
1428 firstEffect:String = effects->first(),
1429 lastEffect:String = effects->last(),
1430 secondEffectDistance:Integer = effectDistances->at(2).value
1431 in
1432 subtrace->iterate(elem:trace::TraceElement;
1433 iter:Tuple(flag:Boolean, result:Integer, i1:Integer, i2:Integer, effectCriticalInstant:Integer)
1434 = Tuple{flag:Boolean = true, result:Integer = 0, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = 0}
1435 |
1436 if iter.flag then
1437 let e:String = elem.event in
1438 if iter.i2 = effectSize and e = lastEffect then

62

1439 Tuple{flag:Boolean = false, result:Integer = -2, i1:Integer = null, i2:Integer = null, effectCriticalInstant:
Integer = null}

1440 else
1441 if iter.i1 > 1 and e = causes->at(iter.i1) then
1442 if iter.i1 = causeSize then
1443 Tuple{flag:Boolean = false, result:Integer = -1, i1:Integer = null, i2:Integer = null,

effectCriticalInstant:Integer = null}
1444 else
1445 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1446 let i22:Integer = iter.i2 + 1 in
1447 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = iter.i1 + 1, i2:Integer = i22,

effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1448 else
1449 if e = firstEffect then
1450 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = iter.i1 + 1, i2:Integer = 2,

effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1451 else
1452 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = iter.i1 + 1, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
1453 endif
1454 endif
1455 endif
1456 else
1457 if e = firstCause then
1458 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1459 let i22:Integer = iter.i2 + 1 in
1460 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, i2:Integer = i22,

effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1461 else
1462 if e = firstEffect then
1463 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, i2:Integer = 2,

effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1464 else
1465 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
1466 endif
1467 endif
1468 else
1469 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1470 let i22:Integer = iter.i2 + 1 in
1471 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, i2:Integer = i22,

effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1472 else
1473 if e = firstEffect then
1474 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, i2:Integer = 2,

effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1475 else
1476 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
1477 endif
1478 endif
1479 endif
1480 endif
1481 endif
1482 else
1483 iter
1484 endif
1485).result >= -1
1486
1487 =======
1488 def: checkPatternPrecedenceManyManyAtLeastMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

1489 let
1490 causeSize:Integer = causes->size(),
1491 firstCause:String = causes->first(),

63

1492 effectSize:Integer = effects->size(),
1493 firstEffect:String = effects->first(),
1494 lastEffect:String = effects->last(),
1495 secondEffectDistance:Integer = effectDistances->at(2).value
1496 in
1497 subtrace->iterate(elem:trace::TraceElement;
1498 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer, effectCriticalInstant:Integer)
1499 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:

Integer = 0}
1500 |
1501 if iter.flag then
1502 let e:String = elem.event in
1503 if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticalInstant then
1504 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, i2:Integer = null,

effectCriticalInstant:Integer = null} // satisfaction
1505 else
1506 if iter.i2 = effectSize and e = lastEffect then
1507 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i1:Integer = null, i2:Integer = null,

effectCriticalInstant:Integer = null} // violation
1508 else
1509 if iter.i1 > 1 and e = causes->at(iter.i1) then
1510 if iter.i1 = causeSize then
1511 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer =

1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1512 else
1513 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1514 let i22:Integer = iter.i2 + 1 in
1515 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter

.i1 + 1, i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(
i22).value}

1516 else
1517 if e = firstEffect then
1518 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

iter.i1 + 1, i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp +
secondEffectDistance} // a potential violation

1519 else
1520 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

iter.i1 + 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1521 endif
1522 endif
1523 endif
1524 else
1525 if iter.midCriticalInstant = 0 and e = firstCause then
1526 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1527 let i22:Integer = iter.i2 + 1 in
1528 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1529 else
1530 if e = firstEffect then
1531 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a
potential violation

1532 else
1533 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1534 endif
1535 endif
1536 else
1537 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1538 let i22:Integer = iter.i2 + 1 in
1539 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1540 else
1541 if e = firstEffect then//midCriticalInstant is either 0 or midCriticalInstant > elem.timestamp
1542 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a

64

potential violation
1543 else
1544 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1545 endif
1546 endif
1547 endif
1548 endif
1549 endif
1550 endif
1551 else
1552 iter
1553 endif
1554).midCriticalInstant >= -1
1555
1556 =======
1557 def: checkPatternPrecedenceManyManyAtMostMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

1558 let
1559 causeSize:Integer = causes->size(),
1560 firstCause:String = causes->first(),
1561 effectSize:Integer = effects->size(),
1562 firstEffect:String = effects->first(),
1563 lastEffect:String = effects->last(),
1564 secondEffectDistance:Integer = effectDistances->at(2).value
1565 in
1566 subtrace->iterate(elem:trace::TraceElement;
1567 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer, effectCriticalInstant:Integer)
1568 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:

Integer = 0}
1569 |
1570 if iter.flag then
1571 let e:String = elem.event in
1572 if iter.i2 = effectSize and e = lastEffect then
1573 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null,

effectCriticalInstant:Integer = null}
1574 else
1575 if iter.i1 > 1 and e = causes->at(iter.i1) then
1576 if iter.i1 = causeSize then
1577 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1578 else
1579 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1580 let i22:Integer = iter.i2 + 1 in
1581 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1 + 1, i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).
value}

1582 else
1583 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1584 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter

.i1 + 1, i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1585 else
1586 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter

.i1 + 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1587 endif
1588 endif
1589 endif
1590 else
1591 if e = firstCause then
1592 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1593 let i22:Integer = iter.i2 + 1 in
1594 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1595 else
1596 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1597 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

65

i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1598 else
1599 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1600 endif
1601 endif
1602 else
1603 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1604 let i22:Integer = iter.i2 + 1 in
1605 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1606 else
1607 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1608 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1609 else
1610 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1611 endif
1612 endif
1613 endif
1614 endif
1615 endif
1616 else
1617 iter
1618 endif
1619).flag
1620
1621 =======
1622 def: checkPatternPrecedenceManyManyExactlyMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

1623 let
1624 causeSize:Integer = causes->size(),
1625 firstCause:String = causes->first(),
1626 effectSize:Integer = effects->size(),
1627 firstEffect:String = effects->first(),
1628 lastEffect:String = effects->last(),
1629 secondEffectDistance:Integer = effectDistances->at(2).value
1630 in
1631 subtrace->iterate(elem:trace::TraceElement;
1632 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i1:Integer, i2:Integer, effectCriticalInstant:

Integer)
1633 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i1:Integer = 1, i2:Integer = 1,

effectCriticalInstant:Integer = 0}
1634 |
1635 if iter.flag then
1636 let e:String = elem.event in
1637 if iter.i2 = effectSize and e = lastEffect then
1638 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i1:Integer = null, i2:Integer = null,

effectCriticalInstant:Integer = null}
1639 else
1640 if iter.i1 > 1 and e = causes->at(iter.i1) then
1641 if iter.i1 = causeSize then
1642 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(

elem.timestamp+midDistance), i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

1643 else
1644 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1645 let i22:Integer = iter.i2 + 1 in
1646 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = iter.i1 + 1, i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp +
effectDistances->at(i22).value}

1647 else
1648 if e = firstEffect then
1649 let t:Integer = elem.timestamp in
1650 if iter.midCriticalInstants->includes(t) then

66

1651 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), i1:Integer = iter.i1 + 1, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

1652 else
1653 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = iter.i1 + 1, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
1654 endif
1655 else
1656 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = iter.i1 + 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1657 endif
1658 endif
1659 endif
1660 else
1661 if e = firstCause then
1662 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1663 let i22:Integer = iter.i2 + 1 in
1664 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(
i22).value}

1665 else
1666 if e = firstEffect then
1667 let t:Integer = elem.timestamp in
1668 if iter.midCriticalInstants->includes(t) then
1669 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = 2, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticalInstant}

1670 else
1671 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
1672 endif
1673 else
1674 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1675 endif
1676 endif
1677 else
1678 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1679 let i22:Integer = iter.i2 + 1 in
1680 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(
i22).value}

1681 else
1682 if e = firstEffect then
1683 let t:Integer = elem.timestamp in
1684 if iter.midCriticalInstants->includes(t) then
1685 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticalInstant}

1686 else
1687 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
1688 endif
1689 else
1690 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
1691 endif
1692 endif
1693 endif
1694 endif
1695 endif
1696 else
1697 iter
1698 endif
1699).flag
1700
1701 =======

67

1702 def: checkPatternPrecedenceManyManyMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),
midDistance:TemPsy::TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:
Integer))):Boolean =

1703 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator=midDistance.comparingOperator in
1704 if midWhich = TemPsy::ComparingOperator::ATLEAST then
1705 self.checkPatternPrecedenceManyManyAtLeastMidRight(subtrace, causes, midValue, effects, effectDistances)
1706 else
1707 if midWhich = TemPsy::ComparingOperator::ATMOST then
1708 self.checkPatternPrecedenceManyManyAtMostMidRight(subtrace, causes, midValue, effects, effectDistances)
1709 else
1710 self.checkPatternPrecedenceManyManyExactlyMidRight(subtrace, causes, midValue, effects, effectDistances)
1711 endif
1712 endif
1713
1714 =======
1715 def: checkPatternPrecedenceManyManyLeftRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String), effectDistances:Sequence
(Tuple(which:Integer, value:Integer))):Boolean =

1716 let
1717 causeSize:Integer = causes->size(),
1718 firstCause:String = causes->first(),
1719 secondCauseDistance:Integer = causeDistances->at(2).value,
1720 effectSize:Integer = effects->size(),
1721 firstEffect:String = effects->first(),
1722 lastEffect:String = effects->last(),
1723 secondEffectDistance:Integer = effectDistances->at(2).value
1724 in
1725 subtrace->iterate(elem:trace::TraceElement;
1726 iter:Tuple(flag:Boolean, result:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer,

effectCriticalInstant:Integer)
1727 = Tuple{flag:Boolean = true, result:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:Integer = 1,

effectCriticalInstant:Integer = 0}
1728 |
1729 if iter.flag then
1730 let e:String = elem.event in
1731 if iter.i2 = effectSize and e = lastEffect then
1732 Tuple{flag:Boolean = false, result:Integer = -2, i1:Integer = null, causeCriticalInstant:Integer = null, i2:

Integer = null, effectCriticalInstant:Integer = null}
1733 else
1734 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
1735 if iter.i1 = causeSize then
1736 Tuple{flag:Boolean = false, result:Integer = -1, i1:Integer = null, causeCriticalInstant:Integer = null, i2

:Integer = null, effectCriticalInstant:Integer = null}
1737 else
1738 let i11:Integer = iter.i1 + 1 in
1739 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1740 let i22:Integer = iter.i2 + 1 in
1741 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = i11, causeCriticalInstant:

Integer = elem.timestamp + causeDistances->at(i11).value, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}

1742 else
1743 if e = firstEffect then
1744 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = i11, causeCriticalInstant:

Integer = elem.timestamp + causeDistances->at(i11).value, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}

1745 else
1746 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = i11, causeCriticalInstant:

Integer = elem.timestamp + causeDistances->at(i11).value, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

