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Abstract

We present an open-source software framework called PERMIX for multiscale modeling
and simulation of fracture in solids. The framework is an object oriented open-source effort
written primarily in Fortran 2003 standard with Fortran/C++ interfaces to a number of
other libraries such as LAMMPS, ABAQUS, LS-DYNA and GMSH. Fracture on the contin-
uum level is modeled by the extended finite element method. Using several novel or state of
the art methods, the piece software handles semi-concurrent multiscale methods as well as
concurrent multiscale methods for fracture, coupling two continuum domains or atomistic
domains to continuum domains, respectively. The efficiency of our open-source software is
shown through several simulations including a 3D crack modeling in clay nanocomposites,
a semi-concurrent FE-FE coupling, a 3D Arlequin multiscale example and an MD-XFEM
coupling for dynamic crack propagation.
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1 Introduction

Multiscale modeling of fracture or modeling fracture in general is today still a significant chal-
lenge. Multiscale methods are powerful for extracting material properties based on the fine-scale
details. While numerous multiscale methods (see e.g. [57, B8]) were developed for intact ma-
terials, far fewer methods are available for fracture simulations. It is believed that Molecular
Dynamic (MD) simulations of fracture will help gaining a fundamental understanding about

the failure of solids. However, MD simulations are not feasible for specimens of reasonable



size. Therefore, multiscale methods have been developed that couple MD-models to continuum
models.

Multiscale methods can be classified into hierarchical, semi-concurrent and concurrent meth-
ods, Fig. [l In hierarchical multiscale methods, information are passed from the fine-scale to
the coarse-scale only. Numerical homogenization is a classical upscaling technique. Here a
macroscopic constitutive model is assumed and the parameters of the model are computed from
the microstructure. Among many other we refer to the studies by Nakamura and Pettermann
and Suresh [I00], Suresh [87], Christman et al. [29], van der Sluis et al. [133], and extensions
to composite materials were conducted in [32] [60 [I}, [70}, [106].

Though attractive because of their computational efficiency, the extension of hierarchical
multiscale methods to model fracture is complex. In the presence of a crack in the micro-scale,
one basic assumption for the application of homogenization theories is the existence of disparate
length scales [88]: lo, < lryE < lspec Where Uoy, LryE and Lgpe. are the crack length, the
RVE (Representative Volume Element) and specimen-size, respectively. For problems involving
fracture, the first condition is violated as £, is in the order of fryg. Moreover, periodic
boundary conditions (PBC) often used at the fine-scale to improve convergence, cannot be
used when there exists an edge crack touching a boundary as the displacement jump on that
boundary violates the PBC.

In semi-concurrent multiscale methods, there is an interaction between the fine-scale and
the coarse-scale during the simulation, Fig. [Il A classical semi-concurrent multiscale method is
the FE? [37] developed originally for intact materials. In concurrent methods, there is a direct
coupling of fine and coarse-scales. Numerous concurrent multiscale methods for intact materials
were proposed in the literature. There are two categories that can be classified into handshake
coupling and interface coupling methods [84].

In general, a multiscale model can involve continuum, atomistic or quantum mechanical
descriptions of the matter at each scale. Also, the discretization strategy at each scale can
be different i.e. one can use for example finite elements or meshfree methods to model the
continuum behavior. As a result, due to the complexity of the implementation of multiscale
methods, the class of problems approached by other researchers are mostly limited to small,

two dimensional and academic cases. The reason as noted by Shepard et al. [115] is that so far
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Figure 1: Schematic of a concurrent and semi-concurrent multiscale methods.

there is no unified tool that enables one to easily connect different abstract components with
multiscale methods. Notable multiscale modeling tools are the one offered by Miller et al. [84]
where the open source implementation offers 14 different multiscale methods bridging atomistic
to continuum methods. Digimat is a commercial tool which connects several commercial finite
element packages. However, those open-source components focus on multiscale methods for
intact materials. To our knowledge, no piece of software enabling multiscale fracture simulation
in an integrated framework is available.

Many computational methods exist to model propagating cracks in a single scale. Continuum
mechanics approaches that smear the crack width over several elements are computationally
expensive as the length scale of the specimen is magnitudes larger than the width of the cracks.
Examples of computational methods for discrete fracture are interelement-separation methods
[138], Extended Finite Element Method (XFEM)/Generalized Finite Element Method (GFEM)
[17, 85, 125], Extended Element Free Galerkin Method (XEFG) [140, 26] 130] or Cracking
Particles [105]. In XFEM for example, the crack can be captured within a single element.

Fracture in Molecular Dynamics (MD) is modeled by breaking bonds between neighboring



atoms. In the Peridynamics method also, fracture is modeled with breaking bonds between the
particles [121].

In order to implement a framework for multiscale analysis, the software design must account
for many different model situations. The framework should be able to handle several simulation
components with and without different modeling concepts. Also, the framework should be able
to communicate with existing tools such as commercial or open-source software to model a
certain scale of the model. The communication with other tools demand a proper interface that
efficiently transfers data. This can be achieved, amongst other means, by a full object oriented
design which connects several tools and libraries together and with its own capabilities.

Most of the previous work in object-oriented design of FE software was performed using C++
and Java. However, Fortran is the traditional language used by many advanced commercial
FE software. The use of Object Oriented Programming (OOP) concepts in Fortran 90 for
finite elements was shown in [4, 95, B4]. A successful use of the Fortran 2003 standard was
reported by Nie et al. [94] where modern features of Fortran 2003 were used to implement an
adaptive multi-physics library. Fortran 2003 as a modern programming language and backward
compatibility with Fortran 9x/77 convinced the authors of this work who used it as their
primary language to implement the computational library. The attractive features of Fortran
2003 such as derived data types, type extension and inheritance, dynamic memory allocation,
polymorphism, enhanced interoperability with the C language and finally its general ease of
implementation and debugging compared to C++ [82] will help the maintenance and extension
of the tool.

In this manuscript we offer a computational software (named PERMIX) that has several
advantages which makes it a versatile and efficient toolbox for multiscale simulation of material
failure. Several scales can coexist in 2D and 3D problems. Hierarchical, semi-concurrent and
concurrent multiscale methods are available for both continuum and atomistic domains. For
continuum based methods, it supports large deformation in addition to different nonlinear
material models. For atomistic domains, the code has its own parallel atomistic library with
some basic atomistic potentials useful for metals. Moreover, PERMIX has a full interface to the
LAMMPS Library that includes Peridynamics [120, 121], O8] and the SPH method [56] [72] in

addition to its comprehensive molecular dynamics library. Therefore, nearly all capabilities of



LAMMPS can be utilized in a multiscale simulation. The code currently supports several novel
and state of the art multiscale methods to model dynamic fracture. Finally, further extension
of the multiscale methods, finite elements, material models etc. are easily possible thanks to
the novel design of the code.

This paper is organized as follows. We first describe some important theory and the notable
research background on the semi-concurrent and concurrent multiscale methods used in our
open-source library and as well as XFEM, that we use to model fracture in the continuum
domain. We also summarize the atomistic models available in our open-source software. In
section [3| we introduce our software framework PERMIX and its design concepts. We describe
the interface generation strategy in the section[d Section [f]is devoted to show actual strategies
used in facing multiscale problems involving fracture in terms of implementation. In section [6]
we will show several examples which cover the main capabilities of the current implementation
of PERMIX to model multiscale cracks. Section [7] will explain the future trends of the project

and concludes our manuscript.

