
Aggregation Functions
for Multicriteria Decision Aid

Jean-Luc Marichal

University of Luxembourg



The aggregation problem

Combining several numerical values into a single one

Example (voting theory)
Several individuals form quantifiable judgements about the
measure of an object.

x1, . . . , xn −→ F (x1, . . . , xn) = x

where F = arithmetic mean
geometric mean
median
...



The aggregation problem

Decision making (voters → criteria)

x1, . . . , xn = satisfaction degrees (for instance)

math. physics literature global

student a 18 16 10 ?
student b 10 12 18 ?
student c 14 15 15 ?



Aggregation in multicriteria decision making

Alternatives A = {a, b, c , . . .}
Criteria N = {1, 2, . . . , n}
Profile a ∈ A −→ xa = (xa

1 , . . . , xa
n) ∈ Rn

↙ ↘
commensurate partial scores

Aggregation function F : Rn → R
F : En → R (E ⊆ R)

Alternative crit. 1 · · · crit. n global score

a xa
1 · · · xa

n F (xa
1 , . . . , xa

n)
b xb

1 · · · xb
n F (xb

1 , . . . , xb
n )

...
...

...
...



Aggregation in multicriteria decision making

Non-commensurate scales :

price consumption comfort global
(to minimize) (to minimize) (to maximize)

car a $10, 000 0.15 `pm good ?
car b $20, 000 0.17 `pm excellent ?
car c $30, 000 0.13 `pm very good ?
car d $20, 000 0.16 `pm good ?

Scoring approach
For each i ∈ N, one can define a net score :

Si (a) =
∣∣{b ∈ A | b 4i a}

∣∣− ∣∣{b ∈ A | b <i a}
∣∣

S i (a) =
Si (a) + (|A| − 1)

2(|A| − 1)
∈ [0, 1]



Aggregation in multicriteria decision making

Non-commensurate scales :

price consumption comfort global
(to minimize) (to minimize) (to maximize)

car a $10, 000 0.15 `pm good ?
car b $20, 000 0.17 `pm excellent ?
car c $30, 000 0.13 `pm very good ?
car d $20, 000 0.16 `pm good ?

↓
price cons. comf. global

car a 1.00 0.66 0.16 ?
car b 0.50 0.00 1.00 ?
car c 0.00 1.00 0.66 ?
car d 0.50 0.33 0.16 ?

(satisfaction degrees)



Aggregation properties

Symmetry. F (x1, . . . , xn) is symmetric

Increasing monotonicity. F (x1, . . . , xn) is nondecreasing in
each variable

Strict increasing monotonicity. F (x1, . . . , xn) is strictly
increasing in each variable

Idempotency. F (x , . . . , x) = x for all x

Internality. min xi 6 F (x1, . . . , xn) 6 max xi

Note : id. + inc. ⇒ int. ⇒ id.



Aggregation properties

Associativity.

F (x1, x2, x3) = F (F (x1, x2), x3)

= F (x1,F (x2, x3))

Decomposability.

F (x1, x2, x3) = F (F (x1, x2),F (x1, x2), x3)

= F (x1,F (x2, x3),F (x2, x3))

= F (F (x1, x3), x2,F (x1, x3))

Bisymmetry.

F (F (x1, x2),F (x3, x4)) = F (F (x1, x3),F (x2, x4))



Quasi-arithmetic means

Theorem 1 (Kolmogorov-Nagumo, 1930)
The functions Fn : E n → R (n > 1) are

symmetric

continuous

strictly increasing

idempotent

decomposable

if and only if there exists a continuous and strictly monotonic function
f : E → R such that

Fn(x) = f −1
[1

n

n∑
i=1

f (xi )
]

(n > 1)

Proposition 1 (Marichal, 2000)

Symmetry can be removed in the K-N theorem



Quasi-arithmetic means

f (x) Fn(x) name

x 1
n

n∑
i=1

xi arithmetic

log x n

√
n∏

i=1
xi geometric

x−1 1

1
n

n∑
i=1

1
xi

harmonic

xα (α ∈ R0)
(

1
n

n∑
i=1

xα
i

) 1
α

root-power



Quasi-arithmetic means

Theorem 2 (Fodor-Marichal, 1997)
The functions Fn : [a, b]n → R (n > 1) are

symmetric

continuous

increasing

idempotent

decomposable

if and only if there exist α, β ∈ R fulfilling a 6 α 6 β 6 b and a continuous
and strictly monotonic function f : [α, β] → R such that, for any n > 1,

Fn(x) =


Gn(x) if x ∈ [a, α]n

Hn(x) if x ∈ [β, b]n

f −1
[

1
n

∑
i f (median[α, xi , β])

]
otherwise

where Gn and Hn are defined by...

Open problem : remove symmetry !