1747 endif
1748 endif
1749 endif
1750 else
1751 if e = firstCause then
1752 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1753 let i22:Integer = iter.i2 + 1 in

68

1754 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, causeCriticalInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = i22, effectCriticalInstant:Integer =
elem.timestamp + effectDistances->at(i22).value}

1755 else
1756 if e = firstEffect then
1757 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, causeCriticalInstant:

Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2, effectCriticalInstant:Integer =
elem.timestamp + secondEffectDistance}

1758 else
1759 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 2, causeCriticalInstant:

Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticalInstant}

1760 endif
1761 endif
1762 else
1763 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1764 let i22:Integer = iter.i2 + 1 in
1765 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, causeCriticalInstant:

Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:Integer = elem.
timestamp + effectDistances->at(i22).value}

1766 else
1767 if e = firstEffect then
1768 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, causeCriticalInstant:

Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:Integer = elem.
timestamp + secondEffectDistance}

1769 else
1770 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i1:Integer = 1, causeCriticalInstant:

Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

1771 endif
1772 endif
1773 endif
1774 endif
1775 endif
1776 else
1777 iter
1778 endif
1779).result >= -1
1780
1781 =======
1782 def: checkPatternPrecedenceManyManyLeftAtLeastMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(

String), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(
String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

1783 let
1784 causeSize:Integer = causes->size(),
1785 firstCause:String = causes->first(),
1786 secondCauseDistance:Integer = causeDistances->at(2).value,
1787 effectSize:Integer = effects->size(),
1788 firstEffect:String = effects->first(),
1789 lastEffect:String = effects->last(),
1790 secondEffectDistance:Integer = effectDistances->at(2).value
1791 in
1792 subtrace->iterate(elem:trace::TraceElement;
1793 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer,

effectCriticalInstant:Integer)
1794 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1, effectCriticalInstant:Integer = 0}
1795 |
1796 if iter.flag then
1797 let e:String = elem.event in
1798 if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticalInstant then
1799 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, causeCriticalInstant:Integer =

null, i2:Integer = null, effectCriticalInstant:Integer = null} // satisfaction
1800 else
1801 if iter.i2 = effectSize and e = lastEffect then
1802 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i1:Integer = null, causeCriticalInstant:Integer

= null, i2:Integer = null, effectCriticalInstant:Integer = null} // violation
1803 else

69

1804 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,
causeDistances->at(iter.i1).which) then

1805 if iter.i1 = causeSize then
1806 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer =

1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

1807 else
1808 let i11:Integer = iter.i1 + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11

).value in
1809 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1810 let i22:Integer = iter.i2 + 1 in
1811 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}

1812 else
1813 if e = firstEffect then
1814 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a potential violation

1815 else
1816 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer =

i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

1817 endif
1818 endif
1819 endif
1820 else
1821 if iter.midCriticalInstant = 0 and e = firstCause then
1822 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1823 let i22:Integer = iter.i2 + 1 in
1824 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

1825 else
1826 if e = firstEffect then
1827 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a potential violation

1828 else
1829 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

1830 endif
1831 endif
1832 else
1833 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1834 let i22:Integer = iter.i2 + 1 in
1835 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}

1836 else
1837 if e = firstEffect then
1838 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant
:Integer = elem.timestamp + secondEffectDistance} // a potential violation

1839 else
1840 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant
:Integer = iter.effectCriticalInstant}

1841 endif
1842 endif
1843 endif
1844 endif
1845 endif
1846 endif
1847 else

70

1848 iter
1849 endif
1850).midCriticalInstant >= -1
1851
1852 =======
1853 def: checkPatternPrecedenceManyManyLeftAtMostMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(

String), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(
String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

1854 let
1855 causeSize:Integer = causes->size(),
1856 firstCause:String = causes->first(),
1857 secondCauseDistance:Integer = causeDistances->at(2).value,
1858 effectSize:Integer = effects->size(),
1859 firstEffect:String = effects->first(),
1860 lastEffect:String = effects->last(),
1861 secondEffectDistance:Integer = effectDistances->at(2).value
1862 in
1863 subtrace->iterate(elem:trace::TraceElement;
1864 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer,

effectCriticalInstant:Integer)
1865 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1, effectCriticalInstant:Integer = 0}
1866 |
1867 if iter.flag then
1868 let e:String = elem.event in
1869 if iter.i2 = effectSize and e = lastEffect then
1870 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer

= null, i2:Integer = null, effectCriticalInstant:Integer = null}
1871 else
1872 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
1873 if iter.i1 = causeSize then
1874 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

1875 else
1876 let i11:Integer = iter.i1 + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).

value in
1877 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1878 let i22:Integer = iter.i2 + 1 in
1879 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}

1880 else
1881 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1882 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}

1883 else
1884 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

1885 endif
1886 endif
1887 endif
1888 else
1889 if e = firstCause then
1890 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1891 let i22:Integer = iter.i2 + 1 in
1892 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

1893 else
1894 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1895 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}

71

1896 else
1897 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

1898 endif
1899 endif
1900 else
1901 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1902 let i22:Integer = iter.i2 + 1 in
1903 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}

1904 else
1905 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1906 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}

1907 else
1908 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

1909 endif
1910 endif
1911 endif
1912 endif
1913 endif
1914 else
1915 iter
1916 endif
1917).flag
1918
1919 =======
1920 def: checkPatternPrecedenceManyManyLeftExactlyMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(

String), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(
String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

1921 let
1922 causeSize:Integer = causes->size(),
1923 firstCause:String = causes->first(),
1924 secondCauseDistance:Integer = causeDistances->at(2).value,
1925 effectSize:Integer = effects->size(),
1926 firstEffect:String = effects->first(),
1927 lastEffect:String = effects->last(),
1928 secondEffectDistance:Integer = effectDistances->at(2).value
1929 in
1930 subtrace->iterate(elem:trace::TraceElement;
1931 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i1:Integer, causeCriticalInstant:Integer, i2:

Integer, effectCriticalInstant:Integer)
1932 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i1:Integer = 1,

causeCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
1933 |
1934 if iter.flag then
1935 let e:String = elem.event in
1936 if iter.i2 = effectSize and e = lastEffect then
1937 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i1:Integer = null,

causeCriticalInstant:Integer = null, i2:Integer = null, effectCriticalInstant:Integer = null}
1938 else
1939 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
1940 if iter.i1 = causeSize then
1941 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(

elem.timestamp+midDistance), i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,
i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

1942 else
1943 let i11:Integer = iter.i1 + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).

value in
1944 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1945 let i22:Integer = iter.i2 + 1 in

72

1946 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:
Integer = i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

1947 else
1948 if e = firstEffect then
1949 let t:Integer = elem.timestamp in
1950 if iter.midCriticalInstants->includes(t) then
1951 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = i11, causeCriticalInstant:Integer =
nextCauseCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

1952 else
1953 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

1954 endif
1955 else
1956 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = i11, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

1957 endif
1958 endif
1959 endif
1960 else
1961 if e = firstCause then
1962 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1963 let i22:Integer = iter.i2 + 1 in
1964 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

1965 else
1966 if e = firstEffect then
1967 let t:Integer = elem.timestamp in
1968 if iter.midCriticalInstants->includes(t) then
1969 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

1970 else
1971 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer =
2, effectCriticalInstant:Integer = t + secondEffectDistance}

1972 endif
1973 else
1974 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

1975 endif
1976 endif
1977 else
1978 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
1979 let i22:Integer = iter.i2 + 1 in
1980 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

1981 else
1982 if e = firstEffect then
1983 let t:Integer = elem.timestamp in
1984 if iter.midCriticalInstants->includes(t) then
1985 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

select(subElem | subElem > t), i1:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant
}

1986 else
1987 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

1988 endif

73

1989 else
1990 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i1:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

1991 endif
1992 endif
1993 endif
1994 endif
1995 endif
1996 else
1997 iter
1998 endif
1999).flag
2000
2001 =======
2002 def: checkPatternPrecedenceManyManyLeftMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

2003 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator=midDistance.comparingOperator in
2004 if midWhich = TemPsy::ComparingOperator::ATLEAST then
2005 self.checkPatternPrecedenceManyManyLeftAtLeastMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)
2006 else
2007 if midWhich = TemPsy::ComparingOperator::ATMOST then
2008 self.checkPatternPrecedenceManyManyLeftAtMostMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)
2009 else
2010 self.checkPatternPrecedenceManyManyLeftExactlyMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)
2011 endif
2012 endif
2013
2014 =======
2015 def: checkPatternResponse(subtrace:OrderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =
2016 --check the satisfiability of the response pattern 'effect responding cause'
2017 --in the first event in the chain 'effect', it may contains time distance to the last event in the chain 'cause'
2018 if subtrace->isEmpty() then
2019 true
2020 else
2021 let orderPattern:TemPsy::OrderPattern = pattern.oclAsType(TemPsy::OrderPattern),
2022 causes:Sequence(String) = orderPattern.block2.event.name,
2023 causeDistances:Sequence(Tuple(which:Integer, value:Integer)) = self.loadDistances(orderPattern.block2.

timeDistance),
2024 causeSize:Integer = causes->size(),
2025 effects:Sequence(String) = orderPattern.block1.event.name,
2026 effectDistances:Sequence(Tuple(which:Integer, value:Integer)) = self.loadDistances(orderPattern.block1.

timeDistance),
2027 effectSize:Integer = effects->size()
2028 in
2029 if causeDistances->isEmpty() then
2030 if effectDistances->isEmpty() then
2031 if orderPattern.timeDistance->isEmpty() then
2032 if causeSize = 1 then
2033 let cause:String = causes->first() in
2034 if effectSize = 1 then
2035 let effect:String = effects->first() in
2036 self.checkPatternResponseOneOnePlain(subtrace, cause, effect)
2037 else
2038 self.checkPatternResponseOneManyPlain(subtrace, cause, effects)
2039 endif
2040 else
2041 if effectSize = 1 then
2042 let effect:String = effects->first() in
2043 self.checkPatternResponseManyOnePlain(subtrace, causes, effect)
2044 else
2045 self.checkPatternResponseManyManyPlain(subtrace, causes, effects)
2046 endif
2047 endif
2048 else

