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Part I : Semicoherent systems



System

Definition. A system is a set of interconnected components

C = {1, . . . ,n} = [n]

Example. Home video system

1. Blu-ray player
2. PlayStation 3
3. LED television
4. Sound amplifier
5. Speaker A
6. Speaker B

Assumptions

The system and the components are of the crisply on/off kind

The components are nonrepairable



Structure function

State of a component j ∈ C = [n] → Boolean variable

xj =
⎧⎪⎪⎨⎪⎪⎩

1 if component j is functioning

0 if component j is in a failed state

State of the system → Boolean function φ ∶ {0,1}n → {0,1}

φ(x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩

1 if the system is functioning

0 if the system is in a failed state

This function is called the structure function of the system

S = (C ,φ)



Representations of Boolean functions

Boolean function ←→ set function

φ ∶ {0,1}n → {0,1} φ ∶ 2[n] → {0,1}

φ(1A) = φ(A) A ⊆ [n]

Polynomial representation of a Boolean function

φ(x) = ∑
A⊆[n]

φ(A) ∏
j∈A

xj ∏
j∈[n]∖A

(1 − xj)



Representations of Boolean functions

Simple form

φ(x) = ∑
A⊆[n]

m(A) ∏
j∈A

xj

where

m(A) = ∑
B⊆A

(−1)∣A∣−∣B ∣φ(B)

φ(A) = ∑
B⊆A

m(B)

(Hammer and Rudeanu 1968)



Coherent and semicoherent systems

The system is said to be semicoherent if

φ is nondecreasing : x ⩽ x′ ⇒ φ(x) ⩽ φ(x′)
φ(0) = 0, φ(1) = 1

The system is said to be coherent if, in addition

every component is relevant to φ

∃ x ∈ {0,1}n ∶ φ(1j ,x) ≠ φ(0j ,x)

where
(1j ,x) = (x1, . . . ,

(j)

1 , . . . , xn)

(0j ,x) = (x1, . . . ,
(j)

0 , . . . , xn)



Representations of Boolean functions

x1 ∏ x2 = min(x1, x2) = x1 x2

x1 ∐ x2 = max(x1, x2) = 1 − (1 − x1)(1 − x2)

Since φ is nondecreasing and nonconstant

φ(x) = ∐
A⊆[n]
φ(A)=1

∏
j∈A

xj

φ(x) = ∏
A⊆[n]

φ([n]∖A)=0

∐
j∈A

xj

(Hammer and Rudeanu 1968)



Block diagrams

A serially connected segment of components is functioning if
and only if every single component is functioning

1 2 3r r
A system of parallel components is functioning if and only at
least one component is functioning
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r r



Block diagrams
Series structure

1 2 3r r
φ(x) = x1 x2 x3 =

3

∏
i=1

xi

Parallel structure

3

2

1

r r

φ(x) = 1 − (1 − x1)(1 − x2)(1 − x3) =
3

∐
i=1

xi



Block diagrams

Example. Home video system

1. Blu-ray player
2. PlayStation 3
3. LED television
4. Sound amplifier
5. Speaker A
6. Speaker B
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φ(x) = (x1∐ x2) x3 x4 (x5∐ x6)



Block diagrams

Example. Bridge structure
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φ(x) = x3φ(13,x) + (1 − x3)φ(03,x)

φ(13,x) = (x1∐ x2)(x4∐ x5)
φ(03,x) = (x1 x4)∐(x2 x5)

Pivotal decomposition of the structure function

φ(x) = xj φ(1j ,x) + (1 − xj)φ(0j ,x)



Block diagrams

Example. k-out-of-n structure

The system fails upon the kth component failure

i.e., the system is functioning if and only if at least n − k + 1 of the
n components are functioning

φ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if
n

∑
j=1

xj ⩾ n − k + 1

0 otherwise

φ(x) = xk ∶n = ∐
∣A∣=n−k+1

∏
j∈A

xj = ∏
∣A∣=k

∐
j∈A

xj



Block diagrams

Example. 2-out-of-3 structure

φ(x) = x2∶3 = ∐
∣A∣=2

∏
j∈A

xj = x1x2∐ x1x3∐ x2x3

2 3

1 3

1 2

r r



Path and cut sets

Definition. A subset A ⊆ C of components is

a path set of φ if φ(A) = 1

a cut set of φ if φ(C ∖A) = 0

A path (cut) set is minimal if it does not strictly contain a path
(cut) set.

