AT

securityandtrust.lu

Software Verification and Validation Laboratory:

A Model-Driven Approach to Offline Trace Checking of
Temporal Properties with OCL

Wei Dou, Domenico Bianculli and Lionel Briand
Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg

TR-SnT-2014-5
ISBN: 978-2-87971-125-6

Last update: March 31, 2016
Published on: March 20, 2014

UNIVERSITE DU
LUXEMBOURG

A Model-Driven Approach to Offline Trace Checking of Temporal
Properties with OCL

Wei Dou, Domenico Bianculli, and Lionel Briand

Abstract

Offline trace checking is a procedure for evaluating require-
ments over a log of events produced by a system. The
goal of this paper is to present a practical and scalable
solution for the offline checking of the temporal require-
ments of a system, which can be used in contexts where
model-driven engineering is already a practice, where tem-
poral specifications should be written in a domain-specific
language not requiring a strong mathematical background,
and where relying on standards and industry-strength tools
for property checking is a fundamental prerequisite. The
main contributions are: the TemPsy language, a domain-
specific specification language based on common property
specification patterns, and extended with new constructs;
a model-driven offline trace checking procedure based on
the mapping of requirements written in TemPsy into OCL
(Object Constraint Language) constraints on a conceptual
model on execution traces, which can be evaluated using
an OCL checker; the implementation of this trace check-
ing procedure in the TEMPsY-CHECK tool; the evaluation
of the scalability of TEMPsY-CHECK and its comparison
to a state-of-the-art alternative technology. The proposed
approach has been applied to a case study developed in
collaboration with a public service organization, active in
the domain of business process modeling for eGovernment.

Index terms— Trace checking, temporal properties,
property specification patterns, model-driven engineering,
OCL

1 Introduction

Modern enterprise information systems are often designed
and built using the principles and technologies of business
process modeling, based on business process languages like
BPMN (Business Process Model and Notation) [53]. Re-
cently, the design and implementation of business processes
have started leveraging model-driven engineering (MDE)
methodologies [19] and code generation techniques. For ex-
ample, our public service partner CTIE (Centre des tech-
nologies de l'information de I’Etat, the Luxembourg na-
tional center for information technology!), from which we
draw the main motivation of this work and our case study,
has developed in-house a model-driven methodology for de-
signing eGovernment business processes.

These business processes are usually very complex and
are realized as compositions of services provided by differ-
ent administrations, and third-party suppliers. They act
as the “glue” to orchestrate different information systems,
possibly by many different organizations, in an effort to fos-
ter cooperation of various administrations. Designing and

Lvw ., ctie.public.lu.

operating effective and efficient processes to drive e-service
delivery is one of the most challenging tasks for public ad-
ministrations. The correct enactment of business processes
is of utmost importance to guarantee reliable digital solu-
tions to citizens and enterprises, as well as to foster an
effective cooperation of the various public administrations
in a state.

From a more general standpoint, in information systems,
the correct enactment of a business process can be en-
sured [4] by: 1) precisely specifying its requirements; 2) us-
ing a verification technique to check the compliance of the
business process with respect to its requirements.

Regarding the specification of requirements of business
processes, the analysis of the requirements of various ap-
plications developed as business processes by our partner
revealed that the majority of these requirements could be
expressed as temporal constraints, enriched with timing
information. Examples of these properties are constraints
on the sequence and number of occurrences of events, with
additional constraints on the temporal distance between
events. This type of properties has been widely studied
in the context of concurrent, real-time critical systems [27]
and, more recently, also in other domains like service-based
applications [15,41,48,58] and automotive [55]. There have
been several proposals to formally specify these properties;
many of these proposals rely on some temporal logic, ei-
ther the classic LTL or CTL, or more specialized versions
like SOLOIST [16]. However, the problem in using these
specification approaches is twofold: 1) they require strong
theoretical and mathematical background, which are rarely
found among practitioners; 2) the support in terms of veri-
fication tools is limited and often based on prototypes that
do not scale for industrial applications. To partially mit-
igate the first problem, researchers have proposed cata-
logues of property specification patterns [2,15,27,38,43],
which collect generalized, proven solutions for expressing
recurrent, common types of specifications. In some cases,
catalogues include a restricted natural language grammar
front-end to express the patterns, and a mapping of the se-
mantics of (restricted) natural language constructs to tem-
poral logic formalisms; this mapping can be automated
with tools like PSPWizard [49]. While property specifica-
tion patterns can make the formal specification of require-
ments easier, their concrete application results in the gen-
eration of a specification in a temporal logic, which leaves
the second issue mentioned above still open. From the
MDE side of specification languages there is OCL [54].
Although also based on mathematical foundations such
as first-order logic and set theory, OCL includes many
helper functions—to keep the constraints compact—and
navigation expressions that reflect the structure of class
diagrams (conceptual models)—to help with writing ex-
pressions that look more alike to program code. These fea-

tures made OCL the de-facto constraints specification lan-
guage in MDE practice and an international standard [54],
which is supported by mature constraint checking tech-
nology, such as the constraint/query evaluator included in
Eclipse OCL [28]. However, OCL does not support na-
tively the specification of temporal constraints in an in-
tuitive fashion. To overcome this limitation, several tem-
poral extensions of OCL have been proposed in the lit-
erature [18,23,33,46,59,62]; however, these extensions in-
clude temporal logic operators and thus intrinsically inherit
the limitations of other specification approaches based on
temporal logic. Other temporal extensions of OCL, such
as [34,42,45,57], explicitly support property specification
patterns. Nevertheless, these pattern-based temporal ex-
tensions of OCL have limited expressiveness. For example,
based on our analysis of a case study in eGovernment sys-
tems, none of the current pattern-based temporal exten-
sions of OCL could support a property like “If the physical
information of the card requester is collected within three
days after the second approval notification, the card will
be produced and then issued to the requester”, which con-
tains a reference to a specific occurrence of an event (“after
the second approval notification ...”) as well as an ex-
plicit temporal distance from an event (“...within three
days...”).

As for the second step towards the correct enactment
of business processes, the compliance of a business process
with respect to its requirements can be checked with differ-
ent verification techniques, such as model checking [17,35],
run-time monitoring [3,41,56, 58], and offline trace check-
ing [13]; in this work we focus on the latter. Offline trace
checking, also called trace validation [51] or history check-
ing [31], is a procedure for evaluating requirements (usually
specified in a temporal logic) over a log of recorded events
produced by a system. Traces can be produced at run time
by a proper monitoring/logging infrastructure, and made
available at the end of a business process execution to per-
form offline trace checking. Offline trace checking comple-
ments verification activities performed before the deploy-
ment of a system, by allowing for the post-mortem analysis
of actual behaviors emerged at run time and recorded on
a log. These behaviors include the ones of the business
process as well as those derived from the interaction of the
business process with the various third-parties (e.g., other
administrations, suppliers) involved in the execution of the
process itself. Offline trace checking is thus also a way to
check whether third-party providers fulfill their guarantees
and to assess how they interact with the rest of the parties
involved in the business process.

The goal of this paper is to present a practical and scal-
able solution for the offline checking of the temporal re-
quirements of a business process, which is expected to be
advantageous in contexts where the following requirements
hold: R1) when analysts do not have adequate skills to
make use of temporal logic, an alternative domain-specific
language should be provided to facilitate the specification
of business process requirements; R2) to be viable in the
long term, any solution shall rely on standard and stable
MDE technology for checking the compliance of a business
process to the application requirements; R3) any solution
shall be scalable, such that a trace with millions of events
could be checked within seconds. This goal is motivated
by specific requirements from our partner in the context of

business process models for eGovernment systems. Never-
theless, we believe, based on experience, that these require-
ments can be generalized to other contexts in which ana-
lysts cannot handle the mathematical background required
by temporal logic and solutions have to be engineered by
using MDE technologies already in place in the targeted
development environment.

To achieve the above objectives, the paper will make
the following contributions: i) the TemPsy (Temporal
Properties made easy) language, a pattern-based domain-
specific language for the specification of temporal proper-
ties; ii) a model-driven trace checking procedure, which
relies on a mapping of temporal requirements written in
TemPsy into OCL constraints on a conceptual model of
execution traces; iii) a publicly available tool (TEMPsY-
CHECK) implementing this model-driven trace checking
procedure; iv) an evaluation of the scalability of TEMPSY-
CHECK, applied to the verification of real properties de-
rived from a case study of our public service partner, in-
cluding a comparison with a state-of-the-art alternative
technology. As a separate contribution, we also make avail-
able the artifacts used in the evaluation to contribute to
the building of a public repository of case studies for eval-
uating trace checking/run-time verification procedures.

TemPsy? is a domain-specific language for the specifi-
cation of temporal properties based on the catalogue of
property specification patterns defined by Dwyer et al. [27]
(with some extensions). To fulfill requirement R1 above,
based on the discussions with our partner business ana-
lysts, we decided that the language should have the follow-
ing features: be as close to natural language as possible,
make no use of mathematical constructs, and support the
commonly understood concepts used in the specification of
requirements in the domain of business process modeling.
Regarding the latter feature, we analyzed the requirements
specifications of our industrial case study, to understand
the type of specifications written (in natural language) by
business analysts and to characterize them in terms of the
property specification patterns in [27] (with some exten-
sions). The relevant concepts and patterns found through
this analysis drove the design of TemPsy, which resulted
in a language sporting a syntax close to natural language,
with all the constructs required to express the property
specification patterns found in our case study, and a pre-
cise semantics expressed in terms of linear temporal traces.
By design, TemPsy does not aim at being as expressive as
a full-fledged temporal logic. Instead, its goal is to make as
easy as possible the specification of the temporal require-
ments of business processes, by supporting—in an intu-
itive way—only the constructs needed to express temporal
requirements commonly found in business process appli-
cations. TemPsy has received positive feedback from our
partner, which has deemed it as suitable communication
mechanism to express the requirements specifications of
business processes. Our partner has integrated TemPsy
into the SoftwareAG ARIS modeling tool [60], and its an-
alysts have started using it to annotate business process
models with TemPsy specifications. In this paper, we show
the application of TemPsy for the specification of an ex-
cerpt of a business process extracted from the case study
developed with our partner.

2The language can be viewed as a profound revision of our previous
proposal [25].

Our offline trace checking procedure fulfills requirement
R2 above since it follows a model-driven approach, based
on industry-strength OCL checkers. The procedure re-
lies on a generic conceptual model of system execution
traces and leverages a mapping of TemPsy properties into
OCL constraints defined over this trace model. This map-
ping is optimized based on the structure of the TemPsy
property to check, in order to achieve better performance.
More specifically, we show how the problem of checking a
TemPsy property over an execution trace (i.e., the TemPsy
trace checking problem) can be reduced to evaluating an
OCL constraint (derived from the TemPsy property to
check and semantically-equivalent to it) on an instance of
the trace model; this check can be executed using standard
OCL checkers.

To show the fulfillment of requirement R3 above, we
extensively evaluated the scalability of the proposed of-
fline trace checking procedure, by assessing the relation-
ship among the checking time, the structural properties of
a trace (e.g., length, distribution of events), and the type
of property to check. We evaluated the scalability of our
TEMPSY-CHECK tool on 38 properties extracted from our
case study, on traces with length ranging from 100K to 1M.
We also compared the performance of TEMPSY-CHECK
with a state-of-the-art alternative technology, selected from
the participants to the “offline monitoring” track of the first
international Competition on Software for Runtime Veri-
fication [8] (CSRV 2014). The experimental results show
that TEMPSY-CHECK can analyze very large traces (with
one million events) in about two seconds and that it scales
linearly with respect to the length of the trace to check.
The results also show that TEMPsY-CHECK compares fa-
vorably with the state-of-the-art.

The rest of the paper is structured as follows. Section 2
provides some background concepts. In section 3 we in-
troduce TemPsy, presenting its syntax and its (informal)
semantics. In section 4 we show the application of TemPsy
in a case study in the domain of eGovernment. Section 5
presents the formal semantics of TemPsy. Section 6 de-
scribes our model-driven approach for trace checking of
TemPsy properties. Section 7 reports on the evaluation
conducted with TEMPSY-CHECK. Section 8 discusses re-
lated work. Section 9 concludes the paper, providing di-
rections for future work.

2 Background: Property Specifica-
tion Patterns

A pattern represents a reusable solution for a recurrent
problem [1]. Though initially proposed in the context of
architecture [1], this concept has been adopted also in dif-
ferent sub-domains of software engineering, including soft-
ware design, with design patterns [36], and formal verifica-
tion, with property specification patterns [2].

Property specification patterns have been initially pro-
posed by Dwyer et al. [27] in the late ‘90s in the context of
formal verification, as a means to express recurring prop-
erties in a generalized form, which could be formalized in
different specification languages, such as temporal logic.
The goal of property specification patterns is to facilitate
the writing of formal specifications, which can then be used
with formal verification tools (e.g., model checkers).

Several catalogues of property specification patterns
have been proposed in the literature [15,27,38,39,43]. In
the rest of this section we provide a brief overview of the
catalogue of property specification patterns by Dwyer et
al. [27], which have been included (with some extensions)
in the definition of the TemPsy language.

This catalogue® contains nine parametrizable patterns,
representing high-level abstractions of formal specifica-
tions, and five scopes, which indicate the portions of a
system execution in which a certain pattern should hold.
In the following, we use the letters W, X, Y, and Z, to de-
note events or states of a system execution The five scopes,
depicted in Fig. 1, are:

Globally. This scope corresponds to the entire system
execution (i.e., the entire trace).

Before. It identifies a portion of a trace up to a certain
boundary.

After. It identifies a portion of a trace starting from a
certain boundary.

Between-And. It identifies portion(s) of a trace delim-
ited by two boundaries.

After-Until. This scope is similar to Between-and,
with the difference that each identified segment extends to
the right in case the event defined by the second boundary
does not occur.

The nine patterns are:

Absence. It describes a portion of a system’s execution
that is free of certain events or states, as in “it is never the
case that X holds”.

Universality. It describes a portion of a system’s exe-
cution that contains only states that have a desired prop-
erty, as in “it is always the case that X holds”.

Existence. It describes a portion of a system’s execu-
tion that contains an instance of certain events or states,
as in “X eventually holds”.

Bounded existence. It describes a portion of a sys-
tem’s execution that contains at most a specified number
of instances of a designated state transition or event, as in
“it is always the case that event X occurs at most 2 times”.

Precedence. It describes relationships between a pair
of events (or states), where the occurrence of the first is a
necessary pre-condition for an occurrence of the second, as
in “it is always the case that if X holds, then Y previously
held”.

Response. It describes cause-effect relationships be-
tween a pair of events (or states), where an occurrence
of the first must be followed by an occurrence of the sec-
ond, as in “it is always the case that if X holds, then Y
eventually holds”.

Response chains. It is a generalization of the response
pattern, as it describes relationships between sequences of
individual states (or events), as in “it is always the case
that if W holds, and is succeeded by X, then Z eventually
holds after Y.

Precedence chains. It is a generalization of the prece-
dence pattern, as it describes relationships between se-
quences of individual states (or events), as in “it is always
the case that if X holds, then Y previously held and was
preceded by X”.

Constrained chain patterns. It describes a variant
of response and precedence chain patterns that restricts

3A detailed description is available at http://patterns.projects.
cis.ksu.edu.

Global

Y YX X YX

Before X

After X

Between X and Y

After X until Y

Fig. 1: Scopes in the catalogue of property specification patterns in [27]

user specified events from occurring between pairs of states
(or events) in the chain sequences. This pattern has not
been included in the definition of TemPsy.

Absence, Universality, Existence and Bounded Existence
belong to the Occurrence category, while Precedence, Re-
sponse, and Chains belong to the Order category.

3 The TemPsy language

As discussed in section 1, the ultimate goal of this work is
to present a practical and scalable solution for the offline
checking of the temporal requirements of a system with re-
spect to a business process model, motivated by real and
specific requirements in eGovernment systems. In this sec-
tion we present the first step to achieve this goal, which is
represented by the definition of the TemPsy language for
the specification of temporal requirements of business pro-
cesses, which will then be checked on an execution trace
using the procedure described in section 6.

3.1 Eliciting the requirements of the lan-
guage

The design of TemPsy has been driven by the analysis of
the requirements of various applications developed as busi-
ness processes by CTIE. We analyzed several applications
and scrutinized the requirements specifications associated
with all use cases and business process descriptions.

This analysis revealed that the vast majority of these
requirements could be expressed as temporal properties,
enriched with timing information. More specifically, we
were able to recast most of specifications written in natu-
ral language using the system of property specification pat-
terns of Dwyer et al. [27]. In some cases, we extended the
original definitions proposed in [27] to match the specifica-
tions. For example, we extended the definitions of scopes
to support references to a specific occurrence of an event
(not only the first one as in [27]), as in the requirement
“event A shall occur before the second occurrence of event
X7, Another variant of this type of scope boundary that we
found is the one with requirements on the distance between
events, such as “event A shall occur five time units before
the second occurrence of event X”. In other cases, the re-
quirements specifications had to be expressed in terms of
some real-time specification patterns [38,43], which quan-
titatively define distance among events and durations of
events.

3.2 Design

The analysis of the requirements specifications mentioned
above made us ponder over the design of the specification
language for expressing them.

The intrinsic temporal nature of the requirements spec-
ifications we found, including also constraints on the dis-
tance between events, could have suggested to follow the di-
rection of building on some (metric) temporal logic. How-
ever, this decision would have not allowed us to fulfill re-
quirement R1 (see section 1). One of the motivations be-
hind this requirement is that specification languages based
on temporal logic require a certain mathematical knowl-
edge that is not common among practitioners.

Another design option would have been to consider the
specification languages defined in the MDE community,
namely temporal extensions of OCL, such as [18,23,33,34,
42, 45,46, 57,59, 62]. However, these temporal extensions
either include temporal logic operators—thus intrinsically
inheriting the limitations of other specification approaches
based on temporal logic, and not fulfilling requirement
R1—or are pattern-based but have limited expressiveness.
For example, none of the pattern-based OCL temporal ex-
tensions can express a property like “If the physical infor-
mation of the card requester is collected within three days
after the second approval notification, the card will be pro-
duced and then issued to the requester”, which contains a
reference to a specific occurrence of an event in a scope
boundary, as well as an explicit temporal distance from
the scope boundary event.

Based on the discussions with business analysts, and
keeping in mind the goal of fulfilling requirement R1
above, we decided that TemPsy should have the follow-
ing features: be as close to natural language as possi-
ble, make no use of mathematical constructs, and support
the commonly-understood concepts (i.e., property specifi-
cation patterns) used in the specification of requirements
in the domain of business process modeling.

We designed TemPsy as a language sporting a syntax
close to natural language, with all the constructs required
to express the property specification patterns found in the
business process applications developed by our partner,
and a precise semantics expressed in terms of linear tem-
poral traces. TemPsy supports all the patterns and scopes
defined in [27], with the following extensions:

e The possibility, in the definition of a scope bound-
ary, to refer to a specific occurrence of an event, as in
“before the second occurrence of event X...”. In the
original definition of the pattern systems, boundaries
of scopes refer implicitly to the first occurrence of an
event.

e The possibility to indicate a time distance with respect
to a scope boundary, as in “at least two time units
before the n-th occurrence of event X...”.

e Support for expressing time distance between events
occurrences in the precedence and response patterns as
well as in their chain versions, for expressing properties

(TemPsyBlock) u= (TemPsyExpression)+
(TemPsyExpression) ::= |‘temporal’ (Id) ‘:’|
(Scope) (Pattern)
(Scope) = ‘globally’
| ‘before’ (Boundaryl)
| ‘after’ (Boundaryl)
| ‘between’ (Boundary2)
‘and’ (Boundary?2)
| ‘after’ (Boundary2)
‘until (Boundary?2)
(Pattern) == ‘always’ (Ewvent)
| ‘eventually’ (Repeatable EventExp)
| ‘never’ [‘exactly’ {Int)] (Event)
| (EventChainEzp) ‘preceding’
[(T¥meDistanceEzp)]
(BventChainExp)
| (EventChainEzp) ‘responding’
[(T¥meDistanceEzp)]
(BventChainExp)
(Boundaryl) = [{Int)] (Event) [{ TimeDistanceEzp)|
(Boundary2) = [(Int)] (Event) [‘at least’ (Int) ‘tu’]
(EventChainEzp) = (Event)
(‘. [# (TimeDistanceExp)| (Event))*
(TimeDistanceEzp) = (ComparingOp) (Int) ‘tu’
(RepeatableEventEzp) ::= [(ComparingOp) (Int)| (Event)
(ComparingOp) = ‘at least’ | ‘at most’ | ‘exactly’
(Event) w= (Id)
(Id) ::= (IdStartChar) (IdChar)*
| (Id) ((IdConnector) (Id))*
(IdStartChar) u= [AZ] || [a-g]
(IdChar) u= (IdStartChar) | [0-9]
(IdConnector) B
(Int) == [1-9] (]0-9])*

Fig. 2: Syntax of TemPsy

such as “event B should occur in response to event A
within 2 time units”.

e Additional variants for the bounded existence and ab-
sence patterns.

3.3 Syntax

The syntax of TemPsy is shown in Fig. 2: non-terminals
are enclosed in angle brackets, terminals are enclosed in
single quotes, optional elements are enclosed in brackets,
the character ‘+’ indicates one or more occurrences of an el-
ement, the character ‘*’ indicates zero or more occurrences
of an element.

A (TemPsyBlock) comprises a set of conjuncted
(TemPsyExpression)s. FEach TemPsy expression starts
with an optional ‘temporal’ keyword plus an alphanumeric
identifier, followed by a (Scope) and a (Pattern). The
keywords indicating the five (Scope)s identify univocally
the corresponding scopes from [27] (see section 2). As
for the (Pattern)s, ‘always’ corresponds to universality,
‘eventually’ to existence, ‘never’ to absence, ‘preceding’
to precedence and precedence chain, ‘responding’ to re-
sponse and response chain.

The definitions of (Scope)s and (Pattern)s refer to the
concept of (Event). We assume that an (Event) is rep-

resented by an alphanumeric string, to match the event
strings logged in the execution trace on which the prop-
erties specified in TemPsy are meant to be checked.
(Scope)s contain boundaries (expressed with (Boundaryl)
or (Boundary2)) that denote a specific occurrence of an
event as a boundary, possibly with a time distance; no-
tice that (Boundary2) represents a syntactic restriction of
(Boundaryl). Chains of events, used in precedence and
response patterns, are defined as (EventChainFExp), which
denotes a comma-separated list of events, possibly with
a time distance ((TimeDistanceExp)) between each pair
of events (denoted with the ‘#‘ symbol). Time distances
are expressed with an integer value, followed by the ‘tu’
keyword, which represents a generic time unit (i.e., any
denomination of time).

3.4 TemPsy at Work

We now present some examples of properties that can be
expressed with TemPsy, in order to provide the reader
with a high-level, intuitive understanding of the language.
We consider the execution trace shown in Fig. 3 and for
each property? indicate whether it is violated or not by
the trace. First, we define the properties in English:

pl) “Event C shall happen 8 time units after the second
occurrence of event X.” (satisfied)

p2) “Event A shall happen within 30 time units after the
first occurrence of event X.” (satisfied)

p3) “Event C shall eventually happen after at least 3 time
units since the first occurrence of event X; and it shall
happen before event Y if the latter happens.” (vio-
lated because event C' occurs after event Y)

p4) “After the second occurrence of event X, event C shall
eventually happen exactly twice.” (satisfied)

p5) “Event C' shall happen at least once between every
first occurrence of event X and the next event Y'; the
time interval between event X and the first occurrence
of event C shall be at least 5 time units.” (violated
because event C does not occur between the first seg-
ment delimited by event X on the left and event Y on
the right)

p6) “Event B shall happen at least 3 time units before the
first occurrence of event Y.” (satisfied)

p7) “Before the first occurrence of event Y, once event X
occurs, event A shall happen followed by event B; the
time interval between X and A shall be at least 3 time
units.” (satisfied)

The corresponding TemPsy expressions are shown below:

e temporal pl: after 2 X exactly 8 tu eventually

C

e temporal p2: after X at most 30 tu eventually

A

e temporal p3: after 1 X at least 3 tu until Y

eventually C

4These properties are given as an example and should be consid-
ered individually, rather than together as a set; they do not corre-
spond to the specification of a real system.

X A B Y

Y X

X c C Y X

—_— 0 —— 00— ——0—— 00— 00— 00— 00—

2 6 10 16

20 22

26 30 34 38 40

Fig. 3: An event trace on which to evaluate the properties described in section 3.4; events are above the line, timestamps

below

X Y YX X Y X

———————————————————— ¢ — ¢ —o ¢ ——

Fig. 4: A sample trace for the description of scopes

e temporal p4: after 2 X eventually exactly 2 C

e temporal p5: between X at least 5 tu and Y
eventually at least 1 C

e temporal p6: before Y at least 3 tu eventually

B

e temporal p7: before Y A, B responding at

least 3 tu X

3.5 Informal Semantics

In this section we present the informal semantics of the
scopes and the patterns supported in TemPsy expressions;
they correspond to non-terminals (Scope) and (Pattern),
respectively. In the following, symbols A, B,C, D, X,Y, Z
represent strings that can be derived from non-terminal
(Bvent); ‘m’, ‘ml’, ‘m2’, ‘n’, ‘n1’, and ‘n2’ are integers derived
from the non-terminal (Int); ‘tu’ stands for “time unit(s)”.
The complete definition of the formal semantics of TemPsy
can be found in section 5.

3.5.1 Scopes

For the description of scopes, we refer to the trace of events
depicted in Fig. 4; to avoid cluttering, the figure does not
show the events not used in the explanations. We use sym-
bols X and Y as shorthands for events that can be derived
from the non-terminal (Event).

Globally. This scope corresponds to the entire trace
shown in Fig. 4.

Before. The general template for this scope in TemPsy
is“before [m] X [(ComparingOp) n tu]”; it can be expanded
in four forms: 1) “before X”, 2) “before X (ComparingOp)
n tu”, 3) “before m X7, 4) “before m X (ComparingOp) n
tu”. The first two forms are convenient shorthands for
the third and fourth ones, respectively, with m = 1. The
form “before m X" selects the portion of the trace up to
the m-th occurrence of event X; see, for example, the top
row in Fig. ba, where the interval from the origin of the
trace up to the third occurrence of X is highlighted with
a thick line. The form “before m X (ComparingOp) n tu”
has three variants, depending on the possible expansions
of non-terminal {ComparingOp):

e “before m X at least n tu” identifies the scope from
the origin of the trace up to n time units before the
m-th occurrence of X;

e “before m X at most n tu” identifies the scope start-
ing at n time units before the m-th occurrence of X
and bounded to the right by the m-th occurrence of
X

e “before m X exactly n tu” pinpoints the time instant
at n time units before the m-th occurrence of X.

Examples of the first two variants of scopes are shown with
thick segments in the second and third rows of Fig. 5a; for
the last variant, see the last row of Fig. ba, where the time
instant selected by the scope is enclosed with a circle. In
all examples, we have m=3 and n=2.

After. It has a dual semantics with respect to the be-
fore scope. We provide an intuition of its semantics using
Fig. 5b.

Between-And. The general template for this scope in
TemPsy is “between [ml] X [at least nl tu] and [m2] ¥ [at
least n2 tu]”; it can be expanded in four forms:

e “between my X [at least mp tu] and mo Y [at least
ny tul’

e “petween X [at least m; tu] and m2 Y [at least ng
tu]”;

e “between my X [at least np tu] and Y [at least no
tu);

e “petween X [at least my tu] and Y [at least ng tu]”.

The first form is the most general: it selects the single
segment of the trace delimited by the mq-th occurrence
of event X and the ms-th occurrence of event Y happen-
ing after the mi-th occurrence of X. The second and third
forms are shorthands for the first one, with m1=1 and m2=1,
respectively. The fourth form is the closest to the original
definition in [27], since it selects all the segments in the
trace delimited by the boundaries. In this regard, notice
the difference with respect to the expression “between 1 X
and 1 Y7, which selects the segment delimited by the first
occurrence of X and the first occurrence of Y after X. In
all forms it is possible to use the expression at least n
tu when defining boundaries, with the same meaning de-
scribed for the scope before. Four examples of the Between-
and scope are shown in Fig. 5c.

After-Until. This scope is similar to Between-and,
with the difference that each identified segment extends
to the right in case the event defined by the second bound-
ary does not occur; this peculiarity can be noticed in the
first two rows of Fig. 5d (also by comparing them with the
corresponding ones in Fig. 5c), as well as in the last row.

Note that all scopes are open on the bounds delimited
by the boundary events themselves, i.e., in general®, the
before scope is closed on the left bound and open on the
right bound; the after scope is open on the left bound, and
closed on the right bound; the between-and scope is open on
both bounds; the after-until scope is open on both bounds
when the right boundary event occurs, or is open on the
left and closed on the right when the right boundary event
does not occur.

5The scopes that contain constraints on time distance from the
boundary events (with “at least” and “exactly”) are closed on the
bounds

before 3 X

before 3 X at least 2 tu

before 3 X at most 2 tu .
before 3 X exactly 2 tu .

X Y YX X YX
I
(a) Scope: before
X YX

after 3 X

after 3 X at least 2 tu
after 3 X at most 2 tu
after 3 X exactly 2 tu .

(b) Scope: after

between X and Y

between X and Y at least 2 tu

between 1 X at least 2tuand 2 Y

between 2 X at least 2 tuand 1 Y at least 2 tu

(c) Scope: between-and

after X untilY

after X until Y at least 2 tu

after 1 X at least 2 tuuntil 2 Y

after 2 X at least 2 tuuntil 1 Y at least 2 tu

after 2 X until 1 Z

X Y YX X Y X
k—t ~ k=
2 tu 2 tu
L)I & & *—o
2 tu
® ® — —
2 tu 2 tu
X Y YX X Y X
— —
2 tu 2 tu
s ® 4 *—o
2 tu
° ° ° T<_)| k_; °

(d) Scope: after-until

Fig. 5: Examples of TemPsy scopes

3.5.2 Patterns

TemPsy supports eight of the nine patterns defined in [27].
Their semantics has been already briefly explained in sec-
tion 2; below we only highlight the semantics for the pat-
terns that have been extended upon inclusion in TemPsy.
Existence. This pattern comes in four forms:

e “eventually A” indicates that event A will eventually
happen at least once;

e “eventually at least m A” indicates that event A
will eventually happen at least m times;

e “eventually at most m A” indicates that event A will
eventually happen at most m times;.

e “eventually exactly m A” indicates that event A will
eventually happen exactly m times.

The last three forms are variants of the bounded existence
pattern, a subclass [2] of the existence one.

Absence. In addition to stating that a certain event
never occurs in the given scope, TemPsy makes also possi-
ble to specify that a specific number of occurrences of the
same event should not happen, as in “never exactly 2 X7,
which indicates that X should never occur exactly twice.

Precedence. This pattern (also available in the vari-
ant called precedence chain) indicates the precondition re-
lationship between a pair of events (respectively, the two
blocks of a chain) in which the occurrence of the second
event (respectively, block) depends on the occurrence of
the first event (respectively, block). Based on this origi-
nal definition, we added support for timing information to
enable expressing the time distance between two adjacent
events. The semantics can be explained using the follow-
ing example and the event trace in Fig. 6; the expression
“A preceding at most 10 tu B, #at least 5 tu C” indi-
cates that the event A is the precondition of the block “B
followed by C”, that the time distance between A and B
should be at most 10 time units, and the time distance
(expressed using the # symbol) between events B and C
should be at least 5 time units. Here, A (left-hand side of
‘preceding’) represents the first block of the chain, while
the expression “B, #at least 5 tu C” represents the sec-
ond block (right-hand side of ‘preceding’).

Response. This pattern (also available in the variant
called response chain) specifies the cause-effect relation-
ship between a pair of events (respectively, the two blocks
of a chain) in which the occurrence of the first event (re-

A B C D
k—4 tu —k——6 tu —*%— 4 tu —i

Fig. 6: Example trace for illustrating the precedence and
response patterns

spectively, first block) leads to the occurrence of the second
event (respectively, second block). Similarly to the previ-
ous pattern, we added support for timing information to
enable expressing the time distance between two adjacent
events. The semantics can be explained using the follow-
ing example and the event trace in Fig. 6; the expression
“C, D responding at most 10 tu A, #at least 5 tu B”
specifies that two successive events A and B stimulate the
sequential occurrence of C' and D, the time interval be-
tween A and B should be at least 5 time units, and the
time interval between B (second element of the first block)
and C (first element of the second block) should be at most
10 time units. This property is violated by the example in
Fig. 6, because the time distance between A and B is only
4 time units.

3.6 Expressivity

As discussed earlier, the main goal of TemPsy is to make as
easy as possible the specification of the temporal require-
ments of business processes, by supporting—in an intuitive
way—only the constructs needed to express temporal re-
quirements commonly found in business process applica-
tions. Hence, by design, TemPsy does not aim at being as
expressive as a full-fledged temporal logic.

More precisely, TemPsy can specify only the expressions
resulting from the combination of one of the five supported
scopes (and their variants) with one of the eight supported
patterns (and their variants). For each of these expres-
sions, it is possible to write a formula with the same mean-
ing in a full-fledged temporal logic like MTL [44] (see, for
example, the syntax-directed translation of property spec-
ification patterns, targeting MTL, proposed in [2]). On
the other hand, all the MTL formulae that do not corre-
spond to one of the (scope, pattern) combinations cannot
be expressed in TemPsy.

In our context, this limitation turns out to be more the-
oretical than practical, since we were able to express in
TemPsy all the requirements of the business processes of
our case study. Nevertheless, as part of future work, we
plan to assess the expressivity of TemPsy by applying it
for the specification of business processes in other applica-
tion domains.

4 Applying TemPsy in an eGovern-
ment scenario

In this section we report on the application of TemPsy for
the specification of a business process extracted from the
case study developed with our partner. After illustrating
the conceptual and behavioral models of some fragments of
the business process application, we present some require-
ments specifications associated with these business process
fragments and show how these specifications can be ex-
pressed in TemPsy. We also discuss the adoption and use

of TemPsy by our partner.

Notice that the case study description has been sani-
tized, for the purpose of not disclosing confidential infor-
mation, and simplified, to obtain a model at the minimum
level of detail required to illustrate and express the require-
ment specifications.

4.1 Business process models

We consider the Identity Card Management (ICM) busi-
ness process, which is in charge of issuing and managing
the ID cards of the diplomatic personnel of the country. Its
conceptual model is shown in Fig. 7, while three activity
diagrams corresponding to process fragments are sketched
in Fig. 8.

The conceptual model includes the ICM class, which man-
ages Cards and Requests (for new cards). The ICM class
has methods that deal with approval/rejection of card re-
quests, card production and issuance, and card loss/expi-
ration. Class Card has methods to query about the state
of the card, which can be lost, found, expired, or returned
(to the administration).

The activity diagram in Fig. 8a shows the business pro-
cess fragment for processing a card request. Once a request
for a card is submitted to the ICM system, it is evaluated
and then either approved or rejected. Afterwards, a notifi-
cation letter of approval or rejection is sent to the requester.
Upon approval, the requester is asked to provide her phys-
ical information (e.g., hair and eye color, height) to the
ICM system. In case this information is not provided, a
second notification is sent; if the requester does not show
up after two notifications, the request is then rejected and
the requester notified about it. If the requester provides
her information, the ICM system requests the production
of the physical card, which is then issued to the requester.

The business process fragment executed in case of card
loss is depicted in Fig. 8b. The ICM system first registers
the card loss case and issues a temporary card to the card
holder. If the lost card is found before the production of
a new one, the ICM system recalls the temporary card.
After the production of a new card, the ICM system will
recall the temporary card and issue the new one. If the
lost card is found after the production of the new one but
before the recall of the temporary one, the ICM system
will recall the old card before recalling the temporary one.

The activity diagram in Fig. 8c corresponds to the busi-
ness process fragment executed in case of card expiration.
When a card expires, the ICM system sends the card
holder a letter to recall the card. If the card is returned,
a confirmation receipt is then sent to the card holder; oth-
erwise, another recall letter is sent to her. If, after two
notification letters, the card holder has not returned the
card yet, the ICM system reports the case to the police
and the card holder will be fined.

4.2 Requirement specifications

We now list some requirements specifications associated
with the three fragments of the ICM business process, and
show how they can be expressed in TemPsy. These nine
specifications (three for each business process fragment)
have been selected out of the 47 available for the ICM ap-
plication. Notice that these specifications have been writ-
ten by the business analysts of our partner, who have do-

ICM
tempCard newCard
T e.1 .1 |
01 0..1 approveRequest ()
card rejectRequest()
CardHolder 1 1 not%fyAp;l)rovz?l()
isLost() cards notifyRejection()
holder card isFound() " n collectPhysicalInfo()
isReturned() produceCard()
isExpired() issueTempCard()
issueCard()
request card | 1 recallTempCard()
recallCard()
Reauest 1 reportToPolice()
requests fine()
" 1 confirmCardReturned()

Fig. 7: Conceptual model of the ICM business process

card request

card Request card Loss
Evaluate ki
.