74

2049 if causeSize = 1 then
2050 let cause:String = causes->first() in
2051 if effectSize = 1 then
2052 let effect:String = effects->first() in
2053 self.checkPatternResponseOneOneMid(subtrace, cause, orderPattern.timeDistance, effect)
2054 else
2055 self.checkPatternResponseOneManyMid(subtrace, cause, orderPattern.timeDistance, effects)
2056 endif
2057 else
2058 if effectSize = 1 then
2059 let effect:String = effects->first() in
2060 self.checkPatternResponseManyOneMid(subtrace, causes, orderPattern.timeDistance, effect)
2061 else
2062 self.checkPatternResponseManyManyMid(subtrace, causes, orderPattern.timeDistance, effects)
2063 endif
2064 endif
2065 endif
2066 else
2067 if orderPattern.timeDistance->isEmpty() then
2068 if causeSize = 1 then
2069 let cause:String = causes->first() in
2070 self.checkPatternResponseOneManyRight(subtrace, cause, effects, effectDistances)
2071 else
2072 self.checkPatternResponseManyManyRight(subtrace, causes, effects, effectDistances)
2073 endif
2074 else
2075 if causeSize = 1 then
2076 let cause:String = causes->first() in
2077 self.checkPatternResponseOneManyMidRight(subtrace, cause, orderPattern.timeDistance, effects,

effectDistances)
2078 else
2079 self.checkPatternResponseManyManyMidRight(subtrace, causes, orderPattern.timeDistance, effects,

effectDistances)
2080 endif
2081 endif
2082 endif
2083 else
2084 if effectDistances->isEmpty() then
2085 if orderPattern.timeDistance->isEmpty() then
2086 if effectSize = 1 then
2087 let effect:String = effects->first() in
2088 self.checkPatternResponseManyOneLeft(subtrace, causes, causeDistances, effect)
2089 else
2090 self.checkPatternResponseManyManyLeft(subtrace, causes, causeDistances, effects)
2091 endif
2092 else
2093 if effectSize = 1 then
2094 let effect:String = effects->first() in
2095 self.checkPatternResponseManyOneLeftMid(subtrace, causes, causeDistances, orderPattern.timeDistance, effect

)
2096 else
2097 self.checkPatternResponseManyManyLeftMid(subtrace, causes, causeDistances, orderPattern.timeDistance,

effects)
2098 endif
2099 endif
2100 else
2101 if orderPattern.timeDistance->isEmpty() then
2102 self.checkPatternResponseManyManyLeftRight(subtrace, causes, causeDistances, effects, effectDistances)
2103 else
2104 self.checkPatternResponseManyManyLeftMidRight(subtrace, causes, causeDistances, orderPattern.timeDistance,

effects, effectDistances)
2105 endif
2106 endif
2107 endif
2108 endif
2109
2110 =======
2111 def: checkPatternResponseOneOnePlain(subtrace:OrderedSet(trace::TraceElement), cause:String, effect:String):Boolean =
2112 subtrace->iterate(

75

2113 elem:trace::TraceElement;
2114 result:Boolean = true
2115 |
2116 let e:String = elem.event in
2117 if e = cause then
2118 false
2119 else
2120 if e = effect then
2121 true
2122 else
2123 result
2124 endif
2125 endif
2126)
2127
2128 =======
2129 def: checkPatternResponseOneOneAtLeastMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effect:String):Boolean =
2130 subtrace->iterate(elem:trace::TraceElement;
2131 midCriticalInstant:Integer = 0
2132 |
2133 let e:String = elem.event in
2134 if e = cause then
2135 elem.timestamp + distance
2136 else
2137 if e = effect and elem.timestamp >= midCriticalInstant then
2138 0
2139 else
2140 midCriticalInstant
2141 endif
2142 endif
2143) = 0
2144
2145 =======
2146 def: checkPatternResponseOneOneAtMostMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effect:String):Boolean =
2147 subtrace->iterate(elem:trace::TraceElement;
2148 iter:Tuple(flag:Boolean, midCriticalInstant:Integer)
2149 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0}
2150 |
2151 if iter.flag then
2152 let e:String = elem.event in
2153 if iter.midCriticalInstant = 0 and e = cause then
2154 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance}
2155 else
2156 if e = effect then
2157 if elem.timestamp <= iter.midCriticalInstant then
2158 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0}
2159 else
2160 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1} // violation
2161 endif
2162 else
2163 iter
2164 endif
2165 endif
2166 else
2167 iter
2168 endif
2169).midCriticalInstant = 0
2170
2171 =======
2172 def: checkPatternResponseOneOneExactlyMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effect:String):Boolean =
2173 subtrace->iterate(elem:trace::TraceElement;
2174 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer))
2175 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}}
2176 |
2177 if iter.flag then
2178 let e:String = elem.event in

76

2179 if e = cause then
2180 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.

timestamp + distance)}
2181 else
2182 if e = effect and iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstants->first()

then
2183 let t:Integer = elem.timestamp in
2184 if t = iter.midCriticalInstants->first() then
2185 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding

(t)}
2186 else
2187 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants}
2188 endif
2189 else
2190 iter
2191 endif
2192 endif
2193 else
2194 iter
2195 endif
2196).midCriticalInstants->isEmpty()
2197
2198 def: checkPatternResponseOneOneMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:TemPsy::

TimeDistance, effect:String):Boolean =
2199 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
2200 if which = TemPsy::ComparingOperator::ATLEAST then
2201 self.checkPatternResponseOneOneAtLeastMid(subtrace, cause, value, effect)
2202 else
2203 if which = TemPsy::ComparingOperator::ATMOST then
2204 self.checkPatternResponseOneOneAtMostMid(subtrace, cause, value, effect)
2205 else
2206 self.checkPatternResponseOneOneExactlyMid(subtrace, cause, value, effect)
2207 endif
2208 endif
2209
2210 =======
2211 def: checkPatternResponseOneManyPlain(subtrace:OrderedSet(trace::TraceElement), cause:String, effects:Sequence(String

)):Boolean =
2212 let
2213 effectSize:Integer = effects->size(),
2214 firstEffect:String = effects->first()
2215 in
2216 subtrace->iterate(
2217 elem:trace::TraceElement;
2218 iter:Tuple(flag:Boolean, i2:Integer) = Tuple{flag:Boolean = true, i2:Integer = 1}
2219 |
2220 let e:String = elem.event in
2221 if e = cause then
2222 Tuple{flag:Boolean = false, i2:Integer = 1}
2223 else
2224 if not iter.flag then
2225 if e = effects->at(iter.i2) then
2226 if iter.i2 = effectSize then
2227 Tuple{flag:Boolean = true, i2:Integer = 1}
2228 else
2229 Tuple{flag:Boolean = iter.flag, i2:Integer = iter.i2 + 1}
2230 endif
2231 else
2232 if e = firstEffect then
2233 Tuple{flag:Boolean = iter.flag, i2:Integer = 2}
2234 else
2235 Tuple{flag:Boolean = iter.flag, i2:Integer = 1}
2236 endif
2237 endif
2238 else
2239 iter
2240 endif
2241 endif
2242).flag

77

2243
2244 =======
2245 def: checkPatternResponseOneManyAtLeastMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effects:Sequence(String)):Boolean =
2246 let
2247 effectSize:Integer = effects->size(),
2248 firstEffect:String = effects->first()
2249 in
2250 subtrace->iterate(elem:trace::TraceElement;
2251 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer)
2252 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1}
2253 |
2254 let e:String = elem.event in
2255 if e = cause then // latest cause
2256 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}
2257 else
2258 if not iter.flag then
2259 if iter.i2 > 1 and e = effects->at(iter.i2) then
2260 if iter.i2 = effectSize then // until effects->last(), the property is satisfied so far
2261 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
2262 else
2263 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2

+ 1}
2264 endif
2265 else
2266 if e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
2267 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2}
2268 else
2269 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
2270 endif
2271 endif
2272 else
2273 iter
2274 endif
2275 endif
2276).flag
2277
2278 =======
2279 def: checkPatternResponseOneManyAtMostMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effects:Sequence(String)):Boolean =
2280 let
2281 effectSize:Integer = effects->size(),
2282 firstEffect:String = effects->first()
2283 in
2284 subtrace->iterate(elem:trace::TraceElement;
2285 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer)
2286 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1}
2287 |
2288 let e:String = elem.event in
2289 if iter.flag then
2290 if iter.midCriticalInstant = 0 then
2291 if e = cause then
2292 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}
2293 else
2294 iter
2295 endif
2296 else
2297 if iter.i2 > 1 and e = effects->at(iter.i2) then
2298 if iter.i2 = effectSize then
2299 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i2:Integer = 1}
2300 else
2301 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2

+ 1}
2302 endif
2303 else
2304 if e = firstEffect then
2305 if elem.timestamp <= iter.midCriticalInstant then
2306 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2}
2307 else

78

2308 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null}
2309 endif
2310 else
2311 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
2312 endif
2313 endif
2314 endif
2315 else
2316 iter
2317 endif
2318).midCriticalInstant = 0
2319
2320 =======
2321 def: checkPatternResponseOneManyExactlyMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:Integer,

effects:Sequence(String)):Boolean =
2322 let
2323 effectSize:Integer = effects->size(),
2324 firstEffect:String = effects->first()
2325 in
2326 subtrace->iterate(elem:trace::TraceElement;
2327 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i2:Integer)
2328 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i2

:Integer = 1}
2329 |
2330 if iter.flag then
2331 let e:String = elem.event in
2332 if e = cause then
2333 let ct:Integer = elem.timestamp + distance in
2334 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),

midCriticalInstant:Integer = ct, i2:Integer = 1}
2335 else
2336 if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then
2337 if iter.i2 > 1 and e = effects->at(iter.i2) then
2338 if iter.i2 = effectSize then
2339 if iter.midCriticalInstants->size() = 1 then
2340 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i2:
Integer = 1}

2341 else
2342 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
2343 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i2:Integer =
1}

2344 endif
2345 else
2346 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2 + 1}
2347 endif
2348 else
2349 if e = firstEffect and elem.timestamp = iter.midCriticalInstant then
2350 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2}
2351 else
2352 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i2:Integer = null}
2353 endif
2354 endif
2355 else
2356 iter
2357 endif
2358 endif
2359 else
2360 iter
2361 endif
2362).midCriticalInstants->isEmpty()
2363
2364 =======
2365 def: checkPatternResponseOneManyMid(subtrace:OrderedSet(trace::TraceElement), cause:String, distance:TemPsy::

TimeDistance, effects:Sequence(String)):Boolean =

79

2366 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
2367 if which = TemPsy::ComparingOperator::ATLEAST then
2368 self.checkPatternResponseOneManyAtLeastMid(subtrace, cause, value, effects)
2369 else
2370 if which = TemPsy::ComparingOperator::ATMOST then
2371 self.checkPatternResponseOneManyAtMostMid(subtrace, cause, value, effects)
2372 else
2373 self.checkPatternResponseOneManyExactlyMid(subtrace, cause, value, effects)
2374 endif
2375 endif
2376
2377 =======
2378 def: checkPatternResponseManyOnePlain(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), effect:

String):Boolean =
2379 let
2380 causeSize:Integer = causes->size(),
2381 firstCause:String = causes->first()
2382 in
2383 subtrace->iterate(elem:trace::TraceElement;
2384 iter:Tuple(flag:Boolean, i1:Integer) = Tuple{flag:Boolean = true, i1:Integer = 1}
2385 |
2386 let e:String = elem.event in
2387 if iter.i1 > 1 and e = causes->at(iter.i1) then
2388 if iter.i1 = causeSize then
2389 Tuple{flag:Boolean = false, i1:Integer = 1}
2390 else
2391 Tuple{flag:Boolean = iter.flag, i1:Integer = iter.i1 + 1}
2392 endif
2393 else
2394 if e = firstCause then
2395 Tuple{flag:Boolean = iter.flag, i1:Integer = 2}
2396 else
2397 if e = effect then
2398 Tuple{flag:Boolean = true, i1:Integer = 1}
2399 else
2400 Tuple{flag:Boolean = iter.flag, i1:Integer = 1}
2401 endif
2402 endif
2403 endif
2404).flag
2405
2406 =======
2407 def: checkPatternResponseManyOneAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effect:String):Boolean =
2408 let
2409 causeSize:Integer = causes->size(),
2410 firstCause:String = causes->first()
2411 in
2412 subtrace->iterate(elem:trace::TraceElement;
2413 iter:Tuple(midCriticalInstant:Integer, i1:Integer) = Tuple{midCriticalInstant:Integer = 0, i1:Integer = 1}
2414 |
2415 let e:String = elem.event in
2416 if iter.i1 > 1 and e = causes->at(iter.i1) then
2417 if iter.i1 = causeSize then
2418 Tuple{midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1}
2419 else
2420 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1}
2421 endif
2422 else
2423 if e = firstCause then
2424 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2}
2425 else
2426 if e = effect and elem.timestamp >= iter.midCriticalInstant then
2427 Tuple{midCriticalInstant:Integer = 0, i1:Integer = 1}
2428 else
2429 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1}
2430 endif
2431 endif
2432 endif