Bridge structure
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Minimal path sets : {1,4}, {2,5}, {1,3,5}, {2,3,4}
Minimal cut sets : {1,2}, {4,5}, {1,3,5}, {2,3,4}



Path and cut sets

If P1, . . . ,Pr denote the minimal path sets

φ(x) =
r

∐
j=1

∏
i∈Pj

xi

If K1, . . . ,Ks denote the minimal cut sets

φ(x) =
s

∏
j=1

∐
i∈Kj

xi

Bridge structure

φ(x) = (x1x4)∐(x2x5)∐(x1x3x5)∐(x2x3x4)
= (x1∐ x2)(x4∐ x5)(x1∐ x3∐ x5)(x2∐ x3∐ x4)



Correspondence Reliability/Game Theory

Reliability Game Theory
Component Player
Semicoherent structure Simple game
Structure function Characteristic function
Irrelevant component Null player
Path set Winning coalition
Cut set Blocking coalition
Minimal path set Minimal winning coalition
Minimal cut set Minimal blocking coalition
Series structure Unanimity game
Paralell structure Decisive game
Module Committee
Modular set Committee set

(Ramamurthy 1990)



State variable Ð→ Random variable

xj Ð→ Xj(t)

Xj(t) =
⎧⎪⎪⎨⎪⎪⎩

1 if j is functioning at time t

0 if j is in a failed state at time t

0 Tj

Xj(t)

tt

Failure���

-

6

Tj = random lifetime of component j ∈ C
Xj(t) = Ind(Tj > t) = random state of j at time t ⩾ 0



System lifetime and component lifetimes

TS = system lifetime
XS(t) = Ind(TS > t) = random state of the system at time t ⩾ 0

XS(t) = φ(X1(t), . . . ,Xn(t)) t ⩾ 0

Expression of TS in terms of T1, . . . ,Tn ?



System lifetime and component lifetimes

Series structure

1 2 3q q
φ(x) = x1 x2 x3 Ð→ TS = T1 ∧T2 ∧T3

Parallel structure

3

2

1q q

φ(x) = x1∐ x2∐ x3 Ð→ TS = T1 ∨T2 ∨T3



System lifetime and component lifetimes

General structure (Dukhovny & M. 2012)

φ(x) = ∐
A⊆[n]
φ(A)=1

∏
j∈A

xj Ð→ TS = ⋁
A⊆[n]
φ(A)=1

⋀
j∈A

Tj

Life function

pφ(t1, . . . , tn) = ⋁
A⊆[n]
φ(A)=1

⋀
j∈A

tj tj ⩾ 0

Ð→ lattice polynomial (lattice term)

TS = pφ(T1, . . . ,Tn)



System

How to describe T1, . . . ,Tn ?

Cumulative distribution function (c.d.f.) of the component lifetimes

F (t1, . . . , tn) = Pr(T1 ⩽ t1, . . . ,Tn ⩽ tn) t1, . . . , tn ⩾ 0

S = (C ,φ,F )

Classical assumptions

F absolutely continuous + i.i.d. lifetimes

F absolutely continuous + exchangeable lifetimes

F has no ties
Pr(Ti = Tj) = 0 i ≠ j



Part II : Reliability analysis



Reliability analysis

Reliability function of component j ∈ C

Rj(t) = Pr(Tj > t) t ⩾ 0

= probability that component j does not fail in the interval [0, t]