Reject Notify
request Rejection

Notshow

Approved

Issue
temporary card

No-show

Jot found(s duce (| mecall
card old card
card| found

card found

Card Expiration

No repl
Not |found ply

Notify
approval

Approve Notify
request approval
Pregent

Present

Register Recall
card loss case ||temporary card

Recall
expired card

No reply

Recall card| returned
temporary card

Issue
card

Produce Collect &
card physical info

—

—\Card returned
Recall Confirm |S3rd returne & Report
expired card | |receipt to police
@ Fine

Issue
new card

(a) card request fragment

(b) card loss fragment

(¢) card expiration fragment

Fig. 8: Activity diagrams of three fragments of the ICM business process

main knowledge, and represent realistic properties being
used in practice.
Card Request:

R1 Once a card request is approved, the requester is no-
tified within three days; this notification has to occur
before the production of the card is started.

R2 The requester has to show up for the collection of her
physical information within five days from the first no-

tification.

R3 If the physical information of the requester is collected
within three days after the second approval notifica-
tion, the card will be produced and then issued to the

requester.

These requirements specifications can be expressed in
TemPsy as follows:

1 temporal R1:

2 before ICM.issueCard

3 ICM.notifyApproval

4 responding at most 3*24*3600 tu
5 ICM.approveRequest

6 temporal R2:

7 after 1 ICM.notifyApproval

8 at most 5*24*3600 tu

9 eventually ICM.collectPhysicalInfo
10 temporal R3:

11 after 2 ICM.notifyApproval
12 at most 3*24*3600 tu
13 ICM.collectPhysicalInfo
14 preceding
15 ICM.produceCard, ICM.issueCard

Property R1 is expressed in lines 1-5. The before
scope is delimited by the event ICM.issueCard. The re-
sponse pattern is bounded (time units are expressed in
seconds) and requires the notification to the requester

(ICM.notifyApproval) to happen in response to the ac-
tion of approving the request (ICM.approveRequest). Prop-
erty R2 (lines 6-9) combines an after scope with an exis-
tence pattern. In R3, the after scope (line 11) is bounded
by the second occurrence of ICM.notifyApproval; this
scope is associated with a precedence chain pattern, where
ICM.collectPhysicalInfo represents the first block and the
events chain ICM.produceCard, ICM.issueCard, the second
block.
Card Loss:

L1 If a card is reported as lost, a temporary card will be
issued to the card holder within one day, and will be
recalled in ten days after the issuance.

L2 After a card has been registered as lost, a new card
should be produced at least two days before its is-
suance.

L3 If the lost card is found after the production of a new
card, the old card and the temporary one should be
recalled within three days.

These requirements specifications can be expressed in
TemPsy as follows:

1 temporal L1:

2 after Card.islLost

3 at most 24*3600 tu

4 ICM. recallTempCard

5 responding at most 10*24*3600 tu
6 ICM.issueTempCard

7 temporal L2:

8 after Card.islLost

9 ICM.produceCard

10 preceding at least 2*24*3600 tu
11 ICM.issueCard

12 temporal L3:

13 after Card.islost

14 until ICM.issueCard

15 ICM.recallCard,

16 ICM.recallTempCard,

17 responding at most 3*24*3600 tu
18 ICM.produceCard,

19 Card.isFound

Property L1 contains an after scope and a response pat-
tern, where the scope boundary contains a time constraint,
and the pattern also restricts the time distance between
the issuance of a temporary card (ICM.issueTempCard) and
the corresponding card recall event (ICM.recallTempCard).
Property L3 combines an after-until scope with a prece-
dence chain pattern, where the first block corresponds
to the events chain ICM.recallCard, ICM.recallTempCard,
and the second block corresponds to the events chain
ICM.produceCard, Card.isFound.

Card Expiration:

E1 Once a card expires, the holder is notified to return the
card at most twice.

E2 In case the expired card has not been returned after
five days from the second notification to the holder,
the latter will be fined after the case will be reported
to the police.

E3 Once a card is returned, the holder will receive a con-
firmation within one day.

These requirements specifications can be expressed in
TemPsy as follows:

1 temporal E1:

2 after Card.isExpired

3 until Card.isReturned

4 eventually at most 2 ICM.recallCard
5 temporal E2:

6 after 2 ICM.recallCard

7 at least 5*24*3600 tu

8 until Card.isReturned

9 ICM.fine

10 responding

11 ICm.reportToPolice

12 temporal E3:

13 globally

14 ICM.confirmCardReturned

15 responding at most 24*3600 tu
16 Card.isReturned

Property El1 uses an after-until scope, where the left
boundary event corresponds to the expiration of the card
(Card.isExpired) and the right boundary event corre-
sponds to the return of the card (Card.isReturned). A
bounded existence pattern is used to specify the maxi-
mum amount of notifications (ICM.recallCard) that can
occur. In property E2 we use an after-until scope com-
bined with the keyword ‘at least’ for the first bound-
ary, to delimit the period during which the card holder
will be fined once the expiration case is reported to
the police (ICM.reportToPolice). Property E3 states an
invariant of the system (using the globally scope) for
the response pattern that correlates the return of the
card (Card.isReturned) to the confirmation to the holder
(ICM.confirmCardReturned).

4.3 Adoption of TemPsy by our partner

Our partner has adopted TemPsy as the specification lan-
guage for expressing the requirements of its business pro-

10

Activity
Al
Event
start

4

{ at least 1000 tu
Activity Response o O
A2 Example ¢ o

event El

\

Activity
A4

Fig. 9: Example of the graphical notation for TemPsy

Table 1: Distribution of requirements from the ICM busi-
ness process in terms of the combination of scopes and
patterns

scope+pattern # of requirements

globally-tuniversality
globally+absence
globally+existence
globally+precedence
globally+response
before+absence
before}-existence
before+precedence
before-+response
after+universality
after+absence
after+existence
after+precedence
after+response
between-and+universality
between-and-+absence
between-and-+existence
between-and-+precedence
between-and-+response
after-until4+-universality
after-until+absence
after-until-+existence
after-until+precedence
after-until4+response

DN = = = = = N NN WE =N WK R RN ==

cess models. TemPsy specifications have provided business
analysts with a means to reason and formalize business
process requirements, and have replaced informal speci-
fications written in natural language. Our partner has
also developed, for internal use, a graphical version of
TemPsy, which has been integrated into the SoftwareAG
ARIS modeling tool [60], as part of the Prometa business
process modeling framework®; although the illustration of
the graphical notation for TemPsy is out of the scope of
this paper, we provide an example of it in Fig. 9.

In terms of expressiveness, we recall that TemPsy has
been designed based on the analysis of the structure of the
requirements specifications written by our partner. Hence,
all the requirements of the case study presented in the pre-
vious section could be expressed with TemPsy. Table 1
shows the distribution of the 47 requirements of the ICM
business process, in terms of the combination of scopes and
patterns.

6h‘c‘cps://joinup.ec.eu ropa.eu/community/nifo/case/prometa-
organisational-interoperability- framework-eservice-design-
luxemburg.

5 Formal Semantics of TemPsy

This section presents the formal semantics of TemPsy, us-
ing the concept of temporal linear traces.

5.1 Events and Trace

Event. An atomic event e is an element of the set ¥, which
contains all the symbolic strings corresponding to opera-
tions recorded in a trace or log.

EventChain. An FventChain is a chain of Ewvents oc-
curring in sequence, with an optional quantification of
the time distance between each pair of adjacent ele-
ments. An m-length EventChain (m > 1) is denoted as
e1,t1,€2, ..., tm—1,€m. The symbol ¢t; (with1 <i<m-—1)
represents the time distance between e; and e; 1 (if de-
fined) and has the form t; = # <; §; tu with §; € NT and
;€ {at least, at most, exactly}; when ¢; is undefined
we use the notation t; = L. Function len(EC) returns the
length m of an m-length EventChain EC.

Trace. A n-length trace A is a finite sequence of atomic
events (eq,...,e,—1), where eq is its starting event and n
is the length. The universal set of sub-traces is denoted as
A.

We assume that each event in a trace is timestamped
and that there is a function 7 : N — N, which returns the
timestamp 7(¢) at which the event in position 7 of the trace
occurred. The timestamp is a natural number and repre-
sents the absolute value of time with respect to the time
unit defined for the system. Given a trace A we assume
that the sequence of timestamps 7(0),7(1),...,7(n — 1)
is strictly monotonic, i.e., 7(i) < 7(i + 1) for all 7, with
0<i<n-—2.

We now introduce some notations used in the rest of the
section. Given an n-length trace A,

e \(7) denotes the atomic event at position ¢ in the trace,
with 0 <i<n-—1;

e td(i,j) denotes the time distance between A(7) and

A(j) and is defined as td(i,j) = 7(j) — 7(4), with 0 <
i1<j<n-—1
e A\(i : j) denotes the sub-trace of A from A(i) to A(j)

including both bounds, with 0 <¢ < j <n-—1;

e #(\, 14,7, e) denotes the number of occurrences of event
e in the sub-trace A(i : j) of .

5.2 Temporal Expressions

In the following definitions, let e, e, es be atomic events;
EC., EC5 be event chains; n be the length of a trace; b, d
be positive natural numbers denoting time distances; a,c
denote the specific occurrence of a scope boundary event
and range over {0, ...,n—1} if defined or be equal to { L} if
undefined; o, o/, 8,7, 6,0’,n, 7’ be auxiliary variables rang-
ing over {0,...,n —1}.

Scopes. Let S be the set of scopes that can be derived
from the non-terminal (Scope) in the grammar in Fig. 2.
A scope s € S is a set of sub-traces of an n-length trace
A € A defined by the function ¢pg(A) : A — 24 as follows:

globally: Ggiobatry] () = {A}

11

before:

.¢beforeae { O 9*1 |921,)\(9):e,
#(X,0,0,¢) =m}

i ¢[before a e at least b tu](A) = {A(
e,0 = max({y | td(v,
m}

A) =

A)={X#:0-1)| X0) =

¢[bef0re a e at most b tu](

e, = max({')/ | td(v,0) > b}),#()\,o,e,e) =
m}
b ¢[bef0re a e exactly b tu] 9/ (9) =

) = {\#
e,0" = max({y | td(y,0) > b}),#

m
{1, ifa=1
where m =
a, else
after:
b ¢[afterae](>\) = {)\(9+1 : n—l) ‘ 0 <n-—

2/\(9):6#(/\006

—m)
b ¢after a e at least b tu] {)‘ 6./ n-— 1) |)‘()
e, 0 = min({v | td(0, ’Y) > b}), #(A,0,0,¢) =m}

b ¢[after a e at most b tu](>‘) = {)‘(0 +1: 9/) |)\(9) =
e,0 = min({v | td(6, fy)>b} ()\ 0,0,e) =m}

{A) | A() =

b} ()\ O 0,e) =m}

hd ¢ after a e exactly b tu]

)
= {\(#
69’_m1n{7|td(9'7)2)#
ifa=_1

else

L,

a,

where m = {

between-and:

A = {Maw +1: B —1)
ax) = e1, A(Bk)

L4 ¢[between ey and 62](‘
Yk > 0,k < Br < ags1, A(=
<

GQ,Vj, o <] < 5k,>\(]) 7& CQ,Vi,ﬁk < 1
ki1, A() # €1}

L4 Qb[between e1 and e at least d tu] ()‘) {)\(ak +1 :
/6;2) ‘ vk > 0, < ﬁk < ak+1,)\(ak) =
elvA(ﬁk) - 627Vj,06k < .7 < /Bkv)‘(j) 7&

e, Vi, B, < @ < apq1,A(i) # e,), = max({y
td(v, Be) > d})}

d ¢[between ey at least b tu and ez](A) = {A(a;g : 51@ -
1) | VE > 0,0 < ﬁk < ak+1,)\(ak) =
617/\(ﬁk) = eQ,Vj,O{k < .] < Bka)‘(j) 7é

e2,Vi, By < i < agt1,A(i) # er,a), = min({y
td(ax,v) > b})}

¢[between ey at least b tu and ez at least d tu] ()‘)
X, = By) | VE > 0,0, < Br < g1, M) =
el,A(ﬂk) 627Vj,04k < j < ﬁka (]) 7é
e, V1, B, < © < g1, A(1) # er,) = min({7y |
td(aw,y) = b}), By, = maX(H | td(v, Br) = d} }
(b[between a ep and ¢ 62] = {A a+1:)
AMa) = e, #()\,O,a,el) =z, A\B) = 62,#()\,Oé+
15[3762) = y}

L4 ¢[between a e; and ¢ es at least d tu](>\) = {)\(OL +1:
ﬁ,) |)\(O[) = el,#(Aaoaaael) = xa)‘(ﬂ) -
ez, # (N a + 1,8,e2) = y, 8" = max({y |

td(y,8) > d}}

¢[between a e; at least b tu and ¢ 62]()\) =
D | Ma) = e, #(N0,a,e1) = x,A(B) =
627#(A7a + 155762) y70/ mln({'y ‘
td(a,v) > b} }

L qb[between a e at least b tu and ¢ ey at least d tu](>\)
{)‘(a/ B/) | /\(a) 61,#()\,0,C¥,€1)
Z, A(ﬁ) = €2, #()‘7 a+1,B, 62) = y7o/ = min({ly |
td(c,) > b}, 8 = max({y | td(y,8) > d} }

1, ifa=1 {17 ife=1
and y =

a, else c, else.
b Qb[after e until 62]()\) (rb[between ey and 62](>\) U
{Mn+1:n=1)|n=min({y [y <n-2,A(y) =
e1,Vh, v <k <n—1,Xk)#e2})}

)
) U {X(

e2})

where x =

after-until:

d)[after e1 until es at least d tu] ()‘
¢[between ey and e at least d tu] ()‘
n—1) | n = mn{y [~
1, Wk, <k <n—1,\(k) #
¢[after ey at least b tu until es] ()‘
¢[between e1 at least b tu and es] (>‘
n' = min({y | td(n,y) =

A(y) =e,Vk,y <k <n—1,A

U
}),n
(k) #

d)[after e; at least b tu until es at least d tu

mn{v
)

ez}
A
A

c

1(A)
(M)
> b)
1\

¢[between e1 at least b tu and es at least d tu
{An" :n—1) | 0/ = min({y | td(n,7)
min({y | A() = e, Vk,y <k <n-—
ez})}

¢[after a ep until ¢ 62]()\)

¢[between a ep and ¢ ez]()‘) U {)‘(TI +1:n— 1)
o< mo— 2,A(n) e, #(A, 0,1, e1)
r,#ANn+1n—1e) < y}

),

U
()

Ol

¢[after a e1 until ¢ es at least d tu]()‘)

d)[between a e; and ¢ ez at least d tu](>\) U {)\(77 + L
n-— 1) ‘ n <n-— 27)‘(77) = 613#(>‘707nﬂ61) -
x»#()‘vn+17n_1762) < y}

¢[after a e at least b tu until c es] ()\

)
)

¢[between a 61 at least b tu and ¢ ez])\ U {>‘ 77/
n—=1) | 7 = min({y | td(n,7) > b}),A(n) =
e, #(X,0,m,e1) = 2, # (A0 + Ln — 1,e2) <y}

d)[after a e1 at least b tu until ¢ es at least d tu]()‘)
¢[between a e; at least b tu and ¢ es at least d tu]()‘)
{x(r n—1) [7 =
td(n,y) = b}),An) =
.T,#(/\,T]+ 1,7’L— 1762) < y}

Wherex:{ andy:{

Event and EventChain matching function. Let A\ be
an n-length trace, EC be an m-length EventChain (1 <
m < n). The matching function match returns true if
there is an occurrence of an event (or of an EventChain) in
a certain position of the trace. For a 1-length EventChain
EC = e, i.e., a single event, we have match(\, EC,i) =
true, with 4,0 <4 <n — 1, if A\(i) = e. For an event chain
EC = ey, t1,6e9,...,tm—1,€m, we have match(\, EC,i) =
true, with ¢,0 < i < n — m, if there exist i1,42,...,0, €
{0,...,n — 1}, such that iy =4, ig41 = i + 1,1 < k <
m—1, Mi1) = e1, Ai2) = ea, ..., A(im) = en and for all
J,1 <3 <m—1, such that ¢; # 1, we have:

td(ij,ij+1) > 0; if ;= at least;

td(ij,ij+1) < 5j if ;= at most;

td(ij,ijJrl) = (Sj if D= exactly.

617#(s Uy

[

1

a,

1

¢,

ife=_1
else .

ifa=_1
else

))

12

For an events chain FC = ei,t1,€9,...,tm_1,6m W€
also define two auxiliary functions first(\, EC,i) and
last(A\, EC, i), which return, respectively, the timestamp
of the first and the last event of FC' when the chain is

matched in position 4 of the trace .

Patterns. Let IP be the set of patterns that can be derived
from the non-terminal (Pattern) in the grammar in Fig. 2.

The semantics of a pattern p € P is given by the function
Y (A) : A — {true, false} defined as follows:

universality: ¥jaays ¢](A) < Vi,0 <i <n—1,A(1) =
absence:

hd w[never e](>\) < Vi,0<i<n- 1,)\(2) 7é €

b 'l/}[never exactly m e] ()‘) <~ #(Aa 0,n— 176) 7é m

existence:

hd w[eventually e](>\) - EIZ)O S i S n-— 1a)‘(Z) =€
b w[eventually > m E]()\) = #()\70771 -1, G)A m
>, if <= at least;
where A = ¢ <, if <= at most;
=, if = exactly.
precedence:
L4 w[E'Cl preceding EC’Q]()‘) ad VZ7O < 1 < n—
1, match(\, EC2,i) = 35,0 < j < i —

len(ECY), match(\, EC1, j)

L4 w[E'Cl preceding <1 b tu ECQ]()‘) < VLO < i <
n — 1, match(\, ECq,i) = 35,0 < j < i —
len(ECY), match(\, EC1, j) and
(first(A, ECo,14) — last(\, EC1,7))A b
>, if = at least;
where A = ¢ <, if <= at most;
=, if <= exactly.
response:
i l/}[Ecl responding EC’Q](/\) -~ VZ,O < i < n-—
1, match(\, EC2,i) = 3j,i + len(ECy) < j <

n — 1, match(\, EC1,)

w[Ec’l responding < b tu EC’Q](/\) & Vi,0 <i<n
1, match(X, ECa,1) = 3Jj,i + len(EC3) < j
n — 1, match(A, EC4,7) and

(ﬁmt()\7EC’17 i) — last(\, EC4,5))2 b

>, if = at least;

<

IN

)

where A = , if b= at most;

if D= exactly.

)

Temporal Expression. The semantics over a trace A
of a temporal expression derived from the non-terminal
(TemPsyEzxpression) containing a scope s € S and a pat-
tern p € P, represented as a pair (s,p), is defined as:

A (5,p) & VN € g1(N), Yp(N).

6 Model-driven Trace Checking of
TemPsy properties

The idea at the basis of our model-driven trace checking
approach is to reduce the problem of checking a TemPsy
property p over a trace A, to the problem of evaluating
an OCL constraint (semantically equivalent to p) on an

Trace

properties : EList<TemPsyExpression>

applyScopeGlobally(Scope) :Elist<EList<TraceElement>>
applyScopeBefore(Scope) :Elist<EList<TraceElement>>
applyScopeAfter(Scope) :Elist<EList<TraceElement>>
applyScopeBetweenAnd(Scope) :Elist<EList<TraceElement>>
applyScopeAfterUntil(Scope) :Elist<EList<TraceElement>>
checkPatternUniversality(EList<TraceElement>, Pattern):Boolean
checkPatternExistence(EList<TraceElement>, Pattern):Boolean
checkPatternAbsence(EList<TraceElement>, Pattern):Boolean
checkPatternPrecedence(EList<TraceElement>, Pattern):Boolean
checkPatternResponse (EList<TraceElement>, Pattern):Boolean

*TtraceElements

TraceElement

event : EString
timestamp : EInt

Fig. 10: Conceptual model for execution traces

instance of a conceptual model for execution traces (equiv-
alent to A).

This reduction allows us to rely on standard and stable
MDE technology to perform offline trace checking. Indeed,
standard OCL checkers, such as Eclipse OCL [28], can be
used to evaluate OCL constraints on model instances. The
use of a model-driven approach and of standard technolo-
gies fulfills requirement R2 stated in section 1, and enables
us to provide a practical and scalable solution for trace
checking of temporal properties, which is also viable in the
long term.

In the rest of this section, we first introduce the concep-
tual model we have defined to represent execution traces;
afterwards, we provide an overview of our approach and
show how TemPsy properties (decomposed in scopes and
patterns) can be expressed as OCL constraints on the con-
ceptual model. We conclude the section with an example
of the application of the trace checking procedure and with
some notes about the implementation of the approach in
our TEMPSY-CHECK tool.

6.1 Conceptual model for execution traces

The definition of a conceptual model for execution traces
is a key element of our approach, since the transformation
of TemPsy properties into efficiently checkable OCL con-
straints defined on such model is a key strategy for us to
achieve scalability.

We propose a simple and yet generic model of system ex-
ecution traces; it can be extended (by enriching the type of
event) depending on the actual type of system (e.g., busi-
ness process, access control framework) and the type of
properties to check. The model, depicted in Fig. 10 with a
UML class diagram, contains a Trace, which is composed
of a sequence of TraceElements, accessed through the as-
sociation traceElements. Each TraceElement contains an
attribute event of type string, which represents the actual
event recorded in the trace, and an attribute timestamp of
type integer, which indicates the time at which the event
occurred. Class Trace contains also an attribute proper-
ties, which is a collection of TemPsyExpressions’,
senting the properties to be checked on the trace.

We have defined some side-effect-free operations in OCL

repre-

7Class TemPsyExpression belongs to the meta-model of the language
(not shown here for space reasons) and represents objects correspond-
ing to the non-terminal (TemPsyExpression) of the grammar shown
in Fig. 2.

13

Log i Te emPs.y /
properties
\4 \4
Parse
Read Trace

properties o)

Y Y
Instance of Instances of
class trace TemPsyExpresszon

Check OCL invariant

; ——> True/False
on trace instance @

Fig. 11: Overview of the approach

for the Trace class; these operations consist of two types of
functions. The first type, of the form applyScope*S*, are
named after the different types of scope (e.g., applyScope-
Before, applyScopeBetweenAnd) and return segment(s) of a
trace (i.e., sub-traces) as determined by the parameters of
the scope provided in input. The second type, of the form
checkPattern*P* are named after the different types of
pattern (e.g., checkPatternExistence, checkPatternPrece-
dence) and check whether the pattern provided in input as
the second parameter holds on the sub-trace(s) represented
by the first parameter.

6.2 Overview of the approach

Our approach for model-driven trace checking is sketched
in Fig. 11: parallelogram shapes correspond to input/out-
put artifacts, while rectangles correspond to steps in the
approach. The two inputs are represented by a log, cor-
responding to the trace one wants to check, and by a set
of TemPsy properties. The log file is read and converted
(step la) to an instance of the class trace in the model
shown in Fig. 10. The TemPsy properties are parsed and
converted (step 1b) to instances of class TemPsyExpression.

The key step (#2 in the figure) of our approach is to eval-
uate an OCL invariant on the trace instance. The check-
ing of this invariant, which can be done using standard
OCL checking tools, is semantically equivalent to perform-
ing trace checking of the TemPsy properties provided in
input.

We have defined this invariant on the Trace class, as
shown in Fig. 12. For every TemPsy property provided in
input (and referenced in the instance of the trace through
the attribute self.properties, line 2), the invariant evalu-
ates a boolean function, which conceptually corresponds to
applying the semantics of the pattern used in the property
(accessed through the expression property.pattern) on a
set of sub-traces, as defined by the scope used in the prop-
erty (accessed through the expression property.scope).

More specifically, the body of the invariant expression is
a multi-way branch (defined through a sequence of if state-
ments), which selects a certain branch based on the specific
scope type used within the property. Within the body of a
branch, first a function of the form applyScope*S* is called.

1 context Trace

2 inv: self.properties->forAll(property:TemPsy::TemPsyExpression |

3 let scope:TemPsy: :Scope =

property.scope, pattern:TemPsy::Pattern =

property.pattern in

4 if scope.type = TemPsy::ScopeType: :GLOBALLY then

5 let subtraces:Sequence(OrderedSet(TraceElement)) = applyScopeGlobally(scope) in
6 if pattern.type = TemPsy::PatternType::UNIVERSALITY then

7 subtraces->forAll(subtrace | checkPatternUniversality(subtrace, pattern))
8 else if pattern.type = TemPsy::PatternType: :EXISTENCE then

9 subtraces->forAll(subtrace | checkPatternExistence(subtrace, pattern))
10 else if pattern.type = TemPsy::PatternType: :ABSENCE then

11 subtraces->forAll(subtrace | checkPatternAbsence(subtrace, pattern))

12 else if pattern.type = TemPsy::PatternType::PRECEDENCE then

13 subtraces->forAll(subtrace | checkPatternPrecedence(subtrace, pattern))
14 else if pattern.type = TemPsy::PatternType: :RESPONSE then

15 subtraces->forAll(subtrace | checkPatternResponse(subtrace, pattern))
16 endif endif endif endif endif

17 else if scope.type = TemPsy::ScopeType: :BEFORE then

18 L

19 else if scope.type = TemPsy::ScopeType: :AFTER then

20 L.

21 else if scope.type = TemPsy::ScopeType: :BETWEENAND then

22

23 else if scope.type = TemPsy:ScopeType: :AFTERUNTIL then

24

25 endif endif endif endif endif)

Fig. 12: OCL invariant for checking TemPsy properties on a trace

This function takes the scope used in the property as in-
put and returns a collection of sub-traces, as defined by the
scope semantics. Afterwards, the invariant invokes a func-
tion of the form checkPattern*P*, which checks whether
the pattern used in the property holds on each sub-trace.

For instance, let us assume that the type of the scope
of the TemPsy property provided in input is globally and
that the type of the pattern used in the property is re-
sponse. As shown in line 5, the function applyScopeGlob-
ally is invoked to compute the sub-trace(s) defined by the
scope parameter; the return value of this function is as-
signed to variable subtraces. The branch indicated on
line 15 is then taken, which results in the evaluation of
the boolean function checkPatternResponse on all the ele-
ments® of subtraces, to check whether the input parameter
pattern holds on each sub-trace.

The complete OCL definition of the functions of the form
applyScope*S* and checkPattern*P* is available in the ap-
pendix A. We illustrate examples of the applyScope*S* and
checkPattern*P* operations in subsections 6.3 and 6.4, re-
spectively; to ease legibility and conciseness, all the code
snippets presented in these subsections are written using
pseudocode.

6.3 OCL functions for scopes

In this section we illustrate two examples of the OCL
functions that are used to apply a scope definition on a
trace. We show the pseudocode of functions applyScope-
Before and applyScopeBetweenAnd, corresponding to the be-
fore and the between-and scopes. These functions take as
input an object representing a scope in TemPsy and yield
one or more segments of the trace (i.e., sub-trace(s)), as
determined by the semantics of the scope.

8In the case of scope globally, only the variable subtraces will
contain, by definition, only one trace.

6.3.1 Before

The definition of the function applyScopeBefore is shown in
Algorithm 1. The input parameter scope is an instance of
the before scope, and the output is a list that contains the
trace segments as determined by the structure of scope. We
assume the parameter scope to have the form “before [m]
X [op n tul]” (see section 3.5), in which op stands for the
comparison operator (i.e., “at least”, “at most”, or “ex-
actly”) used in the constraint that defines the time dis-
tance from the scope boundary event X.

The function starts by reading the parameters X, m, op,
and n from the instance of the before scope (lines 1-4).
In addition, we define and initialize to an empty list both
variable result (to store the output value) and the aux-
iliary variable segment (for collecting intermediate trace
elements). If the parameter m is omitted in the scope def-
inition, variable m is replaced with the value 1 (line 6),
according to the default semantics of the before scope. We
then assign to variable ¢ the timestamp of the m-th oc-
currence of event X in the trace (line 7). If ¢ is defined,
it means that the m-th occurrence of the event has been
found in the trace. Lines 9-22 select a segment from the
trace, based on the value of op. For example, when op is
“at least”, line 11 selects all the trace elements that occur
at least n time unit(s) before the m-th occurrence of event
X. If no time distance constraint is specified in the scope
(line 20), the function selects the trace segment starting at
the beginning of the trace and ending at the m-th occur-
rence of event X. The function ends by adding the segment
selected from the trace to the output variable result.

6.3.2 Between-and

Algorithm 2 presents the definition of the function ap-
plyScopeBetweenAnd. This function takes as input an ob-
ject representing an instance of the between-and scope and

14

Algorithm 1: applyScopeBefore

Algorithm 2: applyScopeBetweenAnd

Input: scope : an instance of the before scope
structured as “before [m] X [op n tu]l”
Output: result : a list containing the trace segment
as determined by the parameters of scope
1 X «+ event name of the scope boundary
2 m < index of the specific occurrence of event X
op < comparison operator of the constraint on time
distance

w

4 n < time distance from the m-th occurrence of X
5 result < [|, segment < ||
6 if m =null then m « 1
7 t < timestamp of the m-th occurrence of event X
8 if ¢ # null then
9 switch op do
10 case “at least” do
11 segment < trace elements with timestamp
t' satisfying t’ <t—n
12 end
13 case “at most” do
14 segment < trace elements with timestamp
t' satisfying t —n <t' <t
15 end
16 case “exactly” do
17 segment < trace elements with timestamp
equal tot —n
18 end
19 otherwise do
20 segment < trace elements with timestamp
t’ satisfying t' < ¢
21 end
22 end
23 end
24 result.append(segment)

25 return result

returns a lists of trace segments. We assume the parameter
scope to have the form “between [ml] X [at least nl tul
and [m2] Y [at least n2 tu]”

The function applyBetweenAnd starts by reading the
parameters from the instance of the between-and scope
(lines 1-6): variables X and Y correspond to the event
names of the left and right scope boundaries; mI and m2
represent the (optional) index of the specific occurrence of
event X and event Y referred to in the scope definition;
nl and n2 are the (optional) lower bounds on the time
distances from the two scope boundaries. Optional param-
eters are initialized to null if they are not defined. The
output variable result is initialized to an empty list.

If both m1 and m2 are not defined, we compute the re-
turn value by calling the auxiliary function applyOriginal-
BetweenAnd (line 9), which retrieves all the trace segments
delimited by the two boundary events (taking into account
the distances from the boundaries, if defined). Otherwise,
if either mI1 or m2 is undefined, we compute the return
value by calling the auxiliary function applySpecialBe-
tweenAnd (line 14), which retrieves only one trace segment,
as determined by the specific occurrences of the boundary
events and by the time distance from the scope boundaries
(if defined). Notice that in the latter case we consider as
boundary the first occurrence of event X or Y (see assign-

Input: scope : an instance of the between-and scope
structured as “between [ml1] X [at least
nl tu] and [m2] Y [at least n2 tu]”

Output: result : a list of trace segments, as

determined by the parameters of scope

X <+ event name of the left boundary

Y + event name of the right boundary

ml < index of the specific occurrence of event X

m2 < index of the specific occurrence of event Y

nl < lower bound of the time distance from the

ml-th occurrence of event X
6 n2 < lower bound of the time distance from the
m2-th occurrence of event Y
7 result <+ ||
8 if m1 = null && m2 = null then
‘ result < applyOriginalBetweenAnd(X, nl, Y, n2)

[S B VN

10 end

11 else

12 if m1l = null then ml «+ 1

13 if m2 = null then m2 < 1

14 result.append (applySpecialBetweenAnd(ml, X, nl,
m2,Y, n2))

15 end

ments at lines 12-13).

Function applyOriginalBetweenAnd is shown in Algo-
rithm 3. It takes in input the parameters X, Y, nl, n2
of a between-end scope of the form “between X [at least
nl tu] and Y [at least n2 tul” and returns a list of the
trace segments determined by the scope semantics. The
function goes through all the elements of the list and iden-
tifies all the segments delimited by the events X and Y,
taking into account the parameters for the time distance
from the scope boundaries.

Besides the output variable result, we define an integer
tuple (i1,t1) to keep track of the starting point of a trace
segment. More precisely, element i; refers to the index
of the trace element that comes after the left bound of the
segment (characterized by an occurrence of event X), while
element ¢; points to the instant that is n/ time units after
the occurrence of the left bound of the segment. The tuple
(i2,t2) is defined in a similar way, to keep track of the end
point of a trace segment (characterized by an occurrence
of event Y).

At each iteration of the loop (lines 5-24), for each ele-
ment of the trace, the function first increments the variable
index and assigns the event of the trace element to variable
e as well as its timestamp to variable ¢ (lines 6-8). Within
the loop, a value of i1 equal to 0 means that the left bound
of the segment has not been found yet. When the current
event matches X (line 10), ¢, is assigned the next index of
the current event; t; is assigned the value of the timestamp
of the current event incremented by n time units (line 11).
When variable i; is different than 0, it means that the left
boundary has been found while the right boundary has not
been found yet. In this case, the function keeps scanning
the remaining trace elements until it finds an occurrence of
event Y. If the current event matches Y and if the current
index is more than 4, (line 14), iy is assigned the previous
index of the current event; ¢, is assigned the value of the
timestamp of the current event decremented by n2 time

15

Algorithm 3: applyOriginalBetweenAnd

Algorithm 4: checkPatternExistence

Input: strings X,Y and integers nl,n2 (nl =0,
n2 = 0 by default), i.e., the parameters of a
between-and scope structured as “between X
[at least nl tu] and Y [at least n2 tu]”
Output: result : a list of trace segments, as
determined by the parameters of the scope

1 result « []

2 index < 0

3 (i7,t7) «+ (0,0)

4 (ig, tg) — (0,0)

5 for elem € self.traceElements do

6 index < index + 1

7 e < elem.event

8 t < elem.timestamp

9 if i; =0 then
10 if e = X then
11 | (ir,t1) « (index + 1,1+ nl)
12 end
13 end

14 else if ¢ =Y && index > i; then

15 (ig, t2) « (index — 1,t — n2)

16 segment < self .traceElementsiy ..]
17 if n1#0 | n2#0 then

18 segment < trace elements in segment with

timestamps t’ satisfying ¢; < t' < t,

19 end
20 result.append (segment)
21 (Zj,t1) — (0,0)
22 (ig, tg) — (0, O)
23 end
24 end
25 return result

units (line 15). At this point, the function extracts a trace
segment comprised between indexes i; and iy (line 16),
whose trace elements have a timestamp comprised between
t; and t2 (line 18). This segment is added to the output
variable result and then the tuples (i1,t1) and (io,to) are
reset (for the next loop iteration).

Function applySpecialBetweenAnd (not shown here) is
defined similarly to function applyOriginalBetweenAnd, but
is extended with two additional parameters m1 and m2, re-
ferring to the specific index of the occurrence of each of the
two boundary events. This function identifies a single seg-
ment of the trace between the m1-th occurrence of event X
and the m2-th occurrence of event Y, taking into account
the constraints on the time distances from the two scope
boundaries. The function body is similar to that in Algo-
rithm 3 and is extended with a counter that keeps track
of the number of occurrences of a boundary event found
while traversing the trace elements. Since only one seg-
ment has to be identified with this function, the main loop
is interrupted as soon as such a segment is found.

6.4 OCL functions for patterns

In this section we present two examples of OCL functions
that are used to check if a pattern holds on a sub-trace.
We show the pseudocode of functions checkPatternExis-
tence and checkPatternPrecedence. These functions take
as input a sub-trace and an object representing a pattern

16

Input: a trace segment subtrace and an instance of
the existence pattern pattern, in the form
“eventually [op n] E”

Output: true if pattern holds on subtrace; false

otherwise

FE < event name in pattern

op < comparison operator of the bound on the

number of occurrences of event F

3 n < threshold of the occurrence number of event F

4 count < the number of occurrences of event F in

subtrace

return compare(count, op, n)

N

in TemPsy, and return whether the pattern holds on the
input sub-trace.

6.4.1 Existence

Function checkPatternExistence (see Algorithm 4) takes
in input a trace segment (denoted by the variable sub-
trace) and an instance of the erxistence pattern (denoted
by the variable pattern). First, the function retrieves some
parameters from variable pattern: the event name E, the
comparison operator op, and the threshold on the number
of event occurrences n (lines 1-3). Then, variable count is
set to the number of occurrences of event E in the input
subtrace (line 4). The function returns the result of the in-
vocation of the auxiliary function compare, which compares
the value of count against the value of parameter n using
the comparison operation defined by op (which can be “at
least”, “at most”, or “exactly”). The auxiliary function
compare, not shown here for space reasons, takes into ac-
count also the case in which op is null, meaning that the
function returns true if the value of count is greater than
0.

