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Part | : Semicoherent systems



System
Definition. A system is a set of interconnected components
C ={1,...,n}=[n]

Example. Home video system
1. Blu-ray player

2. PlayStation 3

3. LED television

4.  Sound amplifier

5. Speaker A

6. Speaker B
Assumptions

@ The system and the components are of the crisply on/off kind

@ The components are nonrepairable



Structure function

State of a component je C=[n] — Boolean variable

{1 if component j is functioning
j =

0 if component j is in a failed state

State of the system — Boolean function ¢:{0,1}" - {0,1}

1 if the system is functioning

0 if the system is in a failed state

d(x1, ... Xn) = {

This function is called the structure function of the system

S = (C9) I




Representations of Boolean functions

Boolean function <« set function

¢:{0,1}" > {0,1} ¢: 2 - {01}

d(1a) = ¢(A)  Ac|n]

Polynomial representation of a Boolean function

P(x) = AZ[ o(A) [Tx I (1-x)

c[n] JjeA  je[n]NA




Representations of Boolean functions

Simple form

(x) = > m(A)[]x

Ac[n] JeA
where
m(A) = Y (-1 Plg(B)
BcA
d(A) = > m(B)
BcA

(Hammer and Rudeanu 1968)



Coherent and semicoherent systems

The system is said to be semicoherent if
@ ¢ is nondecreasing : x <x' = @(x) < p(x')

° $(0)=0 ¢(1)=1

The system is said to be coherent if, in addition

@ every component is relevant to ¢

Ixe{0,1}" : ¢(1;,x) = ¢(0j,x)

where .
)

(1j,X) = (X1,...5 1,000y Xn)
()

(0j,x) = (x1,...,0,...,Xn)



Representations of Boolean functions

x1 [Ix = min(xy,x2) = x1x

x1 [Ix = max(x;,x) = 1-(1-x1)(1-x2)

Since ¢ is nondecreasing and nonconstant

(Hammer and Rudeanu 1968)



Block diagrams

@ A serially connected segment of components is functioning if
and only if every single component is functioning

. 1 2 3 .

@ A system of parallel components is functioning if and only at
least one component is functioning

1




Block diagrams
Series structure

. 1 2 3

3
d(x) = x1 x2 x3 = Hx,-
i=1

Parallel structure

<

—
x

~
I

1- (]. —Xl)(]. —X2)(]. —X3)



Block diagrams

Example. Home video system

Blu-ray player
PlayStation 3
LED television
Sound amplifier
Speaker A
Speaker B

ok~

d(x) = (x11Ix2) x3 xa (x5 L1 x6)



Block diagrams

Example. Bridge structure

d(x) = x39(13,x) + (1 -x3)$(03,x)

¢(13,X)
¢(03,X)

(x1 LI x2)(xa LI x5)
(x1 xa) L1 (x2 x5)

Pivotal decomposition of the structure function

¢(x) = x¢(1,x) + (1-x;)9(0;,x)



Block diagrams

Example. k-out-of-n structure
The system fails upon the kth component failure

i.e., the system is functioning if and only if at least n— k + 1 of the
n components are functioning

1 if Y x> n—k+1
d(x) = j=1

0 otherwise

¢(x) = xen = 11 TIx = I1 1%

|Al=n—k+1 jeA |Al=k jeA



Block diagrams

Example. 2-out-of-3 structure

d(x) = x23 = [] [] % = xielxxslxx

|[A]=2 jeA
1 2
. 1 3 )




Path and cut sets

Definition. A subset A ¢ C of components is
@ a path set of ¢ if p(A) =1
@ acutsetof pif (C~A)=0

A path (cut) set is minimal if it does not strictly contain a path
(cut) set.