Xj(t) = Ind(Tj > t) ⇒ Rj(t) = Pr(Xj(t) = 1) = E[Xj(t)]

System reliability function

RS(t) = Pr(TS > t) t ⩾ 0

= probability that the system does not fail in the interval [0, t]

RS(t) = Pr(XS(t) = 1) = E[XS(t)]



Reliability analysis

We have

RS(t) = E[XS(t)] = E[φ(X1(t), . . . ,Xn(t))]

= ∑
A⊆C

φ(A) E[∏
j∈A

Xj(t) ∏
j∈C∖A

(1 −Xj(t))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pr(∀j∈C ∶ Xj(t)=1 ⇔ j∈A)

Theorem (Dukhovny 2007)

RS(t) = ∑
A⊆C

φ(A) Pr(X(t) = 1A) t ⩾ 0

All the needed information is the distribution of X(t)
(the knowledge of the joint distribution F of the component
lifetimes is not necessary)



Reliability analysis
When T1, . . . ,Tn are independent, we have

RS(t) = ∑
A⊆C

φ(A) ∏
j∈A

E[Xj(t)] ∏
j∈C∖A

(1 −E[Xj(t)])

= ∑
A⊆C

φ(A) ∏
j∈A

Rj(t) ∏
j∈C∖A

(1 − Rj(t))

Corollary

If T1, . . . ,Tn are independent, then

RS(t) = φ(R1(t), . . . ,Rn(t)) t ⩾ 0

Multilinear extension of φ Ð→ φ ∶ [0,1]n → [0,1]

φ(x) = ∑
A⊆C

φ(A) ∏
j∈A

xj ∏
j∈C∖A

(1 − xj)



Reliability analysis

Simple form of φ

φ(x) = ∑
A⊆C

m(A) ∏
j∈A

xj

Corollary (Dukhovny and M. 2008)

We have

RS(t) = ∑
A⊆C

m(A) Pr(Tj > t ∀j ∈ A) t ⩾ 0

In case of independence

RS(t) = ∑
A⊆C

m(A) ∏
j∈A

Rj(t) t ⩾ 0



Mean time-to-failure of the system

Mean time-to-failure of the system

MTTFS = E[TS] = − ∫
∞

0
t dRS(t)

MTTFS = ∫
∞

0
RS(t)dt

In case of independence

MTTFS = ∑
A⊆C

φ(A)∫
∞

0
∏
j∈A

Rj(t) ∏
j∈C∖A

(1 − Rj(t))dt

MTTFS = ∑
A⊆C

m(A)∫
∞

0
∏
j∈A

Rj(t)dt



Mean time-to-failure of the system

Example. Assume Rj(t) = e−λj t , j ∈ C

MTTFS = ∑
A⊆C

m(A)∫
∞

0
∏
j∈A

e−λj t dt

= ∑
A⊆C

m(A)∫
∞

0
e−λAt dt (λA = ∑

j∈A

λj)

= ∑
A⊆C
A≠∅

m(A) 1

λA

Series structure: MTTFS = 1

λC

Parallel structure: MTTFS = ∑
A⊆C
A≠∅

(−1)∣A∣−1 1

λA



Part III : Lattice polynomial language



Life function

pφ(t1, . . . , tn) = ⋁
A⊆[n]
φ(A)=1

⋀
j∈A

tj tj ⩾ 0

Ð→ lattice polynomial (lattice term)

TS = pφ(T1, . . . ,Tn)



Advantage of the lattice polynomial language

Suppose there is

(i) an upper bound on lifetimes of a subset A of components
(imposed by the physical properties of the assembly)

Aq q
T c subset lifetime = T ∧ c

(ii) a lower bound (imposed by a back-up block with a constant
lifetime)

Aq qT

c subset lifetime = T ∨ c



Advantage of the lattice polynomial language

The lifetime of a general system with upper and/or lower bounds
can be described through a lattice polynomial function

TS = p(T1, . . . ,Tn)

Example.

