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Motivation

e More insight into material failure at a fundamental level, to
develop new materials and robust designs

¢ Atomistic simulations — computationally expensive
¢ Multiscale methods to compute what actually matters

¢ In fracture simulation, crack and dislocation propagation
should be confined around the crack tip

e We focus on the Arlequin type methods which is suitable
for dynamic fracture

e For MD—XFEM coupling it is called eXtended Bridging
Domain Method (XBDM)
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Semi-concurrent and Concurrent multiscale methods
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The XBDM method

¢ Fine scale model: Can consists of any atomistic structure
(metals, polymers etc.) with different inter-atomic potentials
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¢ Fine scale model: Can consists of any atomistic structure
(metals, polymers etc.) with different inter-atomic potentials

e Coarse scale model
i. XFEM is used for discretization
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i. The FE mesh does not have be aligned with atoms
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nd Implementation

The XBDM method

¢ Fine scale model: Can consists of any atomistic structure
(metals, polymers etc.) with different inter-atomic potentials

e Coarse scale model
i. XFEM is used for discretization
ii. Cauchy-Born method can be used for material behavior

e Stain energy is weighted linearly in the handshake region
i. The FE mesh does not have be aligned with atoms
ii. Wave reflection is minimum

e Coupling is enforced with the Lagrange multipliers
e Ghost atoms move with the continuum
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weighting function
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Governing Equations

The governing equations are derived from the Hamiltonian of
both systems:

P - P? . P?
H=wH” +(1 -w)H? = za:(w(xa))m+
1 12
W*+Z(1—w X)P P +(1 = w)W?

In the Lagrange multipler method, the total Hamiltonian is:
H =H+ )\Tg

And g is the gap vector between the displacements.
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Governing Equations

In explicit dynamics the semi-discrete equations are:
t t . AE
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Governing Equations

The forces on each atom are determined from the interatomic
potential W as:

1 OW (r.p)
== 5 (W(Xa) +w(Xe) — =2
2 od:
B B
The coupling forces on the fine and coarse scales are:
= > XN (Xa), 17 =—Aai
aEQO%
The displacement approximation with XFEM is
=> N X)u+ > N(X)H(fi(X))a
leN o IeNy

VT ~N~
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Cauchy-Born Rule
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Problem Setup

1. Read the coarse and fine scale model definitions
2. Minimize the potential energy of the atomistic part
3. Build the neighbor lists for the coarse scale
4. Find all the atoms in all elements
¢ 5. Find active elements, bridging elements and nodes
6. Compute the weights of the nodes and integration points
7. Find active atoms, bridging atoms and ghost atoms
8. Recompute coarse and fine scale masses
9. Set up the Lagrange multiplier points
10. Compute the coupling matrix
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A Platform for Multiscale Analysis
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Major PERMIX Features

¢ Fully extensible object oriented Fortran 2003 compliant

e Parallel MD part (LJ, EAM, MEAM) based on WARP

e An FO03 interface for LAMMPS (C++ version).

¢ 2 and 3 dimensional Extended Finite Elements.

¢ Explicit Dynamic and Nonlinear Static Solver

e Coupling FE-XFEM and XFEM-MD using Arlequin method
¢ Can handle semi-concurrent multiscale methods

e Material models, boundary conditions and loading types

e Interface to many libraries such as TETGEN, GEOMPACK,
MUMPS, MKL, etc.
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Verification

Verification Example 1

Dynamic FE-FE coupling
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Verification
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Verification

Verification Example 1: Zoom

Results: Movie 1
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Verification

Verification Example 2
Dynamic XFEM-MD coupling in 2D
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Verification
Verification Example 2

Results: Virial Stress is shown
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Verification Example 2
Results: Virial Stress is shown
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Numerical Examples

Example 1: 3D FE-XFEM Coupling
Initial Configuration
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Numerical Examples

Example 1: 3D FE-XFEM Coupling

Simulation Details

e A 3D dogbone specimen in dynamic explicit

e Coarse scale has 33,735 elements and 41,760 nodes.
Fine scale has 427,500 elements and 456,020 nodes.
A linear elastic material model is used.

The right hand side is loaded with pressure.

Can be applied to multiscale problems.