Bridge structure

e Minimal path sets : {1,4}, {2,5}, {1,3,5}, {2,3,4}
e Minimal cut sets : {1,2}, {4,5}, {1,3,5}, {2,3,4}



Path and cut sets

If P1,..., P, denote the minimal path sets

If Ki,...,Ks denote the minimal cut sets

Bridge structure

#(x)

(x1xa) I (x2x5) 11 (x1x3x5) L1 (x2x3X4)

(x1 LI x2) (xa I x5) (x1 LI x3 LI x5) (x2 11 x3 L1 xa)



Correspondence Reliability/Game Theory

Reliability

Game Theory

Component
Semicoherent structure
Structure function
Irrelevant component
Path set

Cut set

Minimal path set
Minimal cut set
Series structure
Paralell structure
Module

Modular set

Player

Simple game
Characteristic function
Null player

Winning coalition
Blocking coalition
Minimal winning coalition
Minimal blocking coalition
Unanimity game

Decisive game
Committee

Committee set

(Ramamurthy 1990)



State variable —— Random variable
xj  —  Xj(t)

Xi(t) = 1 if j is functioning at time t
! 0 if jis in a failed state at time t

) .
Xi(t) /Fa|lure

-t

[
|
|
i
|
|
i
L

0 T

T; = random lifetime of component j € C
Xi(t) = Ind(T;>t) = random state of j at time t >0



System lifetime and component lifetimes

Ts = system lifetime
Xs(t) = Ind(Ts >t) = random state of the system at time t >0

Xs(t) = @(Xa(t),.... Xa(t)) t>0 I

Expression of Ts in terms of T1,..., T, 7



System lifetime and component lifetimes

Series structure

¢(X) = X1 X2 X3 —> Ts = T1/\T2/\T3

Parallel structure

| HB}

d(x) = x1Ux1Ix3 Ts = TivToavTs



System lifetime and component lifetimes

General structure (Dukhovny & M. 2012)

¢ = Il [Iy — Ts= V AT
Ac[n] jeA Ac[n] JjeA
#(A)=1 #(A)=1

Life function

Pq,’)(tl,---,tn) = \/ /\tj ti>0
Ac[n] JjeA
$(A)-1

— lattice polynomial (lattice term)

TS = p¢(T1,...,T,,)



System

How to describe T1,..., T, ?
Cumulative distribution function (c.d.f.) of the component lifetimes

F(ti,...,tn) = Pr(Ti<ty,..., Th< ty) t1,...,t, 20

S = (C7¢7F)

Classical assumptions

@ F absolutely continuous + i.i.d. lifetimes

@ F absolutely continuous + exchangeable lifetimes

@ F has no ties
Pr(Ti=T;) =0 N



Part Il : Reliability analysis



Reliability analysis

Reliability function of component j € C

Ri(t) = Pr(T;>1t) t>0

= probability that component j does not fail in the interval [0, t]

Xi(t) = Ind(T;>t) = Ri(t) = Pr(X;(t)=1) = E[X;(t)]

System reliability function

Rs(t) = Pr(Ts>1t) t20 I

= probability that the system does not fail in the interval [0, t]

Rs(t) = Pr(Xs(t)=1) = E[Xs(t)]




Reliability analysis

We have
Rs(t) = E[Xs(t)] = E[o(Xi(t),...,Xa(1))]

S 6(A) E[ijm IT (1-%(1))

AcC jeA JECNA

Pr(VjeC s Xj(t)=1 = jeA)

Theorem (Dukhovny 2007)

Rs(t) = 3 @(A) Pr(X(t)=12)  £>0

AcC

All the needed information is the distribution of X(t)
(the knowledge of the joint distribution F of the component
lifetimes is not necessary)



Reliability analysis

When T1,..., T, are independent, we have
Rs(t) = X oA TTEX (0] TT (1-E[X(1)])
AcC jeA JECNA
= Y oA IR [ (1-Ri(1))
AcC jeA JECNA

If T1,..., T, are independent, then

Rs(t) = ¢(Ru(t),...,Rs(t)) t20

Multilinear extension of ¢ ~— ¢ :[0,1]" - [0,1]

o(x) = 3 oA [Ix [ (1-x)

AcC jeA  jeC\A



Reliability analysis

Simple form of ¢
o(x) = 2. m(A) [Tx

AcC jeA

Corollary (Dukhovny and M. 2008)
We have

Rs(t) = Y m(A)Pr(T;j>t VjeA)  t>0
AcC

In case of independence

Rs(t) = Y. m(A) [TR(t) >0

AcC jeA




Mean time-to-failure of the system

Mean time-to-failure of the system

MTTFs = E[Ts] = —fowths(t)

