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Abstract— Cognitive radios have been proposed as agile tech- CSI acquisition in an underlay cognitive network. The CSI
nologies to boost the spectrum utilization. This paper tackles the acquisition in time division duplexing (TDD) systems has been
problem of channel estimation and its impact on downlink trans- handled in the literature by exploiting finite-length pilot se-

missions in an underlay cognitive radio scenario. We consider in th f itive interf R tlv. th
primary and cognitive base stations, each equipped with multiple quences In the presence of cognitve Interierence. kecently, the

antennas and serving multiple users. Primary networks often Problem of non-orthogonality of training sequences has been
suffer from the cognitive interference, which can be mitigated thoroughly investigated [6]- [9] in a multicell environment.
by deploying beamforming at the cognitive systems to spatially |t is pointed out in [6] that pilot contamination degrades the
direct the transmissions away from the primary receivers. The parfarmance and a robust precoding technique is proposed to
accuracy of the estimated channel state information (CSI) plays . o o

an important role in designing accurate beamformers that can face this challenge. Specnﬁcally, it is shown that _the reuse
regulate the amount of interference. However, channel estimate is of sequences across interfering cells causes the interference
affected by interference. Therefore, we propose different channel mitigation performance to rapidly degrade with the number

estimation and pilot allocation techniques to deal with the channel of antennas, and thereby undermines the benefits of MIMO
estimation at the cognitive systems, and to reduce the impact systems in cellular networks.

of contamination at the primary and cognitive systems. In an . ) ) )
effort to tackle the contamination problem in primary and To allow the cognitive coexistence with the primary net-

cognitive systems, we exploit the information embedded in the work, the interference at both the estimation step and infor-
covariance matrices to successfully separate the channel estimatemation transmission should be limited in order not to degrade
from other users' channels in correlated cognitive single Input yhe Hrimary system. A definition of the interference constraint

multiple input (SIMO) channels. A minimum mean square error . . .
(MMSE) framework is proposed by utilizing the second order imposed by the primary system can be illustrated as follows

statistics to separate the overlapping spatial paths that create , Contamination temperatutg,: The amount of the inter-
the interference. We validate our algorithms by simulation and ference that can be tolerated by the primary base station
compare them to the state of the art techniques. (PBS) at the channel estimation phase

. INTRODUCTION « Interference temperatufg,: The amount of the cognitive

The paradigm of cognitive radio has been proposed as a downlink interference at the primary user (PU) receiver
promising agile technology that can revolutionize future of that can be accepted by the primary system
telecommunications by breaking the gridlock of the wireleds this paper, we study the performance of the primary and
spectrum [1]- [2]. Two initial hierarchal levels have bee®gognitive networks considering a pilot reuse between these two
defined: primary level and secondary level (the users withitetworks. We investigate the impact of the pilot reuse on the
each level are called primary users (PU) and cognitive us@ecuracy of the estimation at the primary system. Moreover,
(CU) respectively). Overlay, underlay and interweave are thré® examine the estimation procedure at the cognitive system
general techniques that can regulate the coexistence term@uid investigate the tradeoff between the multiuser diversity and
the two systems. The first two techniques permit simultante pilot contamination. Pilot allocation techniques at cognitive
ous transmissions [3]- [4], which leads to better spectruhfise station (CBS) are used to reduce the contamination at
utilization in comparison with the last one, which allocatethe primary and cognitive systems which consequently have
the spectrum to the cognitive system by detecting the absedgeimpact on the downlink performance.
of the primary transmissions [5]. The adopted notations in the paper are as follows: we

The use of multiple antennas at the primary and tHése uppercase and lowercase boldface to denote matrices and
cognitive base stations has proven to be very useful fgectors. Specificallylx denotes thek' x K identity matrix.
the interference management in cellular networks [4]. Theket X”, X* and X" denote the transpose, conjugate, and
characteristics make the multiple antenna techniques suita@®jugate transpose of a matirespectively. The Kronecker
to limit the impact of the created interference by cognitiveroduct of two matriceX andY is denotedX®Y . Lettr(X)
transmissions on the primary receivers. Therefore, the aceyy, _ i defined for downfink .
racy Of the CSI has an important rOIe on the interferenqg nterference temperatu®;, is usually defined for downlink transmissions