1 2r r
Suppose that the lifetime of component #2 must lie in the time
interval [c,d]

TS = T1 ∧median(c ,T2,d)
= T1 ∧ (c ∨ (T2 ∧ d))
= (c ∧T1) ∨ (d ∧T1 ∧T2)



Lattice polynomial functions

Representations of a l.p. function (Goodstein 1967)

p(t1, . . . , tn) = ⋁
A⊆[n]

(α(A) ∧ ⋀
j∈A

tj) t1, . . . , tn ⩾ 0

α(A) = p(eA)

(eA)j =
⎧⎪⎪⎨⎪⎪⎩

∞ if j ∈ A
0 otherwise



Lattice polynomial functions

p(t1, . . . , tn) = ⋁
A⊆[n]

(α(A) ∧ ⋀
j∈A

tj) t1, . . . , tn ⩾ 0

Theorem (Dukhovny & M. 2008)

If TS = p(T1, . . . ,Tn) then

XS(t) = φt(X1(t), . . . ,Xn(t)) t ⩾ 0

where

φt(x) = ∑
A⊆[n]

Ind(α(A) > t) ∏
j∈A

xj ∏
j∈[n]∖A

(1 − xj)

This extends the classical formula

XS(t) = φ(X1(t), . . . ,Xn(t)) t ⩾ 0



Lattice polynomial functions

Example (cont’d)

1 2r r
TS = (c ∧T1) ∨ (d ∧T1 ∧T2)

p(t1, t2) = (c ∧ t1) ∨ (d ∧ t1 ∧ t2)

Then we have

XS(t) = (Ind(c > t) X1(t))∐(Ind(d > t) X1(t) X2(t))



Reliability analysis

Exact reliability formulas (Dukhovny & M. 2008)

RS(t) = ∑
A⊆C

φt(A) Pr(X(t) = 1A)

RS(t) = ∑
A⊆C

mt(A) Pr(Tj > t ∀j ∈ A)

In case of independence

RS(t) = ∑
A⊆C

φt(A) ∏
j∈A

Rj(t) ∏
j∈C∖A

(1 − Rj(t))

RS(t) = ∑
A⊆C

mt(A) ∏
j∈A

Rj(t)



Mean time-to-failure of the system

MTTFS = ∫
∞

0
RS(t)dt

= ∑
A⊆C

∫
∞

0
mt(A) ∏

j∈A

Rj(t)dt

= ∑
A⊆C

∫
∞

0
( ∑
B⊆A

(−1)∣A∣−∣B ∣φt(B)) ∏
j∈A

Rj(t)dt

= ∑
A⊆C

∑
B⊆A

(−1)∣A∣−∣B ∣∫
∞

0
Ind(α(B) > t) ∏

j∈A

Rj(t)dt

= ∑
A⊆C

∑
B⊆A

(−1)∣A∣−∣B ∣∫
α(B)

0
∏
j∈A

Rj(t)dt



Mean time-to-failure of the system

Example. Assume Rj(t) = e−λj t , j ∈ C

MTTFS = ∑
A⊆C

∑
B⊆A

(−1)∣A∣−∣B ∣∫
α(B)

0
∏
j∈A

e−λj t dt

= ∑
A⊆C

∑
B⊆A

(−1)∣A∣−∣B ∣∫
α(B)

0
e−λAt dt

= α(∅) + ∑
A⊆[n]
A≠∅

∑
B⊆A

(−1)∣A∣−∣B ∣ 1 − e−λA α(B)

λA



Part IV : Signature and importance indexes



Simple game

Let N = {1, . . . ,n} be the set of players

Characteristic function of the game
= set function v ∶ 2N → R which assigns to each coalition S ⊆ N of
players a real number v(S) which represents the worth of S

The game is said to be simple if v takes on its values in {0,1}

The set function v can be regarded as a Boolean function
v ∶ {0,1}n → {0,1}



Power indexes

Let v ∶ 2N → {0,1} be a simple game on a set N of n players
Let j ∈ N be a player