MTTFs = fo Rs(t) dt

In case of independence

MTTFs - Z¢(A)f0°°1‘[Rj(t) [T (1-Ri(t))dt
AcC jeA jeC\A
MTTFs - Zm(A)_[OOOHRj(t)dt

AcC jeA



Mean time-to-failure of the system

Example. Assume R;(t) = e ¢, je C

> m(A)[OOOHe_)‘Jtdt

AcC jeA

- T [t (w-2)

jeA

MTTFs

1

= Z m(A)/\—
AcC A
A+J

Series structure: MTTFg = —

1
Parallel structure: MTTFs = 3 (-1)At =
A



Part Il : Lattice polynomial language



Life function

p¢(t1,...,t,,) = \/ /\tj t;>0
Ac[n] JjeA
#(A)=1

— lattice polynomial (lattice term)

TS = P¢(T1,---,Tn)



Advantage of the lattice polynomial language

Suppose there is

(i) an upper bound on lifetimes of a subset A of components
(imposed by the physical properties of the assembly)

,,,,,

T c

subset lifetime = T A ¢

(ii) a lower bound (imposed by a back-up block with a constant
lifetime)

subset lifetime = T v ¢



Advantage of the lattice polynomial language

The lifetime of a general system with upper and/or lower bounds
can be described through a lattice polynomial function

TS = p(T17~--;Tn) I

Example.

Suppose that the lifetime of component #2 must lie in the time
interval [c,d]

Ts

T1 Amedian(c, T2, d)
Tin(cv(Tand))
(cATy)Vv(dATiATy)



Lattice polynomial functions

Representations of a l.p. function (Goodstein 1967)

Pt ta) =V (a(AAAL) e th20
Ac[n] JeA

a(A) = p(ea)

(en); = oo ifjeA
A~ 0 otherwise



Lattice polynomial functions

p(ti,....tn) = \/ (a(A)/\/\tj) t1,...,th 20

Ac[n] JjeA

Theorem (Dukhovny & M. 2008)

If Ts =p(T1,...,T,) then
Xs(t) = ¢e(Xa(t),.... Xu(t))  t>0
where

b:(x) = A%:]lnd(a(/\)ﬂ)nxj [T -x)

JjeA  je[n]NA

This extends the classical formula

Xs(t) = d(Xi(t),..., Xn(t)) >0



Lattice polynomial functions

Example (cont’d)

Ts = (cATy)v(dATiATy)
p(ti,tr) = (cAty)vV(dAtiAty)

Then we have

Xs(t) = (Ind(c>t) Xi(t)) L (Ind(d > t) X1(t) Xa(t))



Reliability analysis

Exact reliability formulas (Dukhovny & M. 2008)

Rs(t) = AZC¢t(A) Pr(X(t) =14)
Rs(t) = 3 mi(A) Pr(T;>tVjeA)
AcC

In case of independence

Rs(t) = > o(A) [IR(t) TT (1-Ri(1))
AcC JjeA jeCNA
Rs(t) = > me(A) [TRi(t)

AcC jeA



MTTFs

Mean time-to-failure of the system

fOORs(t) dt

0

Agcfo mt(A)jl;[ARj(t)dt

> fow( > (—1)A"B'¢t(8)) [1Ri(t) dt

AcC BcA JjeA

> ¥ (D [T ind(a(B) > ) [TR(1) de
AcC BcA 0 jeA

55 o [ TR a

AcC BcA jeA



Mean time-to-failure of the system

Example. Assume R;(t) = eV, jeC

> >y f "D et de

AcC B<A jeA

3 (e [ g

AcC BcA

MTTFs

(B
a(@)+ 3 3 (-1)A-IBl l_e—A()
Ac[n] BcA AA
Ao



Part IV : Signature and importance indexes



Simple game

Let N={1,...,n} be the set of players

Characteristic function of the game
= set function v : 2V - R which assigns to each coalition S ¢ N of
players a real number v(S) which represents the worth of S

The game is said to be simple if v takes on its values in {0,1}

The set function v can be regarded as a Boolean function
v:{0,1}" - {0,1}



Power indexes

Let v:2V - {0,1} be a simple game on a set N of n players
Let j € N be a player

Banzhaf power index (Banzhaf 1965)

'wB(ij) =

T (S -wS)

ScNA{j}

Shapley power index (Shapley 1953)

Yau(v,j) = ).