/ . design the beamforming at the cognitive system. This is out of scope of
avoidance performance [6]. In this work, we focus on thgis work and it is handled in [4].



denote the trace operation, add/(a, R) is used to denote « The contamination is created in the estimation process
the circularly symmetric complex Gaussian distribution, with  at CBS due to the reused pilots in both cognitive and
the meame and the covariance matrik. primary systems.

Il. SYSTEM MODEL
. . , A. Channel Model
Our model consists of primary cells with full spectrum reuse

that coexist with a cognitive network. Estimation of flat block We consider a uniform linear array (ULA) at the BSs whose
fading, narrow band channels in the uplink is considered. THesponse vector can be expressed as

base station acquires the channel estimate through uplink pilots ' ,

transmitted by users. We assume that the pilot sequences, of ~a(w) = [1 e ... e dM=DeT 3)
length symbols, are used by single-antenna users. All base ordsind ] .

stations are equipped with a-element uniform linear array Where w = =%, d is the antenna spacing at the base
(ULA) of antennas. It is assumed that each primary user $§tion, X is the signal wavelength antliis angle of arrival
allocated an orthogonal pilot, so that no contamination occtRs@ Single path. Assuming a flat fading channel, the received
within the primary network. However, this pilot may be reusea'gr“'?" at the base station can be expressed as a multipath model
due to the limited resources by multiple cognitive users wH#ilizing the response array vector as

contribute to the contamination of both primary and cognitive Q
channel estimation. The pilot sequences used for estimating h = Z%’a(wi) (4)
the user channels are denotedy= [s;1 ... si]T € =

C'*7. The pilot symbols are normalized such tHa;;|> = . .
L vj € 7}, where P, is the total pilot power. For the sakeWhere; is a complex random gain factow; depends on

of simplicity, we assume single PBS and CBS, where PUae angled; of the ith path, Q is the number of paths. A
use orthogonal pilots and these pilots are reused to estim%’?é‘eral correlation structure can be well approximated for
the CU’s channel with respect to CBS with the possibilityfmited angular spread by [14]

of reusing pilots within the cognitive systems. The users’ R—D B°DX

channel vectors are assumed to@¥é*! Rayleigh fading with N e
correlation due to the finite multipath angle spread seen frqmwere o
the base station (BS) side. The channel betweenaiaed BS ;
z is denotedh,, ~ CN(0,a,.R,,) € CM**1 wherea,, is

= 2r4ogcosf, D, = diaga(w)]. oy is the
standard deviation of the angular spread. The maBix

h on f h 55, We d he ch Idepends on the angular spread of the multipath components.
the attenuation from the userto BS z. We denote the channel angular distribution is Gaussianc A'(0,02), and it can

covariance matriR,, € CM*M  \We use the notation aP, be written as

C for primary system and cognitive system elements (i.e. BS

or users) respectively. As multiple CUs exist in the system, we [B% (m,n)] = p((m=—n)V/35.,)%/2 (5)
use the index to distinguish the different CUs. Considering

the transmission of; sequence, th@/ x 7 signal baseband Whenw is uniformly distributed ovef—é,,, d, ], the covariance

symbols sampled at the PBS can be simplified as has the following structure
Yp=hpps! + } hopysi +Np, @ 5 sin((m — n)3..)
VieK; [B°“(m,n)] = W (6)
where hpp is the channel of interest at PBS. The sampled
baseband signal at CBS ando, = v/36,,.
Y. = hpCSZT + Z hCC,jSzT + N¢ (2)

Theorem [11] 1: The asymptotic normalized rank of the
Toeplitz channel covariance mati with antenna separation
wherehgg ; is the channel to be estimated at CBS. Moreovey, and angle of arrivah and angular spread is given by
K; denotes the set of all CUs who use the training sequence
s; simultaneously with the primary useNg,Np € CMx7 p =min{1, B(d,0,4,)}, (7
denotes the spatially and temporally white complex additive
Gaussian noise (AWGN) with element-wise variance at where B(d,4,4,,) = |dsin(f — 6,,) — dsin(8 + 4,,)|.