Banzhaf power index (Banzhaf 1965)

ψB(v , j) = 1

2n−1
∑

S⊆N∖{j}

(v(S ∪ {j}) − v(S))

Shapley power index (Shapley 1953)

ψSh(v , j) = ∑
S⊆N∖{j}

1

n (n−1
∣S ∣

)
(v(S ∪ {j}) − v(S))



Cardinality index

Cardinality index (Yager 2002)

Ck = 1

(n − k)(nk)
∑
∣S ∣=k

∑
j∈N∖S

(v(S∪{j})−v(S)) (k = 0, . . . ,n−1)

Ck = 1

( n
k+1

) ∑
∣S ∣=k+1

v(S) − 1

(n
k
) ∑

∣S ∣=k

v(S)

Interpretation:
Ck is the average gain that we obtain by adding an arbitrary player
to an arbitrary k-player coalition



Barlow-Proschan importance index

System S = (C ,φ,F )
Assume that the components have independent lifetimes

Importance index (Barlow-Proschan 1975)

I
(j)
BP = Pr(TS = Tj) j ∈ C

IBP = (I (1)BP , . . . , I
(n)
BP ) ∑j I

(j)
BP = 1

I
(j)
BP is an measure of importance of component j



Barlow-Proschan importance index

In the i.i.d. case:

IBP = (I (1)BP , . . . , I
(n)
BP ) Ð→ b = (b1, . . . ,bn)

bj = ∑
A⊆C∖{j}

1

n (n−1
∣A∣

)
(φ(A ∪ {j}) −φ(A))

bj = ψSh(φ, j)

bj is independent of F !

⇒ b defines a structure importance index



System signature

Assume that F is absolutely continuous and the components have
i.i.d. lifetimes

Order statistics

T1, . . . ,Tn Ð→ T1∶n ⩽ ⋯ ⩽ Tn∶n

System signature (Samaniego 1985)

sk = Pr(TS = Tk ∶n) k = 1, . . . ,n

s = (s1, . . . , sn) ∑k sk = 1



System signature

Explicit expression (Boland 2001)

sk = 1

( n
n−k+1

) ∑
A⊆C

∣A∣=n−k+1

φ(A) − 1

( n
n−k

) ∑
A⊆C

∣A∣=n−k

φ(A)

Ck = 1

( n
k+1

) ∑
∣S ∣=k+1

v(S) − 1

(n
k
) ∑

∣S ∣=k

v(S)

sk = Cn−k

sk is independent of F !

⇒ s defines the structure signature



Barlow-Proschan importance index and system signature

Series structure

1 2 3r r

IBP = ( 1

3
,

1

3
,

1

3
) s = (1,0,0)



Barlow-Proschan importance index and system signature

Bridge structure
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IBP = ( 7

30
,

7

30
,

2

30
,

7
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s = (0,
1

5
,

3

5
,

1

5
,0)



Barlow-Proschan importance index and system signature

Home video system

2

1

3 4

6

5q q

IBP = ( 2

30
,

2

30
,

11

30
,

11

30
,

2

30
,

2

30
)

s = ( 5

15
,

6

15
,

4

15
,0,0,0)



Correspondence Reliability/Game Theory

Reliability Game Theory
Component Player
Importance of a component Power of a player
Barlow-Proschan importance index Shapley power index
Birnbaum importance index Banzhaf power index
Signature Cardinality index



Extension of signature to dependent lifetimes

General dependent case : we only assume that F has no ties

Probability signature (Navarro-Spizzichino-Balakrishnan 2010)

pk = Pr(TS = Tk ∶n) k = 1, . . . ,n

p = (p1, . . . ,pn) ∑k pk = 1

Can we provide an explicit expression for pk in terms of φ and F ?