80

2433).midCriticalInstant = 0
2434
2435 =======
2436 def: checkPatternResponseManyOneAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), distance

:Integer, effect:String):Boolean =
2437 let
2438 causeSize:Integer = causes->size(),
2439 firstCause:String = causes->first()
2440 in
2441 subtrace->iterate(elem:trace::TraceElement;
2442 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer)
2443 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1} |
2444 let e:String = elem.event in
2445 if iter.flag then
2446 if iter.midCriticalInstant = 0 then
2447 if iter.i1 > 1 and e = causes->at(iter.i1) then
2448 if iter.i1 = causeSize then
2449 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1}
2450 else
2451 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1

+ 1}
2452 endif
2453 else
2454 if e = firstCause then
2455 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2}
2456 else
2457 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1}
2458 endif
2459 endif
2460 else
2461 if e = effect then
2462 if elem.timestamp <= iter.midCriticalInstant then
2463 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i1:Integer = 1}
2464 else
2465 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null}
2466 endif
2467 else
2468 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1}
2469 endif
2470 endif
2471 else
2472 iter
2473 endif
2474).midCriticalInstant = 0
2475
2476 =======
2477 def: checkPatternResponseManyOneExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effect:String):Boolean =
2478 let causeSize:Integer = causes->size(), firstCause:String = causes->first() in
2479 subtrace->iterate(elem:trace::TraceElement;
2480 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i1:Integer)
2481 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i1

:Integer = 1}
2482 |
2483 if iter.flag then
2484 let e:String = elem.event, t:Integer = elem.timestamp in
2485 if iter.i1 > 1 and e = causes->at(iter.i1) then
2486 if iter.i1 = causeSize then
2487 let ct:Integer = t + distance in
2488 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),

midCriticalInstant:Integer = ct, i1:Integer = 1}
2489 else
2490 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1}
2491 endif
2492 else
2493 if e = firstCause then
2494 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2}

81

2495 else
2496 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
2497 if t = iter.midCriticalInstant and e = effect then
2498 if iter.midCriticalInstants->size() = 1 then
2499 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i1:
Integer = 1}

2500 else
2501 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
2502 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i1:Integer =
1}

2503 endif
2504 else
2505 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null}
2506 endif
2507 else
2508 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1}
2509 endif
2510 endif
2511 endif
2512 else
2513 iter
2514 endif
2515).midCriticalInstants->isEmpty()
2516
2517 def: checkPatternResponseManyOneMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), distance:

TemPsy::TimeDistance, effect:String):Boolean =
2518 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
2519 if which = TemPsy::ComparingOperator::ATLEAST then
2520 self.checkPatternResponseManyOneAtLeastMid(subtrace, causes, value, effect)
2521 else
2522 if which = TemPsy::ComparingOperator::ATMOST then
2523 self.checkPatternResponseManyOneAtMostMid(subtrace, causes, value, effect)
2524 else
2525 self.checkPatternResponseManyOneExactlyMid(subtrace, causes, value, effect)
2526 endif
2527 endif
2528
2529 =======
2530 def: checkPatternResponseManyManyPlain(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), effects:

Sequence(String)):Boolean =
2531 let
2532 causeSize:Integer = causes->size(),
2533 firstCause:String = causes->first(),
2534 effectSize:Integer = effects->size(),
2535 firstEffect:String = effects->first(),
2536 lastEffect:String = effects->last()
2537 in
2538 subtrace->iterate(elem:trace::TraceElement;
2539 iter:Tuple(flag:Boolean, i1:Integer, i2:Integer) = Tuple{flag:Boolean = true, i1:Integer = 1, i2:Integer = 1}
2540 |
2541 let e:String = elem.event in
2542 if iter.i2 = effectSize and e = lastEffect then
2543 Tuple{flag:Boolean = true, i1:Integer = 1, i2:Integer = 1}
2544 else
2545 if iter.i1 > 1 and e = causes->at(iter.i1) then
2546 if iter.i1 = causeSize then
2547 Tuple{flag:Boolean = false, i1:Integer = 1, i2:Integer = 1}
2548 else
2549 if iter.i2 > 1 and e = effects->at(iter.i2) then
2550 Tuple{flag:Boolean = iter.flag, i1:Integer = iter.i1 + 1, i2:Integer = iter.i2 + 1}
2551 else
2552 if not iter.flag and e = firstEffect then
2553 Tuple{flag:Boolean = iter.flag, i1:Integer = iter.i1 + 1, i2:Integer = 2}
2554 else
2555 Tuple{flag:Boolean = iter.flag, i1:Integer = iter.i1 + 1, i2:Integer = 1}

82

2556 endif
2557 endif
2558 endif
2559 else
2560 if e = firstCause then
2561 if iter.i2 > 1 and e = effects->at(iter.i2) then
2562 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, i2:Integer = iter.i2 + 1}
2563 else
2564 if not iter.flag and e = firstEffect then
2565 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, i2:Integer = 2}
2566 else
2567 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, i2:Integer = 1}
2568 endif
2569 endif
2570 else
2571 if iter.i2 > 1 and e = effects->at(iter.i2) then
2572 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, i2:Integer = iter.i2 + 1}
2573 else
2574 if not iter.flag and e = firstEffect then
2575 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, i2:Integer = 2}
2576 else
2577 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, i2:Integer = 1}
2578 endif
2579 endif
2580 endif
2581 endif
2582 endif
2583).flag
2584
2585 =======
2586 def: checkPatternResponseManyManyAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effects:Sequence(String)):Boolean =
2587 let
2588 causeSize:Integer = causes->size(),
2589 firstCause:String = causes->first(),
2590 effectSize:Integer = effects->size(),
2591 firstEffect:String = effects->first(),
2592 lastEffect:String = effects->last()
2593 in
2594 subtrace->iterate(elem:trace::TraceElement;
2595 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer)
2596 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1}
2597 |
2598 let e:String = elem.event in
2599 if iter.i2 = effectSize and e = lastEffect then
2600 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = 1}
2601 else
2602 if iter.i1 > 1 and e = causes->at(iter.i1) then
2603 if iter.i1 = causeSize then
2604 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1, i2:

Integer = 1}
2605 else
2606 if iter.i2 > 1 and e = effects->at(iter.i2) then
2607 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1

+ 1, i2:Integer = iter.i2 + 1}
2608 else
2609 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
2610 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1 + 1, i2:Integer = 2}
2611 else
2612 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1 + 1, i2:Integer = 1}
2613 endif
2614 endif
2615 endif
2616 else
2617 if e = firstCause then
2618 if iter.i2 > 1 and e = effects->at(iter.i2) then
2619 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

83

Integer = iter.i2 + 1}
2620 else
2621 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
2622 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = 2}
2623 else
2624 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = 1}
2625 endif
2626 endif
2627 else
2628 if iter.i2 > 1 and e = effects->at(iter.i2) then
2629 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = iter.i2 + 1}
2630 else
2631 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
2632 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = 2}
2633 else
2634 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = 1}
2635 endif
2636 endif
2637 endif
2638 endif
2639 endif
2640).flag
2641
2642 =======
2643 def: checkPatternResponseManyManyAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effects:Sequence(String)):Boolean =
2644 let
2645 causeSize:Integer = causes->size(),
2646 firstCause:String = causes->first(),
2647 effectSize:Integer = effects->size(),
2648 firstEffect:String = effects->first()
2649 in
2650 subtrace->iterate(elem:trace::TraceElement;
2651 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer)
2652 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1}
2653 |
2654 let e:String = elem.event in
2655 if iter.flag then
2656 if iter.midCriticalInstant = 0 then
2657 if iter.i1 > 1 and e = causes->at(iter.i1) then
2658 if iter.i1 = causeSize then
2659 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i1:Integer = 1, i2:

Integer = iter.i2}
2660 else
2661 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1

+ 1, i2:Integer = iter.i2}
2662 endif
2663 else
2664 if e = firstCause then
2665 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = iter.i2}
2666 else
2667 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = iter.i2}
2668 endif
2669 endif
2670 else
2671 if iter.i2 > 1 and e = effects->at(iter.i2) then
2672 if iter.i2 = effectSize then
2673 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i1:Integer = iter.i1, i2:Integer = 1}
2674 else
2675 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,

i2:Integer = iter.i2 + 1}
2676 endif

84

2677 else
2678 if e = firstEffect then
2679 if elem.timestamp <= iter.midCriticalInstant then
2680 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1, i2:Integer = 2}
2681 else
2682 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, i2:Integer = null}
2683 endif
2684 else
2685 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,

i2:Integer = 1}
2686 endif
2687 endif
2688 endif
2689 else
2690 iter
2691 endif
2692).midCriticalInstant = 0
2693
2694 =======
2695 def: checkPatternResponseManyManyExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effects:Sequence(String)):Boolean =
2696 let
2697 causeSize:Integer = causes->size(),
2698 firstCause:String = causes->first(),
2699 effectSize:Integer = effects->size(),
2700 firstEffect:String = effects->first(),
2701 lastEffect:String = effects->last()
2702 in
2703 subtrace->iterate(elem:trace::TraceElement;
2704 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i1:Integer, i2:Integer)
2705 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i1

:Integer = 1, i2:Integer = 1} |
2706 if iter.flag then
2707 let e:String = elem.event in
2708 if iter.i2 = effectSize and e = lastEffect then
2709 if iter.midCriticalInstants->size() = 1 then
2710 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:
Integer = 1}

2711 else
2712 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
2713 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i1:Integer = 1, i2:Integer =
1}

2714 endif
2715 else
2716 if iter.i1 > 1 and e = causes->at(iter.i1) then
2717 if iter.i1 = causeSize then
2718 let ct:Integer = elem.timestamp + distance in
2719 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct

), midCriticalInstant:Integer = ct, i1:Integer = 1, i2:Integer = 1}
2720 else
2721 if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then
2722 if iter.i2 > 1 and e = effects->at(iter.i2) then
2723 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1, i2:Integer = iter.
i2 + 1}

2724 else
2725 if e = firstEffect and elem.timestamp = iter.midCriticalInstant then
2726 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1, i2:Integer = 2}
2727 else
2728 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null}
2729 endif
2730 endif
2731 else
2732 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