6.4.2 Precedence

The definition of function checkPatternPrecedence comes
in four variants, to consider the case whether no time dis-
tance is specified between the two blocks of the patterns,
and the three cases with the different comparison operators
(i.e., “at least”, “at most”, and “exactly”). In the rest of
this section we describe the function checkPatternPrece-
denceAtLeast, shown in Algorithm 5; the functions for the
other cases are similar and omitted for space reasons.

The function checkPatternPrecedenceAtLeast takes in
input a trace segment and the parameters of an instance of
a precedence pattern: blockq, blocks, and the optional time
distance n between them. Notice that block; and blocks
can be either an atomic event or a chain of events with
optional constraints on the time distances in between.

The semantics of the pattern prescribes that each occur-
rence of blocky is preceded, possibly with a certain time
distance, by an occurrence of block;. In practice, we need
to check whether there is an occurrence of block; before the
first occurrence of blocks (and at a certain time distance,
if required), since this implies that any other occurrence of
blocks occurring after the first one is preceded by an occur-
rence of block,;. We report a violation if we cannot find an
occurrence of blockq before the first occurrence of blocks or
if the distance between the two blocks is less than n.

Algorithm 5: checkPatternPrecedenceAtLeast
Input: a trace segment subtrace and the parameters
of an instance of precedence pattern of the
form “block; preceding [at least n tu]
blocks”: two events (chains) block; and blocks,
and a threshold n (n=1 by default) of the
time distance between block, and blocks
Output: true if pattern holds on subtrace; false
otherwise
1 sizey, sizeg < the sizes of block, and blocks
2 firstOfBlockl < blocky.first().event
3 firstOfBlock2 < blocksy.first().event
4 flag; < true

5 (i],ptj) — (1,0)

6 (ig,ptz) < (1,0)

7 for elem € subtrace do

8 e < elem.event

9 t < elem.timestamp

10 if flag; then

11 op < block1[is].timeDistance.op

12 t' < pt; + blocky[is].timeDistance.value

13 if e = firstOfBlock1 then (i, pt;) < (2,1)

14 else if e = blocky[i;].event && compare(t, op,
t') then

15 (i1, pt1) (ig +1,1)

16 if i; = size; + 1 then flag; < false

17 end

18 else (iz, pt;) < (1,0)

19 end

20 op < blocks[iz].timeDistance.op

21 t' < ptg + blocksig].timeDistance.value

22 if e = firstOfBlock2 then

23 if flag; || t < pt; +n then

24 if sizes = 1 then return false

25 else (ig, pte) < (2,1)

26 end

27 else return true

28 end

29 else if e = blocks[ig].event && compare(t, op, t')

then

30 if iy = sizes then return false

31 else (ig, pt2) « (iz + 1, 1)

32 end

33 else (ig, pt2) « (1,0)

34 end

35 return true

The algorithm uses some auxiliary variables: size; and
sizeo keep track of the number of events to match in each
block; firstOfBlockl and firstOfBlock2 contain the event
of each block’s first element; flag, is a boolean that be-
comes false when the first occurrence of block; has been
fully matched, i.e., all its individual events have been
matched. Moreover, the integer tuple (i1, pt;) (respectively
(i2, pty)) is used to determine whether the trace element
being checked is a match of the next event in block, (respec-
tively, blocks). More specifically, element i1 (respectively,
i9) stores the position within block; (respectively, blocks)
of the next event to be matched; element pt; (respectively,
pty) stores the timestamp of the previous trace element
matched at blocki[i; — 1] (respectively, blockslia — 1]).

The function contains a loop that iterates through all
the elements of the input subtrace, trying to match each
element with blockq[i1] (lines 10-19) and with blocks]iz]
(lines 20-33). As for matching blocky, until flag, is true,
the algorithm checks whether the current element is part
of an occurrence of block;. If it matches the first event of
block; (line 13), the variable iy is set to 2 and pt, is updated
with the current timestamp. Otherwise, if the current trace
element is an occurrence of the event defined at blockq[i1]
(with i1 being greater than 1)) and the constraint on the
distance (if defined?) from the previous event at block [i; —
1] holds (line 14), index iy is incremented and variable pt,
is updated with the timestamp of the current trace element
(line 15). Moreover, if the matched event is the last event
of block,, variable flag, is set to false (line 16). Otherwise,
the tuple (i1, pt;) is reset on line 18.

Within each single iteration of the loop, the algorithm
also checks whether the current trace element is part of an
occurrence of blocky. If the occurrence of the first event
of blocks is detected (line 22), there are two cases that
may lead to a violation. Either block; has not been fully
matched yet (i.e., variable flag, is true) or it has been fully
matched but the timestamp of the current trace element
(that matches the first element of blocks) violates the con-
straint on the distance between block; and blocks. If one of
these two conditions holds (line 23), if blocks is composed
of only one event, a violation is reported (line 24), other-
wise (line 25) the algorithm goes on to match!® the rest of
blocks (lines 29-32), since the current element might actu-
ally not be part of an instance of blocks. If both of these
conditions are not satisfied (line 27), it means that there is
no violation, i.e., the first block has been fully matched and
the distance constraint between the two blocks is satisfied;
hence, there is no need to match!! the remainder of blocks
and the algorithm returns true. If the occurrence of the
first event of blocks is not detected (line 29), if the current
trace element is a match for the event at blocka[is] (with
ig being greater than 1) and the constraint on the distance
(if defined) from the previous event at blocks[ia — 1] holds,
the algorithm either reports a violation when block, is fully
matched (line 30) or moves the match one step further: the
index 79 is incremented by 1 and pt, is updated with the
timestamp of the current trace element (line 31). If the
current element is not part of an occurrence of blocks, the
tuple (i2, pty) is reset (line 33).

The algorithm returns true (line 35) when there is no
violation reported in the loop.

6.5 The approach at work: an example

We now show how the approach works on a simple exam-
ple. Consider the trace shown in Fig. 3 and the property
“Event X shall happen at least twice before the third oc-
currence of event Y, which can be expressed in TemPsy
as “before 3 Y eventually at least 2 X7, using a before
scope combined with an existence pattern.

9The pseudocode for dealing with the case when the distance be-
tween block elements is not defined has been omitted for simplicity.

10Notice that in this case a violation is reported only if blocks is
fully matched (line 30).

' This is derived from the formal semantics of the preceding opera-
tor, in which the match of the first block, at the proper time distance,
is defined as the consequent of the logical implication that formalizes
the semantics of the operator.

17

Checking this property on the trace using our model-
driven approach is reduced to the evaluation of the OCL
invariant shown in Fig. 12; this evaluation goes as follows.

After extracting the scope and pattern from the property
and assigning them to variables scope and pattern (line 3
in Fig. 12), function applyScopeBefore (detailed in Algo-
rithm 1) is invoked to select the sub-traces determined by
the parameters of scope. In this example, parameter m is
3, the event name X is “Y”, and parameters op and n are
undefined because the scope has no constraint on the time
distance from the scope boundary.

The statement at line 7 of Algorithm 1 will determine
the timestamp of the third occurrence of event Y (38 in this
case) and assign it to variable ¢. Since the parameter op is
undefined, the case statement at line 20 of the algorithm
will be executed, selecting the sub-trace containing events
with a timestamp less than or equal to 38, i.e., the sub-
trace having the event X at timestamp 2 as first event
and the event Y at timestamp 38 as last event. This sub-
trace is the only element contained in the list returned by
Algorithm 1.

The evaluation of the OCL invariant shown in
Fig. 12 continues with the evaluation of the expres-
sion subtraces->forAll(subtrace | checkPatternPrece-
dence(subtrace, pattern));in this case, variable subtraces
contains the list returned by function applyScopeBefore, as
discussed above. Function checkPatternExistence will be
invoked once (because list subtraces contains only one ele-
ment), taking in input the sub-trace and variable pattern,
to check the pattern over the sub-trace. In this example,
for Algorithm 4, the parameter corresponding to the event
name F is “X”, the comparison operator op is “at least”,
and the parameter n is 2. The execution of the statement
at line 4 in Algorithm 4 will yield 3 in the variable count,
since there are three occurrences of event X in the input
sub-trace. Afterwards, the value of count is compared to
the parameter n using the comparison operator op; in this
case, the algorithm will return true (since 3 > 2), indicating
that the property is satisfied on this sub-trace.

Since there are no more sub-traces on which to apply
function checkPatternExistence, the evaluation of the in-
variant will return true, indicating that the input property
is not violated by the trace.

6.6 Tool Implementation

We have implemented our model-driven approach for trace
checking of TemPsy properties in a tool named TEMPSY-
CHECK. The tool is based on Xtext [29] and Eclipse
OCL; it is publicly available at http://weidou.github.io/
TemPsy- Check.

TEMPsY-CHECK takes in input a log file in CSV format
and converts it to an intermediary representation (called
“trace description”), defined as a domain-specific language
using the Xtext framework. We have introduced this inter-
mediate representations for traces to support, in the future,
multiple input raw formats for trace logs. The trace de-
scription is then used to generate an XMI file corresponding
to an instance of the trace model. The tool also takes in
input a list of TemPsy properties (defined using the tex-
tual notation shown in Fig. 2) and converts them into an
XMI-based format. The evaluation of the OCL constraints
corresponding (as described in the previous subsections) to

18

the properties to check on the trace is done using the OCL
checker included in Eclipse OCL [28].

7 Evaluation

In this section we report on the evaluation of TEMPSY-
CHECK. The evaluation focuses on the scalability of the
tool, to assess the relationship between the time taken to
check a property on a trace and the structural properties of
the trace (e.g., length, distribution of events) and the type
of property to check. We also compare the performance of
TEMPsY-CHECK with a state-of-the-art alternative tech-
nology.

We have conducted our evaluation using a benchmark
consisting of a subset of the properties extracted from the
requirements specification documents of the eGovernment
application developed by our public service partner, de-
scribed in section 4. Out of the 47 properties documented
in the case study, we left out of the benchmark the nine
properties using the after-until pattern. Properties of this
type can be rewritten using the between-and scope, pos-
sibly in conjunction with an after scope: for this reason,
they would not have provided additional insights to our
scalability analysis. The 38 properties used for the evalu-
ation are listed in a sanitized form in Table 2. The actual
textual description of each property has been omitted for
confidentiality reasons; for each property we only detail its
structure in terms of scope + pattern. The events involved
in the property (e.g., “a citizen requests a certificate”) are
denoted using uppercase letters.

These properties have been checked on synthesized
traces. We use synthesized traces instead of real ones be-
cause: 1) based on our experience, real traces are often
inadequate to cover a large range of trace lengths and a
variety of properties; 2) we wanted to have great diver-
sity in terms of occurrences of patterns in the traces, while
being able to control this diversity; 3) real traces are valu-
able to assess fault detection capabilities, while in our case
we focus on the scalability of the approach; 4) if we had
used real traces, they could not be shared for forming a
public benchmark, even when sanitized. By using synthe-
sized traces we are able to control in a systematic way the
factors (such as trace length, sub-trace(s) length and posi-
tion, frequency and distance of events) that could impact
the execution time for a specific type of property. At the
same time, we are also able to randomly set other factors,
to avoid any bias.

To synthesize these traces we implemented a trace gener-
ator program. This program allows for generating diverse
(in terms of size, patterns, scopes, event positions and fre-
quency) and realistic traces, without introducing bias. The
generator takes in input a property, the desired length of
the trace to generate and additional parameters depend-
ing on the type of property given in input and the factors
one wants to control. To determine the position in the
trace of the events occurring in the input property, the
generator takes into account the temporal and timing con-
straints prescribed by the semantics of the scope and the
pattern used in the property. Positions in the trace that
are deemed not relevant for the evaluation of the property
are filled with a dummy event. The details of the trace
generation strategy depend on the scope and pattern used
in the properties and are discussed in the next subsections.

As an additional contribution of the paper, we also make
available in the TEMPSY-CHECK GitHub repository the ar-
tifacts used in the evaluation, to contribute to the building
of a public repository of case studies for evaluating trace
checking /run-time verification procedures.

Table 2: TemPsy properties used for the evaluation

metric first-order temporal logic) that is conceptually close
to TemPsy. On the other hand, QEA does not support any
input language and uses an automata-based formalism: the
user has to write a Java program that builds the automa-
ton corresponding to the property to check. To perform
the comparison with MONPOLY, we manually translated
the properties into MFOTL formulae; these formulae are

P1: globally always A

P2: globally never B

P3: globally eventually at least 2 A

P4: globally eventually at most 3 A

P5: globally A responding at most 1000 tu B

P6: globally A responding exactly 1000 tu B

P7: globally A preceding at most 6000 tu B

P8: globally A preceding at least 100 tu B

P9: globally A preceding exactly 100 tu B

: globally A, B preceding at least 1000 tu C, D

: globally A responding at least 1000 tu B, C

: globally A responding B

: before A eventually B

: before 3 A eventually at least 2 B

: before 2 A never B

: before A B responding at most 3000 tu C

: before A at least 1000 tu B responding at least 1000 tu C'
: before A B, # at most 6000 tu C preceding D

: before 3 A B, # at least 1000 tu C preceding D

: before A B preceding C

: after A at most 5000 tu eventually B

: after A always B

: after 2 A exactly 5000 tu eventually B

: after A B responding at least 1000 tu C

: after A B preceding at most 3000 tu C, D

: after 2 A at most 3000 tu B preceding C, D

: after 2 A never B

. after A at most 1000 tu B responding at most 10 tu C
: after A B preceding at least 2000 tu C

. after A eventually at most 6 B

. after 2 A at least 5000 tu eventually B

: between A and B always C

3: between A at least 1000 tu and B at least 500 tu never C'
: between A and B C responding at least 1000 tu D
: between A and B never exactly 2 C

: between 3 A and B always C

: between 2 A and 2 B eventually at most 10 C

also available in the TEMPSY-CHECK GitHub repository.
We remark that our goal, in this comparison, is not to
fare better than existing technology, but to verify that an
MDE approach to offline trace checking is viable from a
scalability standpoint.

The results reported in this section have been mea-
sured on a desktop computer with a 3 GHz Intel Dual-
Core i7 CPU and 16GB of memory, running Eclipse DSL
Tools v. 4.6.0M3 (Neon Milestone 3), JavaSE-1.7 (Java SE
v. 1.8.0_25-b17, Java HotSpot (TM) 64-Bit Server VM
v. 25.25-b02, mixed mode), Eclipse OCL v. 6.0.1, and
MoNPoOLY v. 1.1.6. All measurements reported correspond
to the average value over 100 runs of the check procedure
(on the same trace, for the same property).

7.1 Properties using the Globally scope

Properties defined with the globally scope are the most
important for assessing the scalability of our approach
with respect to the trace length. Indeed, the semantics of
this scope requires the tool to check the property pattern
through the entire trace, while in the case of the other
scopes, property patterns are checked only on some seg-
ments of the input trace (i.e., on sub-traces). In our col-
lection of properties there are 12 using the scope globally,

: between A at least 1000 tu and 2 B C preceding at least 1000 tu D in combination with various patterns; they Correspond to

The next three subsections report on the checking of
properties using, respectively, the globally, before/after,
and between-and scopes. For each group of properties
we first describe the trace generation strategy and then
present and discuss the results. The section ends with a
discussion of the results and of the threats to validity. No-
tice that out of the three types of scope considered for the
evaluation, the properties using a globally scope represent
the most challenging in terms of scalability, since the se-
mantics of this scope guarantees that the pattern (used in
the property to check) will be evaluated through the entire
length of the trace.

Moreover, to assess scalability, we also need a baseline
of comparison. Such baseline should be the best available
tool that can be considered an alternative to TEMPSY-
CHECK. We identified such a tool among the partici-
pants to the “offline monitoring” track of the first interna-
tional Competition on Software for Runtime Verification (8]
(CSRV 2014), held in September 2014 as a satellite event
of the 14th International conference on Runtime Verifica-
tion (RV’14). Out of the four tools (RITHM2 [52], MON-
Pory [9], STEPR, QEA [7]) qualified for the final round of
the competition, RITHM2 and STEPR were not publicly
available!? at the time of writing. Between the remain-
ing two, we chose MONPOLY over QEA because only the
former supports a real specification language (MFOTL, a

12The first version of RITHM is available but it only supports
run-time verification of C programs. As for STEPR, no reference is
available in the competition report [8] or online.

19

properties P1-P12 listed in Table 2.

For this type of properties, given that they are the most
challenging in terms of scalability, we address the following
research questions:

RQ-G1) What is the relation between the execution time
of the trace checking procedure and the length of
a trace?

RQ-G2) What are the types of pattern most taxing on the
execution time?

RQ-G3) How does TEMPSY-CHECK compare with MON-
PoLy in terms of execution time?

7.1.1 Trace Generation Strategy

In the case of the globally scope the generation of the trace
is determined only by the semantics of the pattern used in
the property.

For the universality pattern, we repeat the event occur-
ring in it through the entire trace.

For the existence pattern, we first determine the number
n of occurrences to generate, based on the bound indicated
in the property. If the bound is expressed as “at least m”
or “at most m” we randomly generate n with a uniform dis-
tribution on the range [m, trace length], respectively [0, m];
if the bound is expressed as “exactly m’, n is set to m.
Afterwards, we randomly generate (with a uniform distri-
bution on the range [1,trace length]) n positions in the
trace where to put the occurrences of the event specified
in the property.

1,500 | 00| _ 1s00¢ 0O
z 094 * g 0©
E 1,000 | o % E 1,000 | 00 L
9} O** o o *

E 09 x E 0Q, x*

i | * £ |

g 500 o £ 5001 0

* *

O *\ L L L L L L — 0 *\ L L L L L L —
[elelolololoNoloNo)o) SO0 O0O0O0OOO
[ololoolololoNolelo) [cloololololololalel
AN IO OO —S AN <O O~ 00 OO

|—T H.‘
Trace length (-10%) Trace length (-10%)
(a) P1 (b) P2
0 o
2,000 |-

—~ 2,000 |- 6 ° ~ o©°

& 1500 0° £ 0°

) (©] 19 o %

£ 1000 O Lr | §L000E 0

— * - *

B 500f0Q, wx* & 09 x*
**\\\\\\\\ 0 *f\ L L L L L —
[ololololololololole) OO0 O0O0O0O OO
OO0 O0OO0O0OO0 OO0 OO
— AN IO O~ 0O AN F O O~00DDO

|—: HF
Trace length (-10%) Trace length (-10%)
(e) P5 (f) P6
2,000 [o 3,000 ["

7 0° 7 «*

g 1500¢ o© E 2,000 | *

9 1,000 | o * © *

) 1) * g *

£ 00 L x*¥ £ 1000 _* 5000

= 500 « * & @OOOO

0 *T\\\\\\\\ O Q\ L L L L L L —
[eNelolololoNolo o)) [N eNoloNoNoloNoNolo)
COO0OO0O0O0OO0OOQ [clolololololololalel

— —

Trace length (-10%)

(i) P9

Trace length (-10%)

(j) P10

8,000 F
* **

- 3,000 | * 2 6,000 |- *

£ * £ L

o 2,000 | X o 4,000 | *

E 1000 - 000°| £ 2,000 x

s r * (@]) =

= 65OOO = * OOoOOO

0 $\ L L L L L L — 0 éQQQ\ L L L —
OO0 OO0O [eleololelololoRolo]
OO0 OO0 [clslololololololale]
A<D O~ 0 DO AN IO O~0DHO

"y =
Trace length (-10%) Trace length (-10%)
(c) P3 (d) P4
2,000 | o
— 0° —~ 1,000 | @QQ
£ 1500 | 0© g Ogg
O *
g 1,000 0 e g 500 Oog*
2 « = *
B 5009, % & ° X
** *

O S S I I S | O S S S N [|
COO0OCOO0O0OOO [ololololololololole]
COO0OQCO0O0OO0OO0 OO0 O0O0OO0OOQ0
— AN <D O~ 0 DD AN O~

v—f |—:\
Trace length (-10%) Trace length (-10%)
(g) P7 (h) P8
3,000
Q¥ 0
—_ —~ 1,500 |-
£ 2,000 | Q% g OO*
- ® =~ 1,000 | 0f x
[} (] [} ’ 1) *
E 1,000 | @ g o *
ol o £ 5000 «*
@ *

0 S S S S S | 0 *\\\\\\\\\
OO0 OO0O [ejelololelololoRolo]
OO0 O0OO0O OO [clclololololololaie]

i —

Trace length (-10%)

(k) P11

Trace length (-10%)

(1) P12

Fig. 13: Comparison between the execution time of TEMPsY-CHECK (0) and of MONPOLY (*) for properties with the

globally scope

For the absence pattern, if the property has the form
never A, the trace is generated without any occurrence of
the event A. If the property has the form never exactly
m A, we randomly generate n with a uniform distribution
on the range [0,...,m —1,m+1,... trace length].

In the case of a property containing a precedence or re-
sponse pattern, we generate a number of occurrences of
events (involved in the property) equal to 10% of the length
of the trace. This value has been selected based on the
frequency of events observed in the application whose re-
quirements are expressed through the properties shown in
Table 2. The simplest case is for a property like globally
B responding at most 10 tu A: assuming a trace length of
1M, we would generate 50K occurrences of the pattern (i.e.,
pairs of A and B), for a total of 100K occurrences of A and
B. More complex cases have to take into account the event
chains used in the property. For the distribution of the
occurrences of the pattern across the trace we have to con-
sider the distance between events. For example, for the
property aforementioned, each occurrence of the response
pattern would span over at most 10 time units; this is the
maximum distance between an occurrence of A and the
corresponding occurrence of B. The number of pattern oc-
currences to generate and the maximum time span of each
pattern occurrence are the parameters used to randomly
allot the pattern occurrences over the trace, according to
a uniform distribution.

20

7.1.2 Evaluation

We run the trace checking procedure for properties P1-
P12; each property was checked on ten different traces,
with length (i.e., number of events) varying from 100K to
1M. The twelve plots in Fig. 13 depict the execution time
of TEMPSY-CHECK (denoted by ©) and of MONPOLY (de-
noted by *) for each of the properties P1-P12, for different
trace lengths. The execution time for both tools has been
measured using the time Unix command.

We answer RQ-G1 by observing that the time taken by
TEMPSY-CHECK ranges from about one hundred millisec-
onds to a bit more than two seconds, and increases linearly
with the length of the trace, depending on the type of prop-
erty. To answer RQ-G2, the results show that the prop-
erties more taxing on the execution time are those with
a response or precedence pattern (e.g., P5, P6, P7, P9,
P11). Regarding RQ-G3, we observe that the time taken
by MONPoOLY ranges from about one hundred milliseconds
to a bit less than eight seconds, and is also linear with re-
spect to the length of the trace. MONPoOLY takes longer
for checking properties with a (bounded) existence pattern
(e.g., P3, P4) and with a precedence pattern that contains a
distance constraint of type “at least” (e.g., P10). We can
answer RQ-G3 stating that, except for the case of proper-
ties P3, P4, and P10, the two tools perform almost sim-
ilarly, with absolute differences between execution times
that are quite small (less than one second). In the case

600

500 |-

300 |-

200 |-

Trace loading time (ms)

100

| ol

T
(e}
(=}
=

500
600

T
[}
[=}
<

300

(e} o
o o
— N

800 |
900 |
1,000]

Trace length (-10%)

Fig. 14: Trace loading time of TEMPSY-CHECK for traces
with various lengths

of properties P3, P4, and P10, TEMPsy-CHECK performs
much better than MONPOLY. A possible explanation for
the slower time of MONPoOLY for these properties could
be the structure of the corresponding MFOTL formulae,
which contain several nested temporal operators to express
the “eventually at least/at most” pattern (P3, P4) and an
event chain (P10).

The execution times discussed above include not only
the time to perform the actual check, but also the time to
parse/load the trace to check!3. As shown in Fig. 14, the
average trace loading time for TEMPSY-CHECK, measured
through instrumentation, ranges from 55ms to 550 ms,
growing linearly for various trace lengths. Notice that
for checking a single property on a trace with TEMPSY-
CHECK, the trace loading time can take, for larger traces,
from one-fourth to one-third of the total execution time.
Although these values for the trace loading time can seem
high, we expect the loading time not to impact on the total
execution time in the case of batch property checking, i.e.,
checking multiple properties at the same time on a trace.
Checking in batch mode a set of properties, rather than in-
dividual ones, is common in enterprise scenarios in which,
for example, the set of properties to check is decided by
the entity that has invoked a business process [5].

To further investigate this aspect, we compared the exe-
cution time of TEMPsY-CHECK and MONPoOLY for batch
checking ten properties (P3-P12), over ten traces, with
length ranging from 1M to 10M. These traces have been
obtained by concatenating the traces used for the experi-
ment described above, and by renaming the events within
each trace being concatenated, to avoid name clashes. We
executed TEMPSY-CHECK by providing in input the list
of the ten properties to check. We executed MONPOLY
by providing in input one formula corresponding to the
conjunction of the ten formulae equivalent to properties
P3-P12. Figure 15 shows the result of the comparison:
the performance of the two tools are similar for traces of
length up to six millions; over this threshold, MoNPoLY
gets slower.

13The trace loading time is not available in the output of Mon-
Povry.

21

350

[0 TemPsv-CrEck i

I MonPory
250 M

300 |-

200 |-

150

Tl

1 2 3 4 5 6 7 8 9 10
Trace length (-10%)

Execution time (s)

Fig. 15: Comparison of the execution time for the batch
checking of ten properties with the globally scope

7.2 Properties using the
scopes

Before/After

Properties defined using the before/ after scopes, differently
from the ones using a globally scope, have to be checked
only on the portion of the trace delimited by the scope
boundary. Hence, their scalability does not relate in a di-
rect way with the length of the trace. Nevertheless, they
can help us assess whether and how the type of property
(e.g., the scope used within the property) impacts on the
total execution time. We have checked eight properties
with the before scope (properties P13-P20 in Table 2) and
eleven properties with the after scope (properties P21-P31
in Table 2).

For this type of properties, to assess how the type of
scope used in them impacts on the total execution time,
we address the following research questions:

RQ-BEAF1) What is the relation between the time to
compute the boundary of the scope and the
position of the boundary?

RQ-BEAF2) What are the types of scope most expensive
to compute?

Notice that we do not compare with MONPOLY since the
concept of “scope”’ is not a first-class object in MFOTL
formulae.

7.2.1 Trace Generation Strategy

As remarked above, for this type of properties the scala-
bility of the checking procedure does not relate in a direct
way with the length of the trace. Hence, for both types of
scopes, we fix the length of the generated trace to 100K.
To answer the research questions above, we vary the length
of the sub-trace as determined by the scope boundary, i.e.,
we vary the position of the boundary event in the trace.
In the case of properties with a before scope, the bound-
ary event is placed in positions from 10K to 100K, with a
10K step increment; similarly, for properties with an after
scope, the position of the boundary event varies from 10K
to 90K, with a 10K step increment.

For properties referring to a specific occurrence of
an event in their scope part, such as before 3 B...or
after 4 A..., we only control the position of the ac-
tual scope boundary (e.g., the third occurrence of B
or the fourth occurrence of A in the examples above).
The other previous occurrences of the boundary event

5 200) II 2 200 | II
g il £ gt
2 1000 @M : o] AR
* - |oadl o
0 0
OO0 OO OOO [ejojoelololaloNoNe)
Position of the bound (-10%) Position of the bound (-10%)
(a) P13 (b) P14
400
200 I.
= 300 - I 0
£ lllll £ 150 | e
g 2001 - 2 100 b o
E =12l E - F
0 0

SO0 OO0 OO0 OO
Hmmwmwbwmg

Position of the bound (-10%)

(e) P17

SO0 OO0OCOoOO OO
ﬂNO’JﬁLO@l‘OO@S

Position of the bound (-10%)

(f) P18

300 |-
—~ 200 | i I -
£ nh E 200 I
o) [] I o) I
£ 100F [E 100 i]
Sk i1l
SO0 O0OO0O0COoCOOO jojolololololololol=]
SANINOEDSOS SANINOEDSOS
Position of the bound (-10%) Position of the bound (-10%)
(c) P15 (d) P16
- 200 |-
_ 200 . M _ . [
£ 150 |-] £ 150 |- u
i a8 g "
¢ 100 = o 100 = [
E = E = [
£ 50 — £ 50 —
0 0

SO0 O0OO0O0COoO OO
ﬂNO’JﬂlO@[‘OO@S

Position of the bound (-10%)

jojolololololololol=]
HNO’JQ‘\Q@I\EX}@S

(g) P19 (h) P20

Fig. 16: Scope time E and pattern time O of TEMPSY-CHECK for checking properties with a before scope

are generated in random positions using a uniform
distribution ove the range [0, position of the boundary]
(for properties with a before scope), and over the
range [position of the boundary, trace length] (for proper-
ties with an after scope).

The generation of the patterns corresponding to the ac-
tual properties follows the steps described in section 7.1.1.

7.2.2 Evaluation

We instrumented TEMPSY-CHECK to report the time
taken to compute the boundary of a scope (i.e., to deter-
mine the sub-trace on which to check each property pat-
tern), hereafter referred to as scope time, as well as the
time to check the pattern on the sub-trace, hereafter re-
ferred to as pattern time. More specifically, scope time
corresponds to the time taken to evaluate expressions of
type applyScope*S* in Fig. 12, while pattern time corre-
sponds to the time taken to evaluate expressions of type
checkPattern*P* in Fig. 12.

Figures 16 and 17 show the scope time (denoted by E)
and the pattern time (denoted by B for checking, respec-
tively, properties P13-P20 (with a before scope) and prop-
erty P21-P31 (with an after scope), when varying the posi-
tion of the scope boundary. Notice that while in the case of
a before scope a higher position of the bound corresponds
to a longer length of the sub-trace, in the case of an af-
ter scope a lower position of the bounds corresponds to a
longer length.

To answer RQ-BEAF1, we observe from the plots that
both in the case of the before scope and in the case of
the after scope, the scope time grows linear with respect
to the position of the scope boundary. This is due to the
increase of the length of the sub-trace delimited by the
scope boundary.

We answer RQ-BEAF2 by looking at the scope time for
properties P17, P21, P23, P26, P28, P31. These properties
are the most taxing in terms of scope time because the
scope boundary is defined with a distance constraint. This
is particularly true for the cases in which the boundary is
defined using an “at most” constraint (see P21, P26, and

22

P28).

7.3 Properties Between-and

scope

using the

Properties with a between-and scope, similarly to the ones
with a before/after scope, are checked on a portion of trace
provided in input. Depending on the variant of this scope,
the portion of the trace on which properties are checked
might include one or more segments. The scopes used
in properties P32-P35 can potentially select multiple seg-
ments on a trace, while the scopes in properties P36-P38
select exactly one segment on a trace, as determined by
the specific event occurrence used in the scope boundaries
(e.g., as in the case of between 3 A and 2 B).

For this type of properties, given the two variants of
the between-and scope, we address the following research
questions:

RQ-BA1) For the scope variant that can select multiple
segments on the trace, given a fixed length for
the segments, what is the relation between the
number of segments and the time to compute
the scope?

RQ-BA2) For the scope variant that can select multiple

segments on the trace, given a fixed number

of segments, what is the relation between the
length of the segment and the time to compute
the scope?

RQ-BA3) For the scope variant that can select only a sin-

gle segment, given a fixed length for this seg-

ment, what is the relation between the position
of the segment and the time to compute the
scope?

RQ-BA4) For the scope variant that can select only a sin-

gle segment, given a fixed position of this seg-

ment, what is the relation between the length of
the segment and the time to compute the scope?

Position of the bound (-10%)

150 | = 150 | -
7 200 7 I|l' 7 200 7 II'I'
E/ é 100 + I I I é é 100 |-
£ 100 g £ 100 £
0 0 0 0
cooccooooo cooccooooo cooccooooo cooocooooo
S A®IFLOE DS SA®IFDOE DS SA®IFHOE DS SN®»IDBOE DS
Position of the bound (-10%) Position of the bound (-10%) Position of the bound (-10%) Position of the bound (-10%)
(a) P21 (b) P22 (c) P23 (d) P24
150 |
T 200 | T 200 | 7 2 200l
B E E 00| B
)) © v
£ 100 £ 100 | E ol E 100
& & & 3
0 0 0 0

OOOOOOOOO
— Q™M 0 O b~ 00O

OOOOOOOOO
— Q™M 10 © I~ 0O

Position of the bound (-10%)

Position of the bound (-10%)

OOOOOOOOO
— Q™ 10 O I~ 00>

OOOOOOOOO
— ™M 10 O I~ 0O

Position of the bound (-10%)

(e) P25 (f) P26 (g) P27 (h) P28
150 F = 150 - =l
— = —] —
» 0 n I » 200
\E/ 100 |- \E/ 100 - I I I I \E/
£ £ £ 100}
0 0 0
[N} O [R e R e o) [clololoNoloNoNoNe) o o O D [N eNoloNol
— ™M 0 © D~ 0w O — ANM 0 O~ 0D — A 0 © D~ 00 D
Position of the bound (-10%) Position of the bound (-10%) Position of the bound (-10%)
(i) P29 (j) P30 (k) P31
Fig. 17: Scope time & and pattern time 0 of TEMPsY-CHECK for checking properties with an after scope

Notice that also in this case we do not compare with MON-
PoLy because the concept of “scope” is not a first-class
object in MFOTL formulae.

7.3.1 Trace Generation Strategy

For both types of between-and scope variants, we fix the
length of the generated trace to 100K. To answer RQ-BA1
and RQ-BA2 we consider properties P32-P35. For these
properties, we control two parameters for the trace gener-
ation: the length L of each segment selected by the scope
and the number of segments N. By fixing L to 2000, we
can split the 100K trace into 50 segments. The generator
varies the number N of actual segments to generate from
5 to 50, with a 5-step increment. By fixing N to 20, and
assuming a minimum length of 2000 for a segment (given
the time constraints in P33), the generator produces traces
with segments of length varying from 2000 to 5000, with
1K-step increment.

To answer RQ-BA3 and RQ-BA4 we consider properties
P36-P38. For these properties we control two parameters:
the length L’ of the segment and the position P of one of
its bounds. By fixing L’ to 10K, we vary the position of the
right bound from position 10K to position 100K with 10K-
step increment, i.e., we vary the position of the segment in
the trace. By fixing the position P to 10001, we can vary
L’ from 10000 to 90000, with 10K-step increments.

7.3.2 Evaluation

As done above for the case of properties with a before /after
scope, we also distinguish between scope time and pattern
time for checking properties with a between-and scope.

To answer RQ-BA1 we observe the plot in Fig. 18. The
scope time for properties P32-P35 when varying the num-
ber of segments (as determined by the scope) on which
to check the property pattern, slightly increases with the
number of segments to consider; the higher scope time for
property P33 is due to the presence of a time distance con-
straint for the (left) scope boundary.

We answer RQ-BA2 by looking at the plot in Fig. 19.
In the case of checking properties P32-P35 when fixing
the number of segments to 20 and varying the segment
length from 2000 to 5000, the scope time is almost constant
(about 200ms) for all properties but P33, because of the
time distance constraint for the (left) scope boundary.

The answer to RQ-BA3 can be found by looking at the
plot in Fig. 20. In the case of checking properties P36—
P38 when varying the position of the segment on which the
property pattern is checked and keeping the segment length
constant, the scope time increases linearly with respect to
the position of the segment.

We answer RQ-BA4 by observing the plot in Fig. 21.
In the case of checking properties P36-P38 when varying
the length of the segment, the scope time increases linearly
with respect to the length of the segment.

7.4 Discussion

The results presented in the previous subsections have
shown the feasibility of applying our model-driven ap-
proach for offline trace checking in realistic settings.