CBS and PBS respectively. As we study the impact of reusifgom theorem 1, it can be noted that the rank of the user’s
a single pilot in the primary and cognitive system, the piladovariance is a function of the angular spread and direction of
indices can be dropped. Furthermore, we assume that Hifivals. The users’ positions with respect to the surrounding
cognitive uplink transmissions are synchronized with primaBSs have a direct impact on their channels, and as conse-
uplink transmissions. The contamination can occur in tW§uence the estimation procedures of these channels. As a
cases: result, employing pilot allocation techniques that take into the
« The contamination is created at the estimation processaatount the user’'s natural separability can boost the quality of
PBS due to the reused pilots in the cognitive system. estimation at both PBS and CBS.

VieK;



B. The CSI acquisition at the primary and cognitive systensequence, which raises the question about the possibility of
The covariance information of the target users and icquiring the CUs’ second order statistics related to PBS.
terfering users can be acquired exploiting resource block@ reduce the impact of the contamination, the cognitive
where the desired user and interference users are knowrSY§tem should have a pilot allocation strategy to reduce the
be assigned pilot sequences at different times. Alternativef@ntamination on the primary system and cognitive system.
this information can be obtained using the knowledge of the L) Méan Square Error Performancethe estimation errors
approximate users’ positions and the type of the angular spréiide PBS and CBS respectively can be expressed as

at BS side exploiting the correlation equations (5)-(6). In this ) o2 N\ -1
work, we assume two levels of covariance knowledge o = AT (RPP —Rpp (Rpp + W;C Rspj + TI> ) (13)
« Coordinated knowledge, in which the PBS and CBS . ' 02 N1
have covariance information between themselves andthe ~ w;q tr (RSSJ ~Rss <RPS + vz;ci Rss+ TI> )‘(14)

E):rlma_ry anlij coglgn(ljtwe l.Jsersr.]. h onlv the CBS h h From the previous equations, it can be concluded that the
« Cognitive knowledge, In which only the as thenean square errors at PBS and CBS are functions of the

covariance knowledge between itself and all users in baffypspaces of the cognitive interfering users.
systems. C. Primary Cognitive MMSE Estimator
Depending on correlation information availability on the CBS To minimize the MSE at the PBS. the contamination con-

and PBS, we propose different estimation and pilot allocatiqfaint should be taken into consideration. The mean square
techniques in the following sections. error can be formulated as

[1l. CHANNEL ESTIMATION FOR UNDERLAY COGNITIVE _
& = E{ (hPP —v7'GpS( Z hgp;+hpp+ np)>

SCENARIO viek;
Utilizing the multiple antenna ULA structure, we propose I =
a modified estimator with the target of decontaminating the 1
reused pilots in the cognitive network. Our estimator exploits <hPP - GPS(VZ’:C hspj+hpp+mny) | (15)
1€k

the information in the second order statistics of the channel L )
vectors. The covariance matrices seize the required infornigle Optimization problem that takes into the account the

tion of distribution (mainly mean and spread angle) of thgontamination effect can be formulated as

multi-path signals at the base station [13] and as shown in glplg Ep

(5),(6). We define a training matri8 = s ® I, such that s.t. tr(GpGE) < P (16)
H _ . . . . . e

SHS = 7T,,. Then, the received training signal at the primary tr(GpS Y yjex, RspSTGH) < Cpn.

base station can be expressed as . L
To solve the previous optimization problem, we need to

yp = S(hPP + Z hSP,j) +np (8) express the associated Lagrange equation as
ik L(Gp) = tr (Rpp — v 1GpSRpp — v 'RppSHEGH
wheren, € CM™*1 = veqN,),z € {S, P} is the sampled
noise at PBS. The sampled signal at CBS can be formulated + 772GS( Z Rsp; + Rpp + aI)SHG§>
as viek;

Yo = S(hPS +V§€;C hSS,j) + ng. 9) n )\(tT(GpGg> —p)
J i
A. Naive Mean Square Error Estimation + MGT(GPS > Rsp;87"GH) - Cth) (17)
VieR;

The estimator does not consider the interference at the o i ] )
estimation process and can be formulated as where v indicates a scaling factor for the received signal.