S = (C ,φ,F )



Extension of signature to dependent lifetimes

Relative quality function q ∶ 2C → [0,1]

q(A) = Pr (Ti < Tj ∶ i ∉ A, j ∈ A)

= Pr (max
i∉A

Ti < min
j∈A

Tj)

(M. & Mathonet 2011)

q(A) = probability that the best ∣A∣ components (those having the
longest lifetimes) are exactly A

→ q(A) measures the overall quality of the components A when
compared with the components C ∖A

Remark: q is independent of φ (q depends only on C and F )



Extension of signature to dependent lifetimes

Theorem (M. & Mathonet 2011)

pk = ∑
A⊆C

∣A∣=n−k+1

q(A)φ(A) − ∑
A⊆C

∣A∣=n−k

q(A)φ(A)

Ð→ extends Boland’s formula

sk = 1

( n
n−k+1

) ∑
A⊆C

∣A∣=n−k+1

φ(A) − 1

( n
n−k

) ∑
A⊆C

∣A∣=n−k

φ(A)

Open problem
Find necessary and sufficient conditions under which a set function
on C is the relative quality function of a system S = (C ,φ,F )



Extension of signature to dependent lifetimes

Proposition

If T1, . . . ,Tn are exchangeable, then q is symmetric

q(A) = 1

( n
∣A∣

)

⇒ pk = sk = 1

( n
n−k+1

) ∑
A⊆C

∣A∣=n−k+1

φ(A) − 1

( n
n−k

) ∑
A⊆C

∣A∣=n−k

φ(A)

p = s



Extension of signature to dependent lifetimes

Theorem (M. & Mathonet & Waldhauser 2011)

The identity p = s holds for every n-component semicoherent system
if and only if q is symmetric



Extension of BP index to dependent lifetimes

Relative quality function of component j

qj ∶ 2C∖{j} → [0,1]

qj(A) = Pr ( max
i∈C∖A

Ti = Tj < min
i∈A

Ti)

(M. & Mathonet 2013)

qj(A) = probability that the components that are better than
component j are precisely A.



Extension of BP index to dependent lifetimes

We have

∑
A⊆C∖{j}

qj(A) = 1 (j ∈ C)

Theorem (M. & Mathonet 2013)

I
(j)
BP = ∑

A⊆C∖{j}

qj(A) (φ(A ∪ {j}) −φ(A))

In the i.i.d. case:

I
(j)
BP = bj = ∑

A⊆C∖{j}

1

n (n−1
∣A∣

)
(φ(A ∪ {j}) −φ(A))



Extension of BP index to dependent lifetimes

Proposition

If T1, . . . ,Tn are exchangeable, then

qj(A) = 1

n (n−1
∣A∣

)

I
(j)
BP = bj = ∑

A⊆C∖{j}

1

n (n−1
∣A∣

)
(φ(A ∪ {j}) −φ(A))

IBP = b



Extension of BP index to dependent lifetimes

Theorem (M. & Mathonet 2013)

The identity IBP = b holds for every n-component semicoherent
system if and only if

qj(A) = 1

n (n−1
∣A∣

)



Case of independent lifetimes

We now assume that T1, . . . ,Tn are independent lifetimes

Every Tj has a
- a p.d.f. fj
- a c.d.f. Fj with Fj(0) = 0

Theorem

q(A) = ∑
j∈A
∫

∞

0
fj(t) ∏

i∉A

Fi(t) ∏
i∈A∖{j}

F i(t)dt (A ≠ ∅)

where F j(t) = 1 − Fj(t)

→ provides an explicit expression for the signature in the
independent case



Case of independent lifetimes

Example: independent exponential lifetimes

Fj(t) = 1 − e−λj t λj > 0

Corollary

q(A) = ∑
B⊆C∖A

(−1)∣B ∣ λA
λA∪B

(A ≠ ∅)

where λA = ∑j∈A λj



Case of independent lifetimes

The ratio
λ{j}

λC
= q(C ∖ {j})

is the probability that j is the worst component

More generally,
λA
λC

= ∑
j∈A

q(C ∖ {j})

is the probability that the worst component is in A



Case of independent lifetimes

Theorem

qj(A) = ∫
∞

0
fj(t) ∏

i∉A∪{j}

Fi(t) ∏
i∈A

F i(t)dt

→ provides an explicit expression for Barlow–Proschan index in the
independent case