Our TEMPsY-CHECK tool is a viable technology from a
performance standpoint point as it can analyze very large
traces (with one million events) in about two seconds. The

23

Position of the bound (-10%)

DO WOoWOoIW O D
= AN ™

0O OO OO
S HANMM S F o

300 F I 400 F —
2 e 2 300 | .ol
__..Ill é —

o 52007
g 10 £ 100
0 0
<t <0

Number of segments Number of segments

(a) P32 (b) P33

200 300
= lll o _..|I|||
£ __.|I|| £ 200 | mpm
g £
E | £ 100
£ 100 a =

0 0

OO WOoOIW OO OO oW OO

Number of segments Number of segments

(c) P34 (d) P35

Fig. 18: Scope time El and pattern time 8 of TEMPSY-CHECK for checking properties with a between-and scope (multiple

segments, fixed length)

400 |-

Time (ms)

Time (ms)

[}

200 LH] i 1l - 300 |
200 |
100 |- ,
100 |-
0
2 3 4 5

Segment length (-10%)

(]
L SOSSEEOSE0050
(S 0000000000000

2

w
=

Segment length (-10%)

(a) P32 (b) P33

300 I
2 om0 B | eo0f B H
g p
£ 100 | & 100
a &
0 0
2 3 4 5 2 3 4 5

Segment length (-10%) Segment length (-10%)

(c) P34 (d) P35

Fig. 19: Scope time E and pattern time B of TEMPsy-CHECK for checking properties with a between-and scope (fixed

number of segments, various lengths)

tool scales linearly with respect to the length of the input
trace to check. Notice that “the input trace to check” can
correspond also to a sub-trace of an actual, larger execution
trace. This can be the case for properties referring to events
occurring in time windows (see, for example, the service
provisioning patterns presented in [15]). In these cases,
one can first isolate from the original trace the window of
interest and then feed the latter to our tool.

We have also compared the performance of our imple-
mentation to MONPOLY, a comparable, state-of-art tool.
Despite the fact that MONPOLY is a tool that implements
a dedicated algorithm [11] for trace checking of temporal
logic properties, our TEMPSY-CHECK tool (which relies on
a generalist OCL checker) not only achieves similar results,
but in some cases it also performs better than MONPOLY.

We also remark that writing some of the properties in
MFOTL was challenging (despite previous knowledge of
MFOTL), much more than when using TemPsy. This chal-
lenge could be overcome by defining properties in TemPsy
and then providing an automatic translation to MFOTL
formulae or, dually, by building a system of property spec-
ification patterns on top of MFOTL. In both cases, one
would have satisfied one of our requirements (R1, see sec-
tion 1) and could have then relied on MoNPoLY for trace
checking. While this could be in principle a viable ap-
proach, it would not fulfill another requirement (R2, see
section 1), which entails to rely on standard and stable
MDE technology for checking temporal properties. We
remark that these requirements are not specific to this
project, but are more general because 1) analysts may not
be able to handle the mathematical background required
by temporal logic; and 2) there are many contexts where so-
lutions have to be engineered by using standardized MDE
technologies.

Overall, we can conclude that a model-driven approach
to offline trace checking of realistic temporal properties is

24

viable, even on very large traces, and compares favorably
with the state-of-the-art.

7.4.1 Threats to validity

The main threat to validity to the results presented above
is the intrinsic presence of errors in the toolchain we de-
veloped. We tried to compensate for this by thoroughly
testing the checker with traces and properties for which
the oracle was previously known. Another potential threat
is the fact that we have performed trace checking on syn-
thesized traces. Real execution traces might be different, in
terms of events occurrences and time distances. However,
this threat does not affect our research question on scala-
bility, as we want to analyze the execution time as a func-
tion of a number of parameters (e.g., trace length), while
varying randomly other aspects (e.g., position of certain
events). As explained at the beginning of this section, for
that purpose, synthesized traces are better than real ones
as they guarantee we have the data to perform our analysis
by controlling certain factors and varying others randomly.
Nevertheless, real traces (with faults in the system) could
be helpful to assess the cost-benefit of the proposed trace
checking procedure; this is out of the scope of this paper.
Finally, as for the comparison with MONPOLY, we remark
that its specification language (MFOTL) is more expressive
than TemPsy (see also section 3.6), hence the performance
of MONPoOLY could have been negatively affected by the
more complex implementation needed to support a richer
specification language. Moreover, the MFOTL properties
that we wrote to perform the comparison described in sub-
section 7.1 could be written in a different, but semantically-
equivalent form that could lead to different results. We
tried to mitigate this aspect by having the MFOTL for-
mulae written by a person with ten years of experience in
formal specification (and verification) with temporal logics.
Furthermore, we believe that in practice, it might be hard

Time (ms)

200

100

10 =T
20
30 pEinindl

90

|
I
|
|
|
100 [

40 s

50
60
70
80

Position of the right bound (-10%)

(a) P36

Time (ms)

200 |-

100

200 -

10

o
10_

PAIN 0000000 |
10 200000000 |

ZIJ§ 2000000000(

[=3
10

Position of the right bound (-10%)

o
(=2}

60 e
H0 [0 0000000000000 |
Time (ms)
[en} [e=]

70

80 P

OOOOOOOOOO
— AN F QJI\CXJ@

Position of the right bound (-10%)

(b) P37

(c) P38

Fig. 20: Scope time E and pattern time O of TEMPsy-CHECK for checking properties with a between-and scope (single

segment of fixed length, different positions)

300 |-

[eNeBoNoNoNoleoNoNel
— M F 0 O~ 0D

Segment length (- 103)

(a) P36

i 400 |-
2 nl 2
E 200 o £
g = 2 200
E 100|m 0 B
E E B

o Lid 0

[ecNeNolell=R=R=N=]
—S AN M 0 O~ 0O

Segment length (-10%)

(b) P37

Time (ms)

300 |-

200

10

o

(=)

[cNeloloNeNoloNo Rl
— AN T O~ 00D

Segment length (-10%)

(c) P38

Fig. 21: Scope time E and pattern time O of TEMPsy-CHECK for checking properties with a between-and scope (single
segment, various lengths)

anyway for practitioners (with limited background in tem-
poral logic) to find out what is the optimal way to express
a property in MFOTL.

8 Related Work

The work presented in this paper is related to MDE ap-
proaches for specifying temporal properties and to ap-
proaches for trace checking/run-time verification. We re-
view these areas in the next two subsections.

8.1 MDE approaches for specifying tem-
poral properties

There have been several proposals in the MDE community
to define high-level specification languages for expressing
temporal properties; all these proposals are realized as tem-
poral extensions of OCL. In the rest of this section we sum-
marize them and discuss their differences and limitations
with respect to TemPsy.

8.1.1 Pattern-based temporal extensions of OCL

The approaches that are most similar to TemPsy are those
that extend OCL with support for Dwyer et al.’s property
specification patterns.

Flake and Mueller [34] define a state-oriented OCL ex-
tension for expressing Dwyer et al.’s patterns over UML
Statecharts configurations. The extension is based on the
introduction of a special temporal operation, which can be
applied to objects that have an associated Statechart. The
evaluation of this operation at a certain time point yields
the set of state configuration sequences in the time interval
defined by the parameters of the operation. The extension,
in addition to allowing for expressing the original definition

Table 3: Comparison between pattern-based temporal
extensions of OCL and TemPsy

Language Features Tool
NOOP TDOP SOS TDS support
[34] - + - - -
[45] - - - * -
[57] + * - * n/a
[42] + * - * -+
TemPsy + + + + +

Legend. NOOP: Number of Occurrences in occurrence
Patterns; TDOP: Time Distance in order Patterns; SOS:
Specific Occurrence in Scopes; TDS: Time Distance in
Scopes; *: partial support; n/a: tool mentioned in the
paper but not available.

of patterns in [27], adds also the support for specifying time
distances in order patterns.

Kiister-Filipe and Anderson [45] propose a liveness tem-
plate for OCL to define future-oriented time-bounded con-
straints that are expressed with a time-bounded after scope
and an ezistence pattern. This template is defined in terms
of the real-time temporal logic of knowledge, interpreted
over timed automata, to allow for formal reasoning. The
expressiveness of this extension is very limited since it sup-
ports only one scope/pattern combination.

Robinson [57] presents a temporal extension of OCL
called OCLTyr, developed in the context of a framework for
monitoring of requirements expressed using a goal model.
OCL7y includes all the operators corresponding to stan-
dard LTL modalities, and supports Dwyer et al.’s patterns
and time distances in patterns. In this regard, it is very
close to the expressiveness of TemPsy, though it supports
neither the reference to a specific occurrence of an event in
scopes nor two types of constraints (as TemPsy does with

25

the keywords ‘at least’ and ‘exactly’) on time distances
in scopes and order patterns.

Kanso and Taha [42] introduce Temporal OCL, a
pattern-based temporal extension of OCL. Although the
support for temporal patterns is very similar between the
two languages, Temporal OCL does not allow references
to specific event occurrences in scope boundaries and does
not fully support constraints on the time distance from a
scope boundary (it only supports state-change events).

Table 3 provides a comparison of these four approaches
with TemPsy, in terms of the following language features,
derived from the analysis of the requirements specifications
of our case study (see section 3.1): 1) the possibility of
referring to the number of occurrences of an event in oc-
currence patterns (NOOP); 2) the possibility of defining a
time distance between events in order patterns (TDOP);
3) the possibility of referring to a specific occurrence of an
event in scopes (SOS); 4) the possibility of defining a con-
straint on the time distance from scope boundaries (TDS).
The table also indicates whether the proposed language
extension includes tool support.

As you can see, TemPsy is the only pattern-based lan-
guage that provides support for all the specific features
needed for the specification of requirements in the context
of our case study.

8.1.2 Other temporal extensions of OCL

Temporal extensions of OCL that are not pattern-based
are mainly realized by extending the language with tem-
poral operators borrowed from standard temporal logic,
such as “always”, “until”, “eventually”, “‘next”. A prelimi-
nary work in this direction appeared in [23]. OCL/RT [22]
extends OCL with the notion of timestamped events (based
on the original UML abstract meta-class Event) and two
temporal operators, “always” and “sometimes”. Events are
associated with instances of classifiers and, by means of
a special satisfaction operator, it is possible to evaluate
an expression at the time instant when a certain event
occurred. The OCL/RT extension allows for expressing
real-time deadline and timeout constraints but requires to
reason explicitly at the lowest-level of abstraction, in terms
of time instants. Lavazza et al. [46] define the Object Tem-
poral Logic (OTL), which allows users to write temporal
constraints on Real-time UML (UML-RT) models. In par-
ticular, it supports the concepts of Time, Duration, and
Interval to specify the time distance between events. Nev-
ertheless, the language is modeled after the TRIO tem-
poral logic [50], and the properties are written using a
low level of abstraction. Ziemann and Gogolla [62] pro-
pose TOCL, an extension of OCL with LTL operators, to
specify constraints on the temporal evolution of the sys-
tem states. Being based on LTL, TOCL does not support
real-time constraints. Bill et al. [18] define cOCL, an ex-
tension of OCL with CTL temporal operators to express
properties over the lifetime of an instance model. These
properties are then verified with an explicit state space
model checking framework. Being based on CTL, cOCL
does not support real-time constraints. The work on Flake
and Mueller [33] goes in a similar direction, proposing an
extension of OCL that allows for the specification of past-
and future-oriented time-bounded constraints. They do
not support event-based specifications; moreover, the pro-
posed mapping into Clocked LTL does not allow to rely on

26

standard OCL tools. Soden and Eichler [59] propose Lin-
ear Temporal OCL (LT-OCL) for languages defined over
MOF meta-models in conjunction with operational seman-
tics. LT-OCL contains the standard LTL operators. The
interpretation of LT-OCL formulae is defined in the context
of a MOF meta-model and its dynamic behavior specified
by action semantics using the M3Actions framework.

Since all these temporal extensions of OCL are based
on some temporal logic and include temporal logic op-
erators, they intrinsically inherit the limitations of other
specification approaches based on temporal logic: 1) they
require strong theoretical and mathematical background,
which are rarely found among practitioners; 2) they pro-
vided limited tool support, often based on prototypes that
do not scale for industrial applications.

A different type of support for temporal constraints is
proposed by Cabot et al. [21]. They extend UML to use
UML/OCL as a temporal conceptual modeling language,
introducing the concepts of durability and frequency for the
definition of temporal features of UML classifiers and asso-
ciations. They define temporal operations in OCL through
which it is possible to refer to any past state of the system.
These operations are mapped into standard OCL by re-
lying on the mapping of the temporally-extended concep-
tual schema into a conventional UML one, which explic-
itly instantiates the concepts of time interval and instant.
However, the temporal operations are geared to express
temporal integrity constraints on the model, rather than
temporal properties correlating events of the system.

8.2 Trace Checking and Run-time Verifi-

cation

Model-driven technologies have been used in various work
on (run-time) trace and/or assertion checking. The model-
driven approach for assertion checking proposed in [61] re-
lies on the principles of aspect-oriented programming and
uses a technique called two-level aspect weaving. First,
cross-cutting assertions defined using ECL, an extension
of OCL, are weaved into a model defined within GME
(Generic Modeling Environment [24]) and then the code
for checking the contracts specified in the models is gen-
erated using model-driven program transformations [37].
ECL does not support the expression of temporal con-
straints. An approach conceptually similar to ours is pro-
posed in [30], in which pre- and post-conditions are ex-
pressed with visual contracts defined using graph trans-
formations and then transformed into a code-level repre-
sentation as JML (Java Modeling Language) assertions.
The pre- and post-conditions that can be expressed in
this framework are functional and do not support tempo-
ral expressions. Reference [58] proposes a model-driven
approach for monitoring Web services in which tempo-
ral properties, expressed using property specification pat-
terns [27], are defined with a subset of UML 2.0 Sequence
Diagrams and checked at run time by translating sequence
diagrams into non-deterministic finite automata. However,
the properties used in this work, differently from those that
can be expressed with TemPsy, do not support expressing
timing requirements. Our model-driven approach for trace
checking can be easily applied in scenarios where other
trace models are used, as long as OCL invariants can be
expressed on them; examples of these models are those

proposed in [20] (designed for the reverse engineering of
UML sequence diagrams from traces) and [40] (tailored for
the exchange of traces corresponding to large program call
trees).

This work is also related to the more general area of
run-time verification [47]. The majority of the approaches
proposed in this area (e.g., [6,10,11,32], including previous
work of some of the authors [12,14]) focuses on the verifica-
tion of temporal properties expressed using some temporal
logic. These approaches define the trace checking/run-time
verification problem in terms of a word problem, i.e., the
problem of whether a given word is included in some lan-
guages, and rely on formal verification tools like model
checkers or SAT/SMT solvers. In our approach, we use a
domain-specific specification language (TemPsy) and rely
on standard MDE technologies.

9 Conclusion and Future Work

Offline trace checking is a procedure for checking the com-
pliance of a system with respect to its requirements, by
analyzing the log of events produced by the system at run
time. We are interested in the offline trace checking of
business processes and apply it, as a case study, to the
particular context of eGovernment, in collaboration with
our public service partner CTTE.

The goal of this paper is to present a practical and scal-
able solution for the offline checking of the temporal re-
quirements of business processes, which can be used in
contexts where model-driven engineering is already a prac-
tice, where temporal specifications should be written in
a domain-specific language not requiring a strong mathe-
matical background, and where relying on standards and
industry-strength tools for property checking is a funda-
mental prerequisite.

This paper has made the following contributions: 1) the
TemPsy language, a domain-specific specification language
based on common property specification patterns and ex-
tended with new constructs, to facilitate the specification
of business process requirements to be checked on traces;
2) a model-driven trace checking procedure, which relies
on the efficient mapping of temporal requirements written
in TemPsy into OCL constraints on a conceptual model
of execution traces, which can be evaluated using an OCL
checker; 3) the implementation of this trace checking pro-
cedure in the TEMPSY-CHECK tool, which has been made
publicly available; 4) the evaluation of the scalability of
TEMPsY-CHECK, applied to the verification of real proper-
ties derived from a case study of our public service partner,
including a comparison with a state-of-the-art alternative
technology based on temporal logic.

The results of the evaluation show the feasibility of ap-
plying our model-driven approach for offline trace checking
in realistic settings. TEMPSY-CHECK scales linearly with
respect to the length of the input trace to check and is
able to analyze traces with one million events in about two
seconds. Moreover, it compares favorably with the state-
of-the-art.

This work is part of a broader project in collaboration
with CTIE, on model-driven run-time verification of busi-
ness processes [26]. The next step is to embed our trace
checking approach in the business process execution plat-
form of our partner, to realize an efficient run-time verifica-

27

tion platform for temporal properties of business process-
based applications.

In addition, as part of future work, we plan to conduct
a usability study of TemPsy, to assess the improved us-
ability with respect to other specification methods (e.g.,
temporal logic). We also plan to apply our model-driven
trace checking approach in other contexts different from
business process modeling, with the possibility of extend-
ing TemPsy with additional constructs, as needed by the
new application domains.

Acknowledgments

This work has been supported by the National Research
Fund, Luxembourg (FNR/P10/03). We would like to
thank the members of the Prometa team at CTIE, in
particular Ludwig Balmer, Manuel Rouard, and Mathieu
Syben, for their help with the analysis of the case study.

References

[1] Christopher Alexander, Sara Ishikawa, Murray Sil-
verstein, Max Jacobson, Ingrid Fiksdahl-King, and
Shlomo Angel. A pattern language. Towns, buildings,
construction. Oxford University Press, 1977.

[2] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and
A. Tang. Aligning qualitative, real-time, and proba-
bilistic property specification patterns using a struc-
tured English grammar. IEEE Trans. Softw. Eng.,
41(7):620-638, 2015.

[3] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti.
Dynamo + astro: An integrated approach for BPEL
monitoring. In Proc. ICWS ’09, pages 230-237. IEEE,
July 2009.

[4] Luciano Baresi, Domenico Bianculli, Carlo Ghezzi,
Sam Guinea, and Paola Spoletini. Validation of web
service compositions. IET Softw., 1(6):219-232, De-
cember 2007.

[5] Luciano Baresi and Sam Guinea. Towards dynamic
monitoring of WS-BPEL processes. In Proc. ICSOC
2005, volume 3826 of LNCS, pages 269-282. Springer,
2005.

[6] Benjamin Barre, Mathieu Klein, Maxime Soucy-
Boivin, Pierre-Antoine Ollivier, and Sylvain Hallé.
MapReduce for parallel trace validation of LTL prop-
erties. In Proc. RV 2012, volume 7687 of LNCS, pages
184-198. Springer, 2013.

[7] Howard Barringer, Yliés Falcone, Klaus Havelund,
Giles Reger, and David Rydeheard. Quantified event
automata: Towards expressive and efficient runtime
monitors. In Proc. FM 2012, volume 7436 of LNCS,
pages 68-84. Springer, 2012.

[8] Ezio Bartocci, Borzoo Bonakdarpour, and Yliés Fal-
cone. First international competition on software for
runtime verification. In Proc. RV 2014, volume 8734
of LNCS, pages 1-9. Springer, 2014.

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

David Basin, Matus Harvan, Felix Klaedtke, and Eu-
gen Zalinescu. MONPOLY: Monitoring usage-control
policies. In Proc. RV 2011, volume 7186 of LNCS,
pages 360-364, 2012.

David Basin, Felix Klaedtke, Srdjan Marinovic, and
Eugen Zalinescu. Monitoring of temporal first-order
properties with aggregations. In Proc. RV 2013, vol-
ume 8174 of LNCS, pages 40-58. Springer, 2013.

David Basin, Felix Klaedtke, Samuel Miiller, and Bir-
git Pfitzmann. Runtime monitoring of metric first-
order temporal properties. In Proc. FSTTCS 08,
pages 49-60. IBFI Schloss Dagstuhl, 2008.

Marcello Maria Bersani, Domenico Bianculli, Carlo
Ghezzi, Srdan Krsti¢, and Pierluigi San Pietro. SMT-
based checking of SOLOIST over sparse traces. In
Proc. FASE 2014, volume 8411 of LNCS, pages 276—
290. Springer, April 2014.

Marcello Maria Bersani, Domenico Bianculli, Carlo
Ghezzi, Srdan Krsti¢, and Pierluigi San Pietro. Effi-
cient large-scale trace checking using MapReduce. In
Proc. ICSE 2016. ACM, May 2016. to be published.

Domenico Bianculli, Carlo Ghezzi, and Srdan Krstic¢.
Trace checking of metric temporal logic with aggre-
gating modalities using MapReduce. In Proc. SEFM
2014, volume 8702 of LNCS, pages 144-158. Springer,
September 2014.

Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso,
and Patrick Senti. Specification patterns from re-
search to industry: a case study in service-based ap-
plications. In Proc. ICSE 2012, pages 968-976. IEEE,
2012.

Domenico Bianculli, Carlo Ghezzi, and Pierluigi
San Pietro. The tale of SOLOIST: a specification
language for service compositions interactions. In
Proc. FACS’12, volume 7684 of LNCS, pages 55-72.
Springer, 2013.

Domenico Bianculli, Carlo Ghezzi, and Paola Spole-
tini. A model checking approach to verify BPEL4AWS
workflows. In Proc. SOCA 07, pages 13-20. IEEE,
June 2007.

Robert Bill, Sebastian Gabmeyer, Petra Kaufmann,
and Martina Seidl. Model checking of CTL-extended
OCL specifications. In Proc. SLE 201/, volume 8706
of LNCS, pages 221-240. Springer, 2014.

Marco Brambilla, Stefano Butti, and Piero Fraternali.
WebRatio BPM: A tool for designing and deploying
business processes on the web. In Proc. ICWE 2010,
volume 6189 of LNCS, pages 415-429. Springer, 2010.

Lionel C. Briand, Yvan Labiche, and Johanne Leduc.
Toward the reverse engineering of UML sequence di-
agrams for distributed Java software. IEFEE Trans.
Softw. Eng., 32(9):642-663, September 2006.

Jordi Cabot, Antoni Olivé, and Ernest Teniente. Rep-
resenting temporal information in UML. In Proc.
UML 2008, volume 2863 of LNCS, pages 44-59.
Springer, 2003.

28

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

3]

[34]

[35]

[36]

MariaVictoria Cengarle and Alexander Knapp. To-
wards OCL/RT. In Proc. FME 2002, volume 2391 of
LNCS, pages 390-409. Springer, 2002.

Stefan Conrad and Klaus Turowski. Temporal OCL:
Meeting specification demands for business compo-

nents. In Unified Modeling Language, pages 151-165.
IGI Global, 2001.

James Davis. GME: The generic modeling environ-
ment. In Companion of the Proc. of OOPSLA 03,
pages 82-83. ACM, 2003.

Wei Dou, Domenico Bianculli, and Lionel Briand.
OCLR: a more expressive, pattern-based temporal ex-
tension of OCL. In Proc. ECMFA 201/, volume 8569
of LNCS, pages 51-66. Springer, July 2014.

Wei Dou, Domenico Bianculli, and Lionel Briand. Re-
visiting model-driven engineering for run-time verifi-
cation of business processes. In Proc. SAM 2014, vol-
ume 8769 of LNCS, pages 190-197. Springer, Septem-
ber 2014.

Matthew B Dwyer, George S Avrunin, and James C
Corbett. Patterns in property specifications for finite-
state verification. In Proc. ICSE 1999, pages 411-420.
IEEE, 1999.

Eclipse. Eclipse OCL tools. http://www.eclipse.org/
modeling/mdt/?project=ocl, September 2015.

Eclipse. Xtext-Language Engineering Made Easy!
http://www.eclipse.org/Xtext/, November 2015.

Gregor Engels, Marc Lohmann, Stefan Sauer, and
Reiko Heckel. Model-driven monitoring: An appli-
cation of graph transformation for design by contract.
In Proc. ICGT 2006, volume 4178 of LNCS, pages
336—350. Springer, 2006.

Miguel Felder and Angelo Morzenti. Validating real-
time systems by history-checking TRIO specifications.
ACM Trans. Softw. Eng. Methodol., 3(4):308-339, Oc-
tober 1994.

Bernd Finkbeiner, Sriram Sankaranarayanan, and
HennyB. Sipma. Collecting statistics over runtime ex-
ecutions. Form. Method Syst. Des., 27:253-274, 2005.

Stephan Flake and Wolfgang Mueller. Past- and
future-oriented time-bounded temporal properties
with OCL. 1In Proc. SEFM 2004, pages 154-163.
IEEE, 2004.

Stephan Flake and Wolfgang Miiller. Expressing prop-
erty specification patterns with OCL. In Proc. SERP
03, pages 595-603. CSREA Press, 2003.

Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of
interacting BPEL web services. In Proc. WWW °04,
pages 621-630. ACM, 2004.

Erich Gamma, Richard Helm, Ralph E. Johnson,
and John Vlissides. Design Patterns: FElements of
Reusable Object-Oriented Software. Addison-Wesley,
1995.

37]

38

[39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

Jeff Gray, Jing Zhang, Yuehua Lin, Suman Roychoud-
hury, Hui Wu, Rajesh Sudarsan, Aniruddha Gokhale,
Sandeep Neema, Feng Shi, and Ted Bapty. Model-
driven program transformation of a large avionics
framework. In Proc. GPCE 2004, volume 3286 of
LNCS, pages 361-378. Springer, 2004.

Volker Gruhn and Ralf Laue. Patterns for timed prop-
erty specifications. FElectron. Notes Theor. Comput.
Sei., 153(2):117-133, 2006.

Lars Grunske. Specification patterns for probabilistic
quality properties. In Proc. ICSE 2008, pages 31-40.
ACM, 2008.

Abdelwahab Hamou-Lhadj and Timothy C. Leth-
bridge. A metamodel for the compact but lossless
exchange of execution traces. Softw. Syst. Model.,
11(1):77-98, February 2012.

Slim Kallel, Anis Charfi, Tom Dinkelaker, Mira
Mezini, and Mohamed Jmaiel. Specifying and mon-
itoring temporal properties in web services composi-
tions. In Proc. ECOWS 09, pages 148-157. IEEE
Computer Society, 2009.

Bilal Kanso and Safouan Taha. Specification of tem-
poral properties with OCL. Sci. Comput. Program.,
96, Part 4:527-551, 2014.

Sascha Konrad and Betty H. C. Cheng. Real-time
specification patterns. In Proc. ICSE 05, pages 372—
381. ACM, 2005.

Ron Koymans. Specifying real-time properties with
metric temporal logic. Real-Time Syst., 2(4):255-299,
November 1990.

Juliana Kiister-Filipe and Stuart Anderson. On a time
enriched OCL liveness template. STTT, 8(2):156-166,
2006.

Luigi Lavazza, Sandro Morasca, and Angelo Morzenti.
A dual language approach extension to UML for
the development of time-critical component-based sys-
tems. Electron. Notes Theor. Comput. Sci., 82(6):121—
132, 2003.

Martin Leucker and Christian Schallhart. A brief ac-
count of runtime verification. Journal of Logic and Al-
gebraic Programming, 78(5):293-303, May/June 2009.

Zheng Li, Jun Han, and Yan Jin. Pattern-based
specification and validation of web services interac-
tion properties. In Proc. ICSOC 2005, volume 3826
of LNCS, pages 73-86. Springer, 2005.

Markus Lumpe, Indika Meedeniya, and Lars Grunske.
PSPWizard: machine-assisted definition of temporal
logical properties with specification patterns. In Proc.
ESEC/FSE ’11, pages 468-471. ACM, 2011.

Angelo Morzenti, Dino Mandrioli, and Carlo Ghezzi.
A model parametric real-time logic. ACM Trans. Pro-
gram. Lang. Syst., 14:521-573, October 1992.

Aouatef Mrad, Samatar Ahmed, Sylvain Hallé, and
Eric Beaudet. BabelTrace: A collection of transducers
for trace validation. In Proc. RV 2012, volume 7687
of LNCS, pages 126-130. Springer, 2013.

29

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

|62]

Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay
Berkovich, Ramy Medhat, Borzoo Bonakdarpour, and
Sebastian Fischmeister. RITHM: A tool for enabling
time-triggered runtime verification for C programs. In

Proc. ESEC/FSE 2013, pages 603-606. ACM, 2013.

OMG. BPMN Specification.
January 2011.

http://www.bpmn.org,

OMG. ISO/IEC 19507 (OCL v2.3.1). http://www.
omg.org/spec/0CL/IS0/19507/PDF, April 2012.

Amalinda Post, Igor Menzel, Jochen Hoenicke, and
Andreas Podelski. Automotive behavioral require-
ments expressed in a specification pattern system: A
case study at BOSCH. Requir. Eng., 17(1):19-33,
March 2012.

Franco Raimondi, James Skene, and Wolfgang Em-
merich. Efficient online monitoring of web-service
SLAs. In Proc. SIGSOFT ’08/FSE-16, pages 170-
180. ACM, 2008.

William N. Robinson. Extended OCL for goal moni-
toring. ECEASST, 9, 2008.

J. Simmonds, Y. Gan, M. Chechik, S. Nejati,
B. O’Farrell, E. Litani, and J. Waterhouse. Runtime
monitoring of web service conversations. IEEE Trans.
Serv. Comput., 2(3):223-244, 2009.

Michael Soden and Hajo Eichler. Temporal extensions
of OCL revisited. In Proc. ECMDA-FA, volume 5562
of LNCS, pages 190-205. Springer, 2009.

Software AG. ARIS. http://www.softwareag.com/
corporate/products/aris/default.asp, 2014.

Jing Zhang, Jeff Gray, and Yuehua Lin. A model-
driven approach to enforce crosscutting assertion
checking. In Proc. MACS ’05, pages 1-5. ACM, 2005.

Paul Ziemann and Martin Gogolla. OCL extended
with temporal logic. In Proc. PSI 2003, volume 2890
of LNCS, pages 351-357. Springer, 2003.

Appendix A OCL definitions

In this section we present the full definition of the OCL functions sketched in section 6. For implementation reasons,
they have been defined in the context of the Monitor class.

A.1 Auxiliary Operations

functions invoked when applying scopes and checking patterns

1 context Monitor

2

3 =======

4 def: ordinalIndexOf(trace:0rderedSet(trace::TraceElement), eventName:String, n:Integer):Integer =
5 //find the index of the n-th occurrence of the event 'eventName'

6 let result:Tuple(index:Integer, ordinal:Integer) = trace->iterate(elem:trace::TraceElement;
7 iter:Tuple(index:Integer, ordinal:Integer) = Tuple{index:Integer = 0, ordinal:Integer = 0}
8 |

9 if iter.ordinal = n then

10 iter

11 else

12 if elem.event = eventName then

13 Tuple{index:Integer = iter.index + 1, ordinal:Integer = iter.ordinal + 1}

14 else

15 Tuple{index:Integer = iter.index + 1, ordinal:Integer = iter.ordinal}

16 endif

17 endif

18)

19 in

20 if result.ordinal = n then
21 result.index

22 else

23 -1

26 def: compare(a:Integer, b:Integer, which:Integer):Boolean =
27 if which = 1 then // at least b tu

28 a>b

29 else

30 if which = 2 then // at most b tu

31 a<=b

32 else

33 if which = 3 then // exactly b tu

34 a=>b

35 else

36 true // no comparison is needed

37 endif

38 endif

39 endif

40

41 =======

42 def: loadDistances(distances:Sequence(TemPsy: :TimeDistance))
43 :Sequence(Tuple(which:Integer, value:Integer)) =

44 if distances->forAll(elem | elem->isEmpty()) then
45 Sequence{}

46 else

47 distances->iterate(elem:TemPsy::TimeDistance;

48 iter:Sequence(Tuple(which:Integer, value:Integer)) = Sequence{}

49 |

50 if elem->isEmpty() then

51 iter->append(Tuple{which:Integer=0, value:Integer=1})

52 else

53 if TemPsy::ComparingOperator::ATLEAST = elem.comparingOperator then
54 iter->append(Tuple{which:Integer=1, value:Integer=elem.value})

55 else

56 if TemPsy::ComparingOperator::ATMOST = elem.comparingOperator then
57 iter->append(Tuple{which:Integer=2, value:Integer=elem.value})
58 else

59 iter->append(Tuple{which:Integer=3, value:Integer=elem.value})
60 endif

30

61 endif

62 endif)
63 endif
A.2 Scopes

functions for selecting segment(s) from the input trace, according to a scope definition

1 context Monitor

4 def: applyScopeGlobally(trace:trace::Trace,
scope:TemPsy: :Scope) :0rderedSet(trace: :TraceElement) =
trace.traceElements

def: applyScopeBefore(trace:trace::Trace, scope:TemPsy::Scope):0rderedSet(trace::TraceElement) =

10 //return the scope of 'before boundary'

11 //'boundary' : '[n] eventName [comparingOperator timeDistance tu]'

12 let boundary:TemPsy::Boundary = scope.oclAsType(TemPsy::UniScope).boundary, eventName:String = boundary.event.name in

13 if boundary.timeDistance->notEmpty() then

14 let comparingOperator:TemPsy::ComparingOperator = boundary.timeDistance.comparingOperator, timeDistance:Integer =
boundary.timeDistance.value in

15 if boundary.ordinal > 0 then

16 let n:Integer = boundary.ordinal in

17 if TemPsy::ComparingOperator: :ATLEAST = comparingOperator then

18 self.atlLeastBefore(trace.traceElements, eventName,n,timeDistance)
19 else

20 if TemPsy::ComparingOperator::ATMOST = comparingOperator then

21 self.atMostBefore(trace.traceElements, eventName,n,timeDistance)
22 else

23 self.exactlyBefore(trace.traceElements, eventName,n,timeDistance)
24 endif

25 endif

26 else

27 if TemPsy::ComparingOperator::ATLEAST = comparingOperator then

28 self.atLeastBefore(trace.traceElements, eventName,1l,timeDistance)
29 else

30 if TemPsy::ComparingOperator::ATMOST = comparingOperator then

31 self.atMostBefore(trace.traceElements, eventName,1l,timeDistance)
32 else

33 self.exactlyBefore(trace.traceElements, eventName,1,timeDistance)
34 endif

35 endif

36 endif

37 else

38 if boundary.ordinal > 0 then

39 let n:Integer = boundary.ordinal in

40 self.atLeastBefore(trace.traceElements, eventName,n,1)

41 else

42 self.atLeastBefore(trace.traceElements, eventName,1,1)

43 endif

44 endif

45

46 =======

47 def: atLeastBefore(trace:OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):
OrderedSet(trace::TraceElement) =

48 //return the scope of 'before [n] eventName at least timeDistance tu'

49 let position:Integer = ordinalIndexOf(trace, eventName, n) in

50 if 1 <> position.abs() then

51 if 1 = timeDistance then

52 trace->subOrderedSet(1, position-1)

53 else

54 let toTimeStamp:Integer = trace->at(position).timestamp in

55 trace->select(elem | toTimeStamp - timeDistance >= elem.timestamp)
56 endif

57 else

58 OrderedSet{}

59 endif

31

60

62

63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95

108

110
111
112
113
114
115
116
117
118
119
120

121
122
123
124

def: atMostBefore(trace:0rderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):
OrderedSet(trace::TraceElement) =

//return the scope of 'before [n] eventName at most timeDistance tu'

let position:Integer = ordinalIndexOf(trace, eventName, n) in

if -1 <> position then

let toTimeStamp:Integer = trace->at(position).timestamp in
trace->select(elem | toTimeStamp - timeDistance <= elem.timestamp and toTimeStamp >= elem.timestamp)
else
OrderedSet{}
endif
def: exactlyBefore(trace:0rderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):

OrderedSet(trace::TraceElement) =
//return the scope of 'before [n] eventName exactly timeDistance tu'

let position:Integer = ordinalIndexOf(trace, eventName, n) in
if -1 <> position then
let toTimeStamp:Integer = trace->at(position).timestamp in
trace->select(elem | toTimeStamp - timeDistance = elem.timestamp)
else
OrderedSet{}
endif

def: applyScopeAfter(trace:trace::Trace, scope:TemPsy::Scope):0rderedSet(trace::TraceElement) =

//return the scope of 'after boundary'

//'boundary' : '[n] eventName [comparingOperator timeDistance tu]'

let boundary:TemPsy::Boundary = scope.oclAsType(TemPsy::UniScope).boundary, eventName:String = boundary.event.name in

if boundary.timeDistance->notEmpty() then
let comparingOperator:TemPsy: :ComparingOperator = boundary.timeDistance.comparingOperator, timeDistance:Integer =
boundary.timeDistance.value in
if boundary.ordinal > 0 then
let n:Integer = boundary.ordinal in
if TemPsy::ComparingOperator: :ATLEAST = comparingOperator then
self.atlLeastAfter(trace.traceElements, eventName, n, timeDistance)
else if TemPsy::ComparingOperator::ATMOST = comparingOperator then
self.atMostAfter(trace.traceElements, eventName,n,timeDistance)
else
self.exactlyAfter(trace.traceElements, eventName, n, timeDistance)
endif
endif
else
if TemPsy::ComparingOperator: :ATLEAST = comparingOperator then
self.atlLeastAfter(trace.traceElements, eventName, 1,timeDistance)
else if TemPsy::ComparingOperator::ATMOST = comparingOperator then
self.atMostAfter(trace.traceElements, eventName, 1, timeDistance)
else
self.exactlyAfter(trace.traceElements, eventName, 1, timeDistance)
endif
endif
endif
else
if boundary.ordinal > 0 then
let n:Integer = boundary.ordinal in
self.atLeastAfter(trace.traceElements, eventName, n, 1)
else
self.atLeastAfter(trace.traceElements, eventName, 1, 1)
endif
endif
def: atlLeastAfter(trace:0OrderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):