ScNA{j} N

L ((suih-v(s)
(|5|)




Cardinality index

Cardinality index (Yager 2002)

1
Ck = ——m v(Su{j})-v(S k=0,...,n-1
AT %k J_GNZ\S( (Su{ih-v(S)) ( )
G- e ¥ W(S) - ¥ u(S)
k = 7oy 1% oy v
(k+1) |S|=k+1 (k) |S|=k
Interpretation:

Ck is the average gain that we obtain by adding an arbitrary player
to an arbitrary k-player coalition



Barlow-Proschan importance index

System S = (C, ¢, F)
Assume that the components have independent lifetimes

Importance index (Barlow-Proschan 1975)

19 = P(Ts=T)) jeC

Igp = (I, (D) 209 =1

Iéfg is an measure of importance of component j



Barlow-Proschan importance index

In the i.i.d. case:

Igp = (155, ..., 1$2) — b=(by,...,by)

b= Y e ($(AU L)) - $(A))

A<y 0 ()

bj = gn(9,))

b; is independent of F ! \

= b defines a structure importance index



System signature

Assume that F is absolutely continuous and the components have
i.i.d. lifetimes

Order statistics




System signature

Explicit expression (Boland 2001)

= Y BA) - T $(A)
(n—k+1) AcC (n—k) AcC
|Al=n—k+1 |Al=n—k
Go=re T WS - = T (S)
k = n v n\ v
(k11) s (%) 1572

| s is independent of F | |

= s defines the structure signature



Barlow-Proschan importance index and system signature

Series structure




Barlow-Proschan importance index and system signature

Bridge structure




Barlow-Proschan importance index and system signature

Home video system

_ (i 6 4
- \157 15715

0 0,0)



Correspondence Reliability/Game Theory

Reliability

Game Theory

Component

Importance of a component
Barlow-Proschan importance index
Birnbaum importance index
Signature

Player

Power of a player
Shapley power index
Banzhaf power index
Cardinality index




Extension of signature to dependent lifetimes

General dependent case : we only assume that F has no ties

Probability signature (Navarro-Spizzichino-Balakrishnan 2010)

p=(p1,---,Pn) YkpPk=1

Can we provide an explicit expression for py in terms of ¢ and F 7

S = (Cad)vF)



Extension of signature to dependent lifetimes

Relative quality function q:2¢ - [0,1]
q(A) = Pr(T;<T;: i¢A jeA)

= Pr(max T; < min TJ)
i¢A JjeA

(M. & Mathonet 2011)

q(A) = probability that the best |A| components (those having the
longest lifetimes) are exactly A

— q(A) measures the overall quality of the components A when
compared with the components C \ A

Remark: g is independent of ¢ (g depends only on C and F)



Extension of signature to dependent lifetimes

Theorem (M. & Mathonet 2011)

pe = . a(A @A) - Y a(A)é(A)
AcC AcC
|Al=n—k+1 |Al=n—k

— extends Boland's formula

S= Y B(A) - > 6(A)
(nfk+1) AcC (nfk) AcC
|Al=n—k+1 |Al=n—k

Open problem
Find necessary and sufficient conditions under which a set function
on C is the relative quality function of a system S = (C, ¢, F)



Extension of signature to dependent lifetimes

Proposition

If T1,..., T, are exchangeable, then g is symmetric
1
q(A) = —~
(|A|)
1 1
= px = S = ~ > o(A) - — >, o(A)
(n—k+1) AcC (n—k) AcC
|[Al=n—k+1 |Al=n-k



Extension of signature to dependent lifetimes

Theorem (M. & Mathonet & Waldhauser 2011)

The identity p = s holds for every n-component semicoherent system
if and only if q is symmetric




Extension of BP index to dependent lifetimes

Relative quality function of component j
g;:25U - 10,1]

4i(A) = Pr( max T;=T;<minT})

(M. & Mathonet 2013)

qj(A) = probability that the components that are better than
component j are precisely A.