Corollary

For independent exponential lifetimes

qj(A) = ∑
B⊆C∖(A∪{j})

(−1)∣B ∣
λ{j}

λA∪B∪{j}



Interpretation in game theory

Is there an interpretation in game theory of the formula

Pr(TS = Tj) = ∑
A⊆C∖{j}

qj(A) (φ(A ∪ {j}) −φ(A)) ?

Yes : based on the derivation of the Shapley power index from a
bargaining procedure (Shapley 1953)



Interpretation in game theory

The players agree to play the game v in a grand coalition

The coalition adds one player at a time until everyone has
been admitted

The order in which the players are to join is determined by
chance, with all arrangements equally probable

Each player, on his admission, is promised the amount
corresponding to his marginal contribution

Let S ⊆ N ∖ {j} be the set of players preceding j

Ð→ payment to j : v(S ∪ {j}) − v(S)

Ð→ probability of that contingency is 1
n(n−1∣S ∣ )

Ð→ total expectation of player j

ψSh(v , j) = ∑
S⊆N∖{j}

1

n (n−1
∣S ∣

)
(v(S ∪ {j}) − v(S))



Interpretation in game theory

General case : Tj = time at which player j is admitted in the coalition

Ð→ probability that S is the set of players preceding j

pj(S) = Pr (max
i∈S

Ti < Tj = min
i∈N∖S

Ti)

Ð→ total expectation of player j

∑
S⊆N∖{j}

pj(S) (v(S ∪ {j}) − v(S))

If the game is monotone and simple

Pr(TN = Tj) = ∑
S⊆N∖{j}

pj(S) (v(S ∪ {j}) − v(S))

TN = time at which the forming coalition turns from losing to winning



Interpretation in game theory

Let S ⊆ N, ∣S ∣ = k, be the set of the first k players (k = 0, . . . ,n− 1)

Ð→ probability that this coalition forms is

p(S) = Pr (max
i∈S

Ti < min
i∈N∖S

Ti)

Ð→ average marginal contribution of an additional arbitrary player

∑
S⊆N

∣S ∣=k+1

p(S) v(S) − ∑
S⊆N
∣S ∣=k

p(S) v(S)

If the game is monotone and simple

Pr(TN = Tk+1∶n) = ∑
S⊆N

∣S ∣=k+1

p(S) v(S) − ∑
S⊆N
∣S ∣=k

p(S) v(S)



Subsignature

Let M ⊆ C

Subsignature (M. 2014)

p
(k)
M = Pr(TS = Tk ∶M) k = 1, . . . , ∣M ∣

Explicit formula

p
(k)
M = ∑

A⊆C
∣M∖A∣=k

∑
j∈M∖A

qj(A) (φ(A ∪ {j}) −φ(A))

+ interpretation in game theory



Decomposition of reliability

Recall that

RS(t) = Pr(TS > t) and Rk ∶n(t) = Pr(Tk ∶n > t)

Proposition (Samaniego 1985)

If F is absolutely continuous with i.i.d. lifetimes, we have

RS(t) =
n

∑
k=1

skRk ∶n(t)

for every t ⩾ 0 and every n-component coherent system



Decomposition of reliability

Theorem (M. & Mathonet & Waldhauser 2011)

For any t ⩾ 0, we have

RS(t) =
n

∑
k=1

skRk ∶n(t)

for every n-component coherent system if and only if the state vari-
ables X1(t), . . . ,Xn(t) are exchangeable

Remark. This condition is weaker than exchangeability of the
component lifetimes T1, . . . ,Tn



Part V : Additional results in the i.i.d. case



Manual computation of the Barlow-Proschan index

bj = ψSh(φ, j) = ∑
A⊆C∖{j}

1

n (n−1
∣S ∣

)
(φ(A ∪ {j}) −φ(A))