2 Theory and Background

2.1 Multiscale Methods

In this section we briefly cover the multiscale methods which are used in our software framework.
A continuum mechanics model is used at the coarse-scale whilst an atomistic model or another
continuum model containing fine-scale features is employed at the fine-scale. Consider the
domain Q = Q7 |JQF, the superscripts .# and € denoting the fine-scale and coarse-scale,
respectively. The outer boundary of Q7 is denoted by I'“ with I'Y = I'Y (JI'? |JT'?¢ and
I'YNIe =0, TYOT% = 0, TY NI = O; the subscripts u, t and ¢ indicate ’displacement-’,
‘traction-" and ’crack-’, respectively. The area in front of the crack tip (crack front in 3D) is
of particular interest and will therefore be modelled by a fine-scale domain (which can contain
features of the micro-structure of the material), Fig. Note that though most of the figures

are illustrated in 2D, our implementation is completely three-dimensional.



2.1.1 Semi-concurrent multiscale methods

In semi-concurrent multiscale methods, information are passed from the fine-scale to the coarse-
scale and vice versa. In the FE? method, the strain measure (e.g. deformation gradient) is
passed from the coarse-scale to the fine-scale and the stress measure is sent back from the
fine-scale to the coarse-scale. The stress tensor is computed based on the first-order homoge-
nization theory [63) [64]. This framework fits within a standard continuum mechanics theory
for cases where the principle of separation of scales fully holds. First order homogenization is
not applicable for ’small’ macro-sizes (miniaturization), analysis of geometrical size effects and
engineering localization problems (failure). For non-negligible micro-structural size, significant
macroscopic gradients and macroscopic localization or failure, second-order method should be
used [65].

Semi-concurrent multiscale methods are very flexible and simple to implement; they can be
applied to very complex micro-structures and allow different commercial or open-source tools
to be coupled together without complications. For example, semi-concurrent methods were
implemented in ABAQUS by Yuan and Fish [I39]. Numerous studies can be found in the
manuscripts by Guedes and Kikuchi [50], Feyel and Chaboche [37], Kouznetsova et al. [64],
Talebi et al. [I31], Fish et al. [40, 4I], Ghosh et al. [44], Smit et al. [122], Miehe et al. [83]
and an extension to thermal problems in Ozdemir et al. [96], Monteiro et al. [86], Larsson et
al. [68] and to multi-physics problems in [97, [112].

For phenomena involving strain softening materials and cracking, the transfer of length
scale is a very challenging issue when using semi-concurrent multiscale methods. As shown by
Gitman et al. [47] and Bazant [14], the applicability of standard/conventional semi-concurrent
methods for strain softening materials is questionable. Also as discussed in [46], the RVE looses
representativeness in case of strain localization. Discontinuous semi-concurrent methods were
introduced to resolve this issue. This is done by determining a cohesive law for the crack at
the macro-scale from the micro-structure. For more information, please refer to manuscripts by
Matous et al. [78], Kulkarni et al. [66] and Hirschberger et al. [55], Alfaro et al. [6], Nguyen et
al. [911 [89, 90} 136}, 03] and Verhoosel et al. [134].

One other strategy to deal with multiscale models involving cracks is the continuous-

discontinuous semi-concurrent method. In a nutshell, in these models a crack is injected into
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Figure 2: Different boundary condition approaches, (a) uniform strain and (b) uniform stress
boundary conditions

the macroscale model when failure or instability occurs at the RVE. Please refer to the work of
Massart et al. [70, [77] for the masonry cracking, Belytschko et al. [21], Belytschko and Song
[22] (the MAD method), Allen et al. [123, [124], Nguyen et al.[91], 89 90|, [136] for more details.

In the following, we will explain the very basic but general theory of semi-concurrent meth-
ods that leads us to a common strategy for their computational implementation. The solution
procedure for semi-concurrent multiscale methods can be described as follows. At each integra-
tion point of the coarse-scale model, a fine-scale RVE is constructed. The deformation measure
from the macro level is applied to the RVE by means of boundary conditions. In the literature
at least five different approaches are available to apply boundary conditions (BCs) to the RVE:
periodic boundary condition (PBC), uniform stresses (constant traction), uniform strains (lin-
ear displacement BCs) [54], [52], Taylor BCs and minimal kinematic BCs [81]. Please refer to
the review by Nguyen et al. [92] for detailed description of the RVE boundary conditions and

their differences. For the uniform strain conditions, Fig.

u=FE’ .z forallz on 7 (1)

where w is the displacement vector, & are the fine-scale coordinates, E? is the coarse-scale
strain measure and I’ denotes the boundary of the fine-scale RVE. Using the deformation

gradient, the displacements of the boundary nodes are computed as:



u=x—-X=F°X-X (2)

where F' is the coarse-scale deformation gradient and X and x are the fine-scale coordinate
vectors in the initial and current configuration, respectively. In the fine-scale simulations, any
kind of micro-mechanical constitutive model can be used. After solving the fine-scale RVE, a

homogenized stress tensor is calculated at each load increment:

def 1

(8%)= o
Vaz Joo,

S7 dQ (3)

where Vo, refers to the volume of the fine-scale domain. This stress tensor will be sent back to
the coarse-scale model (i.e. to the corresponding integration point). This process will continue

for all integration points and for each load increment of the coarse-scale model.

2.1.2 Concurrent multiscale methods

As a whole, concurrent multiscale methods can be divided into two categories that are discrete-
continuum coupling (particle-continuum, atomistic-continuum) and the continuum-continuum
coupling. As it is explained in [84], atomistic-continuum methods differ from their continuum-

continuum methods in four ways:

1. The governing formulation i.e. energy based (for example Quasicontinuum (QC) [129,
114], Coupling of Length Scales (CLS) [110], Bridging Domain (BD) [137], Bridging Scale
Method (BSM) [135], [104], Composite Grid Atomistic Continuum Method (CACM) [33])
or force based ( Finite-Element/Atomistics (FEAt) [62], Coupled Atomistics and Discrete
Dislocation (CADD) [117, 118], Hybrid Simulation Method (HSM) [74], Concurrent AtC
Coupling (AtC) [39, 12] )

2. The Coupling Boundary Conditions i.e. how the compatibility conditions are enforced

(strong or weak compatibility)

3. The Handshake Region i.e. how the transition from continuum to atomistic is treated (for



example linear mixing of energy in the BD method)

4. Treatment of the Continuum i.e. how the material properties in the continuum is modelled

(for example Cauchy-Born or linear elasticity)

For the case of modeling crack and dislocation propagation using concurrent atomistic-
continuum method, Shilkrot et al. [I17), 118] developed a concurrent multiscale methods for
propagation of dislocations. However, the method is based on the discrete dislocation method
and hence restricted to linear solids. Furthermore, the method is restricted to the static case.
An interesting concurrent multiscale method was proposed in the context of dynamic fracture
in 2D by Xiao [137], Gracie and Belytschko [48] and dynamic fracture with XFEM in 2D by
Aubertin et al. [9]. It avoids the transfer of length scales around the crack tip or dislocation
core and adaptively adjusts the fine-scale domain when dislocations or cracks propagate in the
fine-scale domain. The key challenge is the detection of the dislocation core or crack tip in the
fine-scale domain and the adaptive adjustment of the fine-scale domain [113] [49].

For the continuum—continuum coupling methods, similar problems and strategies exist. In
the case of concurrent multiscale methods for fracture, some of the methods are based on domain
decomposition methods. This means the method recognizes hotspots (crack tip mostly) and
models them with a fine-scale formulation. The material properties away from the crack tip is
modeled with homogenized properties. The works by Guidault et al. [51], Eckardt and Konke
[35] and Lloberas-Valls et al. [73] are such examples.

Another approach is based on the variational multiscale method. The foundation of this
method is based on separation of the displacement field into a fine and coarse scale part. The
work by Hettich et al. [53] is an examples in the area of crack propagation. Strong macro-micro
coupling is another concurrent approach that was proposed in the manuscript by Ibrahimbegovic
and Markovic [58]. This method is applied mostly where the scales remain coupled through-
out the computations that implies a constant communication between the numerical models
employed at each scale.