OrderedSet(trace::TraceElement) =
//return the scope of 'after [n] eventName at least timeDistance tu'
let position:Integer = ordinallIndexOf(trace, eventName, n), size:Integer = trace->size() in
if -1 <> position and size <> position then
if 1 = timeDistance then

32

125 trace->subOrderedSet(position+l, size)

126 else

127 let fromTimeStamp:Integer = trace->at(position).timestamp in

128 trace->select(elem | fromTimeStamp + timeDistance <= elem.timestamp)
129 endif

130 else

131 OrderedSet{}

132 endif

133

134 =======

135 def: atMostAfter(trace:0rderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):0rderedSet
(trace::TraceElement) =

136 //return the scope of 'after [n] eventName at most timeDistance tu'

137 let position:Integer = ordinalIndexOf(trace, eventName, n) in

138 if -1 <> position then

139 let fromTimeStamp:Integer = trace->at(position).timestamp in

140 trace->select(elem | fromTimeStamp <= elem.timestamp and fromTimeStamp + timeDistance >= elem.timestamp)

141 else

142 OrderedSet{}

143 endif

144

145 =======

146 def: exactlyAfter(trace:0rderedSet(trace::TraceElement), eventName:String, n:Integer, timeDistance:Integer):
OrderedSet(trace::TraceElement) =

147 //return the scope of 'after [n] eventName exactly timeDistance tu'

148 let position:Integer = ordinalIndexOf(trace, eventName, n) in

149 if -1 <> position then

150 let fromTimeStamp:Integer = trace->at(position).timestamp in

151 trace->select(elem | fromTimeStamp + timeDistance = elem.timestamp)

152 else

153 OrderedSet{}

154 endif

158 def: applyScopeBetweenAnd(trace:trace::Trace,

159 scope:TemPsy: :Scope)

160 :0rderedSet(OrderedSet(trace::TraceElement)) =
161 // return the scope of 'between boundaryBegin and boundaryEnd'

162 // i.e., 'between [nBegin] eventNameBegin [at least timeDistanceBegin]
163 // and [nEnd] eventNameEnd [at least timeDistanceEnd]'

164 let boundaryBegin:TemPsy::Boundary

165 = scope.oclAsType(TemPsy: :BiScope) .boundaryBegin,
166 boundaryEnd:TemPsy: :Boundary

167 = scope.oclAsType(TemPsy: :BiScope) .boundaryEnd,
168 eventNameBegin:String

169 = boundaryBegin.event.name,

170 eventNameEnd:String

171 = boundaryEnd.event.name

172 in

173 if boundaryBegin.timeDistance->notEmpty() then
174 let timeDistanceBegin:Integer = boundaryBegin.timeDistance.value in
175 if boundaryEnd.timeDistance->notEmpty() then

176 let timeDistanceEnd:Integer = boundaryEnd.timeDistance.value in

177 if boundaryBegin.ordinal > 0 then

178 let result:0rderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},

179 nBegin:Integer = boundaryBegin.ordinal

180 in

181 if boundaryEnd.ordinal > 0 then

182 let nEnd:Integer = boundaryEnd.ordinal in

183 result->append(

184 self.applySpecialBetweenAnd(trace.traceElements,

185 eventNameBegin, nBegin, timeDistanceBegin,
186 eventNameEnd, nEnd, timeDistanceEnd))

187 else

188 result->append(

189 self.applySpecialBetweenAnd(trace.traceElements,

190 eventNameBegin, nBegin, timeDistanceBegin,
191 eventNameEnd, 1, timeDistanceEnd))

33

192 endif

193 else

194 if boundaryEnd.ordinal > 0 then

195 let result:0rderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
196 nEnd:Integer = boundaryEnd.ordinal

197 in

198 result->append(

199 self.applySpecialBetweenAnd(trace.traceElements,

200 eventNameBegin, 1, timeDistanceBegin,
201 eventNameEnd, nEnd, timeDistanceEnd))
202 else

203 self.applyOriginalBetweenAnd(trace.traceElements,

204 eventNameBegin, timeDistanceBegin,

205 eventNameEnd, timeDistanceEnd)

206 endif

207 endif

208 else

209 if boundaryBegin.ordinal > 0 then

210 let result:0rderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
211 nBegin:Integer = boundaryBegin.ordinal

212 in

213 if boundaryEnd.ordinal > 0 then

214 let nEnd:Integer = boundaryEnd.ordinal in

215 result->append (

216 self.applySpecialBetweenAnd(trace.traceElements,

217 eventNameBegin, nBegin, timeDistanceBegin,
218 eventNameEnd, nEnd, 1))

219 else

220 result->append (

221 self.applySpecialBetweenAnd(trace.traceElements,

222 eventNameBegin, nBegin, timeDistanceBegin,
223 eventNameEnd, 1, 1))

224 endif

225 else

226 if boundaryEnd.ordinal > 0 then

227 let result:0rderedSet(OrderedSet(trace::TraceElement))

228 = OrderedSet{},

229 nEnd:Integer = boundaryEnd.ordinal

230 in

231 result->append(

232 self.applySpecialBetweenAnd(trace.traceElements,

233 eventNameBegin, 1, timeDistanceBegin,
234 eventNameEnd, nEnd, 1))

235 else

236 self.applyOriginalBetweenAnd(trace.traceElements,

237 eventNameBegin, timeDistanceBegin, eventNameEnd)
238 endif

239 endif

240 endif

241 else

242 if boundaryEnd.timeDistance->notEmpty() then

243 let timeDistanceEnd:Integer = boundaryEnd.timeDistance.value in

244 if boundaryBegin.ordinal > 0 then

245 let result:0rderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},
246 nBegin:Integer = boundaryBegin.ordinal

247 in

248 if boundaryEnd.ordinal > 0 then

249 let nEnd:Integer = boundaryEnd.ordinal in

250 result->append(

251 self.applySpecialBetweenAnd(trace.traceElements,

252 eventNameBegin, nBegin, 1, eventNameEnd,
253 nEnd, timeDistanceEnd))

254 else

255 result->append(

256 self.applySpecialBetweenAnd(trace.traceElements,

257 eventNameBegin, nBegin, 1,

258 eventNameEnd, 1, timeDistanceEnd))

259 endif

260 else

34

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318

319
320

321
322
323
324
325
326

if boundaryEnd.ordinal > 0 then
let result:0rderedSet(OrderedSet(trace::TraceElement))
= OrderedSet{},
nEnd:Integer = boundaryEnd.ordinal
in
result->append (
self.applySpecialBetweenAnd(trace.traceElements,
eventNameBegin, 1, 1,

eventNameEnd, nEnd, timeDistanceEnd))

else
self.applyOriginalBetweenAnd(trace.traceElements,

eventNameBegin, eventNameEnd, timeDistanceEnd)

endif
endif
else
if boundaryBegin.ordinal > 0 then

let result:0rderedSet(OrderedSet(trace::TraceElement)) = OrderedSet{},

nBegin:Integer = boundaryBegin.ordinal
in
if boundaryEnd.ordinal > 0 then
let nEnd:Integer = boundaryEnd.ordinal in
result->append(
self.applySpecialBetweenAnd(trace.traceElements,

eventNameBegin, nBegin, 1,

eventNameEnd, nEnd, 1))
else
result->append (
self.applySpecialBetweenAnd(trace.traceElements,

eventNameBegin, nBegin, 1,

eventNameEnd, 1, 1))
endif
else
if boundaryEnd.ordinal > 0 then
let result:0rderedSet(OrderedSet(trace::TraceElement))
= OrderedSet{},
nEnd:Integer = boundaryEnd.ordinal
in
result->append(
self.applySpecialBetweenAnd(trace.traceElements,
eventNameBegin, 1, 1,
eventNameEnd, nEnd, 1))
else

self.applyOriginalBetweenAnd(trace.traceElements, eventNameBegin, eventNameEnd)

endif
endif
endif
endif

def: applyOriginalBetweenAnd(trace:0rderedSet(trace::TraceElement), eventNameBegin:String,

Sequence(OrderedSet(trace::TraceElement)) =
//return the scope of 'between eventNameBegin and eventNameEnd'
trace->iterate(elem:trace::TraceElement;

iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer)
=Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{},

if iter.i = 0 then
let currentIndex:Integer = iter.index + 1 in

if elem.event = eventNameBegin then
Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement))
currentIndex}
else
Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement))
iter.i}
endif
else

if elem.event = eventNameEnd then
let i:Integer = iter.i+l, j:Integer = iter.index in
if i <= j then

Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement))

35

eventNameEnd:String):

i:Integer = 0} |

= iter.result, i:Integer

= iter.result, i:Integer

iter.result->append(trace->

327
328
329
330
331

332
333
334
335
336
337

338
339
340
341

342
343
344
345
346

347
348

353
354

355
356

357
358
359

360
361
362
363

365

366
367
368
369

370
371
372
373
374

375
376

377
378
379
380

subOrderedSet(i, j)), i:Integer = 0}
else
Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0}
endif
else
Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Intege
= iter.i}
endif
endif
) .result

def: applyOriginalBetweenAnd(trace:0rderedSet(trace::TraceElement), eventNameBegin:String, distanceBegin:Integer,
eventNameEnd:String) :Sequence(OrderedSet(trace: :TraceElement)) =
//return the scope of 'between eventNameBegin at least distanceBegin tu and eventNameEnd'
trace->iterate(elem:trace::TraceElement;
iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer, criticalTime:Integer)
=Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{}, i:Integer = 0,
criticalTime:Integer = 0} |
let e:String = elem.event in
if iter.i = 0 then
let currentIndex:Integer = iter.index + 1 in

if e = eventNameBegin then
Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer
currentIndex, criticalTime:Integer = elem.timestamp + distanceBegin}
else
Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer
iter.i, criticalTime:Integer = iter.criticalTime}
endif
else

if e = eventNameEnd then
let t:Integer = elem.timestamp, i:Integer = iter.i + 1, j:Integer = iter.index, tl:Integer = iter.criticalTime
in
if i <= j and t1l < t then
Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result->append(trace->
subOrderedSet(i, j)->select(segElem | segElem.timestamp >= tl)), i:Integer = 0, criticalTime:Integer =
iter.criticalTime}
else
Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0,
criticalTime:Integer = iter.criticalTime}
endif
else
Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Intege
= iter.i, criticalTime:Integer = iter.criticalTime}
endif
endif
) .result

def: applyOriginalBetweenAnd(trace:0rderedSet(trace::TraceElement), eventNameBegin:String, eventNameEnd:String,
distanceEnd:Integer):Sequence(OrderedSet(trace::TraceElement)) =
//return the scope of 'between eventNameBegin and at least distanceEnd tu eventNameEnd'
trace->iterate(elem:trace::TraceElement;
iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer, criticalTime:Integer)
=Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{}, i:Integer = 0,
criticalTime:Integer = 0} |
let e:String = elem.event in
if iter.i = 0 then
let currentIndex:Integer = iter.index + 1 in

if e = eventNameBegin then
Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer
currentIndex, criticalTime:Integer = elem.timestamp + 1}
else
Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer
iter.i, criticalTime:Integer = iter.criticalTime}
endif
else

if e = eventNameEnd then
let t:Integer = elem.timestamp, i:Integer = iter.i + 1, j:Integer = iter.index, tl:Integer = iter.criticalTime

36

r

r

’

t2:Integer = t - distanceEnd in
381 if i <= j and tl <= t2 then
382 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result->append(trace->
subOrderedSet(i, j)->select(segElem | segElem.timestamp <= t2)), i:Integer = 0, criticalTime:Integer =
iter.criticalTime}

383 else
384 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0,
criticalTime:Integer = iter.criticalTime}

385 endif

386 else

387 Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer
= iter.i, criticalTime:Integer = iter.criticalTime}

388 endif

389 endif

390).result

391

392 =======

393 def: applyOriginalBetweenAnd(trace:0OrderedSet(trace::TraceElement), eventNameBegin:String, distanceBegin:Integer,
eventNameEnd:String, distanceEnd:Integer):Sequence(OrderedSet(trace::TraceElement)) =

394 //return the scope of 'between eventNameBegin at least distanceBegin tu and at least distanceEnd tu eventNameEnd'

395 trace->iterate(elem:trace::TraceElement;

396 iter:Tuple(index:Integer, result:Sequence(OrderedSet(trace::TraceElement)), i:Integer, criticalTime:Integer)

397 =Tuple{index:Integer = 0, result:Sequence(OrderedSet(trace::TraceElement)) = Sequence{}, i:Integer = 0,

criticalTime:Integer = 0} |
398 let e:String = elem.event in
399 if iter.i = 0 then

400 let currentIndex:Integer = iter.index + 1 in
401 if e = eventNameBegin then
402 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =
currentIndex, criticalTime:Integer = elem.timestamp + distanceBegin}
403 else
404 Tuple{index:Integer = currentIndex, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer =
iter.i, criticalTime:Integer = iter.criticalTime}
405 endif
406 else
407 if e = eventNameEnd then
408 let t:Integer = elem.timestamp, i:Integer = iter.i + 1, j:Integer = iter.index, tl:Integer = iter.criticalTime,
t2:Integer = t - distanceEnd in
409 if i <= j and tl <= t2 then
410 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result->append(trace->
subOrderedSet (i, j)->select(segElem | segElem.timestamp >= t1 and segElem.timestamp <= t2)), i:Integer =
0, criticalTime:Integer = iter.criticalTime}
411 else
412 Tuple{index:Integer = j + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer = 0,
criticalTime:Integer = iter.criticalTime}
413 endif
414 else
415 Tuple{index:Integer = iter.index + 1, result:Sequence(OrderedSet(trace::TraceElement)) = iter.result, i:Integer
= iter.i, criticalTime:Integer = iter.criticalTime}
416 endif
417 endif
418).result
419
420

421 def: applySpecialBetweenAnd(trace:0rderedSet(trace::TraceElement), eventNameBegin:String, nBegin:Integer,
timeDistanceBegin:Integer, eventNameEnd:String, nEnd:Integer, timeDistanceEnd:Integer):0rderedSet(trace::
TraceElement) =

422 //return the scope of 'between nBegin eventNameBegin at least timeDistanceBegin tu and nBegin eventNameEnd at least
timeDistanceEnd tu'

423 let t:Tuple(index:Integer, indexBegin:Integer, indexEnd:Integer, count:Integer) = trace->iterate(elem:trace::

TraceElement;
424 iter:Tuple(index:Integer, indexBegin:Integer, indexEnd:Integer, count:Integer) = Tuple{index:Integer = 0,
indexBegin:Integer = 0, indexEnd:Integer = 0, count:Integer = 0} |
425 if iter.indexBegin = 0 then
426 let currentIndex:Integer = iter.index + 1 in
427 if elem.event = eventNameBegin then
428 let currentBeginCount:Integer = iter.count+l in
429 if currentBeginCount = nBegin then
430 Tuple{index:Integer = currentIndex, indexBegin:Integer = currentIndex + 1, indexEnd:Integer = iter.indexEnd

37

, count:Integer = 0}

431 else

432 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.indexEnd,
count:Integer = currentBeginCount}

433 endif

434 else

435 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.indexEnd,

count:Integer = iter.count}

436 endif

437 else

438 if iter.indexEnd = 0 then

439 let currentIndex:Integer = iter.index + 1 in

440 if elem.event = eventNameEnd then

441 let currentEndCount:Integer = iter.count+l in

442 if currentEndCount = nEnd then

443 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = currentIndex

-1, count:Integer = nEnd}

444 else

445 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.
indexEnd, count:Integer = currentEndCount}

446 endif

447 else

448 Tuple{index:Integer = currentIndex, indexBegin:Integer = iter.indexBegin, indexEnd:Integer = iter.indexEnd,
count:Integer = iter.count}

449 endif

450 else

451 iter

452 endif

453 endif

454)

455 in

456 let

457 i:Integer = t.indexBegin,

458 j:Integer = t.indexEnd,

459 timestampBegin:Integer = trace->at(i-1).timestamp+timeDistanceBegin,
460 timestampEnd:Integer = trace->at(j+1).timestamp-timeDistanceEnd

461 1in

462 if i >0 and j > 0 and i <= j then

463 if timeDistanceBegin = 1 and timeDistanceEnd = 1 then

464 trace->subOrderedSet (i, j)

465 else

466 trace->subOrderedSet(i, j)->select(elem | elem.timestamp >= timestampBegin and elem.timestamp <= timestampEnd)
467 endif

468 else

469 OrderedSet{}

470 endif

A.3 Patterns

functions for checking a given pattern on the trace segment(s) determined by a scope

1 context Monitor

2

3 =======

4 def: checkPatternUniversality(subtrace:OrderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =
5 // check the satisfiability of the universality pattern 'always eventName'

6 let eventName:String = pattern.oclAsType(TemPsy::Universality).event.name in

7 subtrace->forAll(event = eventName)

8

©

10 def: checkPatternExistence(subtrace:0rderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =

11 --check the satisfiability of the existence pattern 'pattern'’

12 if subtrace->isEmpty() then

13 true

14 else

15 let occPattern:TemPsy::0ccurrencePattern = pattern.oclAsType(TemPsy::0OccurrencePattern), eventName:String =
occPattern.event.name in

16 if occPattern.comparingOperator->notEmpty() then

38

17 let comparingOperator:TemPsy::ComparingOperator = occPattern.comparingOperator, n:Integer = occPattern.times,
count:Integer = subtrace.event->count(eventName) in

18 if TemPsy::ComparingOperator::ATLEAST = comparingOperator then
19 count >=n

20 else

21 if TemPsy::ComparingOperator::ATMOST = comparingOperator then
22 count <= n

23 else

24 count = n

25 endif

26 endif

27 else

28 subtrace.event->includes (eventName)

29 endif

30 endif

31

32 =======

33 def: checkPatternAbsence(subtrace:0rderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =

34 --check the satisfiability of the absence pattern 'pattern’

35 if subtrace->isEmpty() then

36 true

37 else

38 let occPattern:TemPsy::0ccurrencePattern = pattern.oclAsType(TemPsy::0ccurrencePattern), eventName:String =
occPattern.event.name in

39 if occPattern.comparingOperator->notEmpty() then

40 subtrace.event->count(eventName) <> occPattern.times
41 else

42 subtrace.event->excludes(eventName)

43 endif

44 endif

else
48 self.checkPatternPrecedenceOneManyRight (subtrace, cause,
49 effects, effectDistances)
50 endif
51 else
52 self.checkPatternPrecedenceManyManyRight(subtrace, causes,
53 effects, effectDistances)
54 endif
55 else
56 if causeSize = 1 then
57 let cause:String=causes->first() in
58 if effectSize = 2 then
59 let effectDistance:Tuple(which:Integer, value:Integer)
60 =effectDistances->first()
61 in
62 self.checkPatternPrecedenceOneTwoMidRight(subtrace, cause,
63 orderPattern.timeDistance,
64 effects->first(),
65 effectDistance, effects->at(2))
66 else
67 let distance:Tuple(which:Integer, value:Integer)
68 =self.loadDistance(orderPattern.timeDistance)
69 in
70 self.checkPatternPrecedenceOneManyMidRight (subtrace, cause,
71 distance, effects,
72 effectDistances)
73 endif
74 else
75 let distance:Tuple(which:Integer, value:Integer)
76 =self.loadDistance(orderPattern.timeDistance)
7 in
78 self.checkPatternPrecedenceManyManyMidRight (subtrace, causes,
79 distance, effects, effectDistances)
80 endif
81 endif
82 endif
83 else

39

84 if effectDistances->isEmpty() then

85 if orderPattern.timeDistance->isEmpty() then

86 if effectSize = 1 then

87 let effect:String=effects->first() in

88 if causeSize = 2 then

89 let causeDistance:Tuple(which:Integer, value:Integer)

90 =causeDistances->first()

91 in

92 self.checkPatternPrecedenceTwoOneLeft (subtrace, causes->first(),

93 causeDistance, causes->at(2), effect)

94 else

95 self.checkPatternPrecedenceManyOneLeft(subtrace, causes,

96 causeDistances, effect)

97 endif

98 else

99 self.checkPatternPrecedenceManyManyLeft(subtrace, causes,

100 causeDistances, effects)

101 endif

102 else

103 let distance:Tuple(which:Integer, value:Integer)

104 =self.loadDistance(orderPattern.timeDistance)

105 in

106 if effectSize = 1 then

107 let effect:String=effects->first() in

108 self.checkPatternPrecedenceManyOneLeftMid(subtrace, causes,

109 causeDistances, distance, effect)

110 else

111 self.checkPatternPrecedenceManyManyLeftMid(subtrace, causes,

112 causeDistances, distance, effects)

113 endif

114 endif

115 else

116 if orderPattern.timeDistance->isEmpty() then

117 self.checkPatternPrecedenceManyManyLeftRight(subtrace, causes, causeDistances,

118 effects, effectDistances)

119 else

120 let distance:Tuple(which:Integer, value:Integer)

121 =self.loadDistance(orderPattern.timeDistance)

122 in

123 self.checkPatternPrecedenceManyManyLeftMidRight (subtrace, causes, causeDistances,

124 distance, effects, effectDistances)

125 endif

126 endif

127 endif

128 endif

129

130 =======

131 def: checkPatternPrecedenceOneOnePlain(subtrace:0rderedSet(trace::TraceElement), cause:String, effect:String):Boolean

132 //"cause preceding effect"

133 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer) = Tuple{flag:Boolean = true,
result:Integer = 0}

134 |

135 if iter.flag then

136 let e:String = elem.event in

137 if e = cause then

138 Tuple{flag:Boolean = false, result:Integer = -1}
139 else

140 if e = effect then

141 Tuple{flag:Boolean = false, result:Integer = -2} // violation
142 else

143 iter

144 endif

145 endif

146 else

147 iter

148 endif

149).result >= -1

150

40

152 def: checkPatternPrecedenceOneOneAtLeastMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effect:String):Boolean =

153 //"cause preceding at least distance tu effect"

154 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstant:Integer) = Tuple{flag:Boolean
= true, midCriticalInstant:Integer = 0}

155 |

156 if iter.flag then

157 let e:String = elem.event in

158 if iter.midCriticalInstant = 0 and e = cause then //catch the first occurrence of cause
159 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance}
160 else

161 if e = effect then

162 if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then
163 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2} // violation

164 else

165 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1}

166 endif

167 else

168 iter

169 endif

170 endif

171 else

172 iter

173 endif

174).midCriticalInstant >= -1

175

176

177 def: checkPatternPrecedenceOneOneAtMostMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effect:String):Boolean =

178 //"cause preceding at most distance tu effect"

179 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstant:Integer) = Tuple{flag:Boolean
= true, midCriticalInstant:Integer = 0}

180 |

181 if iter.flag then

182 let e:String = elem.event in

183 if e = cause then //latest cause

184 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance}
185 else

186 if e = effect and elem.timestamp > iter.midCriticalInstant then

187 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null} // violation
188 else

189 iter

190 endif

191 endif

192 else

193 iter

194 endif

195).flag

196

197 =======

198 def: checkPatternPrecedenceOneOneExactlyMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effect:String):Boolean =

199 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer)) = Tuple{
flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}} |

200 if iter.flag then

201 let e:String = elem.event in

202 if e = cause then

203 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.
timestamp+distance)}

204 else

205 if e = effect then

206 let t:Integer = elem.timestamp in

207 if iter.midCriticalInstants->includes(t) then

208 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t)}

209 else

210 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null}

211 endif

41

212 else

213 iter
214 endif
215 endif
216 else

217 iter

218 endif

219).flag

220

221 =======

222 def: checkPatternPrecedenceOneOneMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:TemPsy::
TimeDistance, effect:String):Boolean =

223 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in

224 if which = TemPsy::ComparingOperator::ATLEAST then

225 self.checkPatternPrecedenceOneOneAtLeastMid(subtrace, cause, value, effect)

226 else

227 if which = TemPsy::ComparingOperator::ATMOST then

228 self.checkPatternPrecedenceOneOneAtMostMid(subtrace, cause, value, effect)
229 else

230 self.checkPatternPrecedenceOneOneExactlyMid(subtrace, cause, value, effect)
231 endif

232 endif

233

234 =======

235 def: checkPatternPrecedenceOneManyPlain(subtrace:0rderedSet(trace::TraceElement), cause:String, effects:Sequence(
String)):Boolean =

236 let

237 effectSize:Integer = effects->size(),

238 firstEffect:String = effects->first()

239 in

240 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, i2:Integer) = Tuple{flag:Boolean
= true, result:Integer = 0, i2:Integer = 1}

241 |

242 if iter.flag then

243 let e:String = elem.event in

244 if e = cause then //catch the first occurrence of cause

245 Tuple{flag:Boolean = false, result:Integer = -1, i2:Integer = null}

246 else

247 if e = effects->at(iter.i2) then

248 if iter.i2 = effectSize then

249 Tuple{flag:Boolean = false, result:Integer = -2, i2:Integer = null}

250 else

251 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = iter.i2 + 1}
252 endif

253 else

254 if e = firstEffect then

255 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 2}
256 else

257 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 1}
258 endif

259 endif

260 endif

261 else

262 iter

263 endif

264).result >= -1

265

266 =======

267 def: checkPatternPrecedenceOneManyAtLeastMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer
, effects:Sequence(String)):Boolean =

268 let

269 effectSize:Integer = effects->size(),

270 firstEffect:String = effects->first()

271 in

272 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer) = Tuple{
flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1}

273 |
274 if iter.flag then
275 let e:String = elem.event in

42

276 if iter.midCriticalInstant = 0 and e = cause then //catch the first occurrence of cause

277 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}

278 else

279 if iter.i2 > 1 and e = effects->at(iter.i2) then

280 if iter.i2 = effectSize then

281 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i2:Integer = null}

282 else

283 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallnstant, i2:Integer = iter.i2
+ 1}

284 endif

285 else

286 if e = firstEffect then

287 if iter.midCriticallnstant = 0 or elem.timestamp < iter.midCriticalInstant then

288 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, i2:Integer = 2}

289 else

290 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null}

291 endif

292 else

293 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}

294 endif

295 endif

296 endif

297 else

298 iter

299 endif

300).midCriticalInstant >= -1

301

302 =======

303 def: checkPatternPrecedenceOneManyAtMostMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effects:Sequence(String)):Boolean =

304 let

305 effectSize:Integer = effects->size(),

306 firstEffect:String = effects->first()

307 in

308 subtrace->iterate(elem:trace::TraceElement;

309 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer) = Tuple{flag:Boolean = true, midCriticalInstant:

Integer = 0, i2:Integer = 1} |
310 let e:String = elem.event in
311 if iter.flag then

312 if e = cause then

313 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}

314 else

315 if iter.i2 > 1 and e = effects->at(iter.i2) then

316 if iter.i2 = effectSize then

317 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i2:Integer = null}

318 else

319 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2
+ 1}

320 endif

321 else

322 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then

323 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallnstant, i2:Integer = 2}

324 else

325 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}

326 endif

327 endif

328 endif

329 else

330 iter

331 endif

332).flag

335 def: checkPatternPrecedenceOneManyExactlyMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer
, effects:Sequence(String)):Boolean =

336 let

337 effectSize:Integer = effects->size(),

338 firstEffect:String = effects->first()

339 in

43

340 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), 1i2:
Integer) = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i2:Integer = 1}

341 |
342 if iter.flag then
343 let e:String = elem.event in
344 if e = cause then
345 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.
timestamp+distance), i2:Integer = 1}
346 else
347 if iter.i2 > 1 and e = effects->at(iter.i2) then
348 if iter.i2 = effectSize then
349 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i2:Integer = null}
350 else
351 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallnstants, 1i2:
Integer = iter.i2 + 1}
352 endif
353 else
354 if e = firstEffect then
355 let t:Integer = elem.timestamp in
356 if iter.midCriticalInstants->includes(t) then
357 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(
subElem | subElem > t), i2:Integer = 1}
358 else
359 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:
Integer = 2}
360 endif
361 else
362 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:
Integer = 1}
363 endif
364 endif
365 endif
366 else
367 iter
368 endif
369).flag
370
371

372 def: checkPatternPrecedenceOneManyMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:TemPsy::
TimeDistance, effects:Sequence(String)):Boolean =

373 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in

374 if which = TemPsy::ComparingOperator::ATLEAST then

375 self.checkPatternPrecedenceOneManyAtLeastMid(subtrace, cause, value, effects)

376 else

377 if which = TemPsy::ComparingOperator::ATMOST then

378 self.checkPatternPrecedenceOneManyAtMostMid (subtrace, cause, value, effects)
379 else

380 self.checkPatternPrecedenceOneManyExactlyMid(subtrace, cause, value, effects)
381 endif

382 endif

383

384

385 =======

386 def: checkPatternPrecedenceOneManyRight(subtrace:0rderedSet(trace::TraceElement), cause:String, effects:Sequence(
String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

387 let

388 effectSize:Integer = effects->size(),

389 firstEffect:String = effects->first(),

390 secondEffectDistance:Integer = effectDistances->at(2).value

391 in

392 subtrace->iterate(elem:trace::TraceElement;

393 iter:Tuple(flag:Boolean, result:Integer, i2:Integer, effectCriticallnstant:Integer)

394 = Tuple{flag:Boolean = true, result:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}

395 |

396 if iter.flag then

397 let e:String = elem.event in

398 if e = cause then

399 Tuple{flag:Boolean = false, result:Integer = -1, i2:Integer = null, effectCriticalInstant:Integer = null}
400 else

44

401 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then

402 if iter.i2 = effectSize then

403 Tuple{flag:Boolean = false, result:Integer = -2, i2:Integer = null, effectCriticalInstant:Integer = null}

404 else

405 let i22:Integer = iter.i2 + 1 in

406 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}

407 endif

408 else

409 if e = firstEffect then

410 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 2, effectCriticallnstant:Integer
= elem.timestamp + secondEffectDistance}

411 else

412 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, i2:Integer = 1, effectCriticallnstant:Integer
= iter.effectCriticallInstant}

413 endif

414 endif

415 endif

416 else

417 iter

418 endif

419).result >= -1

420

42] =======

422 def: checkPatternPrecedenceOneManyAtLeastMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance
:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

423 let

424 effectSize:Integer = effects->size(),

425 firstEffect:String = effects->first(),

426 secondEffectDistance:Integer = effectDistances->at(2).value

427 in

428 subtrace->iterate(elem:trace::TraceElement;

429 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticallnstant:Integer)

430 = Tuple{flag:Boolean = true, midCriticallnstant:Integer = 0, i2:Integer = 1, effectCriticallnstant:Integer = 0}

431 |

432 if iter.flag then

433 let e:String = elem.event in

434 if iter.midCriticalInstant = 0 and e = cause then //catch the first occurrence of cause

435 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

436 else

437 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticalInstant,
effectDistances->at(iter.i2).which) then

438 if iter.i2 = effectSize then

439 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, i2:Integer = null, effectCriticallInstant:

Integer = null}

440 else

441 let i22:Integer = iter.i2 + 1 in

442 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i22,

effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
443 endif

444 else

445 if e = firstEffect then

446 if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then

447 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}

448 else

449 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null, effectCriticalInstant:
Integer = null}

450 endif

451 else

452 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,

effectCriticallnstant:Integer = iter.effectCriticalInstant}

453 endif

454 endif

455 endif

456 else

457 iter

45

458 endif

459).midCriticalInstant >= -1

460

461 =======

462 def: checkPatternPrecedenceOneManyAtMostMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance:
Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

463 let

464 effectSize:Integer = effects->size(),

465 firstEffect:String = effects->first(),

466 secondEffectDistance:Integer = effectDistances->at(2).value

467 in

468 subtrace->iterate(elem:trace::TraceElement;

469 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer)

470 = Tuple{flag:Boolean = true, midCriticallnstant:Integer = 0, i2:Integer = 1, effectCriticalIlnstant:Integer = 0}

471 |

472 if iter.flag then

473 let e:String = elem.event in

474 if e = cause then

475 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}
476 else
477 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then

478 if iter.i2 = effectSize then

479 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, i2:Integer = null, effectCriticalInstant:
Integer = null}

480 else

481 let i22:Integer = iter.i2 + 1 in

482 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

483 endif

484 else

485 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then

486 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,
effectCriticallnstant:Integer = elem.timestamp + secondEffectDistance}

487 else

488 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,
effectCriticallnstant:Integer = iter.effectCriticalInstant}

489 endif

490 endif

491 endif

492 else

493 iter

494 endif

495) .flag

496

497 // added on 18/08/2015

498 def: checkPatternPrecedenceOneManyExactlyMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance
:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

499 let

500 effectSize:Integer = effects->size(),

501 firstEffect:String = effects->first(),

502 secondEffectDistance:Integer = effectDistances->at(2).value

503 in

504 subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), i2:
Integer, effectCriticalInstant:Integer)

505 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, i2:Integer =1,

effectCriticalInstant:Integer = 0}

506 |

507 if iter.flag then

508 let e:String = elem.event in

509 if e = cause then

510 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.
timestamp+midDistance), i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

511 else

512 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then

513 if iter.i2 = effectSize then

514 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, i2:Integer = null,

46

515
516
517

518
519
520
521
522
523

524
525

526
527
528

529
530
531
532
533
534
535
536
537
538

539
540
541
542
543
544
545
546
547
548
549
550
551

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

effectCriticalInstant:Integer = null}
else
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:
Integer = 122, effectCriticallnstant:Integer = elem.timestamp + effectDistances->at(i22).value}
endif
else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(
subElem | subElem > t), i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:
Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}

endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, i2:
Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
else
iter
endif
).flag

def: checkPatternPrecedenceOneManyMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance:TemPsy
::TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean

let midValue:Integer = midDistance.value, midwWhich:TemPsy: :ComparingOperator=midDistance.comparingOperator in

if midWhich = TemPsy::ComparingOperator::ATLEAST then

self.checkPatternPrecedenceOneManyAtLeastMidRight (subtrace, cause, midValue, effects, effectDistances)
else
if midWhich = TemPsy::ComparingOperator::ATMOST then
self.checkPatternPrecedenceOneManyAtMostMidRight (subtrace, cause, midValue, effects, effectDistances)
else
self.checkPatternPrecedenceOneManyExactlyMidRight (subtrace, cause, midValue, effects, effectDistances)
endif
endif
def: checkPatternPrecedenceManyOnePlain(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), effect:

String):Boolean =

let
causeSize:Integer = causes->size(),
firstCause:String = causes->first()
in

subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, il:Integer) = Tuple{flag:Boolean
= true, result:Integer = 0, il:Integer = 1}
[
if iter.flag then
let e:String = elem.event in
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then

Tuple{flag:Boolean = false, result:Integer = -1, il:Integer = null}
else
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = iter.il + 1}
endif
else
if e = firstCause then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2}
else
if e = effect then
Tuple{flag:Boolean = false, result:Integer = -2, il:Integer = null}
else
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1}
endif

47

584
585
586
587
588
589

590
591
592
593
594
595
596
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

621
622
623
624
625
626

627
628
629
630
631
632
633
634

635
636
637

def: checkPatternPrecedenceManyOneAtLeastMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effect:String):Boolean =

endif
endif
else
iter
endif
).result >= -1
let
causeSize:Integer = causes-
firstCause:String = causes-
in
subtrace->iterate(elem:trace:

>size(),
>first()

:TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer)
Integer = 0, il:Integer = 1}

|
if iter.flag then

let e:String = elem.event in
if iter.il > 1 and e = causes->at(iter.il) then

if iter.il = causeSize
Tuple{flag:Boolean =
else
Tuple{flag:Boolean =
1}
endif
else

then
iter.flag, midCriticalInstant:Integer

iter.flag, midCriticalInstant:Integer

if iter.midCriticallnstant = 0 and e = firstCause then

Tuple{flag:Boolean =
else
if e = effect then

iter.flag, midCriticalInstant:Integer

Tuple{flag:Boolean = true, midCriticalInstant:

elem.timestamp + distance, il:Integer

iter.midCriticalInstant, il:Integer =

iter.midCriticalInstant, il:Integer

if iter.midCriticalInstant = 0 or elem.timestamp < iter.midCriticalInstant then
Tuple{flag:Boolean = false, midCriticalInstant:Integer

else

Tuple{flag:Boolean = false, midCriticalInstant:Integer

endif
else
Tuple{flag:Boolean
endif
endif
endif
else
iter
endif
).midCriticalInstant >= -1

= iter.flag, midCriticalInstant:Integer

-2, il:Integer

-1, il:Integer

null}

null}

= iter.midCriticalIlnstant, il:Integer

= 1}

iter.il +

2}

= 1}

def: checkPatternPrecedenceManyOneAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effect:String):Boolean =

let
causeSize:Integer = causes-
firstCause:String = causes-
in
subtrace->iterate(elem:trace:

>size(),
>first()

:TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer)
Integer = 0, il:Integer = 1}

|
if iter.flag then

let e:String = elem.event in
if iter.il > 1 and e = causes->at(iter.il) then

if iter.il = causeSize
Tuple{flag:Boolean =

else
Tuple{flag:Boolean =

1}
endif
else
if e = firstCause then

then
iter.flag, midCriticalInstant:Integer

iter.flag, midCriticalInstant:Integer

48

Tuple{flag:Boolean = true, midCriticalInstant:

elem.timestamp + distance, il:Integer

iter.midCriticalInstant, il:Integer =

= 1}

iter.il +

638 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2}

639 else

640 if e = effect and elem.timestamp > iter.midCriticalInstant then

641 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, il:Integer = null}

642 else

643 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1}

644 endif

645 endif

646 endif

647 else

648 iter

649 endif

650).flag

651

652 =======

653 def: checkPatternPrecedenceManyOneExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effect:String):Boolean =

654 let

655 causeSize:Integer causes->size(),

656 firstCause:String = causes->first()

657 1in

658 subtrace->iterate(elem:trace::TraceElement;

659 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), il:Integer)

660 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, il:Integer = 1}

661 |

662 if iter.flag then

663 let e:String = elem.event in

664 if iter.il > 1 and e = causes->at(iter.il) then

665 if iter.il = causeSize then

666 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem
.timestamp+distance), il:Integer = 1}

667 else

668 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:Integer
= iter.il + 1}

669 endif

670 else

671 if e = firstCause then

672 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:Integer
=2}

673 else

674 if e = effect then

675 let t:Integer = elem.timestamp in

676 if iter.midCriticalInstants->includes(t) then

677 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t), il:Integer = 1}

678 else

679 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, il:Integer = null}

680 endif

681 else

682 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants, il:

Integer = 1}

683 endif

684 endif

685 endif

686 else

687 iter

688 endif

689).flag

690

691 =======

692 def: checkPatternPrecedenceManyOneMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), distance:
TemPsy: :TimeDistance, effect:String):Boolean =

693 let value:Integer = distance.value, which:TemPsy::ComparingOperator=distance.comparingOperator in

694 if which = TemPsy::ComparingOperator: :ATLEAST then

695 self.checkPatternPrecedenceManyOneAtLeastMid(subtrace, causes, value, effect)

696 else

697 if which = TemPsy::ComparingOperator::ATMOST then

698 self.checkPatternPrecedenceManyOneAtMostMid(subtrace, causes, value, effect)
699 else

49

700 self.checkPatternPrecedenceManyOneExactlyMid(subtrace, causes, value, effect)

701 endif
702 endif
703

704 =======

705 def: checkPatternPrecedenceManyOnelLeft(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effect:String):Boolean =

706 let

707 causeSize:Integer causes->size(),

708 firstCause:String = causes->first(),

709 secondCauseDistance:Integer = causeDistances->at(2).value

710 in

711 subtrace->iterate(elem:trace::TraceElement;

712 iter:Tuple(flag:Boolean, result:Integer, il:Integer, causeCriticallInstant:Integer)

713 = Tuple{flag:Boolean = true, result:Integer = 0, il:Integer = 1, causeCriticalInstant:Integer = 0}
714 |
715 if iter.flag then
716 let e:String = elem.event in
717 if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
718 if iter.il = causeSize then
719 Tuple{flag:Boolean = false, result:Integer = -1, il:Integer = null, causeCriticalInstant:Integer = null}
720 else
721 let ill:Integer = iter.il + 1 in
722 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = ill, causeCriticalInstant:Integer
= elem.timestamp + causeDistances->at(ill).value}
723 endif
724 else
725 if e = firstCause then
726 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, causeCriticalInstant:Integer =
elem.timestamp + secondCauseDistance}
727 else
728 if e = effect then
729 Tuple{flag:Boolean = false, result:Integer = -2, il:Integer = null, causeCriticalInstant:Integer = null}
730 else
731 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, causeCriticalInstant:Integer
= iter.causeCriticallInstant}
732 endif
733 endif
734 endif
735 else
736 iter
737 endif
738).result >= -1
739
740 =======

741 def: checkPatternPrecedenceManyOnelLeftAtLeastMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =

742 let

743 causeSize:Integer causes->size(),

744 firstCause:String = causes->first(),

745 secondCauseDistance:Integer = causeDistances->at(2).value

746 in

747 subtrace->iterate(elem:trace::TraceElement;

748 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticallnstant:Integer)

749 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticalInstant:Integer = 0}

750 |

751 if iter.flag then

752 let e:String = elem.event in

753 if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,

causeDistances->at(iter.il).which) then//imply iter.midCriticalInstant = 0

754 if iter.il = causeSize then

755 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant}

756 else

757 let ill:Integer = iter.il + 1 in

758 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(ill).value}

759 endif

50

760
761
762

763
764
765
766

767
768

769
770
771

772
773
774
775
776
T
778
779
780
781

782
783
784
785
786
787
788
789
790
791
792
793

794
795

796
797
798

799
800
801
802

803
804
805

806
807

808
809
810
811
812
813
814
815
816
817

else
if iter.midCriticalInstant = 0 and e = firstCause then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance}
else
if e = effect then
if iter.midCriticallnstant = 0 or elem.timestamp < iter.midCriticalInstant then

Tuple{flag:Boolean = false, midCriticallnstant:Integer = -2, il:Integer = null, causeCriticallnstant:
Integer = null}
else
Tuple{flag:Boolean = false, midCriticallnstant:Integer = -1, il:Integer = null, causeCriticallInstant:
Integer = null}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant}
endif
endif
endif
else
iter
endif

) .midCriticallInstant >= -1

def: checkPatternPrecedenceManyOneLeftAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =

let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value
in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticallnstant:Integer)
= Tuple{flag:Boolean = true, midCriticallnstant:Integer = 0, il:Integer = 1, causeCriticallnstant:Integer = 0}
I
if iter.flag then
let e:String = elem.event in
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant}
else

let ill:Integer = iter.il + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(ill).value}
endif
else
if e = firstCause then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance}
else
if e = effect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, il:Integer = null, causeCriticalInstant:
Integer = null}
else

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallInstant}
endif
endif

endif
else

iter
endif
). flag

def: checkPatternPrecedenceManyOneLeftExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

51

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
818 let
819 causeSize:Integer = causes->size(),
820 firstCause:String = causes->first(),
821 secondCauseDistance:Integer = causeDistances->at(2).value
822 in
823 subtrace->iterate(elem:trace::TraceElement;
824 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), il:Integer, causeCriticalInstant:Integer)
825 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, il:Integer =1,
causeCriticalInstant:Integer = 0}

826 |

827 if iter.flag then

828 let e:String = elem.event in

829 if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallInstant,

causeDistances->at(iter.il).which) then

830 if iter.il = causeSize then

831 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem
.timestamp+midDistance), il:Integer = 1, causeCriticallnstant:Integer = iter.causeCriticalInstant}

832 else

833 let ill:Integer = iter.il + 1 in

834 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:Integer
= 111, causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(ill).value}

835 endif

836 else

837 if e = firstCause then

838 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:Integer
= 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance}

839 else

840 if e = effect then

841 let t:Integer = elem.timestamp in

842 if iter.midCriticalInstants->includes(t) then

843 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->select(

subElem | subElem > t), il:Integer = 1, causeCriticallInstant:Integer = iter.causeCriticalInstant}
844 else
845 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, il:Integer = null,
causeCriticalInstant:Integer = null}

846 endif

847 else

848 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallnstant}

849 endif

850 endif

851 endif

852 else

853 iter

854 endif

855).flag

856

857 =======

858 def: checkPatternPrecedenceManyOnelLeftMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effect:String):
Boolean =

859 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator=midDistance.comparingOperator in

860 if midWhich = TemPsy::ComparingOperator: :ATLEAST then

861 self.checkPatternPrecedenceManyOneLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effect)

862 else

863 if midWhich = TemPsy::ComparingOperator::ATMOST then

864 self.checkPatternPrecedenceManyOneLeftAtMostMid(subtrace, causes, causeDistances, midValue, effect)
865 else

866 self.checkPatternPrecedenceManyOnelLeftExactlyMid(subtrace, causes, causeDistances, midValue, effect)
867 endif

868 endif

869

870 =======

871 def: checkPatternPrecedenceManyManyPlain(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), effects:
Sequence(String)):Boolean =

872 let

873 causeSize:Integer causes->size(),

874 firstCause:String = causes->first(),

52

875
876
877
878
879

880
881
882
883
884
885
886
887
888
889
890
891

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

931
932
933
934
935
936
937
938
939

effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last()
in
subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, il:Integer, i2:Integer) = Tuple{
flag:Boolean = true, result:Integer = 0, il:Integer = 1, i2:Integer = 1}
I
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, result:Integer = -2, il:Integer = null, i2:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, result:Integer = -1, il:Integer = null, i2:Integer = null}
else
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = iter.il + 1, i2:Integer = iter
.12 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = iter.il + 1, i2:Integer
else
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = iter.il + 1, i2:Integer
endif
endif
endif
else
if e = firstCause then
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, i2:Integer = 1}
endif
endif
else
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, i2:Integer = 1}
endif
endif
endif
endif
endif
else
iter
endif
).result >= -1

2}

1}

def: checkPatternPrecedenceManyManyAtLeastMid(subtrace:0OrderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effects:Sequence(String)):Boolean =

let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last()

in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, i2:Integer) = Tuple{flag:Boolean = true,
midCriticalInstant:Integer = 0, il:Integer = 1, i2:Integer = 1} |

53

940 if iter.flag then

941 let e:String = elem.event in
942 if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticalInstant then
943 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, i2:Integer = null} //
satisfaction
944 else
945 if iter.i2 = effectSize and e = lastEffect then
946 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, il:Integer = null, i2:Integer = null} //
violation
947 else
948 if iter.il > 1 and e = causes->at(iter.il) then
949 if iter.il = causeSize then
950 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, il:Integer =1,
i2:Integer = 1}
951 else
952 if e = effects->at(iter.i2) then
953 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer = iter
.i1 + 1, i2:Integer = iter.i2 + 1} // a potential violation to time distance
954 else
955 if e = firstEffect then
956 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
iter.il + 1, i2:Integer = 2} // a potential violation
957 else
958 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
iter.il + 1, i2:Integer = 1}
959 endif
960 endif
961 endif
962 else
963 if iter.midCriticalInstant = 0 and e = firstCause then
964 if e = effects->at(iter.i2) then
965 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = iter.i2 + 1}
966 else
967 if e = firstEffect then
968 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 2} // a potential violation
969 else
970 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 1}
971 endif
972 endif
973 else
974 if e = effects->at(iter.i2) then
975 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = iter.i2 + 1}
976 else
977 if e = firstEffect then
978 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = 2} // a potential violation
979 else
980 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = 1}
981 endif
982 endif
983 endif
984 endif
985 endif
986 endif
987 else
988 iter
989 endif
990).midCriticalInstant >= -1
991
992 =======

993 def: checkPatternPrecedenceManyManyAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effects:Sequence(String)):Boolean =

994 let

995 causeSize:Integer = causes->size(),

54

996 firstCause:String = causes->first(),

997 effectSize:Integer = effects->size(),

998 firstEffect:String = effects->first(),

999 lastEffect:String = effects->last()

1000 in

1001 subtrace->iterate(elem:trace::TraceElement;

1002 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, i2:Integer) = Tuple{flag:Boolean = true,
midCriticalInstant:Integer = 0, il:Integer = 1, i2:Integer = 1}

1003 |
1004 if iter.flag then
1005 let e:String = elem.event in
1006 if iter.i2 = effectSize and e = lastEffect then
1007 Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null}
1008 else
1009 if iter.il > 1 and e = causes->at(iter.il) then
1010 if iter.il = causeSize then
1011 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, il:Integer = 1, i2:
Integer = 1}
1012 else
1013 if iter.i2 > 1 and e = effects->at(iter.i2) then
1014 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = iter.
il + 1, i2:Integer = iter.i2 + 1}
1015 else
1016 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1017 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter
.i1 + 1, i2:Integer = 2}
1018 else
1019 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter
.i1 + 1, i2:Integer = 1}
1020 endif
1021 endif
1022 endif
1023 else
1024 if e = firstCause then
1025 if iter.i2 > 1 and e = effects->at(iter.i2) then
1026 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:
Integer = iter.i2 + 1}
1027 else
1028 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1029 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 2}
1030 else
1031 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 1}
1032 endif
1033 endif
1034 else
1035 if iter.i2 > 1 and e = effects->at(iter.i2) then
1036 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = iter.i2 + 1}
1037 else
1038 if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
1039 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = 2}
1040 else
1041 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = 1}
1042 endif
1043 endif
1044 endif
1045 endif
1046 endif
1047 else
1048 iter
1049 endif
1050).flag
1051
1052 =======

1053 def: checkPatternPrecedenceManyManyExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

55

1054 let
1055 causeSize:Integer = causes->size(),
1056 firstCause:String = causes->first(),
1057 effectSize:Integer = effects->size(),
1058 firstEffect:String = effects->first(),
1059 lastEffect:String = effects->last()
1060 in
1061 subtrace->iterate(elem:trace::TraceElement;
1062 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), il:Integer, i2:Integer)
1063 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, il:Integer = 1, i2:Integer = 1}
1064 |
1065 if iter.flag then
1066 let e:String = elem.event in
1067 if iter.i2 = effectSize and e = lastEffect then
1068 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, il:Integer = null, i2:Integer = null}
1069 else
1070 if iter.il > 1 and e = causes->at(iter.il) then
1071 if iter.il = causeSize then
1072 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append
elem.timestamp+distance), il:Integer = 1, i2:Integer = 1}
1073 else
1074 if iter.i2 > 1 and e = effects->at(iter.i2) then
1075 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = iter.il + 1, i2:Integer = iter.i2 + 1}
1076 else
1077 if e = firstEffect then
1078 let t:Integer = elem.timestamp in
1079 if iter.midCriticalInstants->includes(t) then
1080 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = iter.il + 1, i2:Integer = 1}
1081 else
1082 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
Integer = iter.il + 1, i2:Integer = 2}
1083 endif
1084 else
1085 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = iter.il + 1, i2:Integer = 1}
1086 endif
1087 endif
1088 endif
1089 else
1090 if e = firstCause then
1091 if iter.i2 > 1 and e = effects->at(iter.i2) then
1092 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, i2:Integer = iter.i2 + 1}
1093 else
1094 if e = firstEffect then
1095 let t:Integer = elem.timestamp in
1096 if iter.midCriticalInstants->includes(t) then
1097 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 2, i2:Integer = 1}
1098 else
1099 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
Integer = 2, i2:Integer = 2}
1100 endif
1101 else
1102 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, i2:Integer = 1}
1103 endif
1104 endif
1105 else
1106 if iter.i2 > 1 and e = effects->at(iter.i2) then
1107 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, i2:Integer = iter.i2 + 1}
1108 else
1109 if e = firstEffect then
1110 let t:Integer = elem.timestamp in
1111 if iter.midCriticalInstants->includes(t) then

distance:Integer, effects:Sequence(String)):Boolean =

56

(

il:

il:

1112

1113
1114

1115
1116
1117

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

1143
1144
1145
1146
1147
1148
1149
1150
1151

1152
1153
1154
1155
1156

1157
1158

1159
1160

1161
1162
1163
1164

1165
1166

1167

1168

Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 1, i2:Integer = 1}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer)

Integer = 1, i2:Integer = 2}

iter.midCriticalInstants, il:

endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, i2:Integer = 1}
endif
endif
endif
endif
endif
else
iter
endif
). flag

def: checkPatternPrecedenceManyManyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), distance:
TemPsy::TimeDistance, effects:Sequence(String)):Boolean =
let value:Integer = distance.value, which:TemPsy::ComparingOperator=distance.comparingOperator in
if which = TemPsy::ComparingOperator: :ATLEAST then
self.checkPatternPrecedenceManyManyAtLeastMid(subtrace, causes, value, effects)
else

if which = TemPsy::ComparingOperator::ATMOST then
self.checkPatternPrecedenceManyManyAtMostMid (subtrace, causes, value, effects)
else
self.checkPatternPrecedenceManyManyExactlyMid(subtrace, causes, value, effects)
endif
endif
def: checkPatternPrecedenceManyManylLeft(subtrace:0OrderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String)):Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last()
in

subtrace->iterate(elem:trace::TraceElement; iter:Tuple(flag:Boolean, result:Integer, il:Integer, causeCriticalInstant
:Integer, i2:Integer) = Tuple{flag:Boolean = true, result:Integer = 0, il:Integer = 1, causeCriticalInstant:
Integer = 0, i2:Integer = 1}
|
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, result:Integer = -2, il:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, result:Integer = -1, il:Integer = null, causeCriticalInstant:Integer = null, i2
:Integer = null}
else
let ill:Integer = iter.il + 1 in
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = ill, causeCriticalInstant:
Integer = elem.timestamp + causeDistances->at(ill).value, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = ill, causeCriticalInstant:
Integer = elem.timestamp + causeDistances->at(ill).value, i2:Integer = 2}
else

57

1169

1170
1171
1172
1173
1174
1175
1176

1177
1178
1179

1180
1181

1182
1183
1184
1185
1186

1187
1188
1189

1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

1214
1215
1216
1217
1218

1219
1220
1221

1222
1223

Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = ill, causeCriticalInstant:
Integer = elem.timestamp + causeDistances->at(ill).value, i2:Integer = 1}
endif
endif
endif
else
if e = firstCause then
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, causeCriticallInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}

2, causeCriticallInstant:

else
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, causeCriticalInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
endif
endif
else
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, causeCriticallInstant:
Integer = iter.causeCriticallnstant, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, causeCriticalInstant:
Integer = iter.causeCriticallnstant, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer
Integer = iter.causeCriticallnstant, i2:Integer = 1}

1, causeCriticalInstant:

endif
endif
endif
endif

endif
else

iter
endif

).result >= -1

def: checkPatternPrecedenceManyManylLeftAtLeastMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last()

subtrace->iterate(elem:trace: :TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer, i2:Integer) = Tuple{
flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticalInstant:Integer = 0, i2:
Integer = 1}
|
if iter.flag then
let e:String = elem.event in
if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticallnstant then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, causeCriticalInstant:Integer =
null, i2:Integer = null} // satisfaction
else
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, il:Integer = null, causeCriticalInstant:Integer
= null, i2:Integer = null} // violation
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticalInstant,
causeDistances->at(iter.il).which) then

58

1224
1225

1226
1227

1228

1229

1230
1231
1232

1233
1234

1235
1236
1237
1238
1239
1240
1241

1242
1243
1244

1245
1246

1247
1248
1249
1250
1251

1252
1253
1254

1255
1256

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

1270
1271
1272
1273
1274

if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = elem.timestamp + midDistance, il:Integer =
1, causeCriticallInstant:Integer = iter.causeCriticallnstant, i2:Integer = 1}
else
let ill:Integer = iter.il + 1, nextCauseCriticallnstant:Integer = elem.timestamp + causeDistances->at(ill
) .value in
if e = effects->at(iter.i2) then // for instance {causes: [a,b,c], effects: [d,a,b]}, when il =1, i2 = 2
or i1 = 2, i2 = 3. But it is not possible il equals to causeSize, since causes cannot be a sublist
of effects.
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = nextCauseCriticallnstant, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
111, causeCriticallInstant:Integer = nextCauseCriticallnstant, i2:Integer = 2} // a potential
violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
111, causeCriticallInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1}
endif
endif
endif
else
if iter.midCriticalInstant = 0 and e = firstCause then
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2} // a
potential violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
endif
endif
else
if e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2} // a potential
violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
endif
endif
endif
endif
endif
endif
else
iter
endif

).midCriticalInstant >= -1

def: checkPatternPrecedenceManyManylLeftAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),

59

1275
1276
1277
1278
1279
1280

1281
1282
1283
1284
1285

1286
1287

1288
1289

1290
1291

1292
1293

1294
1295
1296

1297
1298

1299
1300
1301
1302
1303
1304
1305

1306
1307
1308

1309
1310

1311
1312
1313
1314
1315

1316
1317
1318

1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329

firstEffect:String = effects->first(),
lastEffect:String = effects->last()
in
subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer, i2:Integer)
= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallInstant:Integer = 0, i2:
Integer = 1}
|
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, il:Integer = null, causeCriticalInstant:Integer
= null, i2:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then

if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
else
let ill:Integer = iter.il + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(ill).

value in
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = iter.i2 + 1}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer
causeCriticalInstant:Integer = nextCauseCriticallInstant, i2:Integer = 2}

i11,

else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1}
endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}

1]
N

endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
else

if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
endif
endif
endif
endif

endif
else

iter
endif
). flag

60

1330
1331
1332

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342

1343

1344
1345
1346
1347
1348

1349
1350

1351
1352

1353
1354

1355
1356

1357
1358
1359
1360
1361

1362
1363

1364
1365
1366

1367
1368
1369
1370
1371
1372
1373

1374
1375
1376
1377
1378

1379
1380

def: checkPatternPrecedenceManyManylLeftExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last()

subtrace->iterate(elem:trace::TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), il:Integer, causeCriticalInstant:Integer, i2:
Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, il:Integer = 1,
causeCriticalInstant:Integer = 0, i2:Integer = 1}
|
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, il:Integer = null,
causeCriticalInstant:Integer = null, i2:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallInstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(
elem.timestamp+midDistance), il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallInstant,
i2:Integer = 1}
else
let ill:Integer = iter.il + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(ill).
value in
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = ill, causeCriticallnstant:Integer = nextCauseCriticalInstant, i2:Integer = iter.i2 + 1}
else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = ill, causeCriticalInstant:Integer =
nextCauseCriticalInstant, i2:Integer = 1}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = i11l, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = ill, causeCriticalInstant:Integer = nextCauseCriticallnstant, i2:Integer = 1}
endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.
i2 + 1}
else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance, i2:Integer = 1}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:

61

Integer = 2, causeCriticallInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer =

2}

1381 endif

1382 else

1383 Tuple{flag:Boolean = iter.flag, midCriticallnstants:Sequence(Integer) = iter.midCriticallnstants, il:

Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}

1384 endif

1385 endif

1386 else

1387 if iter.i2 > 1 and e = effects->at(iter.i2) then

1388 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallnstants, il:

Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = iter.i2 + 1}

1389 else

1390 if e = firstEffect then

1391 let t:Integer = elem.timestamp in

1392 if iter.midCriticalInstants->includes(t) then

1393 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticallnstant, i2:Integer = 1}

1394 else

1395 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, causeCriticallnstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}

1396 endif

1397 else

1398 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:

Integer = 1, causeCriticallnstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}

1399 endif

1400 endif

1401 endif

1402 endif

1403 endif

1404 else

1405 iter

1406 endif

1407).flag

1408

1409 =======

1410 def: checkPatternPrecedenceManyManyLeftMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String)):Boolean =

1411 let midValue:Integer = midDistance.value, midwWhich:TemPsy: :ComparingOperator=midDistance.comparingOperator in

1412 if midwWhich = TemPsy::ComparingOperator: :ATLEAST then

1413 self.checkPatternPrecedenceManyManylLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effects)

1414 else

1415 if midWhich = TemPsy::ComparingOperator::ATMOST then

1416 self.checkPatternPrecedenceManyManyLeftAtMostMid(subtrace, causes, causeDistances, midValue, effects)
1417 else

1418 self.checkPatternPrecedenceManyManyLeftExactlyMid(subtrace, causes, causeDistances, midValue, effects)
1419 endif

1420 endif

1421

1422 =======

1423 def: checkPatternPrecedenceManyManyRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), effects:
Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

1424 let

1425 causeSize:Integer = causes->size(),

1426 firstCause:String = causes->first(),

1427 effectSize:Integer = effects->size(),

1428 firstEffect:String = effects->first(),

1429 lastEffect:String = effects->last(),

1430 secondEffectDistance:Integer = effectDistances->at(2).value

1431 in

1432 subtrace->iterate(elem:trace::TraceElement;

1433 iter:Tuple(flag:Boolean, result:Integer, il:Integer, i2:Integer, effectCriticallnstant:Integer)

1434 = Tuple{flag:Boolean = true, result:Integer = 0, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = 0}
1435 |

1436 if iter.flag then

1437 let e:String = elem.event in

1438 if iter.i2 = effectSize and e = lastEffect then

62

1439 Tuple{flag:Boolean = false, result:Integer = -2, il:Integer = null, i2:Integer = null, effectCriticalInstant:
Integer = null}

1440 else
1441 if iter.il > 1 and e = causes->at(iter.il) then
1442 if iter.il = causeSize then
1443 Tuple{flag:Boolean = false, result:Integer = -1, il:Integer = null, i2:Integer = null,
effectCriticalInstant:Integer = null}
1444 else
1445 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
1446 let i22:Integer = iter.i2 + 1 in
1447 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = iter.il + 1, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1448 else
1449 if e = firstEffect then
1450 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = iter.il + 1, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1451 else
1452 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = iter.il + 1, i2:Integer =1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
1453 endif
1454 endif
1455 endif
1456 else
1457 if e = firstCause then
1458 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallInstant,
effectDistances->at(iter.i2).which) then
1459 let i22:Integer = iter.i2 + 1 in
1460 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, i2:Integer = 122,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1461 else
1462 if e = firstEffect then
1463 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1464 else
1465 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, i2:Integer =1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
1466 endif
1467 endif
1468 else
1469 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
1470 let i22:Integer = iter.i2 + 1 in
1471 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
1472 else
1473 if e = firstEffect then
1474 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
1475 else
1476 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, i2:Integer =1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
1477 endif
1478 endif
1479 endif
1480 endif
1481 endif
1482 else
1483 iter

1484 endif

1485).result >= -1

1486

1487 =======

1488 def: checkPatternPrecedenceManyManyAtLeastMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

1489 let

1490 causeSize:Integer causes->size(),

1491 firstCause:String = causes->first(),

63

1492
1493
1494
1495
1496
1497
1498
1499

1500
1501
1502
1503
1504

1505
1506
1507

1508
1509
1510
1511

1512
1513

1514
1515

1516
1517
1518

1519
1520

1521
1522
1523
1524
1525
1526

1527
1528

1529
1530
1531

1532
1533

1534
1535
1536
1537

1538
1539

1540
1541
1542

effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, i2:Integer, effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticallnstant:Integer = 0, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:

Integer = 0}

if iter.flag then
let e:String = elem.event in
if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticallnstant then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, i2:Integer = null,

effectCriticalInstant:Integer = null} // satisfaction

else
if iter.i2 = effectSize and e = lastEffect then

Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, il:Integer = null, i2:Integer = null,
effectCriticalInstant:Integer = null} // violation

else

if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = elem.timestamp + midDistance, il:Integer =
1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter
.11 + 1, i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(
i22).value}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
iter.il + 1, i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp +
secondEffectDistance} // a potential violation
else
Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer
iter.il + 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
else
if iter.midCriticalInstant = 0 and e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 122, effectCriticallnstant:Integer = elem.timestamp + effectDistances->at(i22).value}

else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a
potential violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 1, effectCriticallnstant:Integer = iter.effectCriticalInstant}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect then//midCriticalInstant is either 0 or midCriticallnstant > elem.timestamp
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a

64

1543
1544

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557

1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

1569
1570
1571
1572
1573

1574
1575
1576
1577

1578
1579

1580
1581

1582
1583
1584

1585
1586

1587
1588
1589
1590
1591
1592

1593
1594

1595
1596
1597

potential violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
endif
endif
endif
else
iter
endif

).midCriticalInstant >= -1

def: checkPatternPrecedenceManyManyAtMostMidRight (subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),

effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value

subtrace->iterate(elem:trace::TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, i2:Integer, effectCriticallnstant:Integer)

= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:

Integer = 0}
|
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null,
effectCriticalInstant:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = iter.
il + 1, i2:Integer = i22, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).
value}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter

.i1 + 1, i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
else

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter

.i1 + 1, i2:Integer = 1, effectCriticallnstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:

Integer = 122, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,

65

1598
1599

1600
1601
1602
1603

1604
1605

1606
1607
1608

1609
1610

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622

1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

1633

1634
1635
1636
1637
1638

1639
1640
1641
1642

1643
1644

1645
1646

1647
1648
1649
1650

i2:Integer = 2, effectCriticallnstant:Integer = elem.timestamp + secondEffectDistance}

else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
else

if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then

let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = 122, effectCriticallnstant:Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = 2, effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
endif
endif
else
iter
endif
). flag
def: checkPatternPrecedenceManyManyExactlyMidRight (subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value
in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), il:Integer, i2:Integer, effectCriticalInstant:
Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, il:Integer = 1, i2:Integer
effectCriticalInstant:Integer = 0}

1}
=

|
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, il:Integer = null, i2:Integer = null,
effectCriticalInstant:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(
elem.timestamp+midDistance), il:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = iter.il + 1, i2:Integer = i22, effectCriticallnstant:Integer = elem.timestamp +
effectDistances->at(i22).value}
else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then

66

1651

1652
1653

1654
1655
1656

1657
1658
1659
1660
1661
1662

1663
1664

1665
1666
1667
1668
1669

1670
1671

1672
1673
1674

1675
1676
1677
1678

1679
1680

1681
1682
1683
1684
1685

Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = iter.il + 1, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticallInstant}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = iter.il + 1, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = iter.il + 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, i2:Integer = 122, effectCriticallnstant:Integer = elem.timestamp + effectDistances->at(
i22).value}
else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 2, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticallnstant}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, i2:Integer = 1, effectCriticallnstant:Integer = iter.effectCriticallnstant}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, i2:Integer = 122, effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(
i22).value}
else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticallnstant}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, i2:Integer = 1, effectCriticallnstant:Integer = iter.effectCriticallnstant}
endif
endif
endif
endif
endif
else
iter
endif

). flag

67

1702

1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726

1727

1728
1729
1730
1731
1732

1733
1734

1735
1736

1737
1738
1739

1740
1741

1742
1743
1744

1745
1746

1747
1748
1749
1750
1751
1752

1753

def: checkPatternPrecedenceManyManyMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:TemPsy::TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:

Integer))):Boolean =
let midValue:Integer = midDistance.value, midwWhich:TemPsy: :ComparingOperator=midDistance.comparingOperator in
if midWhich = TemPsy::ComparingOperator::ATLEAST then
self.checkPatternPrecedenceManyManyAtLeastMidRight (subtrace, causes, midValue, effects, effectDistances)
else
if midWhich = TemPsy::ComparingOperator::ATMOST then
self.checkPatternPrecedenceManyManyAtMostMidRight (subtrace, causes, midValue, effects, effectDistances)
else
self.checkPatternPrecedenceManyManyExactlyMidRight(subtrace, causes, midValue, effects, effectDistances)
endif
endif

def: checkPatternPrecedenceManyManylLeftRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String), effectDistances:Sequence

(Tuple(which:Integer, value:Integer))):Boolean =

let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value
in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, result:Integer, il:Integer, causeCriticallnstant:Integer, i2:Integer,
effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, result:Integer = 0, il:Integer = 1, causeCriticalIlnstant:Integer = 0, i2:Integer =
effectCriticalInstant:Integer = 0}
I
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, result:Integer = -2, il:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null, effectCriticalInstant:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, result:Integer = -1, il:Integer = null, causeCriticalInstant:Integer = null,
:Integer = null, effectCriticalInstant:Integer = null}
else
let ill:Integer = iter.il + 1 in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = ill, causeCriticalInstant:

1,

i2

Integer = elem.timestamp + causeDistances->at(ill).value, i2:Integer = 122, effectCriticalInstant:

Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect then

Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = ill, causeCriticalInstant:
Integer = elem.timestamp + causeDistances->at(ill).value, i2:Integer = 2, effectCriticallnstant:

Integer = elem.timestamp + secondEffectDistance}
else

Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = ill, causeCriticalInstant:

Integer = elem.timestamp + causeDistances->at(ill).value, i2:Integer = 1, effectCriticallInstant:
Integer = iter.effectCriticallnstant}
endif
endif
endif

else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in

68

1754 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, causeCriticallInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 122, effectCriticalInstant:Integer =
elem.timestamp + effectDistances->at(i22).value}

1755 else

1756 if e = firstEffect then

1757 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, causeCriticallInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2, effectCriticalInstant:Integer =
elem.timestamp + secondEffectDistance}

1758 else

1759 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 2, causeCriticallInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticallnstant}

1760 endif

1761 endif

1762 else

1763 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,

effectDistances->at(iter.i2).which) then
1764 let i22:Integer = iter.i2 + 1 in
1765 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, causeCriticallInstant:
Integer = iter.causeCriticallnstant, i2:Integer = i22, effectCriticalInstant:Integer = elem.
timestamp + effectDistances->at(i22).value}

1766 else

1767 if e = firstEffect then

1768 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, causeCriticallInstant:
Integer = iter.causeCriticallnstant, i2:Integer = 2, effectCriticalInstant:Integer = elem.
timestamp + secondEffectDistance}

1769 else

1770 Tuple{flag:Boolean = iter.flag, result:Integer = iter.result, il:Integer = 1, causeCriticallInstant:
Integer = iter.causeCriticallnstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalIlnstant}

1771 endif

1772 endif

1773 endif

1774 endif

1775 endif

1776 else

1777 iter

1778 endif

1779).result >= -1

1780

1781

1782 def: checkPatternPrecedenceManyManyLeftAtLeastMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(
String), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(
String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

1783 let

1784 causeSize:Integer causes->size(),

1785 firstCause:String = causes->first(),

1786 secondCauseDistance:Integer = causeDistances->at(2).value,

1787 effectSize:Integer = effects->size(),

1788 firstEffect:String = effects->first(),

1789 lastEffect:String = effects->last(),

1790 secondEffectDistance:Integer = effectDistances->at(2).value

1791 in

1792 subtrace->iterate(elem:trace::TraceElement;

1793 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer, i2:Integer,
effectCriticalInstant:Integer)

1794 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallInstant:Integer = 0, i2:
Integer = 1, effectCriticallnstant:Integer = 0}

1795 |

1796 if iter.flag then

1797 let e:String = elem.event in

1798 if iter.midCriticalInstant > 0 and elem.timestamp >= iter.midCriticalInstant then

1799 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, causeCriticalInstant:Integer =
null, i2:Integer = null, effectCriticalInstant:Integer = null} // satisfaction

1800 else

1801 if iter.i2 = effectSize and e = lastEffect then

1802 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -2, il:Integer = null, causeCriticalInstant:Integer

= null, i2:Integer = null, effectCriticalInstant:Integer = null} // violation
1803 else

69

1804

1805
1806

1807
1808

1809

1810
1811

1812
1813
1814

1815
1816

1817
1818
1819
1820
1821
1822

1823
1824

1825
1826
1827

1828
1829

1830
1831
1832
1833

1834
1835

1836
1837
1838

1839
1840

1841
1842
1843
1844
1845
1846
1847

if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer =
1, causeCriticallInstant:Integer = iter.causeCriticallInstant, i2:Integer = 1, effectCriticallnstant:
Integer = iter.effectCriticalInstant}
else
let ill:Integer = iter.il + 1, nextCauseCriticallnstant:Integer = elem.timestamp + causeDistances->at(ill
).value in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = nextCauseCriticallnstant, i2:Integer = 122, effectCriticallInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
111, causeCriticallInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a potential violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =
il11, causeCriticallInstant:Integer = nextCauseCriticalInstant, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
else
if iter.midCriticalInstant = 0 and e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance} // a potential violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalIlnstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant
:Integer = elem.timestamp + secondEffectDistance} // a potential violation
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant
:Integer = iter.effectCriticalInstant}
endif
endif
endif
endif
endif
endif
else

70

1848
1849
1850
1851
1852
1853

1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864

1865

1866
1867
1868
1869
1870

1871
1872

1873
1874

1875
1876

1877

1878
1879

1880
1881
1882

1883
1884

1885
1886
1887
1888
1889
1890

1891
1892

1893
1894
1895

iter
endif
) .midCriticalInstant >= -1

def: checkPatternPrecedenceManyManylLeftAtMostMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(
String), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(
String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value
in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticallInstant:Integer, i2:Integer,
effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallInstant:Integer = 0, i2:
Integer = 1, effectCriticalInstant:Integer = 0}
|
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = null, il:Integer = null, causeCriticalInstant:Integer
= null, i2:Integer = null, effectCriticalInstant:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticallnstant}
else
let ill:Integer = iter.il + 1, nextCauseCriticallnstant:Integer = elem.timestamp + causeDistances->at(ill).
value in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = i22, effectCriticallInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = nextCauseCriticallnstant, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = nextCauseCriticallInstant, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticalInstant}
endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallInstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2,
effectCriticalInstant:Integer = elem.timestamp + secondEffectDistance}