Quasi-arithmetic means

Theorem 3 (Aczél, 1948)
The function F : E n → R is

symmetric

continuous

strictly increasing

idempotent

bisymmetric

if and only if there exists a continuous and strictly monotonic function
f : E → R such that

F (x) = f −1
[1

n

n∑
i=1

f (xi )
]

When symmetry is removed :
There exist w1, . . . , wn > 0 fulfilling

∑
i wi = 1 such that

F (x) = f −1
[ n∑

i=1

wi f (xi )
]



Quasi-arithmetic means

f (x) Fn(x) name

x
n∑

i=1
wixi arithmetic

log x
n∏

i=1
xwi
i geometric

x−1 1
n∑

i=1
wi

1
xi

harmonic

xα (α ∈ R0)
( n∑

i=1
wix

α
i

) 1
α

root-power



Associative functions

Theorem 4 (Aczél, 1948)
The functions Fn : En → E (n > 1) are

continuous

strictly increasing

associative

if and only if there exists a continuous and strictly monotonic
function f : E → R such that

Fn(x) = f −1
[ n∑

i=1

f (xi )
]

(n > 1)

+ idempotency : ∅

Open problem : replace strict increasing monotonicity with
nondecreasing monotonicity



Associative functions

Theorem 5 (Fung-Fu, 1975)
The functions Fn : En → R (n > 1) are

symmetric

continuous

nondecreasing

idempotent

associative

if and only if there exists α ∈ E such that

Fn(x) = median
[ n∧

i=1

xi ,

n∨
i=1

xi , α
]

= median[x1, . . . , xn, α, . . . , α︸ ︷︷ ︸
n−1

]

where

median[x1, . . . , x2n−1] = x(n) (x(1) 6 · · · 6 x(2n−1))



Associative functions

Without symmetry :

Theorem 6 (Marichal, 2000)
The functions Fn : En → R (n > 1) are

continuous

nondecreasing

idempotent

associative

if and only if there exists α, β ∈ E such that

Fn(x) = (α ∧ x1) ∨
( n∨

i=1

(α ∧ β ∧ xi )
)
∨ (β ∧ xn) ∨

( n∧
i=1

xi

)

Without symmetry and idempotency : Open problem



Interval scales

Example : grades obtained by students
- on a [0, 20] scale : 16, 11, 7, 14
- on a [0, 1] scale : 0.80, 0.55, 0.35, 0.70
- on a [−1, 1] scale : 0.60, 0.10, -0.30, 0.40

Definition. F : Rn → R is stable for the positive linear
transformations if

F (rx1 + s, . . . , rxn + s) = r F (x1, . . . , xn) + s

for all x1, . . . , xn ∈ R and all r > 0, s ∈ R.



Interval scales

Theorem 8 (Aczél-Roberts-Rosenbaum, 1986)
The function F : Rn → R is stable for the positive linear
transformations if and only if

F (x) = S(x) G
(x1 − A(x)

S(x)
, . . . ,

xn − A(x)

S(x)

)
+ A(x)

where A(x) = 1
n

∑
i xi , S(x) =

√∑
i [xi − A(x)]2, and G : Rn → R

is arbitrary.

Interesting unsolved problem :
Describe nondecreasing and stable functions



Interval scales

Theorem 9 (Marichal-Mathonet-Tousset, 1999)
The function F : En → R is

nondecreasing

stable for the positive linear transformations

bisymmetric

if and only if it is of the form

F (x) =
∨
i∈S

xi or
∧
i∈S

xi or
n∑

i=1

wixi

where S ⊆ N, S 6= ∅, w1, . . . ,wn > 0, and
∑

i wi = 1.



Interval scales

Theorem 10 (Marichal-Mathonet-Tousset, 1999)
The functions Fn : En → R (n > 1) are

nondecreasing

stable for the positive linear transformations

decomposable

if and only if they are of the form

Fn(x) =
n∨

i=1

xi or
n∧

i=1

xi or
1

n

n∑
i=1

xi



Interval scales

Theorem 11 (Marichal-Mathonet-Tousset, 1999)
The functions Fn : En → R (n > 1) are

nondecreasing

stable for the positive linear transformations

associative

if and only if they are of the form

Fn(x) =
n∨

i=1

xi or
n∧

i=1

xi or x1 or xn



An illustrative example (Grabisch, 1996)

Evaluation of students w.r.t. three subjects :
mathematics, physics, and literature.

student M P L global

a 0.90 0.80 0.50 ?
b 0.50 0.60 0.90 ?
c 0.70 0.75 0.75 ?