To treat the handshake region, the Arlequin method proposed by Dhia and Rateau [23] and
the work by Lim et al. [7I] are two frameworks. The Arlequin method is a very general method
to couple the two scales that is based on linear weighting of energy in the handshake region.

On the other hand in [71], variable-node elements are employed as transition elements that link



the standard finite elements to the domain where the microstructure is explicitly modelled in
detail.

Since multiscale methods are computationally expensive, adaptive multiscale methods com-
bining the hierarchical and concurrent methods are gaining popularity. In the method presented
by Ghosh et al. [45], three levels are introduced in the computational domain: macro, macromi-
cro and microscopic scales. Continuum constitutive relations at the macro scale determine the
hotspots and asymptotic homogenization is used to couple the scales in regions where periodic
microstructures exist. Other studies are presented by Larsson and Runesson [67] and Temizer
and Wriggers [132].

Our selected numerical method for the concurrent coupling of different length scales is the
Arlequin method [23] which in the case of MD/FE coupling is known as the bridging domain
method [128]. In the Arlequin method, the coarse-scale is continuously blended into a fine-scale
in a so-called handshake domain Q% = Q% N Q7. Usually, a continuum formulation is used for
the coarse-scale while both molecular and continuum formulations can be used at the fine-scale.
Several scales can be coupled but in this paper and for sake of simplicity, only two scales were
considered. The Arlequin method and the bridging domain methods are used since the amount
of wave reflections is minimum in dynamic applications [79}[10]. The Arlequin method possesses
many properties of the other multiscale methods which makes the implementation challenging.
On the other hand, the implementation of the Arlequin method can be easily modified to
implement other methods where suitable. Since we are offering a computational framework for
multiscale analysis, this was another reason to choose the Arlequin method and the Bridging
Domain Method (BDM) to present the software. The difference between the Arlequin and
BDM is the using the atomistic description in the fine scale region. This will introduce some
inconsistencies which led to several sub-methods that are only dealing atomistic-continuum

coupling.

2.1.3 Coarse-scale formulation

Let the reference and the current configurations of the domain be denoted by 2y and €2, respec-

tively. The material coordinates of a point in ch are denoted by X and the spatial coordinates

10



by x. The linear momentum conservation equations are:

oP;; )
X, =+ po Pol (4)

where P is the first Piola-Kirchhoff stress tensor, b is the body force vector per unit mass and
u is the displacement vector. For hyperelasticity, the first Piola-Kirchhoff stress tensor can be

calculated from a continuum potential:

ow? (F
p_ 2 E) @
oOF
where w? is the potential energy per unit volume and F is the deformation gradient tensor.

The total potential energy of the coarse model is:

W, = / W (F)d0 (6)
af

In an isolated system, the sum of the potential and kinetic energies is constant in time. This

summation is identified as the Hamiltonian. At the coarse-scale, the Hamiltonian is given by:

1
H = K* +W* = / ivadeO‘g + W (7)
oF

W = —Woh+ Wiy = - / budQ? — / tudl® + / w? (F)dQ§ (8)
g ry oF

where K% and W% are kinetic and potential energies in the coarse-scale. v denotes the velocity
and b is the body forces acting on the coarse- scale which is situated ”far” from the influence
of the crack tip.

We use the eXtended Finite Element Method (XFEM) to model fracture in the continuum
domain. As the area around the macroscopic crack tip is modeled by the fine-scale, a purely

step-enriched XFEM-approach is sufficient at the coarse-scale:

u(X) =D N (X)ur+ > N (X)S(f1(X))a; (9)

IEN IEN,

ucont udiscont

where N is the set of all nodes in the domain and Nj is the set of nodes that belong to all

11



elements which are completely cut by the crack; u; and a; are the standard and the enriched

degrees of freedom, respectively and S is the discontinuous enrichment (Heaviside) function:

S(f (X)) = ' (10)

with

f(X) =sign[n - (X; — X)|minx,er | X; — X|| (11)

where n is the outward normal to the crack surface.

u (X) =Y N (X)ur+ Y No(X)S(fr(X)ar+ > Ni(X)> Br(X)bgs (12)

IEN IEN, TEN, K

ucont udiscont

where N; are the set of nodes that are influenced by the crack tip and B is a set of branch

functions. In PERMIX, the following set of branch functions are used:

0 0 0 0
B = [B1, By, B3, By] = [\/Fsm(g), \/Fcos(i), \/?sin(e)sin(i), \/?sm(ﬁ)cos(i)] (13)
where r and 6 are the local polar co-ordinates defined at the crack tip.

2.1.4 Fine-scale formulation

Continuum and atomistic formulations can coexist in the fine-scale domain. In case of a con-
tinuum fine-scale, the Hamiltonian can be expressed in a similar way to the Hamiltonian of the
coarse-scale. Therefore, only the Hamiltonian of the atomistic formulation of the fine-scale is

presented here. For the atomistic subdomain, the Hamiltonian can be expressed as:

7 (@a(®).p7(0) = 3 5002 2L + W (@alt) (14)

where x, and m, are the current position vector and mass of atom « respectively. The location

of atom « in the reference and spatial configurations can be related by the displacement vector

12



Ty = X, +d, (15)

p. is the momentum of atom a and defined by

pf =Moo = mada (16)

wZ (x) is the potential function due to any kind of force fields, such as pair-wise interactions

or three-body potentials:

&) =) Wi(xa) + Y Walta, s) + . (17)

a,B>a
Assuming the external potential results only from a constant external force, f<*, and a

pair-wise potential, the total potential can be expressed as:

w7 = Wext+ mt* Z.fextocd + Z w7 wOHa;ﬁ) (18)
,,8>Oé

The canonical form of the Hamiltonian equations of the fine-scale problem can be expressed
as:

F _ _9H _ _WZ
p7 ox oxy

- (19)
I Bp? my

Finally, these two equations can be combined to obtain:

oW” oW, Wi
81‘ 8d t— 8 t .feacta finta (20)

mada = -

In this equation, f;,; is the internal force vector.

The modeling of cracks in the fine-scale region can be also handled with the conventional
strategies. When a continuum formulation is used, we use XFEM to represent cracks in the
fine-scale region as explained in the previous section. When molecular dynamics is used, the

cracks initiate naturally since the nature of atomistic modeling can represent crack surfaces

13



Figure 3: The weighting function in the handshake domain in two dimensions

automatically. To introduce a pre-crack in the atomistic region, we modify the neighbor lists
to artificially reproduce a crack similar to the visibility criterion used in meshfree methods [20],

where atoms do not ”see” each other through the crack.

2.1.5 Coupling Method

In the Arlequin method, the total energy of the system is a weighted average of the fine and
coarse models in the bridging domain Q%. To implement this concept, a scalar weight function,
w is defined which is unity outside the fine-scale domain, zero inside the fine-scale and linearly

increasing/decreasing in the blending region:

=0 VXeQ?\0”
w(X)q e0,1]] VXeQ” (21)
=1 VvVXecQ?\Q*

The weight function w at any point X can be computed by a normalized distance function:

(22)

where [(X) is the orthogonal projection of X onto the interior boundary of the coarse-scale

domain Q% and [ is the length of this orthogonal projection to the boundary of the fine-scale

07| Fig.
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The governing equations are derived from the Hamiltonian of the systems, H, which is the

sum of the Hamiltonians of each subdomain:

H=wH” +(1-w)H*

G o C
P P F b; Dy €
_Z a aa +wW +Z (1—w(Xy)) oA, + (1 —w)W

(23)

where H? and H? are the Hamiltonians of the fine and coarse sub-domains.