The corresponding Karush-Kuhn-Tucker (KKT) conditions for

G, =Rpp(Rpp +0’I)7'8%. (10) £(G) can be written as
B. Coordinated Minimum Mean Square Estimation — Y RppS” +472GpS Z (Rsp; + Rpp)SH
The estimator at the PBS and CBS can be respectively VieKi
expressed as + AGp+ uGpS Z Rsp ;S =0, (18)
0_2 —1 ViEK;
Gp =Rpp (S(RPP + ) Rspi)S7 + TI) , (11) + 7 *tr(GpRppS +7 *RppSHGEH
: 52 \ ! — 297°GpS( ) Rspj +Rpp+oDSTGE) =0,
G¢c = Rgs (S(RSP + Z RSSJ)SH + I) . (12) VieK:
; T A >0,tr(GpGHEY-P <0, (19)

From (11), it can be noted that the estimator at the PBSisa ;, > 0,tr(GpS Z Rsp,;STGH) - ¢y <0, (20)
function of all CUs’ subspaces that utilize the same training Vieks



A(,j,,(GPGg) _ p) =0, (21) B. Greedy MSE Minimizing Pilot Allocation Algorithm

- We adopt the MSE as a metric to optimize the pilot
M(tT(GPS > Rsp;SYGE) —Cth> =0.(22) allocation algorithm. Define the set of the CUs that utilizes
ViEK: the training sequence as i, and the set of CUs thahay

From (18), we can formulate the modified MSE estimator &d/0caté the same pilot with PU. Define the mean square
follows error metric as follows

—1
Gp =7Rpp (RPP +G Z Rsp; + CzI) S”  (23)

Ve, np(P,Us) = Rpp(Rpp+ § Rspz-ﬁ-*l) (27)
1€EUs
CinCi ;
where § = v, G = YA, G = 24 — 2524 The final
; ’ ' J(PU) = S Rss,(R R —1 28
estimator can be expressed as T (P, Us) ]GZM ss.i(Rps teuzcu ssi+D7 (28)

Mo? — QCthCI) H
Gp=1Rpp(R Rsp, + ( ——— L)1) sH (24
P=7 PP( PP+ a1 VJZG,:C SPj T+ ( o27P @)}t should be noted that these pilot allocation algorithms are

designed at cognitive system deployment, so they are functions
To determine the values gf, we need to define the following of the relative positions of the cognitive users and primary.user
function

f(w) =tr({P Y Rsp; — Cl}Gp(n)GE (1).  (25)

A.1 Greedy Pilot AllocationAlgorithm

vieK; o To reduce the pilot contamination at PBS
. . 1) Initialize the set of CUs that may allocate the same training
In order to ensure that the contamination does not exceed sequence with thét” PUU(s;) = ¢
the threshold, this condition should be consMep@{qh) 2) If the PU allocates the training sequence aof;,

0. This condition results in; argmin mp(BUUAT st U UU{G

>
H H
. tr(Gp(p)S 3, RSPJS Ge (W) 3) if np < (tn, go to step 1.

(Cr (WG (0) which makesy = —tT(GP(lSGg(/—L)) - The « To reduce the pilot contamination within the cognitive system
value of ¢* can be evaluated at CBS and passed to PBS as 1) Initialize s = ¢
the knowledge of second order statistics is available at CBS. 2 k" =argmin ns(PUs U{k}), Us = Us U{k"}.