No complicated meshing-remeshing tools/algorithms are
needed.
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Numerical Examples

Example 1: FE-XFEM Coupling
Displacement Contour, Movie 2
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Numerical Examples

Example 2: MD-XFEM Coupling

Example 2: Coupled MD-XFEM

e . Initial Crack Surface
Velocity Boundary -

Condition
Velocity Boundary
- Condition
Atomistic Domain
Bridging Domain
v
. /1 . Continuum Domain

XBDM for Modelling Fracture H. Talebi



and Implementation ice Numerical Examples

[o]e]e]e] Jelelele]e}

Numerical Examples
Example 2: MD-XFEM Coupling

Simulation Details

e A 3D rectangular specimen (8000x800x100 %)

e LAMMPS is used for MD part

e Cauchy-Born method for continuum material

e Crack length 620

e 197,743 elements and 692,064 DOFs.

e Atomistic domain is FCC lattice with constant 3.645

¢ Atomistic region has the size of 540x340x100A3 with
1,626,240 active and 166,815 bridging atoms.

e Lennard-Jones constants are: 0 = 2.29 and e = 0.467 eV
Velocity of 0.1 A/picoseconds applied to both ends, time
step is .003 picoseconds.
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Numerical Examples

Example 2: MD-XFEM Coupling 1

Results at time steps: 32400,63400
Movie 3
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Numerical Examples

Example 3: MD-XFEM Coupling 2

Coupled MD-XFEM using LAMMPS

++'  Velocity Boundary Condition

Bridging Domain -

Continuum Domain

Atomistic Domain

e
¢ Fixed Boundary Condition © % '
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Example 3: MD-XFEM Coupling

Simulation Details

¢ A 3D rectangular specimen (1000x1000x150A3)
e Cauchy-Born method for continuum material

e Crack length 620A

e 44 890 elements and 152,592 DOFs.

e Element size is 15A

e Atomistic domain is FCC lattice with constant 3.645A

¢ Atomistic region has the size of 310x310x150A3 with
1,368,575 active atoms

¢ Velocity B.C. on top nodes
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Numerical Examples

Example 3: MD-XFEM Coupling
Results at time steps: 10000,33000,34000,35800

XBDM for Modelling Fracture H. Talebi



Numerical Examples

000000000e
Numerical Examples

Example 3: MD-XFEM Coupling Results (Movie 4)

Results at time steps: 10000,33000,34000,35800
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Discussion

¢ In FEM-XFEM coupling, adaptivity can be easily applied

¢ In XFEM-MD coupling, dislocations should be handled
when they propagate close to the continuum domain
I. Adaptive refinement of the atomistic domain
II. XFEM enrichment for dislocations
lll. CG method of Y. Chen et al.
(A concurrent scheme for passing dislocations from
atomistic to continuum domains, Acta Materiala, 2012)
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Discussion

¢ In FEM-XFEM coupling, adaptivity can be easily applied

¢ In XFEM-MD coupling, dislocations should be handled
when they propagate close to the continuum domain
I. Adaptive refinement of the atomistic domain
II. XFEM enrichment for dislocations
lll. CG method of Y. Chen et al.
(A concurrent scheme for passing dislocations from
atomistic to continuum domains, Acta Materiala, 2012)

e Cauchy-Born method is not always valid
I. Strain range, Il. Surface effects, Ill. Temperature range,
IV. Material, V. Efficiency
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Discussion

Discussion

e Modeling higher temperatures

Isothermal simulations can be done with the current
method

A strain rate, temperature dependent material model
should be used at the coarse scale

Computing the material model can be automated based on
a hierarchical multiscale method

Polymeric materials can be modeled with this method

3D XBDM for Modelling Fracture ... H. Talebi



Conclusions
[ o)

Conclusions

Conclusions and Future Plans

¢ An extended bridging domain method was presented.
A multiscale software framework was introduced.

The verification examples show that the method is stable in
dynamics in both FE-FE coupling and FE-MD coupling.

A comparison between full MD and coupled FE-MD
Several examples modeling crack propagation was shown.

Handling dislocation propagating to the continuum domain
was discussed.
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Conclusions and Future Plans

¢ An extended bridging domain method was presented.
¢ A multiscale software framework was introduced.

¢ The verification examples show that the method is stable in
dynamics in both FE-FE coupling and FE-MD coupling.

e A comparison between full MD and coupled FE-MD
e Several examples modeling crack propagation was shown.

¢ Handling dislocation propagating to the continuum domain
was discussed.

e Future work includes isothermal multiscale simulations,
and extension to other materials.

o Efficient parallelization for distributed memory systems is
also another challenge.
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