The coarse and fine-scale domains are constrained on the bridging domain, Q% by the La-
grange multiplier method. In this overlapping domain, the fine-scale displacements are required
to conform to the coarse-scale displacements. In the Lagrange multiplier method, the total

Hamiltonian is written as:

H,=H+ g (24)

where X is the Lagrange multipliers vector and g = u% — u” is the gap vector between coarse-

scale displacement and fine-scale displacement. To compute the Lagrange multiplier unknowns
we use the method described in [I128]. Finally, we obtain the following semi-discrete equations
of motion:

VIeNCVie{1,2,3} : Myjiy; = f& — fint 4 20 (25)
Vaoe[l,...,n7],Vie {1,2,3} : m7d7, = {7 + 27 | (26)

where iy and dﬁ are the accelerations of node J and atom «, respectively, mf is the mass of

atom « and My is the consistent mass matrix:

VI,JeN® : M;;= /% (1 —w) poN{N;dQE | (27)
Q

0

The mass matrix of the coarse-scale is diagonalized according to the mass-lumping scheme for

XFEM proposed in [80]. The internal forces at the coarse-scale are:

ONy

59X, —d0e (28)

VI e N%, vie{1,2,3} :f};‘t:/ (1—w)P,
Q‘K

0
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The external forces on each atom are determined from the interatomic potential W as:

1 ow (Tag)

Voo [L...n7], Vi€ {1,2,3} : f; = =) = (w(Xa) +w(Xg)) Al (29)

2
B

where ( ranges over all atoms within the cutoff radius of atom a. The forces f*¢ in the

coarse-scale domain and f7 in the fine-scale domain, due to the coupling are given by:

VIeN? Vie{1,2,3} : f1¥ = D A1 (Xa) (30)
04696@
and

Vae[l...n”],Vie{1,2,3} : f27 = =X (31)

2.2 Crack propagation

When the molecular scale model is described in terms of first principle molecular dynamic/me-
chanics, the crack propagation and nucleation occurs naturally by breaking bonds between
atoms. However, at the continuum mechanics level, crack nucleation and propagation must be
taken care of. Once a crack initiates, the nucleation and propagation of the crack at each time
step should be checked and if the crack propagates, the propagation direction of the crack should
be determined. Different methods such as maximum circumferential stress criterion (MCSC),
minimum strain energy density criterion (MSEDC) and maximum strain energy release rate
criterion (MSERRC) are available to determine the propagation direction [27].

The loss of hyperbolicity criterion is another criterion for crack nucleation and propagation

[18] which is used in PERMIX. Assume that the rate form of the constitutive equations are
oV (X,t) = Ci(X,t) : D(X, 1) (32)

where C! is the tangential stiffness and D is the velocity gradient; the superscript V denotes

the Truesdell rate. Eq. loses hyperbolicity when

e:mi}?(n®h:A(X,t):n®h)§O (33)
n7
where A = C' 4+ 0 ® I and n and h are two arbitrary unit vectors. Loss of hyperbolicity is

16



determined by minimizing e with respect to n and h; if e is negative for any combination of
n and h, the PDE has lost hyperbolicity at that material point. Hyperbolicity can also be
checked by conditions on the acoustic tensor Q = n - A - n. A material point loses stability if

the minimum eigenvalue of the acoustic tensor is smaller or equal to zero:

min eig(Q) <0 (34)

where n is the normal to crack surface when min eig(Q) < 0.

2.3 Molecular Dynamics

Molecular dynamics (MD) [7] is one of the simplest but most insight generating simulation
techniques in modern materials modeling. This method was first introduced by Alder and
Wainwright in the late 1950’s [5] to study the interactions of hard spheres, and was advanced
to model water by Rahman in 1964 [107]. MD predicts the motion of atoms governed by their
mutual interatomic interaction, and to do so, requires numerical integration of the equations of

motion of each particle

£ = mi (35)

where £ is the force vector on the particle, m the particle mass and ¥ is the acceleration vector.
The force vector £ for each particle is given by the gradient of the total energy at a given

particle location in space:

£/ = VEZ, (36)
where
EZ =) ¢ (37)

denotes the total energy of the system which is obtained by summing the potential energy of
all particles.

The forces between particles can be short-ranged or long-ranged. In case of short-ranged
forces only particles within a critical cutoff sphere contribute to the energy of the atom. The
equations of motion Eq. are usually integrated using a velocity Verlet scheme [7, [127]

which is similar to the central difference method for explicit time integration. Therefore, in
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PERMIX the main routine for explicit dynamic solution handles all atomistic and finite element

components together, when running with the same time step.

3 The PERMIX Code

The object oriented design of PERMIX allows the program to include several different compo-
nents of one system at several scales with different formulation concepts. The software provides
its own Extended Finite Element implementation both in statics and dynamics. Several pow-
erful parallel linear direct and iterative solvers were added to the program in addition to a
serial linear solver. PERMIX is platform independent and known to be built and executed on
Windows, Linux and MacOS operating systems. In general, any standard F2003 compiler can
be used to build PERMIX. We will continue with describing the overall design of the program
and give more details about each component in the following sections.

PERMIX is implemented in Fortran 2003. Fortran was invented back in the 1950’s for
numerical analysis. Since then, Fortran has been regularly updated to meet the new concepts
in the software engineering [75]. The latest standard is Fortran 2008, containing only minor
modification of the 2003 standard. The F2003 standard allows for object oriented programming
concepts such as data encapsulation, inheritance, polymorphism, among others [109]. There
are several other programs written mostly in C++ such as OOFEM [99], deal. II [13] and
OpenXFEM++ [25]. However, to our best of knowledge, there is no multiscale code for fracture

available in the open source domain.

3.1 Object Oriented Design

The PERMIX code exploits many features of the Fortran 2003 standard to produce an efficient
and extensible code which can deal with several types of physical systems. PERMIX uses derived
data types (like classes in C++), type extensions (inheritance in C++) and polymorphism
for the main objects. However for efficiency reasons, the small objects are saved mainly in
vectors and matrices rather than derived data types. This enables especial Fortran compiler
optimization and finally will result in higher single thread performance. Moreover, in case
of distributed memory communication using MPI, transferring data among processors is also

easier and faster. The main PERMIX class has several other classes included which are shown
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Figure 4: The Object Oriented design of PERMIX with the main objects

in Fig. [@ The sub-classes shown in Fig. [4] are the most important classes and they might have
sub-classes as well.

For classes which contain similar methods and properties, a base class was defined via
Fortran abstract types. Then, the base class is extended to a final class (through derived data
type extension). The abstract types contain several properties and methods (procedures). The
procedures can be deferred or nonoverridable. The deferred procedures must be defined
when an extended type is generated for further program extension. The procedures without
the nonoverridable attribute can be overridden with another procedure to conduct a specific
task.

All extended derived types of an initial base class are grouped in one Fortran vector con-
taining an allocatable polymorphic variable of the base class; and based on the input, the
polymorphic data inside the vector is allocated accordingly. A similar method is used in the
LAMMPS C++ code to store the objects and in PERMIX a slightly modified Fortran version
of it is implemented. To distinguish the type of allocation for the polymorphic variables, the

Type is command in Fortran is used. In case of adding a new style, a small script in the Perl
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language is also written to handle the changes in the object allocation subroutine. This way,
new styles can be added with minimum modification of other parts of the code and without
having an overview on the many other classes.

We explain the above concept with an example. To create different Finite Elements types,
a base class is listed in listing [1] As it is clear from the listing, every element must define the
material ID or number of degrees of freedom (DOF) per node or the total number of DOFs per

element etc.