Extension of BP index to dependent lifetimes

We have
>, g(A)=1 (eO)

AcCN{j}

Theorem (M. & Mathonet 2013)

19 = 3 qi(A) ($(AU ) - B(A))

AcC~{j}

In the i.i.d. case:

- 1
= b= ¥ -
T &y ()

(B(AU{)}) - B(A))




Extension of BP index to dependent lifetimes

Proposition

If T1,..., T, are exchangeable, then

qi(A) =

1
n(Tap)

D = b= Y e (S(AU L)) - $(A))

AcC{j} n( |A|)



Extension of BP index to dependent lifetimes

Theorem (M. & Mathonet 2013)

The identity Igp = b holds for every n-component semicoherent
system if and only if

qi(A) = ﬁ




Case of independent lifetimes
We now assume that Tq,..., T, are independent lifetimes
Every T; has a

-apdf f
- acdf. Fj with F;(0) =0

) = ¥ [THOTIRE® T1 Fivde  (A+o)

JeA itA ieAN{j}

where F;(t) =1- F;(t)

— provides an explicit expression for the signature in the
independent case



Case of independent lifetimes

Example: independent exponential lifetimes

Fi(t)=1-eNt X >0

aA) = ¥ (ulEl A
AAuB

BcC A Au
where )\A = ZjeA )‘J




Case of independent lifetimes

The ratio

AGy .
x = CI(C\{J})

is the probability that j is the worst component

More generally,

Mo S ae i)

Ac JeA

is the probability that the worst component is in A



Case of independent lifetimes

o) = [T T A [TF(e)de

itAu{j} icA

— provides an explicit expression for Barlow—Proschan index in the
independent case

For independent exponential lifetimes

As;
G(A) = ¥ (pe
BcC(Au{j}) AuBU{j}




Interpretation in game theory

Is there an interpretation in game theory of the formula

Pr(Ts=T)) = 3 qi(A) (AU} - p(A)) 7

AcC~{j}

Yes : based on the derivation of the Shapley power index from a
bargaining procedure (Shapley 1953)



Interpretation in game theory

The players agree to play the game v in a grand coalition
@ The coalition adds one player at a time until everyone has
been admitted
@ The order in which the players are to join is determined by
chance, with all arrangements equally probable
@ Each player, on his admission, is promised the amount
corresponding to his marginal contribution

Let S< N~ {j} be the set of players preceding j
— payment to j : v(SuU{j})-v(S)

— probability of that contingency is —r

”(|5\)

— total expectation of player j

Yan(vij) = >~y (v(Su{ih) - v(S))

seiegy 1))



Interpretation in game theory
General case : T; = time at which player j is admitted in the coalition

— probability that S is the set of players preceding j
(S) = P T;<T;= min T;
Pi(S) = Pr(maxTi< Ty = min T)

— total expectation of player j

> pi(S) (v(Su{s})-v(9))

ScN~{j}

If the game is monotone and simple

Pr(Tn=T;) = > pi(S) (v(Su{i})-v(9))

ScN {j}

Ty = time at which the forming coalition turns from losing to winning




Interpretation in game theory
Let Sc N, |S| = k, be the set of the first k players (k=0,...,n—-1)

— probability that this coalition forms is

= Pr T; T;

() = Pr(mgxTi< min.T)

—> average marginal contribution of an additional arbitrary player
>, pPSV(S) = X p(S)v(S)

ScN ScN
|S|=k+1 |S|=k

If the game is monotone and simple

Pr(Th = Tisn) = ). P(S)V(S) = > p(S)v(S)
ScN SchN
S|=k+1 |S|=k




Subsignature

Let Mc C

Subsignature (M. 2014)

Explicit formula

P = S gi(A) (AU () - ¢(A))
AcC  jeM~A
M\ A|=k

+ interpretation in game theory



Decomposition of reliability

Recall that

Rs(t) = PI’(T5>t) and Rk;n(t) = Pr(Tk;,,>t)