1) Mean Square Error PerformanceThe contamination
temperature can be translated into mean square error cincan be noted that if the cognitive users are located in
straint. The MSE can be evaluated using (24), and has @istinct position, they span different subspaces which can
following formulation: reduce the probability of having contamination in the primary
and cognitive estimate. Therefore, this has a direct impact on
Np = t’T’(RPP —R?;P(Rpp +C* Z Rsp; +I)71). (26) the interference avoidance based technique in the downlink
ViEK; transmissions.

It can be noted that MSE is a function of the contaminatio

. Heuristic Pilot Allocation
temperature. By increasing the contamination temperature, the A h iiot allocation that handl fimai
MMSE estimator reduces to the same formulation as trtle hno er plot alloca Ionth a (‘ia:] ban deag?rr]]erlc estma |c;n|
typical MMSE estimator. echnique is to assign the pilot based on the users spatial

separability. We propose a new metric to express the amount
IV. PILOT DECONTAMINATION USING PILOT ALLOCATION  of gverlap in subspaces

To enhance the quality of estimation, we introduce pilot
allocation algorithms to assign the pilot to the set of the P _ tT(RPPRSPﬂ') (29)
secondary users that span distinct subspaces with respect to the SPy tr(Rpp)tr(Rsp,;)
PU and the set of cognitive user. Moreover, this pilot allocation
can simplify the estimation at the PBS by assigning the sam&ere0 < 05, < 1. Whendy »; is close to 1, the users

training sequence to a suitable set of CUs in the cognitié@an highly overlapped subspaces, but whigp ; is close to
networks. 0, the users span a highly separated subspaces To express the

concatenated subspaces of the CUs overlapping with a PU, we
define the following metric
To find the optimal pilot allocation that achieves the mini- c
mum MSE across the networks, we need to exhaustively search p “"(RPP Zi=1,i¢z RSPJ) (30)
all possible combinations. To simplify the search, we proposed SP tr(Rpp)tr(X0, > Rspi)
low complexity greedy algorithms to find the suboptimal set o ’
of cognitive users that can simultaneously utilize the saniewe define the semi-orthogonality threshold values between

training Sequence Wlth the primary users. These algo”th% primary System and CUs é§’ and between the Cl&’
can be summarized as follows The pilot allocation algorithm can be written as

A. Optimal Pilot Allocation




A2 §,, 5, Heuristic PilotAllocation Acrorym Estimationscheme qu:)atiOH
number
o Jp step to reduce the contamination at PBS NMMSE Naive Minimum Mean Square Es- (10)
1) Initialize the set of CU that may allocate the same training timation -
sequence with théth PUU(s;) = ¢. MMSE Minimum Mean Squaréstimation (11)
2) Vje c75IS>P,j < 8p, U(sg) « U(sy) U g CMMSE é:sot?mnglt\i/ganlmum Mean Square (24)
e 5 step to reduce the contamination at CBS
1) Initialize Us = ¢ TABLE |
2) k* =argmin §s(P,Us Uk), Us < Us U {k*}. THE LIST OF ADOPTED ESTIMATION IN SIMULATION
keu
D. User Grouping Based Pilot Allocation Acronym Pilot Allocation Scheme alg%rithm
number
User grouping has been proposed in [12] for the purpose|d#PA Mean square error pilatliocation | A.1
utilizing the users’ correlation matrices to virtually sectorize "™ Heuristic pilotallocation A2
: . UGFA User grouping pilotallocation A3
.the' BS based on users’ channel statistics due to the ranlf sy Random pilotallocation
itation stated by Theorem (1). To simplify the pilot allocation
TABLE Il

and the estimation at the both systems, we cluster the PUs and
CUs into different groups such that each user should belong to ~ THE LIST OF ADOPTED PILOT ALLOCATION IN SIMULATION
two different groups. The first set of grougs,, is related to
PBS and the other ongc , is related to CBS. These groups
are designed according to these guidelines 1) Qu,, determination: The set of{Q. 4},9 = 1,...,G,
« The cognitive users in the same group should have ch&{f¢ chosen to span disjoint subspaces by assuming distinct
nel covariance eigenspace spanning a common subsp&fgular spread or have a minimal overlap with the other
which identifies the group. group which can be found using the chordal distance metric