Listing 1: A base derived data type for different finite element types

type,abstract :: ty_FEM_element_base

character(30) :: style="" ! style of the element
logical :: if_f_internal=.false. | series of variables showing the capabilities
logical :: if_mat_stiffness=.false. ! of the element i.e. large def., dynamic etc.
logical :: if_inital_stiffness=.false. !if capable of computing stiffness.
integer :: setup_flag =0 ! if the initial setup of the element is done
integer :: 1g=0 ! total number of unknowns for the element
logical :: iffix=.false. ! if the element has a boundary
integer :: el_id=0 ! the element id
integer :: mat_id=0 ! material id
integer :: etype=0 ! element type number
integer :: ndime=0 ! number of dimensions
integer :: nnode=0 ! number of nodes per element
contains
procedure :: init => FEM_element_base_init
procedure :: setup => FEM_element_base_setup
procedure :: check_capability => FEM_element_base_check_capability
procedure :: compute_4one => FEM_element_base_compute_4one
procedure :: compute_4all => FEM_element_base_compute_4all

end type ty_FEM_element_base

In listing [2] an allocatable polymorphic variable of the base element types is defined. In
order to define many elements, an array of the allocatable polymorphic variables is defined in
the same listing. Therefore, the variable all_elements has all the defined elements in the
PERMIX program. Every element of the array all_elements will define an element and after
proper initial setup can provide information on that element or can be asked to perform a
specific task. For example one can blindly access the number of the nodes for element type 3

by all_elements(3)%0BJ%nnode.

Listing 2: An array containing polymorphic variables of the base type

type ptr_ty_FEM_element_base
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class(ty_FEM_element_base), allocatable :: 0BJ
end type ptr_ty_FEM_element_base
type(ptr_ty_FEM_element_base) :: all_elements(NUM_DFND_ELS)

An example for the type extension of the base type is provided in listing[3] As can be seen,

an extended type can override the base procedures and add new properties to the extended

type.

Listing 3: An example of type extension to define a 3D tetrahedral element

type,extends(ty_FEM_element_base) :: ty_FEM_V4N_fast
real (RWP) :: vinc(FEM_V4N_fast_lg) !newly defined variable
real (RWP) :: kel(FEM_V4N_fast_lg,FEM_V4N_fast_lg) 'newly defined variable

contains
procedure :: compute_4one => FEM_V4N_fast_compute_4one !overridden
procedure :: setup => FEM_V4N_fast_setup loverridden
procedure :: extract_elinfo => FEM_V4N_fast_extract_elinfo !'mew procedure

procedure :: give_etype_string => FEM_V4N_fast_give_etype_string
procedure :: define_compatibility => FEM_V4N_define_compatibility
end type ty_FEM_V4N_fast

3.2 Base Classes

As explained in the previous section, the versatile extensibility of PERMIX is guaranteed via the
base classes. Almost any type of multiscale method can be implemented using the existing base
classes. Moreover, new numerical methods such as meshfree methods, boundary conditions,
element types etc. can be added using the base classes. The base classes are Fortran abstract
derived data types which provide a generic means to implementation paradigm for new numerical
methods. In the sequel, we will explain the base classes and their area of usefulness.

Part: Parts are objects by which PERMIX defines its computational models. For example
two finite element parts and an atomistic part can be defined in a multiscale model. One can
define several parts which can interact. The part_fem class contains all the information and
methods about one finite element part. This information includes the mesh data, matrices
and vectors, domain decomposition, neighbor searches, sets, among many others. For example,
ty_femmesh class contains a two dimensional integer array to store the element connectivities
and other data about an element. A similar array stores the node data such as number of DOFs
for a node or the boundary conditions on that node.

Fiz: Fixes are part of the modify class and are the routines that are called at different stages
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of a solution procedure to perform a specific task on certain parts. For example, boundary
conditions are grouped into fixes and they can be applied to specific sets of nodes or elements of
part_fem objects. Fixes have access to all parts and this method offers great flexibility which
does not require altering the main solution routine when adding a new fix.

Solver: The solver base class is the mean for PERMIX to implement its own linear equation
solvers or interfaces with shared and distributed memory solvers. The solver base accepts a
general two dimensional matrices (in sparse or dense form) and the right hand side and solves
the system of equations. Current interfaces to external solvers are MKL [59], PARDISO [111],
MUMPS [8] and PSBLAS solvers.

Interaction: Interaction is a way of coupling two parts. Examples of interaction is coupling
the system of equations, multiscale coupling or contact. All concurrent multiscale methods can
be defined as an interaction.

Compute: The variable computation classes are those used to calculate a certain property
of interest. The property can be of any type i.e. per node, per element, per integration point or
for the whole system. For example a ”compute” can be defined to compute the effective stress
at the integration points or to compute the homogenized stress of the whole FE part.

Output: The output base class is in charge of all disk outputs from PERMIX. The output
is capable of extracting the information from all parts and sending them to disk. The extended
types from output will determine the post-processing tool/software which the output is written
for. The output base class is also capable of automatically gathering the output of compute
classes and write it to disk. The current output styles are Tecplot [16], Gmsh [43] and Paraview

Step: The step base class is the mean of adding solution strategies to PERMIX. The
extended step classes can for example implement a nonlinear Newton solver with the arc-length
method [24, B0, 42] or an explicit dynamic solver [19]. The step classes work closely with the
Analysis class which keeps the information about the analysis. All the parts can participate in
a step procedure. The polymorphic step objects are constructed at the time of solution and will
be destructed right after finishing the step.

Material: To define the material constitutive models at the integration point level, the

material base class can be extended. The material class also has the access to the finite element
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mesh and its integration points or in general the discretization data (can be Meshfree methods
for example). The material classes can also define a full PERMIX object inside for the semi-
concurrent multiscale methods. For crack problems, the materials can also provide a stability
check routine which determines the instance of material point failure. This simply means one
can simulate cracking from simple one scale material models such as the Lemaitre damage [69]
law or from a complex multiscale material model.

FElement: To add new finite element types, the element base class can be used. The
step class determines the element property to compute. For example, the explicit dynamic step
routine, determines that the element stiffness need not be computed or internal forces calculated.
The elements can also define a stability routine which inserts a crack into an element based on
an arbitrary criterion. The element property calculation can be parallelized with OpenMP [31]

for shared memory systems.

3.3 Input

There are two ways to input parameters into PERMIX. One is to write a Fortran main file
and compile PERMIX as a library and call the different routines of PERMIX from the main
file. This way, the objects can be filled from the semi-script type of input and can be very
general. The second way of input into PERMIX is through the input class which offers reading
the input data from a text file as many other commercial /open-source finite element packages
do. The text input was designed to be very intuitive. The PERMIX input commands start
with *COMMAND and end by *END_COMMAND. Inside this block all other properties of the object
are defined. The input class will recognize the command and will call the input reader of the

corresponding class. Therefore, each class has its own input reader.

3.4 Two and Three Dimensional Extended Finite Elements

The enriched elements and nodes demand information which is particular to the XFEM itself.
For example, an enriched element should know the level set values of the crack surface, crack
tip information, triangulation points and connectivities, among others. Since these data are
not similar to the ordinary finite element data, we created an additional array of polymorphic

variables that might contain more information about the elements. The additional information
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are only activated when needed depending on the type of element. This additional information
can be also used for other purposes other than XFEM.

For elements containing cracks, a routine is called to create the extra information i.e. create
enriched elements. In this routine the enrichment rules for the nodes and integration points
are determined. We triangulate the elements cut by the crack and map the integration points
accordingly. The triangulation in 2D and tetrahedralization in 3D is done with two external
open-source libraries TETGEN [I19] and TRIANGLE [116]. Along with triangulation, there
are several computational geometry tasks which are essential to XFEM. Therefore, we also
imported the open-source computational geometry library GEOMPACK [I1] in Fortran 90 to
PERMIX.

Since the cracks in XFEM are embedded inside the element, one cannot directly visualize
the cracks explicitly with the existing post-processing tools. To visualize the crack surface, we
create two sets of triangles, above and below the crack surface. The location of the triangles are
updated with the elements as they deform. Using this method, the enriched elements can be

visualized, complying with existing post-processing tools created for ordinary finite elements.