71

1896
1897

1898
1899
1900
1901

1902
1903

1904
1905
1906

1907
1908

1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920

1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931

1932
1933
1934
1935
1936

1937

1938
1939

1940

1941

1942

1943

1944

1945

else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + effectDistances->at(i22).value}
else
if e = firstEffect and elem.timestamp > iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticallInstant:
Integer = iter.effectCriticalInstant}

def: checkPatternPrecedenceManyManylLeftExactlyMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(
String), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(
String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value
in

subtrace->iterate(elem:trace: :TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), il:Integer, causeCriticalInstant:Integer, i2:
Integer, effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, il:Integer = 1,
causeCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
|
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = null, il:Integer = null,
causeCriticalInstant:Integer = null, i2:Integer = null, effectCriticalInstant:Integer = null}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants->append(
elem.timestamp+midDistance), il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallInstant,
i2:Integer = 1, effectCriticallnstant:Integer = iter.effectCriticalInstant}
else
let ill:Integer = iter.il + 1, nextCauseCriticalInstant:Integer = elem.timestamp + causeDistances->at(ill).
value in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallInstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in

72

1946

1947
1948
1949
1950
1951

1952
1953

1954
1955
1956

1957
1958
1959
1960
1961
1962

1963
1964

1965
1966
1967
1968
1969

1970
1971

1972
1973
1974

1975
1976
1977
1978

1979
1980

1981
1982
1983
1984
1985

1986
1987

1988

Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = ill, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticallInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = ill, causeCriticalInstant:Integer =
nextCauseCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = ill, causeCriticalInstant:Integer = nextCauseCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = ill, causeCriticalInstant:Integer = nextCauseCriticallnstant, i2:Integer =1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then

let i22:Integer = iter.i2 + 1 in

Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance, i2:Integer = 1, effectCriticallnstant:Integer = iter.effectCriticalInstant}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer =
2, effectCriticalInstant:Integer = t + secondEffectDistance}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 2, causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then

let i22:Integer = iter.i2 + 1 in

Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, causeCriticallnstant:Integer = iter.causeCriticallnstant, i2:Integer = i22,
effectCriticalInstant:Integer = elem.timestamp + effectDistances->at(i22).value}

else
if e = firstEffect then
let t:Integer = elem.timestamp in
if iter.midCriticalInstants->includes(t) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
select(subElem | subElem > t), il:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant
b
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, causeCriticallnstant:Integer = iter.causeCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}
endif

73

1989 else

1990 Tuple{flag:Boolean = iter.flag, midCriticallnstants:Sequence(Integer) = iter.midCriticalInstants, il:
Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

1991 endif
1992 endif
1993 endif
1994 endif
1995 endif

1996 else

1997 iter

1998 endif

1999).flag

2000

2001

2002 def: checkPatternPrecedenceManyManylLeftMidRight(subtrace:0OrderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

2003 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator=midDistance.comparingOperator in

2004 if midWhich = TemPsy::ComparingOperator: :ATLEAST then

2005 self.checkPatternPrecedenceManyManyLeftAtLeastMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)

2006 else

2007 if midWhich = TemPsy::ComparingOperator::ATMOST then

2008 self.checkPatternPrecedenceManyManyLeftAtMostMidRight(subtrace, causes, causeDistances, midValue, effects,
effectDistances)

2009 else

2010 self.checkPatternPrecedenceManyManyLeftExactlyMidRight(subtrace, causes, causeDistances, midValue, effects,
effectDistances)

2011 endif

2012 endif

2013

2014 =======

2015 def: checkPatternResponse(subtrace:0OrderedSet(trace::TraceElement), pattern:TemPsy::Pattern):Boolean =

2016 --check the satisfiability of the response pattern 'effect responding cause'

2017 --in the first event in the chain 'effect', it may contains time distance to the last event in the chain 'cause’
2018 if subtrace->isEmpty() then

2019 true

2020 else

2021 let orderPattern:TemPsy::0rderPattern = pattern.oclAsType(TemPsy: :0rderPattern),

2022 causes:Sequence(String) = orderPattern.block2.event.name,

2023 causeDistances:Sequence(Tuple(which:Integer, value:Integer)) = self.loadDistances(orderPattern.block2.
timeDistance),

2024 causeSize:Integer = causes->size(),

2025 effects:Sequence(String) = orderPattern.blockl.event.name,

2026 effectDistances:Sequence(Tuple(which:Integer, value:Integer)) = self.loadDistances(orderPattern.blockl.
timeDistance),

2027 effectSize:Integer = effects->size()

2028 in

2029 if causeDistances->isEmpty() then

2030 if effectDistances->isEmpty() then

2031 if orderPattern.timeDistance->isEmpty() then

2032 if causeSize = 1 then

2033 let cause:String = causes->first() in

2034 if effectSize = 1 then

2035 let effect:String = effects->first() in

2036 self.checkPatternResponseOneOnePlain(subtrace, cause, effect)

2037 else

2038 self.checkPatternResponseOneManyPlain(subtrace, cause, effects)

2039 endif

2040 else

2041 if effectSize = 1 then

2042 let effect:String = effects->first() in

2043 self.checkPatternResponseManyOnePlain(subtrace, causes, effect)

2044 else

2045 self.checkPatternResponseManyManyPlain(subtrace, causes, effects)

2046 endif

2047 endif

2048 else

74

2049 if causeSize = 1 then

2050 let cause:String = causes->first() in

2051 if effectSize = 1 then

2052 let effect:String = effects->first() in

2053 self.checkPatternResponseOneOneMid(subtrace, cause, orderPattern.timeDistance, effect)

2054 else

2055 self.checkPatternResponseOneManyMid(subtrace, cause, orderPattern.timeDistance, effects)

2056 endif

2057 else

2058 if effectSize = 1 then

2059 let effect:String = effects->first() in

2060 self.checkPatternResponseManyOneMid(subtrace, causes, orderPattern.timeDistance, effect)

2061 else

2062 self.checkPatternResponseManyManyMid(subtrace, causes, orderPattern.timeDistance, effects)

2063 endif

2064 endif

2065 endif

2066 else

2067 if orderPattern.timeDistance->isEmpty() then

2068 if causeSize = 1 then

2069 let cause:String = causes->first() in

2070 self.checkPatternResponseOneManyRight (subtrace, cause, effects, effectDistances)

2071 else

2072 self.checkPatternResponseManyManyRight(subtrace, causes, effects, effectDistances)

2073 endif

2074 else

2075 if causeSize = 1 then

2076 let cause:String = causes->first() in

2077 self.checkPatternResponseOneManyMidRight(subtrace, cause, orderPattern.timeDistance, effects,
effectDistances)

2078 else

2079 self.checkPatternResponseManyManyMidRight (subtrace, causes, orderPattern.timeDistance, effects,
effectDistances)

2080 endif

2081 endif

2082 endif

2083 else

2084 if effectDistances->isEmpty() then

2085 if orderPattern.timeDistance->isEmpty() then

2086 if effectSize = 1 then

2087 let effect:String = effects->first() in

2088 self.checkPatternResponseManyOnelLeft(subtrace, causes, causeDistances, effect)

2089 else

2090 self.checkPatternResponseManyManylLeft(subtrace, causes, causeDistances, effects)

2091 endif

2092 else

2093 if effectSize = 1 then

2094 let effect:String = effects->first() in

2095 self.checkPatternResponseManyOneLeftMid(subtrace, causes, causeDistances, orderPattern.timeDistance, effect
)

2096 else

2097 self.checkPatternResponseManyManylLeftMid(subtrace, causes, causeDistances, orderPattern.timeDistance,
effects)

2098 endif

2099 endif

2100 else

2101 if orderPattern.timeDistance->isEmpty() then

2102 self.checkPatternResponseManyManyLeftRight(subtrace, causes, causeDistances, effects, effectDistances)

2103 else

2104 self.checkPatternResponseManyManylLeftMidRight(subtrace, causes, causeDistances, orderPattern.timeDistance,

effects, effectDistances)

2105 endif

2106 endif

2107 endif

2108 endif

2109

2110 =======

2111 def: checkPatternResponseOneOnePlain(subtrace:0rderedSet(trace::TraceElement), cause:String, effect:String):Boolean =
2112 subtrace->iterate(

I0)

2113 elem:trace::TraceElement;
2114 result:Boolean = true

2115 |

2116 let e:String = elem.event in
2117 if e = cause then

2118 false
2119 else

2120 if e = effect then
2121 true
2122 else
2123 result
2124 endif
2125 endif

2126)

2127

2128 =======

2129 def: checkPatternResponseOneOneAtLeastMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effect:String):Boolean =

2130 subtrace->iterate(elem:trace::TraceElement;

2131 midCriticalInstant:Integer = 0

2132 |

2133 let e:String = elem.event in

2134 if e = cause then

2135 elem.timestamp + distance
2136 else

2137 if e = effect and elem.timestamp >= midCriticalInstant then
2138 0

2139 else

2140 midCriticalInstant

2141 endif

2142 endif

2143) = 0

2144

2145 =======

2146 def: checkPatternResponseOneOneAtMostMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effect:String):Boolean =

2147 subtrace->iterate(elem:trace::TraceElement;

2148 iter:Tuple(flag:Boolean, midCriticalInstant:Integer)

2149 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0}

2150 |

2151 if iter.flag then

2152 let e:String = elem.event in

2153 if iter.midCriticalInstant = 0 and e = cause then

2154 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance}
2155 else

2156 if e = effect then

2157 if elem.timestamp <= iter.midCriticallInstant then

2158 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0}

2159 else

2160 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1} // violation
2161 endif

2162 else

2163 iter

2164 endif

2165 endif

2166 else

2167 iter

2168 endif

2169).midCriticallInstant = 0
2170
2171
2172

checkPatternResponseOneOneExactlyMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effect:String):Boolean =

2173 subtrace->iterate(elem:trace::TraceElement;

2174 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer))

2175 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}}
2176 |

2177 if iter.flag then

2178 let e:String = elem.event in

76

2179
2180

2181
2182

2183
2184
2185

2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198

2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211

2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242

if e = cause then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(elem.
timestamp + distance)}
else
if e = effect and iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticallnstants->first()

then
let t:Integer = elem.timestamp in

if t = iter.midCriticalInstants->first() then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding
(1)}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants}
endif
else
iter
endif
endif
else
iter
endif

) .midCriticalInstants->isEmpty()

def: checkPatternResponseOneOneMid(subtrace:0OrderedSet(trace::TraceElement), cause:String, distance:TemPsy::
TimeDistance, effect:String):Boolean =
let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
if which = TemPsy::ComparingOperator: :ATLEAST then
self.checkPatternResponseOneOneAtLeastMid(subtrace, cause, value, effect)

else
if which = TemPsy::ComparingOperator::ATMOST then
self.checkPatternResponseOneOneAtMostMid(subtrace, cause, value, effect)
else
self.checkPatternResponseOneOneExactlyMid(subtrace, cause, value, effect)
endif
endif
def: checkPatternResponseOneManyPlain(subtrace:0rderedSet(trace::TraceElement), cause:String, effects:Sequence(String
)) :Boolean =
let
effectSize:Integer = effects->size(),
firstEffect:String = effects->first()
in

subtrace->iterate(
elem:trace: :TraceElement;
iter:Tuple(flag:Boolean, i2:Integer) = Tuple{flag:Boolean = true, i2:Integer = 1}
|
let e:String = elem.event in
if e = cause then
Tuple{flag:Boolean = false, i2:Integer = 1}
else
if not iter.flag then

if e = effects->at(iter.i2) then
if iter.i2 = effectSize then
Tuple{flag:Boolean = true, i2:Integer = 1}
else
Tuple{flag:Boolean = iter.flag, i2:Integer = iter.i2 + 1}
endif
else
if e = firstEffect then
Tuple{flag:Boolean = iter.flag, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, i2:Integer = 1}
endif
endif
else
iter
endif
endif
). flag

7

2243
2244
2245

2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263

2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279

2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301

2302
2303
2304
2305
2306
2307

def: checkPatternResponseOneManyAtLeastMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effects:Sequence(String)):Boolean =
let
effectSize:Integer = effects->size(),
firstEffect:String = effects->first()
in
subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer)
= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1}
|
let e:String = elem.event in
if e = cause then // latest cause
Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}
else
if not iter.flag then

if iter.i2 > 1 and e = effects->at(iter.i2) then
if iter.i2 = effectSize then // until effects->last(), the property is satisfied so far
Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2
+ 1}
endif
else
if e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
endif
endif
else
iter
endif
endif
). flag

def: checkPatternResponseOneManyAtMostMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effects:Sequence(String)):Boolean =
let
effectSize:Integer = effects->size(),
firstEffect:String = effects->first()
in
subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer)
= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1}
|
let e:String = elem.event in
if iter.flag then
if iter.midCriticalInstant = 0 then
if e = cause then

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, i2:Integer = 1}
else
iter
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) then
if iter.i2 = effectSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i2:Integer = 1}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2
+ 1}
endif
else

if e = firstEffect then
if elem.timestamp <= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2}
else

78

2308 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null}
2309 endif

2310 else

2311 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1}
2312 endif

2313 endif

2314 endif

2315 else

2316 iter

2317 endif

2318).midCriticalInstant = 0

2319

2320 =======

2321 def: checkPatternResponseOneManyExactlyMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:Integer,
effects:Sequence(String)):Boolean =

2322 let

2323 effectSize:Integer = effects->size(),

2324 firstEffect:String = effects->first()

2325 in

2326 subtrace->iterate(elem:trace::TraceElement;

2327 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i2:Integer)

2328 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i2
:Integer = 1}

2329 |

2330 if iter.flag then

2331 let e:String = elem.event in

2332 if e = cause then

2333 let ct:Integer = elem.timestamp + distance in

2334 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),

midCriticalInstant:Integer = ct, i2:Integer = 1}

2335 else

2336 if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then

2337 if iter.i2 > 1 and e = effects->at(iter.i2) then

2338 if iter.i2 = effectSize then

2339 if iter.midCriticallnstants->size() = 1 then

2340 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i2:
Integer = 1}

2341 else

2342 let nextCriticallnstant:Integer = iter.midCriticalInstants->at(2) in

2343 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i2:Integer =

1}

2344 endif

2345 else

2346 Tuple{flag:Boolean = iter.flag, midCriticallnstants:Sequence(Integer) = iter.midCriticallnstants,

midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = iter.i2 + 1}
2347 endif

2348 else

2349 if e = firstEffect and elem.timestamp = iter.midCriticalInstant then

2350 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticallnstant, i2:Integer = 2}

2351 else

2352 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, i2:Integer = null}

2353 endif

2354 endif

2355 else

2356 iter

2357 endif

2358 endif

2359 else

2360 iter

2361 endif

2362).midCriticalInstants->isEmpty()

2363

2364 =======

2365 def: checkPatternResponseOneManyMid(subtrace:0rderedSet(trace::TraceElement), cause:String, distance:TemPsy::
TimeDistance, effects:Sequence(String)):Boolean =

79

2366 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
2367 if which = TemPsy::ComparingOperator::ATLEAST then
2368 self.checkPatternResponseOneManyAtLeastMid(subtrace, cause, value, effects)

2369 else

2370 if which = TemPsy::ComparingOperator::ATMOST then

2371 self.checkPatternResponseOneManyAtMostMid (subtrace, cause, value, effects)
2372 else

2373 self.checkPatternResponseOneManyExactlyMid(subtrace, cause, value, effects)

2374 endif

2375 endif

2376

2377 =======

2378 def: checkPatternResponseManyOnePlain(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), effect:
String):Boolean =

2379 let

2380 causeSize:Integer = causes->size(),

2381 firstCause:String = causes->first()

2382 in

2383 subtrace->iterate(elem:trace::TraceElement;

2384 iter:Tuple(flag:Boolean, il:Integer) = Tuple{flag:Boolean = true, il:Integer = 1}

2385 |

2386 let e:String = elem.event in

2387 if iter.il > 1 and e = causes->at(iter.il) then

2388 if iter.il = causeSize then

2389 Tuple{flag:Boolean = false, il:Integer = 1}

2390 else

2391 Tuple{flag:Boolean = iter.flag, il:Integer = iter.il + 1}
2392 endif

2393 else

2394 if e = firstCause then

2395 Tuple{flag:Boolean = iter.flag, il:Integer = 2}
2396 else

2397 if e = effect then

2398 Tuple{flag:Boolean = true, il:Integer = 1}

2399 else

2400 Tuple{flag:Boolean = iter.flag, il:Integer = 1}
2401 endif

2402 endif

2403 endif

2404).flag

2405

2406 =======

2407 def: checkPatternResponseManyOneAtLeastMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effect:String):Boolean =

2408 let

2409 causeSize:Integer causes->size(),

2410 firstCause:String = causes->first()

2411 in

2412 subtrace->iterate(elem:trace::TraceElement;

2413 iter:Tuple(midCriticalInstant:Integer, il:Integer) = Tuple{midCriticalInstant:Integer = 0, il:Integer = 1}

2414 |

2415 let e:String = elem.event in

2416 if iter.il > 1 and e = causes->at(iter.il) then

2417 if iter.il = causeSize then

2418 Tuple{midCriticalInstant:Integer = elem.timestamp + distance, il:Integer = 1}
2419 else

2420 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1}
2421 endif

2422 else

2423 if e = firstCause then

2424 Tuple{midCriticalInstant:Integer = iter.midCriticallnstant, il:Integer = 2}
2425 else

2426 if e = effect and elem.timestamp >= iter.midCriticalInstant then

2427 Tuple{midCriticalInstant:Integer = 0, il:Integer = 1}

2428 else

2429 Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1}
2430 endif

2431 endif

2432 endif

80

2433
2434
2435

).

midCriticalInstant = 0

2436 def: checkPatternResponseManyOneAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), distance

:Integer, effect:String):Boolean =

2437 let

2438 causeSize:Integer = causes->size(),

2439 firstCause:String = causes->first()

2440 in

2441 subtrace->iterate(elem:trace::TraceElement;

2442 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer)

2443 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1} |

2444 let e:String = elem.event in

2445 if iter.flag then

2446 if iter.midCriticalInstant = 0 then

2447 if iter.il > 1 and e = causes->at(iter.il) then

2448 if iter.il = causeSize then

2449 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, il:Integer = 1}

2450 else

2451 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il

+ 1}

2452 endif

2453 else

2454 if e = firstCause then

2455 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2}

2456 else

2457 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1}

2458 endif

2459 endif

2460 else

2461 if e = effect then

2462 if elem.timestamp <= iter.midCriticallInstant then

2463 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, il:Integer = 1}

2464 else

2465 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null}

2466 endif

2467 else

2468 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1}

2469 endif

2470 endif

2471 else

2472 iter

2473 endif

2474).midCriticallInstant = 0

2475

2476 =======

2477 def: checkPatternResponseManyOneExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

distance:Integer, effect:String):Boolean =

2478 let causeSize:Integer = causes->size(), firstCause:String = causes->first() in

2479 subtrace->iterate(elem:trace::TraceElement;

2480 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, il:Integer)

2481 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, il
:Integer = 1}

2482 |

2483 if iter.flag then

2484 let e:String = elem.event, t:Integer = elem.timestamp in

2485 if iter.il > 1 and e = causes->at(iter.il) then

2486 if iter.il = causeSize then

2487 let ct:Integer = t + distance in

2488 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),

midCriticalInstant:Integer = ct, il:Integer = 1}
2489 else
2490 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1}

2491 endif

2492 else

2493 if e = firstCause then

2494 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = 2}

81

2495 else

2496 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then

2497 if t = iter.midCriticalInstant and e = effect then

2498 if iter.midCriticalInstants->size() = 1 then

2499 Tuple{flag:Boolean = iter.flag, midCriticallnstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, il:
Integer = 1}

2500 else

2501 let nextCriticallnstant:Integer = iter.midCriticalInstants->at(2) in

2502 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticallInstant, il:Integer =

1}

2503 endif

2504 else

2505 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, il:Integer = null}

2506 endif

2507 else

2508 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1}

2509 endif

2510 endif

2511 endif

2512 else

2513 iter

2514 endif

2515).midCriticalInstants->isEmpty()

2516

2517 def: checkPatternResponseManyOneMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), distance:
TemPsy: :TimeDistance, effect:String):Boolean =

2518 let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in

2519 if which = TemPsy::ComparingOperator::ATLEAST then

2520 self.checkPatternResponseManyOneAtLeastMid(subtrace, causes, value, effect)

2521 else

2522 if which = TemPsy::ComparingOperator::ATMOST then

2523 self.checkPatternResponseManyOneAtMostMid (subtrace, causes, value, effect)
2524 else

2525 self.checkPatternResponseManyOneExactlyMid(subtrace, causes, value, effect)
2526 endif

2527 endif

2528

2529 =======

2530 def: checkPatternResponseManyManyPlain(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), effects:
Sequence(String)):Boolean =

2531 let

2532 causeSize:Integer = causes->size(),

2533 firstCause:String = causes->first(),

2534 effectSize:Integer = effects->size(),

2535 firstEffect:String = effects->first(),

2536 lastEffect:String = effects->last()

2537 in

2538 subtrace->iterate(elem:trace::TraceElement;

2539 iter:Tuple(flag:Boolean, il:Integer, i2:Integer) = Tuple{flag:Boolean = true, il:Integer = 1, i2:Integer = 1}

2540 |

2541 let e:String = elem.event in

2542 if iter.i2 = effectSize and e = lastEffect then

2543 Tuple{flag:Boolean = true, il:Integer = 1, i2:Integer = 1}

2544 else

2545 if iter.il > 1 and e = causes->at(iter.il) then

2546 if iter.il = causeSize then

2547 Tuple{flag:Boolean = false, il:Integer = 1, i2:Integer = 1}

2548 else

2549 if iter.i2 > 1 and e = effects->at(iter.i2) then

2550 Tuple{flag:Boolean = iter.flag, il:Integer = iter.il + 1, i2:Integer = iter.i2 + 1}
2551 else

2552 if not iter.flag and e = firstEffect then

2553 Tuple{flag:Boolean = iter.flag, il:Integer = iter.il + 1, i2:Integer = 2}
2554 else

2555 Tuple{flag:Boolean = iter.flag, il:Integer = iter.il + 1, i2:Integer = 1}

82

2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586

2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604

2605
2606
2607

2608
2609
2610

2611
2612

2613
2614
2615
2616
2617
2618
2619

endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, il:Integer = 2, i2:Integer = iter.i2 + 1}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = 2, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, il:Integer = 2, i2:Integer = 1}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, il:Integer = 1, i2:Integer = iter.i2 + 1}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = 1, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, il:Integer = 1, i2:Integer = 1}
endif
endif
endif
endif
endif
). flag
def: checkPatternResponseManyManyAtLeastMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effects:Sequence(String)):Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last()
in

subtrace->iterate(elem:trace: :TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:

= Tuple{flag:Boolean
|
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then

Tuple{flag:Boolean = true, midCriticalInstant:Integer
else

if iter.il > 1 and e causes->at(iter.il) then

if iter.il = causeSize then
Tuple{flag:Boolean false, midCriticalInstant:In
Integer = 1}

true, midCriticalInstant:Integer

else
if iter.i2 > 1 and e
Tuple{flag:Boolean
+ 1, i2:Integer

effects->at(iter.i2) then
iter.flag, midCriticallInst
iter.i2 + 1}

else
if not iter.flag and e = firstEffect and elem.t
Tuple{flag:Boolean iter.flag, midCriticalln
il + 1, i2:Integer 2}

else
Tuple{flag:Boolean iter.flag, midCriticalln
il + 1, i2:Integer 1}
endif
endif
endif
else
if e = firstCause then
if iter.i2 > 1 and e
Tuple{flag:Boolean

effects->at(iter.i2) then
iter.flag, midCriticallInst

Integer, i2:Integer)
0, il:Integer 1, i2:Integer

1}

iter.midCriticalInstant, il:Integer = 1, i2:Integer 1}

teger = elem.timestamp + distance, il:Integer = 1, i2:

ant:Integer = iter.midCriticalInstant, il:Integer = iter.il

imestamp >= iter.midCriticalInstant then
stant:Integer iter.midCriticalInstant, il:Integer

iter.

stant:Integer = iter.midCriticalInstant, il:Integer = iter.

ant:Integer iter.midCriticalInstant, il:Integer = 2, i2:

83

Integer = iter.i2 + 1}

2620 else
2621 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
2622 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:
Integer = 2}
2623 else
2624 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:
Integer = 1}
2625 endif
2626 endif
2627 else
2628 if iter.i2 > 1 and e = effects->at(iter.i2) then
2629 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = iter.i2 + 1}
2630 else
2631 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
2632 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = 2}
2633 else
2634 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = 1}
2635 endif
2636 endif
2637 endif
2638 endif
2639 endif
2640).flag
2641
2642 =======
2643 def: checkPatternResponseManyManyAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effects:Sequence(String)):Boolean =
2644 let
2645 causeSize:Integer = causes->size(),
2646 firstCause:String = causes->first(),
2647 effectSize:Integer = effects->size(),
2648 firstEffect:String = effects->first()
2649 in
2650 subtrace->iterate(elem:trace::TraceElement;
2651 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, i2:Integer)
2652 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, i2:Integer = 1}
2653 |
2654 let e:String = elem.event in
2655 if iter.flag then
2656 if iter.midCriticalInstant = 0 then
2657 if iter.il > 1 and e = causes->at(iter.il) then
2658 if iter.il = causeSize then
2659 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + distance, il:Integer = 1, i2:
Integer = iter.i2}
2660 else
2661 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il
+ 1, i2:Integer = iter.i2}
2662 endif
2663 else
2664 if e = firstCause then
2665 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallnstant, il:Integer = 2, 1i2:
Integer = iter.i2}
2666 else
2667 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallnstant, il:Integer = 1, 1i2:
Integer = iter.i2}
2668 endif
2669 endif
2670 else
2671 if iter.i2 > 1 and e = effects->at(iter.i2) then
2672 if iter.i2 = effectSize then
2673 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, il:Integer = iter.il, i2:Integer = 1}
2674 else
2675 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
i2:Integer = iter.i2 + 1}
2676 endif

84

2677
2678
2679
2680

2681
2682
2683
2684
2685

2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705

2706
2707
2708
2709
2710

2711
2712
2713

2714
2715
2716
2717
2718
2719

2720
2721
2722
2723

2724
2725
2726

2727
2728

2729
2730
2731
2732

else
if e = firstEffect then
if elem.timestamp <= iter.midCriticallInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = iter.
il, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, i2:Integer = null}
endif
else

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
i2:Integer = 1}
endif
endif
endif
else
iter
endif
).midCriticalInstant = 0
def: checkPatternResponseManyManyExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
distance:Integer, effects:Sequence(String)):Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last()
in
subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, il:Integer, i2:Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, il
:Integer = 1, i2:Integer = 1} |
if iter.flag then
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
if iter.midCriticallnstants->size() = 1 then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = 1}
else
let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, il:Integer = 1, i2:Integer =
1}
endif
else
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
let ct:Integer = elem.timestamp + distance in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct
), midCriticalInstant:Integer = ct, il:Integer = 1, i2:Integer = 1}
else
if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1, i2:Integer = iter.
i2 + 1}
else
if e = firstEffect and elem.timestamp = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

85

2733
2734
2735
2736
2737
2738
2739

2740
2741
2742

2743
2744

2745
2746
2747
2748

2749
2750
2751
2752
2753

2754
2755
2756

2757
2758

2759
2760
2761
2762

2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773

2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786

2787
2788
2789
2790

midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1, i2:Integer = 1}
endif
endif
else
if e = firstCause then
if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:Integer = iter.i2 + 1}
else
if e = firstEffect and elem.timestamp = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:Integer = 1}
endif
else
if iter.midCriticalInstants->notEmpty() and elem.timestamp >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:Integer = iter.i2 + 1}
else
if e = firstEffect and elem.timestamp = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:Integer = 1}
endif
endif
endif
endif
else
iter
endif
) .midCriticalInstants->isEmpty()

def: checkPatternResponseManyManyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), distance:
TemPsy: :TimeDistance, effects:Sequence(String)):Boolean =
let value:Integer = distance.value, which:TemPsy::ComparingOperator = distance.comparingOperator in
if which = TemPsy::ComparingOperator::ATLEAST then
self.checkPatternResponseManyManyAtLeastMid(subtrace, causes, value, effects)
else
if which = TemPsy::ComparingOperator::ATMOST then
self.checkPatternResponseManyManyAtMostMid(subtrace, causes, value, effects)
else
self.checkPatternResponseManyManyExactlyMid(subtrace, causes, value, effects)
endif
endif

def: checkPatternResponseOneManyRight(subtrace:0rderedSet(trace::TraceElement), cause:String, effects:Sequence(String
), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =
let
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
secondEffectDistance:Integer = effectDistances->at(2).value

86

2791
2792
2793
2794

2795
2796
2797
2798
2799
2800
2801
2802

2803
2804
2805
2806
2807

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823

2824
2825
2826
2827
2828
2829
2830
2831
2832
2833

2834
2835
2836

2837

2838
2839
2840
2841

2842
2843
2844

2845
2846

2847
2848
2849

in
subtrace->iterate(
elem:trace::TraceElement;
iter:Tuple(flag:Boolean, i2:Integer, effectCriticalInstant:Integer) = Tuple{flag:Boolean = true, i2:Integer =1,
effectCriticalInstant:Integer = 0}
|
let e:String = elem.event in
if e = cause then
Tuple{flag:Boolean = false, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
if not iter.flag then
let t:Integer = elem.timestamp in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at
(iter.i2).which) then
if iter.i2 = effectSize then

Tuple{flag:Boolean = true, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
let i:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, i2:Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).
value}
endif
else

if e = firstEffect then
Tuple{flag:Boolean = iter.flag, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
else
iter
endif
endif
). flag

def: checkPatternResponseManyManyRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String), effects:
Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),

effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last(),

secondEffectDistance:Integer = effectDistances->at(2).value
in

subtrace->iterate(elem:trace: :TraceElement;
iter:Tuple(flag:Boolean, il:Integer, i2:Integer, effectCriticalInstant:Integer) = Tuple{flag:Boolean = true, il:
Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = 0}
|
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->last().which) then
Tuple{flag:Boolean = true, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}
else
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticallnstant}
else
let t:Integer = elem.timestamp in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->
at(iter.i2).which) then
let i:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, il:Integer = iter.il + 1, i2:Integer = i, effectCriticalInstant:Integer = t
+ effectDistances->at(i).value}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = iter.il + 1, i2:Integer = 2, effectCriticalInstant:Integer =

87

t + secondEffectDistance}

2850 else

2851 Tuple{flag:Boolean = iter.flag, il:Integer = iter.il + 1, i2:Integer = 1, effectCriticallnstant:Integer =
iter.effectCriticallInstant}

2852 endif

2853 endif

2854 endif

2855 else

2856 if e = firstCause then

2857 let t:Integer = elem.timestamp in

2858 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->

at(iter.i2).which) then
2859 let i:Integer = iter.i2 + 1 in
2860 Tuple{flag:Boolean = iter.flag, il:Integer = 2, i2:Integer = i, effectCriticallnstant:Integer = t +
effectDistances->at(i).value}

2861 else

2862 if not iter.flag and e = firstEffect then

2863 Tuple{flag:Boolean = iter.flag, il:Integer = 2, i2:Integer = 2, effectCriticalInstant:Integer = t +
secondEffectDistance}

2864 else

2865 Tuple{flag:Boolean = iter.flag, il:Integer = 2, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

2866 endif

2867 endif

2868 else

2869 let t:Integer = elem.timestamp in

2870 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->

at(iter.i2).which) then
2871 let i:Integer = iter.i2 + 1 in
2872 Tuple{flag:Boolean = iter.flag, il:Integer = 1, i2:Integer = i, effectCriticalIlnstant:Integer = t +
effectDistances->at(i).value}

2873 else

2874 if not iter.flag and e = firstEffect then

2875 Tuple{flag:Boolean = iter.flag, il:Integer = 1, i2:Integer = 2, effectCriticalInstant:Integer = t +
secondEffectDistance}

2876 else

2877 Tuple{flag:Boolean = iter.flag, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}

2878 endif

2879 endif

2880 endif

2881 endif

2882 endif

2883).flag

2884

2885 =======

2886 def: checkPatternResponseOneManyAtLeastMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance:
Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

2887 let

2888 effectSize:Integer = effects->size(),

2889 firstEffect:String = effects->first(),

2890 secondEffectDistance:Integer = effectDistances->at(2).value

2891 in

2892 subtrace->iterate(elem:trace::TraceElement;

2893 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticallnstant:Integer) = Tuple{flag:

Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}

2894 |

2895 let e:String = elem.event in

2896 if e = cause then // latest cause

2897 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer =1,

effectCriticalInstant:Integer = iter.effectCriticalInstant}

2898 else

2899 if not iter.flag then

2900 let t:Integer = elem.timestamp in

2901 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->at
(iter.i2) .which) then

2902 if iter.i2 = effectSize then

2903 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,

effectCriticalInstant:Integer = iter.effectCriticallInstant}

88

2904 else

2905 let i:Integer = iter.i2 + 1 in

2906 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}

2907 endif

2908 else

2909 if e = firstEffect and t >= iter.midCriticalInstant then

2910 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

2911 else

2912 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

2913 endif

2914 endif

2915 else

2916 iter

2917 endif

2918 endif

2919).flag

2920

2921 =======

2922 def: checkPatternResponseOneManyAtMostMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance:
Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

2923 let

2924 effectSize:Integer = effects->size(),

2925 firstEffect:String = effects->first(),

2926 secondEffectDistance:Integer = effectDistances->at(2).value

2927 in

2928 subtrace->iterate(elem:trace::TraceElement;

2929 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer)

2930 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}

2931 |

2932 let e:String = elem.event in

2033 if iter.flag then

2934 if iter.midCriticalInstant = 0 then
2935 if e = cause then
2936 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
2937 else
2938 iter
2939 endif
2940 else
2941 let t:Integer = elem.timestamp in
2942 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->at
(iter.i2) .which) then
2943 if iter.i2 = effectSize then
2944 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticallInstant:
Integer = iter.effectCriticalInstant}
2945 else
2946 let i:Integer = iter.i2 + 1 in
2947 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = i,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}
2948 endif
2949 else
2950 if e = firstEffect then
2951 if t <= iter.midCriticalInstant then
2952 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 2,
effectCriticallnstant:Integer = t + secondEffectDistance}
2953 else
2954 Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, i2:Integer = null, effectCriticalInstant:
Integer = null}
2955 endif
2956 else
2957 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
2958 endif
2959 endif
2960 endif
2961 else

89

2962 iter

2963 endif

2964).midCriticalInstant = 0

2965

2966 =======

2967 def: checkPatternResponseOneManyExactlyMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance:

Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

2968 let

2969 effectSize:Integer = effects->size(),

2970 firstEffect:String = effects->first(),

2971 secondEffectDistance:Integer = effectDistances->at(2).value

2972 in

2973 subtrace->iterate(elem:trace::TraceElement;

2974 iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, i2:Integer,
effectCriticalInstant:Integer)

2975 = Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, i2
:Integer = 1, effectCriticallnstant:Integer = 0}

2976 |
2977 if iter.flag then
2978 let e:String = elem.event in
2979 if e = cause then
2980 let ct:Integer = elem.timestamp + midDistance in
2981 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),
midCriticalInstant:Integer = ct, i2:Integer = 1, effectCriticallnstant:Integer = iter.
effectCriticallnstant}
2982 else
2983 let t:Integer = elem.timestamp in
2984 if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
2985 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->
at(iter.i2).which) then
2986 if iter.i2 = effectSize then
2987 if iter.midCriticallnstants->size() = 1 then
2988 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, i2:
Integer = 1, effectCriticalInstant:Integer = iter.effectCriticallnstant}
2989 else
2990 let nextCriticallnstant:Integer = iter.midCriticalInstants->at(2) in
2991 Tuple{flag:Boolean = iter.flag, midCriticallInstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, i2:Integer =
1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
2992 endif
2993 else
2994 let i:Integer = iter.i2 + 1 in
2995 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants,
midCriticalInstant:Integer = iter.midCriticalIlnstant, i2:Integer = i, effectCriticalInstant:Integer
= t + effectDistances->at(i).value}
2996 endif
2997 else
2998 if e = firstEffect and t = iter.midCriticalInstant then
2999 Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalIlnstant, i2:Integer = 2, effectCriticalInstant:Integer
= t + secondEffectDistance}
3000 else
3001 Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

midCriticalInstant:Integer = null, i2:Integer = null, effectCriticalInstant:Integer = null}
3002 endif

3003 endif
3004 else
3005 iter
3006 endif
3007 endif
3008 else

3009 iter

3010 endif

3011).midCriticalInstants->isEmpty()