(grades are expressed on a scale from 0 to 1)

Often used : the weighted arithmetic mean

WAMw(x) =
n∑

i=1

wixi

with
∑

i wi = 1 and wi > 0 for all i ∈ N



An illustrative example (Grabisch, 1996)

wM = 0.35
wP = 0.35
wL = 0.30

 ⇒

student global

a 0.74
b 0.65
c 0.73

a � c � b



An illustrative example (Grabisch, 1996)

Suppose we want to favor student c

student M P L global

a 0.90 0.80 0.50 0.74
b 0.50 0.60 0.90 0.65

c 0.70 0.75 0.75 0.73

No weight vector (wM ,wP ,wL) satisfying

wM = wP > wL

is able to provide c � a

Proof.

c � a ⇔ 0.70wM + 0.75wP + 0.75wL > 0.90wM + 0.80wP + 0.50wL

⇔ −0.20wM − 0.05wP + 0.25wL > 0

⇔ −0.25wM + 0.25wL > 0

⇔ wL > wM



An illustrative example (Grabisch, 1996)

What’s wrong ?

WAMw(1, 0, 0) = wM = 0.35

WAMw(0, 1, 0) = wP = 0.35

WAMw(1, 1, 0) = 0.70 !!!

What is the importance of {M,P} ?



The Choquet integral

Definition (Choquet, 1953 ; Sugeno, 1974)
A fuzzy measure on N is a set function v : 2N → [0, 1] such that

i) v(∅) = 0, v(N) = 1
ii) S ⊆ T ⇒ v(S) 6 v(T )

v(S) = weight of S

= degree of importance of S

A fuzzy measure is additive if

v(S ∪ T ) = v(S) + v(T ) if S ∩ T = ∅

→ independent criteria

v(M,P) = v(M) + v(P) (= 0.70)



The Choquet integral

Question : How can we extend the weighted arithmetic mean by
taking into account the interaction among criteria ?

Definition. Let v ∈ FN . The Choquet integral of x ∈ Rn w.r.t. v
is defined by

Cv (x) :=
n∑

i=1

x(i)

[
v
(
(i), . . . , (n)

)
− v

(
(i + 1), . . . , (n)

)]
with the convention that x(1) 6 · · · 6 x(n)

Example : If x3 6 x1 6 x2, we have

Cv (x1, x2, x3) = x3 [v(3, 1, 2)− v(1, 2)]

+ x1 [v(1, 2)− v(2)]

+ x2 v(2)



The Choquet integral

Special case :

v additive ⇒ Cv = WAMw

Proof.

Cv (x) =
n∑

i=1

x(i)

[
v
(
(i), . . . , (n)

)
− v(

(
i + 1), . . . , (n)

)]
=

n∑
i=1

x(i) v
(
(i)

)
=

n∑
i=1

xi v(i)︸︷︷︸
wi



Properties of the Choquet integral

Linearity w.r.t. the fuzzy measures
There exist 2n functions fT : Rn → R (T ⊆ N) such that

Cv (x) =
∑
T⊆N

v(T ) fT

Indeed, one can show that

Cv (x) =
∑
T⊆N

v(T )
∑
K⊇T

(−1)|K |−|T |
∧
i∈K

xi︸ ︷︷ ︸
fT (x)



Properties of the Choquet integral

Stability w.r.t. positive linear transformations
For any x ∈ Rn, and any r > 0, s ∈ R,

Cv (rx1 + s, . . . , rxn + s) = r Cv (x1, . . . , xn) + s

Example : grades obtained by students
- on a [0, 20] scale : 16, 11, 7, 14
- on a [0, 1] scale : 0.80, 0.55, 0.35, 0.70

- on a [−1, 1] scale : 0.60, 0.10, -0.30, 0.40

Remark : The grades may be embedded in [0, 1]



Properties of the Choquet integral

Increasing monotonicity
For any x, x′ ∈ Rn, one has

xi 6 x ′i ∀i ∈ N ⇒ Cv (x) 6 Cv (x′)



Properties of the Choquet integral

Cv is properly weighted by v

Cv (eS) = v(S) (S ⊆ N)

eS = characteristic vector of S in {0, 1}n

Example : e{1,3} = (1, 0, 1, 0, . . .)

Independent criteria Dependent criteria

WAMw(e{i}) = wi Cv (e{i}) = v(i)
WAMw(e{i ,j}) = wi + wj Cv (e{i ,j}) = v(i , j)

Example :
v(M, P) < v(M) + v(P)
‖ ‖ ‖

Cv (1, 1, 0) Cv (1, 0, 0) Cv (0, 1, 0)



Axiomatization of the class of Choquet integrals

Theorem (Marichal, 2000)
The functions Fv : Rn → R (v ∈ FN) are

linear w.r.t. the underlying fuzzy measures v
Fv is of the form

Fv (x) =
∑
T⊆N

v(T ) fT (v ∈ FN)

where fT ’s are independent of v

stable for the positive linear transformations

Fv (rx1 + s, . . . , rxn + s) = r Fv (x1, . . . , xn) + s

for all x ∈ Rn, and all r > 0, s ∈ R, v ∈ FN

Nondecreasing

Properly weighted by v

Fv (eS) = v(S) (S ⊆ N, v ∈ FN)

if and only if Fv = Cv for all v ∈ FN



Back to the example

Assumptions :
- M and P are more important than L
- M and P are somewhat substitutive