3.5 Crack Propagation

When defined in the input model, the crack propagation fix handles the nucleation and prop-
agation of cracks in the model. Please note that the cracks defined in the initial conditions
cannot propagate unless the crack propagation class is active. The general algorithm for crack
propagation is as follows. At every load or time step PERMIX searches for the failed elements
with a crack path inside the element. This is accomplished via an element routine that can
handle crack nucleation and propagation, see section for details. Inside the element routine,
the cracking criteria are checked at integration points and a crack path is derived from the failed
integration points. These routines are specific to the material models. For example, for a linear
elastic material, the maximum principle stress or strain can be defined as a measure of failure
of the point.

For multiscale materials, the failure of the point can be computed based on some measure
computed by the homogenization rules. The multiscale material can define a separate compute

object which quantifies the measure of instability. After checking the stability of the point, the
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crack tip will be propagated to the failed point or a crack will be initiated in the element by
means of level sets. During the propagation process, the element types will be changed from
uncracked to cracked XFEM types and the history variables will be projected to the new points,
if needed.

3.6 Atomistic Part

For the atomistic part (part_atom) a code named WARP [102] is adopted. The WARP is a
parallel molecular dynamics simulation package and the antecedent of the LAMMPS Molecular
Dynamics Simulator [101] for modeling stress and strain in materials using the Lennard-Jones
(LJ), embedded atom method (EAM) and modified embedded atom method (MEAM) poten-
tials. It is implemented in Fortran 90 and uses MPI to perform message-passing. WARP already
has efficient force computation algorithms and neighbor search essential in three dimensional
simulations. The WARP code was modified and merged into PERMIX. Note that the poten-
tials in WARP had to be modified to account for weighting of the atoms in the bridging domain

method.

4 Interface Generation

One key issue in the design of a multiscale software is the interface generation among different
components of the software that can also be external libraries. In order of efficiency, interfaces
can be through files, conversion of data structures in memory, or direct data access between
components. Interface generation through files can be used where there is limited information
about the data structure of the external library or no wrapping code can be generated to
exchange data in memory. This is often the case when using commercial products.

The conversion of data will be necessary when the data structure of the external library is
complex or written in a different language or style that cannot be directly modified. When this
occurs, another solution can be the implementation of the data modifier routine in the external
library as a plugin to avoid data conversion. The third and the most efficient method is to
create a wrapper code around the external library and call the routines or use the objects via
the wrapper. For C or C++ tools such as SWIG [15] provide automatic creation of the wrapper

code. Babel [36] is another interesting language interoperability tool which is especially designed
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to be high-performance.

In PERMIX we use all three methods to connect to different libraries. And since in PER-
MIX we often use Fortran/C/C++ external packages and libraries, we use the ISO_C_BINDING
module of Fortran 2003 as a versatile way to interface with C or C++ libraries. If the external
library is written in C or C++ with objects saved in an straightforward fashion, the direct
data access approach can be used with Fortran pointers mapped to the C pointers. PERMIX
currently interfaces with several external libraries such as LAMMPS, GMSH, Abaqus among

others.

4.1 Interface to LAMMPS

The (part_atom) provides a practical and standalone simulation tool for metallic systems which
enables simulation of molecular systems in PERMIX in a simplified manner. However, WARP
is not updated any more and it is limited to three potentials only. Thus, we decided to use
LAMMPS as one of the most powerful open-source atomistic simulation software. The connec-
tion between LAMMPS and PERMIX is established through a Fortran2003 interface exploiting
the ISO_C_BINDING module of the Fortran 2003 standard.

LAMMPS, is written in C++ but is very portable since it uses the basic pointers to store
vector data. These pointers are similar to the Fortran vectors and matrices. For each class
in LAMMPS, we created a Fortran 2003 derived data type and for each variable in classes of
LAMMPS, we defined Fortran pointers. At the beginning of the simulation, we map the Fortran
pointers to the C++ pointers. This method allows the access to every public property of the
classes of LAMMPS via Fortran pointers. The handle to the main LAMMPS pointer or other
LAMMPS subclasses is saved with a C_PTR type. Therefore, we can define many LAMMPS parts
in a concurrent simulation (since we have direct access to the variables) or a semi-concurrent
simulation inside a material class of PERMIX for example. Currently, the former is used to
implement the bridging domain method and the latter is used to create a material model with

the Cauchy-Born assumption [129].
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5 Multiscale Methods in Practice

In this section we discuss the implementation details of semi-concurrent and concurrent mul-
tiscale methods implemented and used in the PERMIX platform. The features explained in
this section will shed light on future extensions of such methods using other tools. Concurrent
coupling of PERMIX to commercial software is problematic because the commercial products
give limited access to their global data structure. The user subroutines in commercial software
provide only limited ways of implementing new materials or elements or boundary conditions.
As a results, PERMIX currently supports only semi-concurrent coupling to two commercial
FE packages: ABAQUS and LSDYNA which are explained subsequently. For concurrent cou-
pling, several FE parts of PERMIX can be coupled to other FE parts from PERMIX or to the
LAMMPS or the Atomistic part.

5.1 Hierarchical Style

In PERMIX, the hierarchical multiscale methods are used to extract the elastic properties of
the material from a lower scale. In general, the elasticity tensor has 81 components which 21
of them are independent. It means that for the general anisotropy case, one needs at least
21 independent equations to calculate 21 components of the elasticity tensor. In the case of
displacement boundary conditions and using six strain control tests, 81 equations are generated.
For the isotropic RVE, the elasticity tensor has two independent parameters. Linear material
properties in PERMIX are then characterized by solving a forward homogenization problem.
PERMIX has a special step routine to do the task of hierarchical multiscale material property
calculation. This routine calls the first order homogenization compute for both anisotropic and
isotropic cases. In this case, the micro-scale properties are the user-defined (inputs) properties

and the corresponding macro-scale properties are evaluated (outputs).

5.2 Semi-concurrent Style

To use semi-concurrent multiscale methods in PERMIX, three schemes are available: PERMIX-
ABAQUS [2] coupling, PERMIX-LSDYNA and PERMIX-PERMIX coupling. The implemen-
tation is carried out in a way that both ABAQUS/LSDYNA packages and PERMIX can be used
in each of the fine-scale and coarse-scale. PERMIX-LSDYNA and PERMIX-PERMIX coupling
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is done in the same manner and therefore not explained. When PERMIX is the master program
(the coarse-scale), an ABAQUS part (ty_abq_part) is defined. This ABAQUS part contains
routines to call the ABAQUS software with some external commands. With the use of some
additional user-subroutines in ABAQUS, the output of ABAQUS is dumped to the disk in a
specific manner readable by PERMIX. The ABAQUS part will then read the results and calls
the homogenization compute to calculate homogenized stress for example.

Fig. [pillustrates the multiscale flowchart when ABAQUS is used for fine-scale and PERMIX
for coarse-scale. This figure also shows the ABAQUS subroutines E] which are used in this
multiscale approach. PERMIX calculates the deformation gradient for each integration point of
the coarse-scale and passes the deformation gradient to ABAQUS. This deformation gradient is
used to apply a uniform strain on the RVE boundary, Eq. (Udisp.f). When the PERMIX-
PERMIX semi-concurrent multiscale style is used, a fix is implemented which applies different
type of boundary conditions to the RVE such as uniform traction or linear displacement BCs.
The advantages of this coupling is that all ABAQUS material models can be used inside the
RVE (in the general case, user material subroutines can be employed for the fine-scale material
model). After solving the fine-scale model and based on Eq. , a homogenized stress tensor
is calculated and sent back to the coarse model (Homogen.f). This process is carried out for all
integration points of the coarse-scale model.

There is another semi-concurrent multiscale method in PERMIX for coupling atomistic
domains to continuum domains. In this method the material properties are computed from the
atomistic system via the Cauchy-Born method [129]. Since all the mentioned semi-concurrent
methods are at the material point level, specific input are supplied in the material definition.
In case of using LAMMPS and the Cauchy-Born rule, the commands for the fine-scale model
can also be passed to the material model with the ”str_command” of the material model (listing
. The particular material model will then treat the input commands as intended in its

implementation.