« The subspaces of the group should span mutually & follows
thogonal subspaces or disjoint ones (i.e. the groups havg(Q OH ) = arg mi O _O OH |2
. x,g x,j5) — gmmHQxy Qx 1 Q17 Qm || . (34)
non-overlapping ). Th&p, : Gpy C Gpy,NyGpy = g ma s g E

#,UsGpg =Gp, Go,g: Go,g C Gos mggég = ¢. The user grouping is performed once for fixed users position.
« The CUs distribution among PBS groups has no relatiddased on the grouping, we propose a new pilot allocation
to their distribution among CBS ones. algorithm

, . . . A.3 Group Based PiloAllocation
These factors depend on the users’ relative positions with re=

spect to BSs (PBS, CBS) and the local scattering environment. « PBS selects thg'" PU. _
We use the chordal distance as a metric to assess the similarity® Acauiring this information, CBS finds the grouRs, p e
. ) . . that falls within the selected PU subspace.

among the users, which makes it suitable for users grouping. . select thek ¢ QspgVg & g*
Given two matricesX € CM*xr Y ¢ CM*r their chordal o Find the subspace that has the minimum chordal distéhee
distance denoted by.(X,Y) is defined by argmin  d(Qspi, Qppjeg*)-

de(X,Y) = |XXH - YYH|2. (31) The user grouping pilot allocation can be combined with any
The group subspaces for the CUs are defined ggthe described estimation techniques NMMSE, MMSE and

Qspg,Qss,y € CMxr . g = 1,...,G are assumed to MMSE.

be known and fixed a priori based on users’ geometric V. NUMERICAL RESULTS
distribution wherer defines the rank 0Qgss 4, Qsp,q , and
Uy, is the k" users dominant eigenvectors. Assuming we,
have M groups, we can group the users using the followin

In order to assess the performance of the proposed schemes,
mulations of cognitive and primary systems have been per-
rmed. The assumed scenario: single POUSUs,10 antennas

algorithm at CBS and PBS, the angular spread is assumed t80be
« Selectz = SPorz = S5S uniformly distributed at CBS ULA with overlap df°. These
e forg=1,...,G,setG, , = ¢ parameters are applied in the following simulations unless
« form=1,.... M otherwise stated. The users channels are assumed to have the

de(Ugm; Qug) = |UpmUH, — Qx,gQi{,gII%- (32) form'ulat|on gf '(4), and undgrgo the correlation (5), (6). Thg
studied metric is the normalized sum mean square error, which

Find the minimum distance can be expressed for PBS and CBS respectively as
=argmin d.(Ug m, , 33 hpp —h 2
g g g C( ,m Qac,g) ( ) np = 10 loglo( H PﬁhPPﬁJP” ) (35)
and add usek to groupg, G, g = G, Uk. 3. ||BSSj ~ hgs,|?
_ J : ’
It is obvious that the performance depends on the selection of nc = 10logf > hss,ll )- (36)

the predefined subspace€p, .



Fig. (1) depicts the comparison among the different pilot
allocation strategies with respect to cell edge SNR. The mean
square error performance for pilot allocation in the cognitive
system is studied, for nominal reuse factoBoft can be noted
that the random pilot allocation has the worst performance in
comparison with the other techniques. This can be explained
by the fact that RPA does not pay any attention about the
separability between the SU and PU and or the other SUs.
On the other hand, MSE based pilot allocation techniques
outperform all techniques. User grouping and heuristic pilot
allocation achieve a comparable performance with respect to
MPA with the advantage of reduced complexity.

Figure (2) illustrates the contamination and its impact on MSE
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concluded that the proposed MMSE estimation techniques
combined with pilot allocations provide considerable gains
over the traditional techniques.
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