85

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1, i2:Integer = 1}
2733 endif
2734 endif
2735 else
2736 if e = firstCause then
2737 if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then
2738 if iter.i2 > 1 and e = effects->at(iter.i2) then
2739 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:Integer = iter.i2 + 1}
2740 else
2741 if e = firstEffect and elem.timestamp = iter.midCriticalInstant then
2742 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:Integer = 2}
2743 else
2744 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null}
2745 endif
2746 endif
2747 else
2748 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:Integer = 1}
2749 endif
2750 else
2751 if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then
2752 if iter.i2 > 1 and e = effects->at(iter.i2) then
2753 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = iter.i2 + 1}
2754 else
2755 if e = firstEffect and elem.timestamp = iter.midCriticalInstant then
2756 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = 2}
2757 else
2758 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null}
2759 endif
2760 endif
2761 else
2762 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = 1}
2763 endif
2764 endif
2765 endif
2766 endif
2767 else
2768 iter
2769 endif
2770).midCriticalInstants->isEmpty()
2771
2772 =======
2773 def: checkPatternResponseManyManyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), distance:

TemPsy::TimeDistance, effects:Sequence(String)):Boolean =
2774 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
2775 if which = TemPsy::ComparingOperator::ATLEAST then
2776 self.checkPatternResponseManyManyAtLeastMid(subtrace, causes, value, effects)
2777 else
2778 if which = TemPsy::ComparingOperator::ATMOST then
2779 self.checkPatternResponseManyManyAtMostMid(subtrace, causes, value, effects)
2780 else
2781 self.checkPatternResponseManyManyExactlyMid(subtrace, causes, value, effects)
2782 endif
2783 endif
2784
2785 =======
2786 def: checkPatternResponseOneManyRight(subtrace:OrderedSet(trace::TraceElement), cause:String, effects:Sequence(String

), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
2787 let
2788 effectSize:Integer = effects->size(),
2789 firstEffect:String = effects->first(),
2790 secondEffectDistance:Integer = effectDistances->at(2).value

86

2791 in
2792 subtrace->iterate(
2793 elem:trace::TraceElement;
2794 iter:Tuple(flag:Boolean, i2:Integer, effectCriticalInstant:Integer) = Tuple{flag:Boolean = true, i2:Integer = 1,

effectCriticalInstant:Integer = 0}
2795 |
2796 let e:String = elem.event in
2797 if e = cause then
2798 Tuple{flag:Boolean = false, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
2799 else
2800 if not iter.flag then
2801 let t:Integer = elem.timestamp in
2802 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at

(iter.i2).which) then
2803 if iter.i2 = effectSize then
2804 Tuple{flag:Boolean = true, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
2805 else
2806 let i:Integer = iter.i2 + 1 in
2807 Tuple{flag:Boolean = iter.flag, i2:Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).

value}
2808 endif
2809 else
2810 if e = firstEffect then
2811 Tuple{flag:Boolean = iter.flag, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
2812 else
2813 Tuple{flag:Boolean = iter.flag, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
2814 endif
2815 endif
2816 else
2817 iter
2818 endif
2819 endif
2820).flag
2821
2822 =======
2823 def: checkPatternResponseManyManyRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String), effects:

Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
2824 let
2825 causeSize:Integer = causes->size(),
2826 firstCause:String = causes->first(),
2827 effectSize:Integer = effects->size(),
2828 firstEffect:String = effects->first(),
2829 lastEffect:String = effects->last(),
2830 secondEffectDistance:Integer = effectDistances->at(2).value
2831 in
2832 subtrace->iterate(elem:trace::TraceElement;
2833 iter:Tuple(flag:Boolean, i1:Integer, i2:Integer, effectCriticalInstant:Integer) = Tuple{flag:Boolean = true, i1:

Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = 0}
2834 |
2835 let e:String = elem.event in
2836 if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->last().which) then
2837 Tuple{flag:Boolean = true, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.

effectCriticalInstant}
2838 else
2839 if iter.i1 > 1 and e = causes->at(iter.i1) then
2840 if iter.i1 = causeSize then
2841 Tuple{flag:Boolean = false, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.

effectCriticalInstant}
2842 else
2843 let t:Integer = elem.timestamp in
2844 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
2845 let i:Integer = iter.i2 + 1 in
2846 Tuple{flag:Boolean = iter.flag, i1:Integer = iter.i1 + 1, i2:Integer = i, effectCriticalInstant:Integer = t

+ effectDistances->at(i).value}
2847 else
2848 if not iter.flag and e = firstEffect then
2849 Tuple{flag:Boolean = iter.flag, i1:Integer = iter.i1 + 1, i2:Integer = 2, effectCriticalInstant:Integer =

87

t + secondEffectDistance}
2850 else
2851 Tuple{flag:Boolean = iter.flag, i1:Integer = iter.i1 + 1, i2:Integer = 1, effectCriticalInstant:Integer =

iter.effectCriticalInstant}
2852 endif
2853 endif
2854 endif
2855 else
2856 if e = firstCause then
2857 let t:Integer = elem.timestamp in
2858 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
2859 let i:Integer = iter.i2 + 1 in
2860 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, i2:Integer = i, effectCriticalInstant:Integer = t +

effectDistances->at(i).value}
2861 else
2862 if not iter.flag and e = firstEffect then
2863 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, i2:Integer = 2, effectCriticalInstant:Integer = t +

secondEffectDistance}
2864 else
2865 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, i2:Integer = 1, effectCriticalInstant:Integer = iter.

effectCriticalInstant}
2866 endif
2867 endif
2868 else
2869 let t:Integer = elem.timestamp in
2870 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
2871 let i:Integer = iter.i2 + 1 in
2872 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, i2:Integer = i, effectCriticalInstant:Integer = t +

effectDistances->at(i).value}
2873 else
2874 if not iter.flag and e = firstEffect then
2875 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, i2:Integer = 2, effectCriticalInstant:Integer = t +

secondEffectDistance}
2876 else
2877 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.

effectCriticalInstant}
2878 endif
2879 endif
2880 endif
2881 endif
2882 endif
2883).flag
2884
2885 =======
2886 def: checkPatternResponseOneManyAtLeastMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance:

Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
2887 let
2888 effectSize:Integer = effects->size(),
2889 firstEffect:String = effects->first(),
2890 secondEffectDistance:Integer = effectDistances->at(2).value
2891 in
2892 subtrace->iterate(elem:trace::TraceElement;
2893 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer) = Tuple{flag:

Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
2894 |
2895 let e:String = elem.event in
2896 if e = cause then // latest cause
2897 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
2898 else
2899 if not iter.flag then
2900 let t:Integer = elem.timestamp in
2901 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at

(iter.i2).which) then
2902 if iter.i2 = effectSize then
2903 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}

88

2904 else
2905 let i:Integer = iter.i2 + 1 in
2906 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i,

effectCriticalInstant:Integer = t + effectDistances->at(i).value}
2907 endif
2908 else
2909 if e = firstEffect and t >= iter.midCriticalInstant then
2910 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,

effectCriticalInstant:Integer = t + secondEffectDistance}
2911 else
2912 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
2913 endif
2914 endif
2915 else
2916 iter
2917 endif
2918 endif
2919).flag
2920
2921 =======
2922 def: checkPatternResponseOneManyAtMostMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance:

Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
2923 let
2924 effectSize:Integer = effects->size(),
2925 firstEffect:String = effects->first(),
2926 secondEffectDistance:Integer = effectDistances->at(2).value
2927 in
2928 subtrace->iterate(elem:trace::TraceElement;
2929 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer)
2930 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
2931 |
2932 let e:String = elem.event in
2933 if iter.flag then
2934 if iter.midCriticalInstant = 0 then
2935 if e = cause then
2936 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
2937 else
2938 iter
2939 endif
2940 else
2941 let t:Integer = elem.timestamp in
2942 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at

(iter.i2).which) then
2943 if iter.i2 = effectSize then
2944 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:

Integer = iter.effectCriticalInstant}
2945 else
2946 let i:Integer = iter.i2 + 1 in
2947 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i,

effectCriticalInstant:Integer = t + effectDistances->at(i).value}
2948 endif
2949 else
2950 if e = firstEffect then
2951 if t <= iter.midCriticalInstant then
2952 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,

effectCriticalInstant:Integer = t + secondEffectDistance}
2953 else
2954 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null, effectCriticalInstant:

Integer = null}
2955 endif
2956 else
2957 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
2958 endif
2959 endif
2960 endif
2961 else

89

2962 iter
2963 endif
2964).midCriticalInstant = 0
2965
2966 =======
2967 def: checkPatternResponseOneManyExactlyMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance:

Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
2968 let
2969 effectSize:Integer = effects->size(),
2970 firstEffect:String = effects->first(),
2971 secondEffectDistance:Integer = effectDistances->at(2).value
2972 in
2973 subtrace->iterate(elem:trace::TraceElement;
2974 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i2:Integer,

effectCriticalInstant:Integer)
2975 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i2

:Integer = 1, effectCriticalInstant:Integer = 0}
2976 |
2977 if iter.flag then
2978 let e:String = elem.event in
2979 if e = cause then
2980 let ct:Integer = elem.timestamp + midDistance in
2981 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),

midCriticalInstant:Integer = ct, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

2982 else
2983 let t:Integer = elem.timestamp in
2984 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
2985 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
2986 if iter.i2 = effectSize then
2987 if iter.midCriticalInstants->size() = 1 then
2988 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i2:
Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

2989 else
2990 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
2991 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i2:Integer =
1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

2992 endif
2993 else
2994 let i:Integer = iter.i2 + 1 in
2995 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i, effectCriticalInstant:Integer
= t + effectDistances->at(i).value}

2996 endif
2997 else
2998 if e = firstEffect and t = iter.midCriticalInstant then
2999 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2, effectCriticalInstant:Integer
= t + secondEffectDistance}

3000 else
3001 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i2:Integer = null, effectCriticalInstant:Integer = null}
3002 endif
3003 endif
3004 else
3005 iter
3006 endif
3007 endif
3008 else
3009 iter
3010 endif
3011).midCriticalInstants->isEmpty()
3012
3013 =======
3014 def: checkPatternResponseOneManyMidRight(subtrace:OrderedSet(trace::TraceElement), cause:String, midDistance:TemPsy::

TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

90

3015 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in
3016 if midWhich = TemPsy::ComparingOperator::ATLEAST then
3017 self.checkPatternResponseOneManyAtLeastMidRight(subtrace, cause, midValue, effects, effectDistances)
3018 else
3019 if midWhich = TemPsy::ComparingOperator::ATMOST then
3020 self.checkPatternResponseOneManyAtMostMidRight(subtrace, cause, midValue, effects, effectDistances)
3021 else
3022 self.checkPatternResponseOneManyExactlyMidRight(subtrace, cause, midValue, effects, effectDistances)
3023 endif
3024 endif
3025
3026 =======
3027 def: checkPatternResponseManyManyAtLeastMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

3028 let
3029 causeSize:Integer = causes->size(),
3030 firstCause:String = causes->first(),
3031 effectSize:Integer = effects->size(),
3032 firstEffect:String = effects->first(),
3033 lastEffect:String = effects->last(),
3034 secondEffectDistance:Integer = effectDistances->at(2).value
3035 in
3036 subtrace->iterate(elem:trace::TraceElement;
3037 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer, effectCriticalInstant:Integer)
3038 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:

Integer = 0}
3039 |
3040 let e:String = elem.event in
3041 if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->last().which) then
3042 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
3043 else
3044 if iter.i1 > 1 and e = causes->at(iter.i1) then
3045 if iter.i1 = causeSize then
3046 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1, i2:

Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3047 else
3048 let t:Integer = elem.timestamp in
3049 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3050 let i:Integer = iter.i2 + 1 in
3051 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1

+ 1, i2:Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}
3052 else
3053 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3054 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1 + 1, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3055 else
3056 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1 + 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3057 endif
3058 endif
3059 endif
3060 else
3061 if e = firstCause then
3062 let t:Integer = elem.timestamp in
3063 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3064 let i:Integer = iter.i2 + 1 in
3065 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}
3066 else
3067 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3068 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3069 else
3070 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

91

Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3071 endif
3072 endif
3073 else
3074 let t:Integer = elem.timestamp in
3075 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3076 let i:Integer = iter.i2 + 1 in
3077 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}
3078 else
3079 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3080 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3081 else
3082 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3083 endif
3084 endif
3085 endif
3086 endif
3087 endif
3088).flag
3089
3090 =======
3091 def: checkPatternResponseManyManyAtMostMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

3092 let
3093 causeSize:Integer = causes->size(),
3094 firstCause:String = causes->first(),
3095 effectSize:Integer = effects->size(),
3096 firstEffect:String = effects->first(),
3097 secondEffectDistance:Integer = effectDistances->at(2).value
3098 in
3099 subtrace->iterate(elem:trace::TraceElement;
3100 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, i2:Integer, effectCriticalInstant:Integer)
3101 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:

Integer = 0}
3102 |
3103 let e:String = elem.event in
3104 if iter.flag then
3105 if iter.midCriticalInstant = 0 then
3106 if iter.i1 > 1 and e = causes->at(iter.i1) then
3107 if iter.i1 = causeSize then
3108 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

i2:Integer = iter.i2, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3109 else
3110 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1

+ 1, i2:Integer = iter.i2, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3111 endif
3112 else
3113 if e = firstCause then
3114 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:

Integer = iter.i2, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3115 else
3116 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:

Integer = iter.i2, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3117 endif
3118 endif
3119 else
3120 let t:Integer = elem.timestamp in
3121 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at

(iter.i2).which) then
3122 if iter.i2 = effectSize then
3123 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i1:Integer = iter.i1, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
3124 else
3125 let i:Integer = iter.i2 + 1 in

92

3126 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,
i2:Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}

3127 endif
3128 else
3129 if e = firstEffect then
3130 if t <= iter.midCriticalInstant then
3131 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3132 else
3133 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, i2:Integer = null,

effectCriticalInstant:Integer = null}
3134 endif
3135 else
3136 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,

i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3137 endif
3138 endif
3139 endif
3140 else
3141 iter
3142 endif
3143).midCriticalInstant = 0
3144
3145 =======
3146 def: checkPatternResponseManyManyExactlyMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

3147 let
3148 causeSize:Integer = causes->size(),
3149 firstCause:String = causes->first(),
3150 effectSize:Integer = effects->size(),
3151 firstEffect:String = effects->first(),
3152 lastEffect:String = effects->last(),
3153 secondEffectDistance:Integer = effectDistances->at(2).value
3154 in
3155 subtrace->iterate(elem:trace::TraceElement;
3156 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i1:Integer, i2:Integer,

effectCriticalInstant:Integer)
3157 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i1

:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = 0}
3158 |
3159 if iter.flag then
3160 let e:String = elem.event, t:Integer = elem.timestamp in
3161 if iter.i2 = effectSize and e = lastEffect then
3162 if iter.midCriticalInstants->size() = 1 then
3163 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:
Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

3164 else
3165 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
3166 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i1:Integer = 1, i2:Integer =
1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

3167 endif
3168 else
3169 if iter.i1 > 1 and e = causes->at(iter.i1) then
3170 if iter.i1 = causeSize then
3171 let ct:Integer = t + midDistance in
3172 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct

), midCriticalInstant:Integer = ct, i1:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticalInstant}

3173 else
3174 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3175 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3176 let i:Integer = iter.i2 + 1 in
3177 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1, i2:Integer = i,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}

93

3178 else
3179 if e = firstEffect and t = iter.midCriticalInstant then
3180 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

3181 else
3182 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null, effectCriticalInstant:
Integer = null}

3183 endif
3184 endif
3185 else
3186 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1 + 1, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

3187 endif
3188 endif
3189 else
3190 if e = firstCause then
3191 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3192 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3193 let i:Integer = iter.i2 + 1 in
3194 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:Integer = i,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}

3195 else
3196 if e = firstEffect and t = iter.midCriticalInstant then
3197 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

3198 else
3199 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null, effectCriticalInstant:
Integer = null}

3200 endif
3201 endif
3202 else
3203 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

3204 endif
3205 else
3206 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3207 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3208 let i:Integer = iter.i2 + 1 in
3209 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = i,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}

3210 else
3211 if e = firstEffect and t = iter.midCriticalInstant then
3212 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

3213 else
3214 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, i2:Integer = null, effectCriticalInstant:
Integer = null}

3215 endif
3216 endif
3217 else
3218 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

3219 endif
3220 endif
3221 endif
3222 endif

94

3223 else
3224 iter
3225 endif
3226).midCriticalInstants->isEmpty()
3227
3228 =======
3229 def: checkPatternResponseManyManyMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:TemPsy::TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:
Integer))):Boolean =

3230 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in
3231 if midWhich = TemPsy::ComparingOperator::ATLEAST then
3232 self.checkPatternResponseManyManyAtLeastMidRight(subtrace, causes, midValue, effects, effectDistances)
3233 else
3234 if midWhich = TemPsy::ComparingOperator::ATMOST then
3235 self.checkPatternResponseManyManyAtMostMidRight(subtrace, causes, midValue, effects, effectDistances)
3236 else
3237 self.checkPatternResponseManyManyExactlyMidRight(subtrace, causes, midValue, effects, effectDistances)
3238 endif
3239 endif
3240
3241 =======
3242 def: checkPatternResponseManyOneLeft(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effect:String):Boolean =
3243 let
3244 causeSize:Integer = causes->size(),
3245 firstCause:String = causes->first(),
3246 secondCauseDistance:Integer = causeDistances->at(2).value
3247 in
3248 subtrace->iterate(elem:trace::TraceElement;
3249 iter:Tuple(flag:Boolean, i1:Integer, causeCriticalInstant:Integer) = Tuple{flag:Boolean = true, i1:Integer = 1,

causeCriticalInstant:Integer = 0}
3250 |
3251 let e:String = elem.event in
3252 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
3253 if iter.i1 = causeSize then
3254 Tuple{flag:Boolean = false, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
3255 else
3256 let i:Integer = iter.i1 + 1 in
3257 Tuple{flag:Boolean = iter.flag, i1:Integer = i, causeCriticalInstant:Integer = elem.timestamp + causeDistances

->at(i).value}
3258 endif
3259 else
3260 if e = firstCause then
3261 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +

secondCauseDistance}
3262 else
3263 if e = effect then
3264 Tuple{flag:Boolean = true, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
3265 else
3266 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
3267 endif
3268 endif
3269 endif
3270).flag
3271
3272 =======
3273 def: checkPatternResponseManyManyLeft(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String)):Boolean =
3274 let
3275 causeSize:Integer = causes->size(),
3276 firstCause:String = causes->first(),
3277 secondCauseDistance:Integer = causeDistances->at(2).value,
3278 effectSize:Integer = effects->size(),
3279 firstEffect:String = effects->first(),
3280 lastEffect:String = effects->last()
3281 in
3282 subtrace->iterate(elem:trace::TraceElement;
3283 iter:Tuple(flag:Boolean, i1:Integer, causeCriticalInstant:Integer, i2:Integer) = Tuple{flag:Boolean = true, i1:

95

Integer = 1, causeCriticalInstant:Integer = 0, i2:Integer = 1}
3284 |
3285 let e:String = elem.event in
3286 if iter.i2 = effectSize and e = lastEffect then
3287 Tuple{flag:Boolean = true, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer =

1}
3288 else
3289 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
3290 if iter.i1 = causeSize then
3291 Tuple{flag:Boolean = false, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:

Integer = 1}
3292 else
3293 let i:Integer = iter.i1 + 1 in
3294 if iter.i2 > 1 and e = effects->at(iter.i2) then
3295 Tuple{flag:Boolean = iter.flag, i1:Integer = i, causeCriticalInstant:Integer = elem.timestamp +

causeDistances->at(i).value, i2:Integer = iter.i2 + 1}
3296 else
3297 if not iter.flag and e = firstEffect then
3298 Tuple{flag:Boolean = iter.flag, i1:Integer = i, causeCriticalInstant:Integer = elem.timestamp +

causeDistances->at(i).value, i2:Integer = 2}
3299 else
3300 Tuple{flag:Boolean = iter.flag, i1:Integer = i, causeCriticalInstant:Integer = elem.timestamp +

causeDistances->at(i).value, i2:Integer = 1}
3301 endif
3302 endif
3303 endif
3304 else
3305 if e = firstCause then
3306 if iter.i2 > 1 and e = effects->at(iter.i2) then
3307 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +

secondCauseDistance, i2:Integer = iter.i2 + 1}
3308 else
3309 if not iter.flag and e = firstEffect then
3310 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +

secondCauseDistance, i2:Integer = 2}
3311 else
3312 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +

secondCauseDistance, i2:Integer = 1}
3313 endif
3314 endif
3315 else
3316 if iter.i2 > 1 and e = effects->at(iter.i2) then
3317 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,

i2:Integer = iter.i2 + 1}
3318 else
3319 if not iter.flag and e = firstEffect then
3320 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,

i2:Integer = 2}
3321 else
3322 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,

i2:Integer = 1}
3323 endif
3324 endif
3325 endif
3326 endif
3327 endif
3328).flag
3329
3330 =======
3331 def: checkPatternResponseManyOneLeftAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
3332 let
3333 causeSize:Integer = causes->size(),
3334 firstCause:String = causes->first(),
3335 secondCauseDistance:Integer = causeDistances->at(2).value
3336 in
3337 subtrace->iterate(elem:trace::TraceElement;
3338 iter:Tuple(midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer) = Tuple{midCriticalInstant:Integer

96

= 0, i1:Integer = 1, causeCriticalInstant:Integer = 0}
3339 |
3340 let e:String = elem.event, t:Integer = elem.timestamp in
3341 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(t, iter.causeCriticalInstant, causeDistances->at(iter.

i1).which) then
3342 if iter.i1 = causeSize then
3343 Tuple{midCriticalInstant:Integer = t + midDistance, i1:Integer = 1, causeCriticalInstant:Integer = iter.

causeCriticalInstant}
3344 else
3345 let i:Integer = iter.i1 + 1 in
3346 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i, causeCriticalInstant:Integer = t +

causeDistances->at(i).value}
3347 endif
3348 else
3349 if e = firstCause then
3350 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:Integer = t +

secondCauseDistance}
3351 else
3352 if e = effect and t >= iter.midCriticalInstant then
3353 Tuple{midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = iter.