Listing 4: A sample input for a multiscale material in semi-concurrent PERMIX-LAMMPS

coupling

*MATERIAL

YThe user subroutines for PERMIX-ABAQUS coupling can  be  downloaded from
http://code.google.com/p/permix/

28



Coarse-scale model

PERMIX

Loop over
all integration

points

Calculate deformation gradient at

F

~ \™

this integration point

Calculate stress in the coarse-scale |«

Fine-scale model
ABAQUS

Udisp.f —>

Umat-fine-scale.f ——»

Homogen.f ——»

NN\ S

/'/\/ /

Calculate displacement boundary
conditions for boundary
nodes of RVE (Eq. 2)

v

Finite element analysis of micro-model
including boundary conditions and
fine scale material model

'

Homogenizing damage parameter
over RVE (Eqg. 3)

Figure 5: The multiscale flowchart for coupling PERMIX to ABAQUS
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name mat01
type CB_LAMMPS

str _command dimension 2

str _command boundary s s p

str _command units metal

str _command lattice hex 2.57740

str _command region box block 0.0 4.0
str _command create_box 1 box

str _command create_atoms 1 box

*END_MATERIAL

5.3 Concurrent Style

Since PERMIX has access to all its own vectors and matrices, ty_part_atom and ty_part_lammp
via the interface, the concurrent multiscale coupling is done in a very natural manner. For the
case of PERMIX-LAMMPS coupling (the bridging domain method), an input similar to Listing
[l can be defined.

Listing 5: A sample input to define an interaction for multiscale PERMIX-LAMMPS coupling

*INTERACTION

style bdm_adaptive

name the_briding_domain_method2d

part_fem Part—1—1  #refers to the defined FE part
part_lammps atom_domain #refers to the defined LAMMPS part
# defines the coordinates of the fine —scale box

active _atom_region —24.0 77.0 72.0 126.0 —100.0 500.0

*END_INTERACTION

The input data for the LAMMPS part, however, can be totally arbitrary because atom
groups must be defined for LAMMPS, to define which atoms time integration should be per-
formed on. In the Bridging Domain Method of PERMIX, the atoms outside the fine-scale box do
not participate in the time integration. Therefore, in the setup routine of the ty_bdm_adaptive

class, some additional groups are defined for LAMMPS.

6 Numerical Examples

6.1 Efficiency Tests

In this section, a middle size problem is solved for linear elasticity to benchmark the efficiency of

the element matrix calculations in PERMIX. The example has 5,373,122 elements and 3,438,048
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Figure 6: Left) Initial configuration of the middle sized model. Different colors refer to different
element types. Right) The x-displacement contour after solution.

degrees of freedom in three dimensions and a linear elastic material model, see Fig. [6] The
elements are mixed tetrahedral (four nodes, 1 integration point) and brick (eight node, 8 integra-
tion points). Some random point loads were applied to the model. The OpenMP parallelization
is also tested and benchmarked.

Please note the computation time given here is with PERMIX compiled with the GCC
compiler (version 4.6) which is an open source set of compilers based on the GNU licence [28].
The simulation was carried out on a numaCC system with four Six-Core AMD Opteron CPUs
where the CPU frequency is 2.8GHz. All CPUs share a memory of 128GBs.

The right hand side of the Fig. [6]illustrates the displacement contour after the linear solution.
Table [1] shows the results of the efficiency tests. We show only the time needed for integration
and assembly of the stiffness matrix. The solution time, allocating the matrices and reading
input are not reported here as they depend on the OS, solver package and pre-processor. In
the table, F90 refers to the same element calculation routine which is implemented in a Fortran
90 fashion to check efficiency of the the object orientation style in PERMIX. For 1 thread and
the non-optimized version, the timings have negligible difference. For certain analysis types,
explicit dynamics for example, the element calculation can be further optimized by in-lining the
functions called inside the main loops and also limiting the application of the element. As clear
from the table, the scaling from 4 to 8 threads is not efficient due to the hardware structure of

the computer.
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Table 1: The elapsed time of building and assembling the stiffness matrix for different configu-
rations

test item | elapsed time (sec)
F2003, 1 thread 60.10
F2003 , 2 thread 35.04
F2003, 4 thread 23.58
F2003, , 8 thread 22.63
F90, 1 thread 63.9
F90, 2 threads 38.2
F90, 4 threads 26.7
F90, 8 threads 24.0

e

Figure 7: Three dimensional representative volume element (RVE) including randomly oriented
and distributed clay particles (red coin shaped objects) and cracks (gray ellipsoids).

6.2 3D Modeling of Cracks in a Nanocomposite

In this section we model a nanocomposite with two different material types and several XFEM
cracks. The model is a continuum representative volume element (RVE) of silicate/epoxy
nanocomposites with 2% clay weight ratio. A random generator was used to create the co-
ordinates of the particle corners. A condition for non-overlapping and non-intersecting particles
was enforced. Fig. [7] shows the initial configuration of the representative volume elements in
three dimensions. In the same model, 10 penny shape cracks are initiated in the RVE. In Fig.
[7] the cracks are shown in gray without thickness and the disc shape clays are shown in red.
The model in Fig. [7] has 303,470 tetrahedral elements and 54,049 nodes. Both materials are
assumed to be linear elastic where the epoxy matrix has Young’s modulus of 1.96GPa and a

Poisson’s ratio of 0.3. The clay has a much higher stiffness with Young’s modulus of 200.0GPa
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Figure 8: The o,; contour of the loaded nanocomposite RVE

and a Poisson’s ratio of 0.2. The top face of the RVE is loaded with a pressure load with value
of -0.1 and the bottom face is fully fixed. Fig. |8 shows the stress in the X direction in several

cross-sections. The crack openings are also visible from the same figure.

6.3 Hierarchical multiscale modeling

In this case study, a hierarchical multiscale scheme is used to predict the elastic modulus of a

clay/epoxy nanocomposite. Fig. |§| shows the initial geometry of epoxy/clay nanocomposite.
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Figure 9: Initial configuration of clay/epoxy nanocomposite RVE

The nanocomposite RVE is a 2 %wt clay/epoxy nanocomposite. The clay particles are
approximated with a rectangular geometry of [ = 100 nm length and a ¢t = 1 nm thickness.
The RVE size is 1500 x 1500 nm?. Since the bulk composite is isotropic, the RVE size with
respect to the clay size should be selected large enough that the RVE will also be isotropic.

Linear elastic material model is used for both clays and epoxy matrix. The Young’s modulus,
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Figure 10: The Von Mises stress and Von Mises equivalent strain contours of the RVE

E, and Poisson’s ratio, v, for the clays is 196 GPa and 0.25 respectively. For the matrix the
corresponding elastic values are £ = 1.96 GPa, and the Poisson’s ratio, v = 0.35. The RVE
is discretized with four node quadrilateral plain stress elements. The linear displacement (LD)
boundary condition was used to apply an average strain of 0.016 to the RVE in horizontal
direction. This kind of boundary condition satisfy Hill’s energy criterion and easy to implement.

Fig. shows the Von Mises stress and Von Mises equivalent strain contours of the RVE.
A homogenization routine calculates the homogenized stress and strain tensors and then, the
effective properties of clay/epoxy nanocomposite can be calculated. The predicted elastic mod-
ulus and Poisson’s ratio for the clay/epoxy nanocomposite is £ = 2.1725GPa and v = .343 that
means an approximate 10% of improvement in the elastic modulus of nanocomposite by using

only 2% clay.