3012

3013 =======

3014 def: checkPatternResponseOneManyMidRight(subtrace:0rderedSet(trace::TraceElement), cause:String, midDistance:TemPsy::
TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

90

3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027

3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038

3039
3040
3041

3042

3043
3044
3045
3046

3047
3048
3049

3050
3051

3052
3053
3054

3055
3056

3057
3058
3059
3060
3061
3062
3063

3064
3065

3066
3067
3068

3069
3070

let midValue:Integer = midDistance.value, midwWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in

if midWhich = TemPsy::ComparingOperator::ATLEAST then
self.checkPatternResponseOneManyAtLeastMidRight (subtrace, cause, midValue, effects, effectDistances)
else
if midWhich = TemPsy::ComparingOperator::ATMOST then
self.checkPatternResponseOneManyAtMostMidRight (subtrace, cause, midValue, effects, effectDistances)
else
self.checkPatternResponseOneManyExactlyMidRight(subtrace, cause, midValue, effects, effectDistances)
endif
endif
def: checkPatternResponseManyManyAtLeastMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value
in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, i2:Integer, effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticallnstant:Integer = 0, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:
Integer = 0}
|
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->last().which) then
Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1, i2:
Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
let t:Integer = elem.timestamp in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i:Integer = iter.i2 + 1 in

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il
+ 1, i2:Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}
else
if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = iter.
il + 1, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.
il + 1, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
endif

else
if e = firstCause then
let t:Integer = elem.timestamp in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:
Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}
else
if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:
Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
else

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:

91

Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

3071 endif
3072 endif
3073 else
3074 let t:Integer = elem.timestamp in
3075 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
3076 let i:Integer = iter.i2 + 1 in
3077 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}
3078 else
3079 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3080 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
3081 else
3082 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = 1, effectCriticallnstant:Integer = iter.effectCriticallInstant}
3083 endif
3084 endif
3085 endif
3086 endif
3087 endif
3088).flag
3089
3090 =======

3091 def: checkPatternResponseManyManyAtMostMidRight(subtrace:0OrderedSet(trace::TraceElement), causes:Sequence(String),
midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

3092 let

3093 causeSize:Integer = causes->size(),

3094 firstCause:String = causes->first(),

3095 effectSize:Integer = effects->size(),

3096 firstEffect:String = effects->first(),

3097 secondEffectDistance:Integer = effectDistances->at(2).value

3098 in

3099 subtrace->iterate(elem:trace::TraceElement;

3100 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, i2:Integer, effectCriticallnstant:Integer)

3101 = Tuple{flag:Boolean = true, midCriticallnstant:Integer = 0, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:

Integer = 0}

3102 |

3103 let e:String = elem.event in

3104 if iter.flag then

3105 if iter.midCriticallnstant = 0 then

3106 if iter.il > 1 and e = causes->at(iter.il) then

3107 if iter.il = causeSize then

3108 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
i2:Integer = iter.i2, effectCriticalInstant:Integer = iter.effectCriticalInstant}

3109 else

3110 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il
+ 1, i2:Integer = iter.i2, effectCriticalInstant:Integer = iter.effectCriticalInstant}

3111 endif

3112 else

3113 if e = firstCause then

3114 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:
Integer = iter.i2, effectCriticallnstant:Integer = iter.effectCriticallnstant}

3115 else

3116 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = iter.i2, effectCriticallnstant:Integer = iter.effectCriticallnstant}

3117 endif

3118 endif

3119 else

3120 let t:Integer = elem.timestamp in

3121 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at

(iter.i2).which) then

3122 if iter.i2 = effectSize then

3123 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, il:Integer = iter.il, i2:Integer =1,
effectCriticallnstant:Integer = iter.effectCriticalInstant}

3124 else

3125 let i:Integer = iter.i2 + 1 in

92

3126

3127
3128
3129
3130
3131

3132
3133

3134
3135
3136

3137
3138
3139
3140
3141
3142
3143
3144
3145
3146

3147
3148
3149
3150
3151
3152
3153
3154
3155
3156

3157

3158
3159
3160
3161
3162
3163

3164
3165
3166

3167
3168
3169
3170
3171
3172

3173
3174
3175

3176
3177

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
i2:Integer = i, effectCriticalInstant:Integer = t + effectDistances->at(i).value}
endif
else
if e = firstEffect then
if t <= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = iter.
il, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, i2:Integer = null,
effectCriticalInstant:Integer = null}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
i2:Integer = 1, effectCriticallnstant:Integer = iter.effectCriticalInstant}
endif
endif
endif
else
iter
endif

) .midCriticalInstant = 0

def: checkPatternResponseManyManyExactlyMidRight(subtrace:0OrderedSet(trace::TraceElement), causes:Sequence(String),

midDistance:Integer, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):
Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),

effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value

subtrace->iterate(elem:trace::TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, il:Integer, i2:Integer,
effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, il
:Integer = 1, i2:Integer = 1, effectCriticalIlnstant:Integer = 0}
|
if iter.flag then
let e:String = elem.event, t:Integer = elem.timestamp in
if iter.i2 = effectSize and e = lastEffect then
if iter.midCriticalInstants->size() = 1 then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:
Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
let nextCriticallnstant:Integer = iter.midCriticalInstants->at(2) in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, il:Integer = 1, i2:Integer =
1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
else
if iter.il > 1 and e = causes->at(iter.il) then
if iter.il = causeSize then
let ct:Integer = t + midDistance in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct
), midCriticalInstant:Integer = ct, il:Integer = 1, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticalInstant}
else
if iter.midCriticallnstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1, i2:Integer = i,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}

93

3178
3179
3180

3181
3182

3183
3184
3185
3186

3187
3188
3189
3190
3191
3192

3193
3194

3195
3196
3197

3198
3199

3200
3201
3202
3203

3204
3205
3206
3207

3208
3209

3210
3211
3212

3213
3214

3215
3216
3217
3218

3219
3220
3221
3222

else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null, effectCriticallInstant:
Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il + 1, i2:Integer =1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
else
if e = firstCause then
if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,
effectDistances->at(iter.i2).which) then
let i:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalIlnstant, il:Integer = 2, i2:Integer = 1,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null, effectCriticalInstant:
Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, i2:Integer = 1,
effectCriticallnstant:Integer = iter.effectCriticalInstant}
endif
else
if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant,
effectDistances->at(iter.i2).which) then
let i:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:Integer = i,
effectCriticalInstant:Integer = t + effectDistances->at(i).value}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}

else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, i2:Integer = null, effectCriticallnstant:
Integer = null}
endif
endif
else

Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, i2:Integer = 1,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

endif
endif
endif
endif

94

3223
3224
3225
3226
3227
3228
3229

3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242

3243
3244
3245
3246
3247
3248
3249

3250
3251
3252

3253
3254
3255
3256
3257

3258
3259
3260
3261

3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273

3274
3275
3276
3277
3278
3279
3280
3281
3282
3283

else
iter
endif
) .midCriticalInstants->isEmpty()

def: checkPatternResponseManyManyMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
midDistance:TemPsy::TimeDistance, effects:Sequence(String), effectDistances:Sequence(Tuple(which:Integer, value:
Integer))):Boolean =
let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in
if midWhich = TemPsy::ComparingOperator::ATLEAST then
self.checkPatternResponseManyManyAtLeastMidRight(subtrace, causes, midValue, effects, effectDistances)
else
if midWhich = TemPsy::ComparingOperator::ATMOST then
self.checkPatternResponseManyManyAtMostMidRight (subtrace, causes, midValue, effects, effectDistances)
else
self.checkPatternResponseManyManyExactlyMidRight (subtrace, causes, midValue, effects, effectDistances)
endif
endif

def: checkPatternResponseManyOnelLeft(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effect:String):Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value
in
subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, il:Integer, causeCriticallnstant:Integer) = Tuple{flag:Boolean = true, il:Integer =1,
causeCriticalInstant:Integer = 0}
|
let e:String = elem.event in
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, il:Integer = 1, causeCriticallnstant:Integer = iter.causeCriticalInstant}
else

let i:Integer = iter.il + 1 in
Tuple{flag:Boolean = iter.flag, il:Integer = i, causeCriticallInstant:Integer = elem.timestamp + causeDistances
->at(i).value}
endif
else
if e = firstCause then
Tuple{flag:Boolean = iter.flag, il:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance}
else
if e = effect then
Tuple{flag:Boolean = true, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
else
Tuple{flag:Boolean = iter.flag, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant}
endif
endif
endif
). flag

def: checkPatternResponseManyManyLeft(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String)):Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),

secondCauseDistance:Integer = causeDistances->at(2).value,

effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last()
in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, il:Integer, causeCriticallnstant:Integer, i2:Integer) = Tuple{flag:Boolean = true, il:

95

3284
3285
3286
3287

3288
3289

3290
3291

3292
3293
3294
3295

3296
3297
3298

3299
3300

3301
3302
3303
3304
3305
3306
3307

3308
3309
3310

3311
3312

3313
3314
3315
3316
3317

3318
3319
3320

3321
3322

3323
3324
3325
3326
3327
3328
3329
3330
3331

3332
3333
3334
3335
3336
3337
3338

Integer = 1, causeCriticallnstant:Integer = 0, i2:Integer = 1}
|
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect then
Tuple{flag:Boolean = true, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer =
1}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:
Integer = 1}
else
let i:Integer = iter.il + 1 in
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, il:Integer = i, causeCriticalInstant:Integer = elem.timestamp +
causeDistances->at(i).value, i2:Integer = iter.i2 + 1}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = i, causeCriticalInstant:Integer = elem.timestamp +
causeDistances->at(i).value, i2:Integer = 2}
else

Tuple{flag:Boolean = iter.flag, il:Integer = i, causeCriticalInstant:Integer = elem.timestamp +
causeDistances->at(i).value, i2:Integer = 1}
endif
endif
endif

else
if e = firstCause then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, il:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance, i2:Integer = iter.i2 + 1}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, il:Integer
secondCauseDistance, i2:Integer = 1}

2, causeCriticalInstant:Integer = elem.timestamp +

endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant,
i2:Integer = iter.i2 + 1}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallInstant,
i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, il:Integer
i2:Integer = 1}

1, causeCriticallInstant:Integer = iter.causeCriticalInstant,

endif
endif
endif
endif
endif
). flag

def: checkPatternResponseManyOnelLeftAtLeastMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value
in
subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer) = Tuple{midCriticalInstant:Integer

96

3339
3340
3341

3342
3343

3344
3345
3346

3347
3348
3349
3350

3351
3352
3353

3354
3355

3356
3357
3358
3359
3360
3361
3362

3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376

3377
3378

3379
3380
3381

3382
3383
3384
3385

3386
3387

3388
3389
3390
3391
3392
3393

).

de

le

in
su

= 0, il:Integer = 1, causeCriticalInstant:Integer = 0}

let e:String = elem.event, t:Integer = elem.timestamp in

if iter.il > 1 and e = causes->at(iter.il) and self.compare(t, iter.causeCriticallnstant, causeDistances->at(iter.

il).which) then
if iter.il = causeSize then
Tuple{midCriticalInstant:Integer = t + midDistance, il:Integer = 1, causeCriticallInstant:Integer = iter.
causeCriticalInstant}
else
let i:Integer = iter.il + 1 in
Tuple{midCriticalInstant:Integer = iter.midCriticallnstant, il:Integer = i, causeCriticalInstant:Integer =
causeDistances->at(i).value}

endif
else
if e = firstCause then
Tuple{midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticalInstant:Integer =
secondCauseDistance}
else
if e = effect and t >= iter.midCriticalInstant then
Tuple{midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallnstant:Integer = iter.
causeCriticallInstant}
else
Tuple{midCriticalInstant:Integer = iter.midCriticallnstant, il:Integer = 1, causeCriticalInstant:Integer
iter.causeCriticallnstant}
endif
endif
endif
midCriticalInstant = 0

f: checkPatternResponseManyOneLeftAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =

t

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),

secondCauseDistance:Integer = causeDistances->at(2).value

btrace->iterate(elem:trace: :TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallnstant:Integer = 0}
|
let e:String = elem.event in
if iter.flag then

if iter.midCriticallnstant = 0 then

let t:Integer = elem.timestamp in

if iter.il > 1 and e = causes->at(iter.il) and self.compare(t, iter.causeCriticallnstant, causeDistances->at(

iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = t + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallInstant}
else
let i:Integer = iter.il + 1 in

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i,
causeCriticalInstant:Integer = t + causeDistances->at(i).value}
endif
else
if e = firstCause then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,

causeCriticalInstant:Integer = t + secondCauseDistance}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallInstant}
endif
endif
else
if e = effect then
if elem.timestamp <= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticalInstant:
Integer = iter.causeCriticalInstant}

97

3394
3395

3396
3397
3398

3399
3400
3401
3402
3403
3404
3405
3406
3407

3408
3409
3410
3411
3412
3413
3414

3415

3416
3417
3418
3419

3420
3421
3422

3423
3424
3425

3426
3427
3428
3429

3430
3431
3432
3433
3434

3435
3436
3437

3438
3439
3440

3441
3442
3443

else
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, causeCriticalInstant:
Integer = null}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallInstant}
endif
endif
else
iter
endif

) .midCriticalInstant = 0

def: checkPatternResponseManyOneLeftExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effect:String):Boolean =

let

causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value

subtrace->iterate(elem:trace: :TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, il:Integer,
causeCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, il
:Integer = 1, causeCriticalInstant:Integer = 0}
|
if iter.flag then
let e:String = elem.event, t:Integer = elem.timestamp in
if iter.il > 1 and e = causes->at(iter.il) and self.compare(t, iter.causeCriticallnstant, causeDistances->at(iter
.i1) .which) then
if iter.il = causeSize then
let ct:Integer = t + midDistance in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->append(ct),
midCriticalInstant:Integer = ct, il:Integer = 1, causeCriticallnstant:Integer = iter.
causeCriticalInstant}
else
let i:Integer = iter.il + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i, causeCriticalInstant:Integer = t +
causeDistances->at(i).value}
endif
else
if e = firstCause then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticallInstant:Integer = t +
secondCauseDistance}

else
if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
if t = iter.midCriticalInstant and e = effect then
if iter.midCriticallnstants->size() = 1 then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, il:
Integer = 1, causeCriticallnstant:Integer = iter.causeCriticalInstant}
else
let nextCriticallnstant:Integer = iter.midCriticalInstants->at(2) in
Tuple{flag:Boolean = iter.flag, midCriticallInstants:Sequence(Integer) = iter.midCriticalInstants->
excluding(iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, il:Integer =
1, causeCriticallInstant:Integer = iter.causeCriticalInstant}
endif
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, causeCriticallnstant:Integer = null}
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, causeCriticallnstant:Integer =
iter.causeCriticallnstant}

98

3444 endif

3445 endif
3446 endif
3447 else

3448 iter

3449 endif

3450).midCriticalInstants->isEmpty()

3451

3452 =======

3453 def: checkPatternResponseManyOnelLeftMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effect:String):
Boolean =

3454 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in

3455 if midWhich = TemPsy::ComparingOperator::ATLEAST then

3456 self.checkPatternResponseManyOneLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effect)

3457 else

3458 if midWhich = TemPsy::ComparingOperator::ATMOST then

3459 self.checkPatternResponseManyOneLeftAtMostMid(subtrace, causes, causeDistances, midValue, effect)
3460 else

3461 self.checkPatternResponseManyOneLeftExactlyMid(subtrace, causes, causeDistances, midValue, effect)
3462 endif

3463 endif

3464

3465 =======

3466 def: checkPatternResponseManyManylLeftAtLeastMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =

3467 let

3468 causeSize:Integer = causes->size(),

3469 firstCause:String = causes->first(),

3470 secondCauseDistance:Integer = causeDistances->at(2).value,

3471 effectSize:Integer = effects->size(),

3472 firstEffect:String = effects->first(),

3473 lastEffect:String = effects->last()

3474 in

3475 subtrace->iterate(elem:trace::TraceElement;

3476 iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer, i2:Integer)

3477 = Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticalInstant:Integer = 0, i2:

Integer = 1}

3478 |

3479 let e:String = elem.event in

3480 if iter.i2 = effectSize and e = lastEffect then

3481 Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}

3482 else
3483 if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
3484 if iter.il = causeSize then
3485 Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
3486 else
3487 let i:Integer = iter.il + 1 in
3488 if iter.i2 > 1 and e = effects->at(iter.i2) then
3489 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i,
causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = iter.i2 + 1}
3490 else
3491 if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
3492 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i,
causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = 2}
3493 else
3494 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i,
causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = 1}
3495 endif
3496 endif
3497 endif
3498 else
3499 if e = firstCause then
3500 if iter.i2 > 1 and e = effects->at(iter.i2) then
3501 Tuple{flag:Boolean = iter.flag, midCriticallInstant:Integer = iter.midCriticalInstant, il:Integer = 2,

99

3502
3503
3504

3505
3506

3507
3508
3509
3510
3511

3512
3513
3514

3515
3516

3517
3518
3519
3520
3521
3522
3523
3524
3525

3526
3527
3528
3529
3530
3531
3532
3533
3534
3535

3536
3537
3538
3539

3540
3541

3542
3543
3544

3545
3546
3547
3548

3549
3550

3551
3552
3553
3554
3555
3556

causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
else
if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}

1]
N

else

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = 1}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =1
causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = iter.i2 + 1}

else

if not iter.flag and e = firstEffect and elem.timestamp >= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
endif
endif
endif
endif
endif
). flag

def: checkPatternResponseManyManyLeftAtMostMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):

Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),
firstEffect:String = effects->first()
in

subtrace->iterate(elem:trace: :TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer, i2:Integer)

= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallInstant:Integer = 0, i2:
Integer = 1} |

let e:String = elem.event in

if iter.flag then

if iter.midCriticallnstant = 0 then
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallInstant,
causeDistances->at(iter.il).which) then

if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2}
else
let i:Integer = iter.il + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i,
causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = iter.i2}
endif
else

if e = firstCause then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2}
endif
endif
else
if iter.i2 > 1 and e = effects->at(iter.i2) then
if iter.i2 = effectSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, il:Integer = iter.il, causeCriticalInstant:

100

3557
3558

3559
3560
3561
3562
3563

3564
3565

3566
3567
3568

3569
3570
3571
3572
3573
3574
3575
3576
3577
3578

3579
3580
3581
3582
3583
3584
3585
3586
3587
3588

3589

3590
3591
3592
3593
3594

3595
3596
3597

3598
3599
3600

3601
3602
3603

3604
3605
3606
3607
3608

Integer = iter.causeCriticallnstant, i2:Integer = 1}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2 + 1}
endif
else
if e = firstEffect then

if elem.timestamp <= iter.midCriticallnstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = iter.
il, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, causeCriticalInstant:
Integer = null, i2:Integer = null}
endif
else

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = 1}
endif
endif
endif
else
iter
endif
).midCriticalInstant = 0
def: checkPatternResponseManyManylLeftExactlyMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String)):
Boolean =
let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last()
in

subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, il:Integer,
causeCriticalInstant:Integer, i2:Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, il
:Integer = 1, causeCriticallnstant:Integer = 0, i2:Integer = 1} |
if iter.flag then
let e:String = elem.event, t:Integer = elem.timestamp in
if iter.i2 = effectSize and e = lastEffect then
if iter.midCriticallnstants->size() = 1 then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
else
let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1}
endif
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(t, iter.causeCriticalInstant, causeDistances->at(
iter.il).which) then
if iter.il = causeSize then
let ct:Integer = t + midDistance in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants->append(ct
), midCriticalInstant:Integer = ct, il:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant, i2:Integer = 1}
else
let i:Integer = iter.il + 1 in
if iter.midCriticallnstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i, causeCriticalInstant:Integer

101

3609
3610
3611

3612
3613

3614
3615
3616
3617

3618
3619
3620
3621
3622
3623
3624

3625
3626
3627

3628
3629

3630
3631
3632
3633

3634
3635
3636
3637
3638

3639
3640
3641

3642
3643

3644
3645
3646
3647

3648
3649
3650
3651
3652
3653
3654

= elem.timestamp + causeDistances->at(i).value, i2:Integer = iter.i2 + 1}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i, causeCriticalInstant:
Integer = elem.timestamp + causeDistances->at(i).value, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = i, causeCriticalInstant:Integer =
elem.timestamp + causeDistances->at(i).value, i2:Integer = 1}
endif
endif
else
if e = firstCause then
if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticalInstant:Integer
= elem.timestamp + secondCauseDistance, i2:Integer = iter.i2 + 1}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticalInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticalInstant:Integer =
elem.timestamp + secondCauseDistance, i2:Integer = 1}
endif
else
if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, causeCriticallnstant:Integer
= iter.causeCriticallnstant, i2:Integer = iter.i2 + 1}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, causeCriticalInstant:
Integer = iter.causeCriticalInstant, i2:Integer = 2}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, causeCriticallnstant:Integer = null, i2:
Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, causeCriticalInstant:Integer =
iter.causeCriticalInstant, i2:Integer = 1}
endif
endif
endif
endif
else
iter
endif

102

3655).midCriticalInstants->isEmpty()

3656
3657

3658 def: checkPatternResponseManyManyLeftMid(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String)):Boolean =

3659 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in
3660 if midWhich = TemPsy::ComparingOperator::ATLEAST then

3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682

3683
3684
3685

3686

3687
3688

3689
3690

3691
3692
3693

3694
3695

3696
3697
3698

3699
3700

3701
3702
3703
3704
3705
3706
3707

else

endif

self.checkPatternResponseManyManyLeftAtLeastMid(subtrace, causes, causeDistances, midValue, effects)
if midWhich = TemPsy::ComparingOperator::ATMOST then
self.checkPatternResponseManyManyLeftAtMostMid(subtrace, causes, causeDistances, midValue, effects)
else
self.checkPatternResponseManyManylLeftExactlyMid(subtrace, causes, causeDistances, midValue, effects)
endif

def: checkPatternResponseManyManyLeftRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),

causeDistances:Sequence(Tuple(which:Integer, value:Integer)), effects:Sequence(String), effectDistances:Sequence
(Tuple(which:Integer, value:Integer))):Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value

subtrace->iterate(elem:trace: :TraceElement;

iter:Tuple(flag:Boolean, il:Integer, causeCriticallnstant:Integer, i2:Integer, effectCriticallnstant:Integer) =
Tuple{flag:Boolean = true, il:Integer = 1, causeCriticalInstant:Integer = 0, i2:Integer =1,
effectCriticalInstant:Integer = 0}
|
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->last().which) then
Tuple{flag:Boolean = true, il:Integer = 1, causeCriticallnstant:Integer = iter.causeCriticallnstant, i2:Integer =
1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:
Integer = 1, effectCriticallnstant:Integer = iter.effectCriticalInstant}
else
let t:Integer = elem.timestamp, ill:Integer = iter.il + 1 in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->
at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, il:Integer = ill, causeCriticallnstant:Integer = t + causeDistances->at(ill
).value, i2:Integer = i22, effectCriticallnstant:Integer = t + causeDistances->at(i22).value}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = ill, causeCriticalInstant:Integer = t + causeDistances->at(
ill).value, i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, il:Integer = ill, causeCriticalIlnstant:Integer = elem.timestamp +
causeDistances->at(ill).value, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}
endif
endif
endif
else
if e = firstCause then
let t:Integer = elem.timestamp in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->
at(iter.i2).which) then

103

3708
3709

3710
3711
3712

3713
3714

3715
3716
3717
3718
3719

3720
3721

3722
3723
3724

3725
3726

3727
3728
3729
3730
3731
3732
3733
3734
3735
3736

3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757
3758
3759

let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, il:Integer = 2, causeCriticallInstant:Integer = t + secondCauseDistance, i2:
Integer = 122, effectCriticallnstant:Integer = t + causeDistances->at(i22).value}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = 2, causeCriticalInstant:Integer = t + secondCauseDistance,
i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, il:Integer = 2, causeCriticalInstant:Integer = elem.timestamp +
secondCauseDistance, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}
endif
endif
else
let t:Integer = elem.timestamp in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->
at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, il:Integer = 1, causeCriticalIlnstant:Integer = iter.causeCriticalInstant,
i2:Integer = i22, effectCriticalInstant:Integer = t + causeDistances->at(i22).value}
else
if not iter.flag and e = firstEffect then
Tuple{flag:Boolean = iter.flag, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallInstant,
i2:Integer = 2, effectCriticalInstant:Integer = t + secondEffectDistance}
else
Tuple{flag:Boolean = iter.flag, il:Integer = 1, causeCriticalInstant:Integer = iter.causeCriticallInstant,
i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticalInstant}

endif
endif
endif
endif
endif
).flag

def: checkPatternResponseManyManyLeftAtLeastMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String

), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String),
effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

let

causeSize:Integer = causes->size(),

firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),

firstEffect:String = effects->first(),

lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value

subtrace->iterate(elem:trace::TraceElement;

iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticalInstant:Integer, i2:Integer,
effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallInstant:Integer = 0, i2:
Integer = 1, effectCriticallnstant:Integer = 0}
I
let e:String = elem.event in
if iter.i2 = effectSize and e = lastEffect and self.compare(elem.timestamp, iter.effectCriticallnstant,
effectDistances->last().which) then
Tuple{flag:Boolean = true, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = 1, effectCriticalInstant:Integer =
iter.effectCriticallnstant}
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = false, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticallInstant:Integer
= iter.effectCriticallnstant}
else
let t:Integer = elem.timestamp, ill:Integer = iter.il + 1 in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant, effectDistances->

104

at(iter.i2).which) then
3760 let i22:Integer = iter.i2 + 1 in
3761 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = t + causeDistances->at(ill).value, i2:Integer = i22,
effectCriticalInstant:Integer = t + causeDistances->at(i22).value}

3762 else
3763 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3764 Tuple{flag:Boolean = iter.flag, midCriticallnstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = t + causeDistances->at(ill).value, i2:Integer = 2,
effectCriticalInstant:Integer = t + secondEffectDistance}
3765 else
3766 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = t + causeDistances->at(ill).value, i2:Integer = 1,
effectCriticallnstant:Integer = iter.effectCriticalInstant}
3767 endif
3768 endif
3769 endif
3770 else
3771 if e = firstCause then
3772 let t:Integer = elem.timestamp in
3773 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->
at(iter.i2).which) then
3774 let i22:Integer = iter.i2 + 1 in
3775 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = t + secondCauseDistance, i2:Integer = i22, effectCriticallInstant:
Integer = elem.timestamp + causeDistances->at(i22).value}
3776 else
3777 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3778 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = t + secondCauseDistance, i2:Integer = 2, effectCriticallInstant:
Integer = elem.timestamp + secondEffectDistance}
3779 else
3780 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = t + secondCauseDistance, i2:Integer = 1, effectCriticalInstant:
Integer = iter.effectCriticallnstant}
3781 endif
3782 endif
3783 else
3784 let t:Integer = elem.timestamp in
3785 if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->
at(iter.i2).which) then
3786 let i22:Integer = iter.i2 + 1 in
3787 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = elem.timestamp + causeDistances->at(i22).value}
3788 else
3789 if not iter.flag and e = firstEffect and t >= iter.midCriticalInstant then
3790 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:
Integer = elem.timestamp + secondEffectDistance}
3791 else
3792 Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticallnstant:
Integer = iter.effectCriticalInstant}
3793 endif
3794 endif
3795 endif
3796 endif
3797 endif
3798).flag
3799
3800 =======

3801 def: checkPatternResponseManyManyLeftAtMostMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String)
, causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String),
effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

3802 let

3803 causeSize:Integer = causes->size(),

3804 firstCause:String = causes->first(),

3805 secondCauseDistance:Integer = causeDistances->at(2).value,

105

3806
3807
3808
3809
3810
3811

3812

3813
3814
3815
3816
3817

3818
3819

3820
3821
3822

3823
3824
3825
3826

3827
3828

3829
3830
3831
3832
3833

3834
3835

3836
3837
3838

3839
3840
3841
3842
3843

3844
3845

3846
3847
3848

3849
3850
3851
3852
3853

in
su

effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
secondEffectDistance:Integer = effectDistances->at(2).value

btrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstant:Integer, il:Integer, causeCriticallInstant:Integer, i2:Integer,
effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstant:Integer = 0, il:Integer = 1, causeCriticallnstant:Integer = 0, i2:
Integer = 1, effectCriticalInstant:Integer = 0}
|
let e:String = elem.event in
if iter.flag then
if iter.midCriticallnstant = 0 then
if iter.il > 1 and e = causes->at(iter.il) and self.compare(elem.timestamp, iter.causeCriticallnstant,
causeDistances->at(iter.il).which) then
if iter.il = causeSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = elem.timestamp + midDistance, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2, effectCriticalInstant:
Integer = iter.effectCriticalInstant}
else
let ill:Integer = iter.il + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill,
causeCriticalInstant:Integer = elem.timestamp + causeDistances->at(ill).value, i2:Integer = iter.i2,
effectCriticalInstant:Integer = iter.effectCriticalInstant}

endif
else
if e = firstCause then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2,
causeCriticalInstant:Integer = elem.timestamp + secondCauseDistance, i2:Integer = iter.i2,
effectCriticalInstant:Integer = iter.effectCriticalInstant}
else
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1,

causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = iter.i2, effectCriticalInstant:
Integer = iter.effectCriticallnstant}
endif
endif
else
let t:Integer = elem.timestamp in
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticalInstant, effectDistances->at
(iter.i2) .which) then
if iter.i2 = effectSize then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = 0, il:Integer = iter.il, causeCriticalInstant:
Integer = iter.causeCriticallnstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticallnstant}
else
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = i22, effectCriticalInstant:
Integer = t + effectDistances->at(i22).value}
endif
else
if e = firstEffect then
if t <= iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticallInstant, il:Integer = iter.
il, causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:
Integer = t + effectDistances->at(2).value}

else
Tuple{flag:Boolean = false, midCriticalInstant:Integer = -1, il:Integer = null, causeCriticalInstant:
Integer = null, i2:Integer = null, effectCriticalInstant:Integer = null}
endif
else

Tuple{flag:Boolean = iter.flag, midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = iter.il,
causeCriticalInstant:Integer = iter.causeCriticalInstant, i2:Integer = 1, effectCriticallInstant:
Integer = iter.effectCriticallnstant}
endif
endif
endif
else
iter

106

3854
3855
3856
3857
3858

3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869

3870

3871
3872
3873
3874
3875
3876

3877
3878
3879

3880
3881
3882

3883
3884
3885

3886
3887
3888
3889

3890
3891

3892
3893
3894

3895
3896

3897
3898
3899
3900

endif

) .midCriticalInstant = 0

def: checkPatternResponseManyManyLeftExactlyMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String
), causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:Integer, effects:Sequence(String),
effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

let
causeSize:Integer = causes->size(),
firstCause:String = causes->first(),
secondCauseDistance:Integer = causeDistances->at(2).value,
effectSize:Integer = effects->size(),
firstEffect:String = effects->first(),
lastEffect:String = effects->last(),
secondEffectDistance:Integer = effectDistances->at(2).value
in
subtrace->iterate(elem:trace::TraceElement;
iter:Tuple(flag:Boolean, midCriticalInstants:Sequence(Integer), midCriticalInstant:Integer, il:Integer,
causeCriticalInstant:Integer, i2:Integer, effectCriticalInstant:Integer)
= Tuple{flag:Boolean = true, midCriticalInstants:Sequence(Integer) = Sequence{}, midCriticalInstant:Integer = 0, il
:Integer = 1, causeCriticalInstant:Integer = 0, i2:Integer = 1, effectCriticalInstant:Integer = 0}
|
if iter.flag then
let e:String = elem.event, t:Integer = elem.timestamp in
if iter.i2 = effectSize and e = lastEffect then
if iter.midCriticalInstants->size() = 1 then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer =1,
causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = 1, effectCriticalInstant:Integer
= iter.effectCriticallnstant}
else
let nextCriticalInstant:Integer = iter.midCriticalInstants->at(2) in
Tuple{flag:Boolean = iter.flag, midCriticallnstants:Sequence(Integer) = iter.midCriticalInstants->excluding(
iter.midCriticalInstant), midCriticalInstant:Integer = nextCriticalInstant, il:Integer = 1,
causeCriticalInstant:Integer = iter.causeCriticallnstant, i2:Integer = 1, effectCriticalInstant:Integer
= iter.effectCriticallnstant}
endif
else
if iter.il > 1 and e = causes->at(iter.il) and self.compare(t, iter.causeCriticalInstant, causeDistances->at(
iter.il).which) then
if iter.il = causeSize then
let ct:Integer = t + midDistance in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallnstants->append(ct
), midCriticalInstant:Integer = ct, il:Integer = 1, causeCriticalInstant:Integer = iter.
causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.effectCriticallnstant}
else
let ill:Integer = iter.il + 1 in
if iter.midCriticallnstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill, causeCriticallInstant:
Integer = t + causeDistances->at(ill).value, i2:Integer = 122, effectCriticalInstant:Integer = t +
effectDistances->at(i22).value}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill, causeCriticallnstant:
Integer = t + causeDistances->at(ill).value, i2:Integer = 2, effectCriticalInstant:Integer = t +
secondEffectDistance}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, causeCriticallnstant:Integer = null, i2:
Integer = null, effectCriticalInstant:Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,

107

3901
3902
3903
3904
3905
3906

3907
3908

3909
3910
3911

3912
3913

3914
3915
3916
3917

3918
3919
3920
3921

3922
3923

3924
3925
3926

3927
3928

3929
3930
3931
3932

midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = ill, causeCriticalInstant:Integer
= t + causeDistances->at(ill).value, i2:Integer = 1, effectCriticallnstant:Integer = iter.
effectCriticallInstant}
endif
endif
else
if e = firstCause then
if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticalInstant:Integer
= elem.timestamp + secondCauseDistance, i2:Integer = 122, effectCriticalInstant:Integer = t +
effectDistances->at(i22).value}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticalInstant:
Integer = elem.timestamp + secondCauseDistance, i2:Integer = 2, effectCriticalInstant:Integer =
t + secondEffectDistance}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null, effectCriticalInstant:Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticallInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 2, causeCriticalInstant:Integer =
elem.timestamp + secondCauseDistance, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticalInstant}
endif
else
if iter.midCriticalInstants->notEmpty() and t >= iter.midCriticalInstant then
if iter.i2 > 1 and e = effects->at(iter.i2) and self.compare(t, iter.effectCriticallnstant,
effectDistances->at(iter.i2).which) then
let i22:Integer = iter.i2 + 1 in
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, causeCriticallnstant:Integer
= iter.causeCriticalInstant, i2:Integer = 122, effectCriticalInstant:Integer = t +
effectDistances->at(i22).value}
else
if e = firstEffect and t = iter.midCriticalInstant then
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, causeCriticalInstant:
Integer = iter.causeCriticalInstant, i2:Integer = 2, effectCriticalInstant:Integer = t +
secondEffectDistance}
else
Tuple{flag:Boolean = false, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = null, il:Integer = null, causeCriticalInstant:Integer = null, i2:
Integer = null, effectCriticalInstant:Integer = null}
endif
endif
else
Tuple{flag:Boolean = iter.flag, midCriticalInstants:Sequence(Integer) = iter.midCriticalInstants,
midCriticalInstant:Integer = iter.midCriticalInstant, il:Integer = 1, causeCriticalInstant:Integer =
iter.causeCriticalInstant, i2:Integer = 1, effectCriticalInstant:Integer = iter.
effectCriticallnstant}
endif
endif
endif
endif
else
iter
endif

) .midCriticalInstants->isEmpty()

108

3943 def: checkPatternResponseManyManyLeftMidRight(subtrace:0rderedSet(trace::TraceElement), causes:Sequence(String),
causeDistances:Sequence(Tuple(which:Integer, value:Integer)), midDistance:TemPsy::TimeDistance, effects:Sequence
(String), effectDistances:Sequence(Tuple(which:Integer, value:Integer))):Boolean =

3944 let midValue:Integer = midDistance.value, midWhich:TemPsy::ComparingOperator = midDistance.comparingOperator in

3945 if midWhich = TemPsy::ComparingOperator::ATLEAST then

3946 self.checkPatternResponseManyManyLeftAtLeastMidRight(subtrace, causes, causeDistances, midValue, effects,

effectDistances)

3947 else

3948 if midWhich = TemPsy::ComparingOperator::ATMOST then

3949 self.checkPatternResponseManyManylLeftAtMostMidRight(subtrace, causes, causeDistances, midValue, effects,
effectDistances)

3950 else

3951 self.checkPatternResponseManyManylLeftExactlyMidRight(subtrace, causes, causeDistances, midValue, effects,
effectDistances)

3952 endif
3953 endif

109