causeCriticalInstant}
3354 else
3355 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:Integer =

iter.causeCriticalInstant}
3356 endif
3357 endif
3358 endif
3359).midCriticalInstant = 0
3360
3361 =======
3362 def: checkPatternResponseManyOneLeftAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
3363 let
3364 causeSize:Integer = causes->size(),
3365 firstCause:String = causes->first(),
3366 secondCauseDistance:Integer = causeDistances->at(2).value
3367 in
3368 subtrace->iterate(elem:trace::TraceElement;
3369 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer)
3370 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0}
3371 |
3372 let e:String = elem.event in
3373 if iter.flag then
3374 if iter.midCriticalInstant = 0 then
3375 let t:Integer = elem.timestamp in
3376 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(t, iter.causeCriticalInstant, causeDistances->at(

iter.i1).which) then
3377 if iter.i1 = causeSize then
3378 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = t + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant}
3379 else
3380 let i:Integer = iter.i1 + 1 in
3381 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i,

causeCriticalInstant:Integer = t + causeDistances->at(i).value}
3382 endif
3383 else
3384 if e = firstCause then
3385 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = t + secondCauseDistance}
3386 else
3387 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant}
3388 endif
3389 endif
3390 else
3391 if e = effect then
3392 if elem.timestamp <= iter.midCriticalInstant then
3393 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:

Integer = iter.causeCriticalInstant}

97

3394 else
3395 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, causeCriticalInstant:

Integer = null}
3396 endif
3397 else
3398 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant}
3399 endif
3400 endif
3401 else
3402 iter
3403 endif
3404).midCriticalInstant = 0
3405
3406 =======
3407 def: checkPatternResponseManyOneLeftExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
3408 let
3409 causeSize:Integer = causes->size(),
3410 firstCause:String = causes->first(),
3411 secondCauseDistance:Integer = causeDistances->at(2).value
3412 in
3413 subtrace->iterate(elem:trace::TraceElement;
3414 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i1:Integer,

causeCriticalInstant:Integer)
3415 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i1

:Integer = 1, causeCriticalInstant:Integer = 0}
3416 |
3417 if iter.flag then
3418 let e:String = elem.event, t:Integer = elem.timestamp in
3419 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(t, iter.causeCriticalInstant, causeDistances->at(iter

.i1).which) then
3420 if iter.i1 = causeSize then
3421 let ct:Integer = t + midDistance in
3422 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),

midCriticalInstant:Integer = ct, i1:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant}

3423 else
3424 let i:Integer = iter.i1 + 1 in
3425 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i, causeCriticalInstant:Integer = t +
causeDistances->at(i).value}

3426 endif
3427 else
3428 if e = firstCause then
3429 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:Integer = t +
secondCauseDistance}

3430 else
3431 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3432 if t = iter.midCriticalInstant and e = effect then
3433 if iter.midCriticalInstants->size() = 1 then
3434 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i1:
Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}

3435 else
3436 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
3437 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->

excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i1:Integer =
1, causeCriticalInstant:Integer = iter.causeCriticalInstant}

3438 endif
3439 else
3440 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer = null}
3441 endif
3442 else
3443 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:Integer =
iter.causeCriticalInstant}

98

3444 endif
3445 endif
3446 endif
3447 else
3448 iter
3449 endif
3450).midCriticalInstants->isEmpty()
3451
3452 =======
3453 def: checkPatternResponseManyOneLeftMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effect:String):
Boolean =

3454 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in
3455 if midWhich = TemPsy::ComparingOperator::ATLEAST then
3456 self.checkPatternResponseManyOneLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effect)
3457 else
3458 if midWhich = TemPsy::ComparingOperator::ATMOST then
3459 self.checkPatternResponseManyOneLeftAtMostMid(subtrace, causes, causeDistances, midValue, effect)
3460 else
3461 self.checkPatternResponseManyOneLeftExactlyMid(subtrace, causes, causeDistances, midValue, effect)
3462 endif
3463 endif
3464
3465 =======
3466 def: checkPatternResponseManyManyLeftAtLeastMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

3467 let
3468 causeSize:Integer = causes->size(),
3469 firstCause:String = causes->first(),
3470 secondCauseDistance:Integer = causeDistances->at(2).value,
3471 effectSize:Integer = effects->size(),
3472 firstEffect:String = effects->first(),
3473 lastEffect:String = effects->last()
3474 in
3475 subtrace->iterate(elem:trace::TraceElement;
3476 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer)
3477 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1}
3478 |
3479 let e:String = elem.event in
3480 if iter.i2 = effectSize and e = lastEffect then
3481 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
3482 else
3483 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
3484 if iter.i1 = causeSize then
3485 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
3486 else
3487 let i:Integer = iter.i1 + 1 in
3488 if iter.i2 > 1 and e = effects->at(iter.i2) then
3489 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i,

causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = iter.i2 + 1}
3490 else
3491 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
3492 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i,

causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = 2}
3493 else
3494 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i,

causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = 1}
3495 endif
3496 endif
3497 endif
3498 else
3499 if e = firstCause then
3500 if iter.i2 > 1 and e = effects->at(iter.i2) then
3501 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

99

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
3502 else
3503 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
3504 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}
3505 else
3506 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
3507 endif
3508 endif
3509 else
3510 if iter.i2 > 1 and e = effects->at(iter.i2) then
3511 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
3512 else
3513 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
3514 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}
3515 else
3516 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
3517 endif
3518 endif
3519 endif
3520 endif
3521 endif
3522).flag
3523
3524 =======
3525 def: checkPatternResponseManyManyLeftAtMostMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

3526 let
3527 causeSize:Integer = causes->size(),
3528 firstCause:String = causes->first(),
3529 secondCauseDistance:Integer = causeDistances->at(2).value,
3530 effectSize:Integer = effects->size(),
3531 firstEffect:String = effects->first()
3532 in
3533 subtrace->iterate(elem:trace::TraceElement;
3534 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer)
3535 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1} |
3536 let e:String = elem.event in
3537 if iter.flag then
3538 if iter.midCriticalInstant = 0 then
3539 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
3540 if iter.i1 = causeSize then
3541 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2}
3542 else
3543 let i:Integer = iter.i1 + 1 in
3544 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i,

causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = iter.i2}
3545 endif
3546 else
3547 if e = firstCause then
3548 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2}
3549 else
3550 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2}
3551 endif
3552 endif
3553 else
3554 if iter.i2 > 1 and e = effects->at(iter.i2) then
3555 if iter.i2 = effectSize then
3556 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i1:Integer = iter.i1, causeCriticalInstant:

100

Integer = iter.causeCriticalInstant, i2:Integer = 1}
3557 else
3558 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
3559 endif
3560 else
3561 if e = firstEffect then
3562 if elem.timestamp <= iter.midCriticalInstant then
3563 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}
3564 else
3565 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, causeCriticalInstant:

Integer = null, i2:Integer = null}
3566 endif
3567 else
3568 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
3569 endif
3570 endif
3571 endif
3572 else
3573 iter
3574 endif
3575).midCriticalInstant = 0
3576
3577 =======
3578 def: checkPatternResponseManyManyLeftExactlyMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

3579 let
3580 causeSize:Integer = causes->size(),
3581 firstCause:String = causes->first(),
3582 secondCauseDistance:Integer = causeDistances->at(2).value,
3583 effectSize:Integer = effects->size(),
3584 firstEffect:String = effects->first(),
3585 lastEffect:String = effects->last()
3586 in
3587 subtrace->iterate(elem:trace::TraceElement;
3588 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i1:Integer,

causeCriticalInstant:Integer, i2:Integer)
3589 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i1

:Integer = 1, causeCriticalInstant:Integer = 0, i2:Integer = 1} |
3590 if iter.flag then
3591 let e:String = elem.event, t:Integer = elem.timestamp in
3592 if iter.i2 = effectSize and e = lastEffect then
3593 if iter.midCriticalInstants->size() = 1 then
3594 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}

3595 else
3596 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
3597 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i1:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}

3598 endif
3599 else
3600 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(t, iter.causeCriticalInstant, causeDistances->at(

iter.i1).which) then
3601 if iter.i1 = causeSize then
3602 let ct:Integer = t + midDistance in
3603 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct

), midCriticalInstant:Integer = ct, i1:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant, i2:Integer = 1}

3604 else
3605 let i:Integer = iter.i1 + 1 in
3606 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3607 if iter.i2 > 1 and e = effects->at(iter.i2) then
3608 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i, causeCriticalInstant:Integer

101

= elem.timestamp + causeDistances->at(i).value, i2:Integer = iter.i2 + 1}
3609 else
3610 if e = firstEffect and t = iter.midCriticalInstant then
3611 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i, causeCriticalInstant:
Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = 2}

3612 else
3613 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null}

3614 endif
3615 endif
3616 else
3617 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i, causeCriticalInstant:Integer =
elem.timestamp + causeDistances->at(i).value, i2:Integer = 1}

3618 endif
3619 endif
3620 else
3621 if e = firstCause then
3622 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3623 if iter.i2 > 1 and e = effects->at(iter.i2) then
3624 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:Integer
= elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}

3625 else
3626 if e = firstEffect and t = iter.midCriticalInstant then
3627 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}

3628 else
3629 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null}

3630 endif
3631 endif
3632 else
3633 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:Integer =
elem.timestamp + secondCauseDistance, i2:Integer = 1}

3634 endif
3635 else
3636 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3637 if iter.i2 > 1 and e = effects->at(iter.i2) then
3638 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:Integer
= iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}

3639 else
3640 if e = firstEffect and t = iter.midCriticalInstant then
3641 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:
Integer = iter.causeCriticalInstant, i2:Integer = 2}

3642 else
3643 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null}

3644 endif
3645 endif
3646 else
3647 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:Integer =
iter.causeCriticalInstant, i2:Integer = 1}

3648 endif
3649 endif
3650 endif
3651 endif
3652 else
3653 iter
3654 endif

102

3655).midCriticalInstants->isEmpty()
3656
3657 =======
3658 def: checkPatternResponseManyManyLeftMid(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String)):Boolean =

3659 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in
3660 if midWhich = TemPsy::ComparingOperator::ATLEAST then
3661 self.checkPatternResponseManyManyLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effects)
3662 else
3663 if midWhich = TemPsy::ComparingOperator::ATMOST then
3664 self.checkPatternResponseManyManyLeftAtMostMid(subtrace, causes, causeDistances, midValue, effects)
3665 else
3666 self.checkPatternResponseManyManyLeftExactlyMid(subtrace, causes, causeDistances, midValue, effects)
3667 endif
3668 endif
3669
3670 =======
3671 def: checkPatternResponseManyManyLeftRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String), effectDistances:Sequence
(Tuple(which:Integer, value:Integer))):Boolean =