φ(x) = multilinear extension of φ(x)

Theorem (Owen 1972)

bj = ψSh(φ, j) = ∫
1

0
( ∂

∂xj
φ)(x , . . . , x)dx



Manual computation of the Barlow-Proschan index

Example. Home video system

φ(x1, . . . , x6) = (x1∐ x2) x3 x4 (x5∐ x6)

φ(x1, . . . , x6) = x1x3x4x5 + x2x3x4x5 + x1x3x4x6 + x2x3x4x6

−x1x2x3x4x5 − x1x2x3x4x6 − x1x3x4x5x6 − x2x3x4x5x6

+x1x2x3x4x5x6

Example: b2 = ?

( ∂

∂x2
φ)(x , . . . , x) = 2x3 − 3x4 + x5

b2 = ∫
1

0
(2x3 − 3x4 + x5)dx = 2

30



Manual computation of the signature

How can we efficiently compute the system signature

sk = 1

( n
n−k+1

) ∑
A⊆C

∣A∣=n−k+1

φ(A) − 1

( n
n−k

) ∑
A⊆C

∣A∣=n−k

φ(A) ?



Manual computation of the signature

With any n-degree polynomial p ∶ R→ R we associate the reflected
polynomial Rnp ∶ R→ R defined by

(Rnp)(x) = xn p( 1
x
)

p(x) = a0+a1 x+⋯+an xn ⇒ (Rnp)(x) = an+an−1 x+⋯+a0 xn

(M. 2014)

Setting p(x) = d
dx φ(x , . . . , x), we have

∫
x

0
(Rn−1p)(t + 1)dt =

n

∑
k=1

(n
k
) sk xk



Manual computation of the signature

Example. Home video system

φ(x1, . . . , x6) = x1x3x4x5 + x2x3x4x5 + x1x3x4x6 + x2x3x4x6

−x1x2x3x4x5 − x1x2x3x4x6 − x1x3x4x5x6 − x2x3x4x5x6

+x1x2x3x4x5x6

φ(x , . . . , x) = 4x4 − 4x5 + x6

p(x) = d
dx φ(x , . . . , x) = 16x3 − 20x4 + 6x5

(R5p)(x) = 6 − 20x + 16x2

∫
x

0
(R5p)(t + 1)dt = 2 x + 6 x2 + 16

3
x3

= (6

1
) s1 x + (6

2
) s2 x2 +⋯ + (6

6
) s6 x6



Barlow-Proschan importance index and system signature

Home video system

2

1

3 4

6

5q q

s = ( 5

15
,

6

15
,

4

15
,0,0,0)

C = (0,0,0,
4

15
,

6

15
,

5

15
)

IBP = ( 2

30
,

2

30
,

11

30
,

11

30
,

2

30
,

2

30
)



Computation of the signature from the minimal path sets

The multilinear extension φ(x) can be obtained from the minimal
path sets P1, . . . ,Pr simply by

(i) expressing the structure function, e.g., as a coproduct over
the minimal path sets

φ(x) =
r

∐
j=1

∏
i∈Pj

xi

(ii) expanding the coproduct

(iii) simplifying the resulting algebraic expression (using x2j = xj)
until it becomes multilinear.

Then we compute p(x) = d
dx φ(x , . . . , x) and

∫
x

0
(Rn−1p)(t + 1)dt =

n

∑
k=1

(n
k
) sk xk



Open problems

One can show that there is a linear bijection between the signature
s and the polynomial function φ(x , . . . , x)

Find necessary and sufficient conditions under which an
n-tuple a = (a1, . . . , an) is the signature of a semicoherent
system

Find necessary and sufficient conditions under which an
n-degree polynomial function P(x) is the function φ(x , . . . , x)
of a semicoherent system

Enumerate all the possible semicoherent systems having a
prescribed φ(x , . . . , x)



Thank you for your attention!