6.4 Semi-concurrent FE-FE Coupling

In this section, a semi-concurrent multiscale method, (see section, is applied to the clay/e-
poxy nanocomposite using PERMIX-PERMIX coupling. Fig. illustrates the schematic view
of the coarse and fine scale models.

The fine scale geometry and materials are the same as the previous example in section [6.3
For the coarse-scale model, a dog-bone sample was considered, see Fig. The geometry

and dimension of the dog-bone sample was selected according to ASTM D 638-08 type V.
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Figure 11: FE? multiscale analysis of simple tension test for clay nanocomposites

The numerical experiment is displacement control and due to symmetry, only a quarter of the

specimen was modelled. The material parameters of the coarse scale model are computed from

the fine scale model where the stress are homogenized at each integration point.
A linear displacement was applied to right edge of the dog-bone sample to produce a constant

strain of 0.11 in the gage section. Fig. shows the strain contour in the x direction at the

coarse scale. The same figure shows the equivalent Von Mises strain contour plot at the fine

scale for an arbitrary selected integration point.
6.5 Concurrent FE-XFEM Coupling
In this example we concurrently couple an FE mesh and an XFEM model using the Arlequin
method in explicit dynamics in three dimensions. The example is a plate with an inclined crack
at the center. We model the vicinity of the crack with a very ’fine’ mesh and the area far from

the crack with a ’coarse’ mesh. The dimensions of the plate are 100 x 100 x 20 and the length

of the crack is 15. Two finite element parts are created with the same dimensions and different

mesh sizes. We then use the fine mesh part to compute a reference solution and compare it
to the coupled one. Both parts are discretized with eight node brick elements. Fig. shows

the initial mesh and the weighting parameters (Eq. . As can be seen from the figure, the

fine mesh is placed in the middle of the plate specimen and the coupling is activated via the

Arlequin interaction style in PERMIX.
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Fine Mesh Coupled

Figure 14: The Y displacement at the time 564.0 seconds, Left: reference solution (fine mesh)
Right: the coupled model.

The top of the plate at the coarse-scale is loaded with a pressure load at the top and the
value of the pressure is —0.25. Both the coarse and fine-scale have the same material properties
with E = 26.0, v = .3 and density, p = 1.0. The time step, At, is 0.05. Stress waves travel from
the coarse-scale to the coupling region and to the fine-scale and pass on to the coarse- scale
again. Fig. [I4] shows the result of the simulation. On the right hand side the displacement
in the Y direction is shown for both scales. The left hand side of Fig. shows the reference
solution and the Y displacement contours. We do not observe any artificial wave reflection.

Fig. shows the Y displacement at a point located at (60,60,10) for the two domains i.e.
the reference solution and the coupled one. As is shown in the figure, the discrepancy in the Y
displacements versus time is small and due to the displacement approximation in the fine-scale

region of significantly higher resolution.

6.6 MD-XFEM Coupling

Consider a two dimensional single crystal with dimensions of 200 x 1,00 units. In this example
a straight crack of length 55units is assumed present in the domain. The continuum model
consists of 253 quadrilateral elements and 576 degrees of freedom. The element size is constant
over the domain, about 11 units. An atomistic domain of almost the same size is placed on top
of the finite element part. Fig. [I6]shows a schematic configuration of the system. The LAMMPS

part is used to model the atomistic system. Since part of the crack falls within the atomistic
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Figure 15: The Y displacement versus time for a point (60,60,10) at the coupled and the
reference solution

domain, the crack must be modeled in the atomistic region as well as in the continuum region.
We do not follow the generally adopted method of removing rows of atoms along the crack,
as this is somewhat arbitrary and introduces extra parameters in the formulation. Instead, we
modify the neighbor list of the atoms to prevent force transmission across the crack faces. This
method will produce a crack which is consistent with a sharp XFEM crack. A second atomistic
part is also defined in the same model which has the same configuration without coupling to
any finite element mesh. This allows us to directly compare the full atomistic simulation to the
coupled one.

The atomistic domain is a two dimensional lattice from a hexagonal (HEX) crystal lattice
with lattice constant 0.91, LJunits extended in the [1 0 0] crystal direction. For style L.J,
all quantities are without units and LAMMPS sets the fundamental quantities mass, sigma,
epsilon, and the Boltzmann constant = 1. Atomic interactions are modeled by the Lennard-
Jones potential with parameters o = 1.0 LJ units, e = 1.0, and a cut-off radius of 2.5; the mass
of all atoms is taken as 1.0. Before the actual coupled simulation starts, we minimized the
potential energy in the pure atomistic part to equilibrate the system. We used the conjugate
gradient (CG) algorithm [103] for the energy minimization.

The coupling of the continuum and atomistic parts is performed within a cubic box of
dimensions 65 x 110 x 0 LJunits?>. The elements which are cut by this box are the bridging

elements and the atoms which are located inside bridging elements are the bridging atoms.
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Figure 16: Initial configuration of the coupled model and the full atomistic counter part

Consequently, the coupling region is one element wide. The driving force for the system is
introduced through a velocity boundary condition on the top and bottom faces of the continuum
region. A velocity of 0.02 and —0.02 is set on all the nodes belonging to the top and bottom
boundary of the continuum domain at each time step respectively. The time step is 0.003. The
magnitude of the time step is chosen according to the stability criterion in the pure atomistic
domain. Fig. [16|shows the initial configuration of the body and the weighting of the atoms and
nodes.

Fig. [17|shows the stress contours at four different time steps. The atomistic stress computed
here is the Virial stress tensor. The symmetric Virial stress tensor is computed for each atom

and for pair potentials such as the one used here is defined in [I08] and [126]:

N
1 1
ol = % > B > (Rf - R?) FP — mofog (38)
a =1
where (7, j) range over the spatial directions, x,y,z. 8 € [1,..., N] ranges over the N neighbors

of atom «, RY is the coordinate of atom « in the 7 direction, F f‘ﬁ is the force on atom « from

atom [ along the j direction, V is the total volume, m® is the mass of atom « and v® is the
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velocity of atom . In Fig. [I7(a) and (b) a stress concentration is visible, that is initially
confined at the crack front; subsequently when propagation occurs, stress waves are emitted
from the crack tip. As is clear from Fig. the coupled model can accurately predict the crack
propagation behavior with much fewer degrees of freedom.

Remark: With the current implementation strategy in PERMIX and for concurrent mul-
tiscale methods, adaptivity can be applied with minimum effort. This is because, the data
structure of different components (FE parts or atomistic parts) are separately stored and the
storage strategy within each component is efficient and straight forward. For the case of MD-
XFEM coupling, the atomistic region can be arbitrarily displaced, refined or coarse grained
according to some measure of error. For example, in crystalline materials the centro-symmetry
measure [61] can be used to detect if dislocations or cracks are close to the handshake region
and therefore the continuum region is refined down to the atomistic region. The detection of

the bridging elements, nodes and atoms currently is implemented for arbitrary FE meshes.

7 Conclusion

Multiscale modeling and multiscale modeling of cracks in particular, are not only difficult in the-
ory but also they demand a huge effort on the implementation. In fact, many of the theoretical
methods are hindered by implementation aspects and challenges. Therefore in this manuscript
we presented an open source tool that is based on the Fortran 2003 standard. The software
tool allows for multiscale modeling of cracks via several multiscale methods. The generality of
the design allows several different physical systems to co-exist in the same simulation. We also
explained the overall object oriented design of the code which is clearly a novel usage of the For-
tran language for the task. We also showed how efficient software interfaces can be generated for
coupling various software solutions written in different programming languages. The efficiency
and the applicability of the software tool was shown for several multiscale fracture examples,
including hierarchical, semi-concurrent and concurrent multiscale methods. The software can
be used also for atomistic-continuum coupling with either concurrent or semi-concurrent meth-
ods which was shown in the last example. We hope that this tool can remove the limits of
the computational methods with the implementation issues and provide the community with

reusable and extendible software.
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