3672 let
3673 causeSize:Integer = causes->size(),
3674 firstCause:String = causes->first(),
3675 secondCauseDistance:Integer = causeDistances->at(2).value,
3676 effectSize:Integer = effects->size(),
3677 firstEffect:String = effects->first(),
3678 lastEffect:String = effects->last(),
3679 secondEffectDistance:Integer = effectDistances->at(2).value
3680 in
3681 subtrace->iterate(elem:trace::TraceElement;
3682 iter:Tuple(flag:Boolean, i1:Integer, causeCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer) =

Tuple{flag:Boolean = true, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:Integer = 1,
effectCriticalInstant:Integer = 0}

3683 |
3684 let e:String = elem.event in
3685 if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->last().which) then
3686 Tuple{flag:Boolean = true, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer =

1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3687 else
3688 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
3689 if iter.i1 = causeSize then
3690 Tuple{flag:Boolean = false, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:

Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3691 else
3692 let t:Integer = elem.timestamp, i11:Integer = iter.i1 + 1 in
3693 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
3694 let i22:Integer = iter.i2 + 1 in
3695 Tuple{flag:Boolean = iter.flag, i1:Integer = i11, causeCriticalInstant:Integer = t + causeDistances->at(i11

).value, i2:Integer = i22, effectCriticalInstant:Integer = t + causeDistances->at(i22).value}
3696 else
3697 if not iter.flag and e = firstEffect then
3698 Tuple{flag:Boolean = iter.flag, i1:Integer = i11, causeCriticalInstant:Integer = t + causeDistances->at(

i11).value, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3699 else
3700 Tuple{flag:Boolean = iter.flag, i1:Integer = i11, causeCriticalInstant:Integer = elem.timestamp +

causeDistances->at(i11).value, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

3701 endif
3702 endif
3703 endif
3704 else
3705 if e = firstCause then
3706 let t:Integer = elem.timestamp in
3707 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then

103

3708 let i22:Integer = iter.i2 + 1 in
3709 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, causeCriticalInstant:Integer = t + secondCauseDistance, i2:

Integer = i22, effectCriticalInstant:Integer = t + causeDistances->at(i22).value}
3710 else
3711 if not iter.flag and e = firstEffect then
3712 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, causeCriticalInstant:Integer = t + secondCauseDistance,

i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3713 else
3714 Tuple{flag:Boolean = iter.flag, i1:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +

secondCauseDistance, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3715 endif
3716 endif
3717 else
3718 let t:Integer = elem.timestamp in
3719 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
3720 let i22:Integer = iter.i2 + 1 in
3721 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,

i2:Integer = i22, effectCriticalInstant:Integer = t + causeDistances->at(i22).value}
3722 else
3723 if not iter.flag and e = firstEffect then
3724 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,

i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3725 else
3726 Tuple{flag:Boolean = iter.flag, i1:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,

i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
3727 endif
3728 endif
3729 endif
3730 endif
3731 endif
3732).flag
3733
3734
3735 =======
3736 def: checkPatternResponseManyManyLeftAtLeastMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String

), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String),
effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

3737 let
3738 causeSize:Integer = causes->size(),
3739 firstCause:String = causes->first(),
3740 secondCauseDistance:Integer = causeDistances->at(2).value,
3741 effectSize:Integer = effects->size(),
3742 firstEffect:String = effects->first(),
3743 lastEffect:String = effects->last(),
3744 secondEffectDistance:Integer = effectDistances->at(2).value
3745 in
3746 subtrace->iterate(elem:trace::TraceElement;
3747 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer,

effectCriticalInstant:Integer)
3748 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1, effectCriticalInstant:Integer = 0}
3749 |
3750 let e:String = elem.event in
3751 if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticalInstant,

effectDistances->last().which) then
3752 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticalInstant}

3753 else
3754 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
3755 if iter.i1 = causeSize then
3756 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer
= iter.effectCriticalInstant}

3757 else
3758 let t:Integer = elem.timestamp, i11:Integer = iter.i1 + 1 in
3759 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

104

at(iter.i2).which) then
3760 let i22:Integer = iter.i2 + 1 in
3761 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = t + causeDistances->at(i11).value, i2:Integer = i22,
effectCriticalInstant:Integer = t + causeDistances->at(i22).value}

3762 else
3763 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3764 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = t + causeDistances->at(i11).value, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

3765 else
3766 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = t + causeDistances->at(i11).value, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

3767 endif
3768 endif
3769 endif
3770 else
3771 if e = firstCause then
3772 let t:Integer = elem.timestamp in
3773 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
3774 let i22:Integer = iter.i2 + 1 in
3775 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = t + secondCauseDistance, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + causeDistances->at(i22).value}

3776 else
3777 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3778 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = t + secondCauseDistance, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}

3779 else
3780 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = t + secondCauseDistance, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

3781 endif
3782 endif
3783 else
3784 let t:Integer = elem.timestamp in
3785 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->

at(iter.i2).which) then
3786 let i22:Integer = iter.i2 + 1 in
3787 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + causeDistances->at(i22).value}

3788 else
3789 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3790 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}

3791 else
3792 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

3793 endif
3794 endif
3795 endif
3796 endif
3797 endif
3798).flag
3799
3800 =======
3801 def: checkPatternResponseManyManyLeftAtMostMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String)

, causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String),
effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

3802 let
3803 causeSize:Integer = causes->size(),
3804 firstCause:String = causes->first(),
3805 secondCauseDistance:Integer = causeDistances->at(2).value,

105

3806 effectSize:Integer = effects->size(),
3807 firstEffect:String = effects->first(),
3808 secondEffectDistance:Integer = effectDistances->at(2).value
3809 in
3810 subtrace->iterate(elem:trace::TraceElement;
3811 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i1:Integer, causeCriticalInstant:Integer, i2:Integer,

effectCriticalInstant:Integer)
3812 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i1:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1, effectCriticalInstant:Integer = 0}
3813 |
3814 let e:String = elem.event in
3815 if iter.flag then
3816 if iter.midCriticalInstant = 0 then
3817 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(elem.timestamp, iter.causeCriticalInstant,

causeDistances->at(iter.i1).which) then
3818 if iter.i1 = causeSize then
3819 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

3820 else
3821 let i11:Integer = iter.i1 + 1 in
3822 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11,

causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i11).value, i2:Integer = iter.i2,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

3823 endif
3824 else
3825 if e = firstCause then
3826 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

3827 else
3828 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

3829 endif
3830 endif
3831 else
3832 let t:Integer = elem.timestamp in
3833 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at

(iter.i2).which) then
3834 if iter.i2 = effectSize then
3835 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i1:Integer = iter.i1, causeCriticalInstant:

Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

3836 else
3837 let i22:Integer = iter.i2 + 1 in
3838 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = t + effectDistances->at(i22).value}

3839 endif
3840 else
3841 if e = firstEffect then
3842 if t <= iter.midCriticalInstant then
3843 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.

i1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:
Integer = t + effectDistances->at(2).value}

3844 else
3845 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i1:Integer = null, causeCriticalInstant:

Integer = null, i2:Integer = null, effectCriticalInstant:Integer = null}
3846 endif
3847 else
3848 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = iter.i1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}

3849 endif
3850 endif
3851 endif
3852 else
3853 iter

106

3854 endif
3855).midCriticalInstant = 0
3856
3857 =======
3858 def: checkPatternResponseManyManyLeftExactlyMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String

), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String),
effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

3859 let
3860 causeSize:Integer = causes->size(),
3861 firstCause:String = causes->first(),
3862 secondCauseDistance:Integer = causeDistances->at(2).value,
3863 effectSize:Integer = effects->size(),
3864 firstEffect:String = effects->first(),
3865 lastEffect:String = effects->last(),
3866 secondEffectDistance:Integer = effectDistances->at(2).value
3867 in
3868 subtrace->iterate(elem:trace::TraceElement;
3869 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i1:Integer,

causeCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer)
3870 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i1

:Integer = 1, causeCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
3871 |
3872 if iter.flag then
3873 let e:String = elem.event, t:Integer = elem.timestamp in
3874 if iter.i2 = effectSize and e = lastEffect then
3875 if iter.midCriticalInstants->size() = 1 then
3876 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer
= iter.effectCriticalInstant}

3877 else
3878 let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
3879 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(

iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i1:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer
= iter.effectCriticalInstant}

3880 endif
3881 else
3882 if iter.i1 > 1 and e = causes->at(iter.i1) and self.compare(t, iter.causeCriticalInstant, causeDistances->at(

iter.i1).which) then
3883 if iter.i1 = causeSize then
3884 let ct:Integer = t + midDistance in
3885 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct

), midCriticalInstant:Integer = ct, i1:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

3886 else
3887 let i11:Integer = iter.i1 + 1 in
3888 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3889 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3890 let i22:Integer = iter.i2 + 1 in
3891 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11, causeCriticalInstant:
Integer = t + causeDistances->at(i11).value, i2:Integer = i22, effectCriticalInstant:Integer = t +
effectDistances->at(i22).value}

3892 else
3893 if e = firstEffect and t = iter.midCriticalInstant then
3894 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11, causeCriticalInstant:
Integer = t + causeDistances->at(i11).value, i2:Integer = 2, effectCriticalInstant:Integer = t +
secondEffectDistance}

3895 else
3896 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null, effectCriticalInstant:Integer = null}

3897 endif
3898 endif
3899 else
3900 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

107

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = i11, causeCriticalInstant:Integer
= t + causeDistances->at(i11).value, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

3901 endif
3902 endif
3903 else
3904 if e = firstCause then
3905 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3906 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3907 let i22:Integer = iter.i2 + 1 in
3908 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:Integer
= elem.timestamp + secondCauseDistance, i2:Integer = i22, effectCriticalInstant:Integer = t +
effectDistances->at(i22).value}

3909 else
3910 if e = firstEffect and t = iter.midCriticalInstant then
3911 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2, effectCriticalInstant:Integer =
t + secondEffectDistance}

3912 else
3913 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null, effectCriticalInstant:Integer = null}

3914 endif
3915 endif
3916 else
3917 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 2, causeCriticalInstant:Integer =
elem.timestamp + secondCauseDistance, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

3918 endif
3919 else
3920 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
3921 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,

effectDistances->at(iter.i2).which) then
3922 let i22:Integer = iter.i2 + 1 in
3923 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:Integer
= iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:Integer = t +
effectDistances->at(i22).value}

3924 else
3925 if e = firstEffect and t = iter.midCriticalInstant then
3926 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:
Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:Integer = t +
secondEffectDistance}

3927 else
3928 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i1:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null, effectCriticalInstant:Integer = null}

3929 endif
3930 endif
3931 else
3932 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i1:Integer = 1, causeCriticalInstant:Integer =
iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

3933 endif
3934 endif
3935 endif
3936 endif
3937 else
3938 iter
3939 endif
3940).midCriticalInstants->isEmpty()
3941
3942 =======

108

3943 def: checkPatternResponseManyManyLeftMidRight(subtrace:OrderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

3944 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in
3945 if midWhich = TemPsy::ComparingOperator::ATLEAST then
3946 self.checkPatternResponseManyManyLeftAtLeastMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)
3947 else
3948 if midWhich = TemPsy::ComparingOperator::ATMOST then
3949 self.checkPatternResponseManyManyLeftAtMostMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)
3950 else
3951 self.checkPatternResponseManyManyLeftExactlyMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)
3952 endif
3953 endif

109