Proposition (Samaniego 1985)

If F is absolutely continuous with i.i.d. lifetimes, we have

Rs(t) = ZH:SkRk:n(t)
k=1

for every t > 0 and every n-component coherent system




Decomposition of reliability

Theorem (M. & Mathonet & Waldhauser 2011)
For any t > 0, we have

Rs(t) = anskRk:n(t)
k=1

for every n-component coherent system if and only if the state vari-
ables Xi(t),...,X,(t) are exchangeable

v

Remark. This condition is weaker than exchangeability of the
component lifetimes Ty,..., T,



Part V : Additional results in the i.i.d. case



Manual computation of the Barlow-Proschan index

b = (@) = Y —re (S(AU L)) - $(A))

AcC{j} n( S| )

#(x) = multilinear extension of ¢(x)

Theorem (Owen 1972)

0

bj = Pgu(,J) = fol(a_xj a)(X,...,X)dX




Manual computation of the Barlow-Proschan index

Example. Home video system

O(x1,...,%) = (x1Ix2) x3 x4 (x5 1 x6)

¢(X1, . ,X6) = X1X3X4X5 + X2X3X4X5 + X1 X3X4Xe + X2X3X4Xe

—X1X2X3X4X5 — X1 X2X3X4Xe — X1 X3X4X5Xe — X2X3X4X5X6
+X1 X2 X3X4X5Xp

Example: by = 7

9 — _ 5.3 4, .5
(8_X2 d))(x,...,x) = 2x° —=3x" +x

1
_ 3 a4, U5 _
by = /0- (2x 3x" + x )dx 30



Manual computation of the signature

How can we efficiently compute the system signature

1 1
Sk = - ¢(A) - — d(A ?
‘ (n—k+1) AZE:C ( ) (n—k) A;C ( )

|Al=n—k+1 |Al=n—k



Manual computation of the signature

With any n-degree polynomial p: R — R we associate the reflected
polynomial R"p: R — R defined by

(R"p)(x) = x" p(L)

p(x) = ap+ayx+--+apx" = (R"p)(x) = ap+anp-1x+--+agx"

Setting p(x) = d% B(x,...,x), we have

NG 3 (Z)skxk

k=1




Manual computation of the signature

Example. Home video system

O(X1,...,X6) = X1X3XaX5 + X2X3X4X5 + X1 X3Xa X6 + X2X3Xa X6
—X1X0X3X4X5 — X1 X2X3X4X6 — X1 X3X4X5X6 — X0 X3X4X5X6

+X1X2X3X4X5X6

H(x,...,x) = 4x*—4x5 +xO
p(x) = %E(X,...,X) = 16x3 - 20x* + 6x°
(R°p)(x) = 6—20x + 16x°

3

2X+6X2+?X

(6)sx+(6)sx2+---+(6)sx6
1) \2) 2 6)™°

fox(R5p)(t+ 1) dt



Barlow-Proschan importance index and system signature

Home video system

5 6 4
s = (E’E’E’O’O’O)

4 6 5
- (o,o,o, o 1—5)

@]
I



Computation of the signature from the minimal path sets

The multilinear extension ¢(x) can be obtained from the minimal
path sets P1,..., P, simply by

(i) expressing the structure function, e.g., as a coproduct over
the minimal path sets

6(x) = 1 ]

j=1 ieP;
(ii) expanding the coproduct
(i) simplifying the resulting algebraic expression (using sz =x.)

J
until it becomes multilinear.

Then we compute p(x) = d% &(x,...,x) and

JAGEEEEE > (Z)skxk

k=1



Open problems

One can show that there is a linear bijection between the signature
s and the polynomial function ¢(x,...,x)

@ Find necessary and sufficient conditions under which an
n-tuple a = (ai,...,an) is the signature of a semicoherent
system

@ Find necessary and sufficient conditions under which an
n-degree polynomial function P(x) is the function ¢(x,...,x)
of a semicoherent system

@ Enumerate all the possible semicoherent systems having a
prescribed ¢(x, ..., x)



Thank you for your attention!