Non-additive model : Cv

v(M) = 0.35
v(P) = 0.35
v(L) = 0.30

v(M,P) = 0.60 (redundancy)
v(M, L) = 0.80 (complementarity)
v(P, L) = 0.80 (complementarity)

v(∅) = 0
v(M,P, L) = 1



Back to the example

student M P L WAM Choquet

a 0.90 0.80 0.50 0.74 0.71
b 0.50 0.60 0.90 0.65 0.67
c 0.70 0.75 0.75 0.73 0.74

Now : c � a � b



An alternative example (Marichal, 2000)

student M P L global

a 0.90 0.70 0.80 ?
b 0.90 0.80 0.70 ?
c 0.60 0.70 0.80 ?
d 0.60 0.80 0.70 ?

Behavior of the decision maker :
When a student is good at M (0.90), it is preferable that (s)he is
better at L than P, so

a � b

When a student is not good at M (0.60), it is preferable that (s)he
is better at P than L, so

d � c



An alternative example (Marichal, 2000)

Additive model : WAMw

a � b ⇔ wL > wP

d � c ⇔ wL < wP

}
No solution !

Non additive model : Cv

student M P L global

a 0.90 0.70 0.80 0.81
b 0.90 0.80 0.70 0.79
c 0.60 0.70 0.80 0.71
d 0.60 0.80 0.70 0.72



Special cases of Choquet integrals

Weighted arithmetic mean

WAMw(x) =
n∑

i=1

wixi ,

n∑
i=1

wi = 1 , wi > 0

Proposition
Let v ∈ FN . The following assertions are equivalent :

i) v is additive
ii) ∃ a weight vector w such that Cv = WAMw

iii) Cv is additive : Cv (x + x′) = Cv (x) + Cv (x′)



Special cases of Choquet integrals

Ordered weighted averaging (Yager, 1988)

OWAw(x) =
n∑

i=1

wix(i) ,

n∑
i=1

wi = 1 , wi > 0

with the convention that x(1) 6 · · · 6 x(n).

Proposition (Grabisch-Marichal, 1995)
Let v ∈ FN . The following assertions are equivalent :

i) v is cardinality-based
ii) ∃ a weight vector w such that Cv = OWAw

iii) Cv is a symmetric function.



Ordinal scales

Example : Evaluation of a scientific journal paper on importance

1=Poor, 2=Below average, 3=Average,
4=Very Good, 5=Excellent

Values : 1, 2, 3, 4, 5
or : 2, 7, 20, 100, 246
or : −46,−3, 0, 17, 98

Numbers assigned to an ordinal scale are defined up an increasing
bijection φ : R → R.



Means on ordered sets

Definition. A function F : En → R is comparison meaningful if,
for any increasing bijection φ : E → E and any x, x′ ∈ En,

F (x1, . . . , xn) 6 F (x ′1, . . . , x
′
n)

m
F (φ(x1), . . . , φ(xn)) 6 F (φ(x ′1), . . . , φ(x ′n))

Example. The arithmetic mean is not comparison meaningful
Consider

4 =
3 + 5

2
<

1 + 8

2
= 4.5

and any bijection φ such that φ(1) = 1, φ(3) = 4, φ(5) = 7,
φ(8) = 8. We have

5.5 =
4 + 7

2
≮

1 + 8

2
= 4.5



Means on ordered sets

Theorem 12 (Ovchinnikov, 1996)
The function F : En → R is

symmetric

continuous

internal

comparison meaningful

if and only if there exists k ∈ N such that

F (x) = x(k)

Note : x(k) = median[x] if n = 2k − 1



Lattice polynomials

Definition. A lattice polynomial function in Rn is defined from any
well-formed expression constructed from the variables x1, . . . , xn

and the symbols ∧,∨.

Example : (x2 ∨ (x1 ∧ x3)) ∧ (x4 ∨ x2)

It can be proved that a lattice polynomial can always be put in the
form

Lc(x) =
∨

T⊆N
c(T )=1

∧
i∈T

xi

where c : 2N → {0, 1} is a nonconstant set function such that
c(∅) = 0.

In particular

x(k) =
∨

T⊆N
|T |=n−k+1

∧
i∈T

xi



Axiomatization of lattice polynomials in Rn

Theorem 13 (Marichal-Mathonet, 2001)
The function F : En → R is

continuous

idempotent

comparison meaningful

if and only if there exists a nonconstant set function
c : 2N → {0, 1}, with c(∅) = 0, such that F = Lc

Note : If E is open, continuity can be replaced with nondecreasing
monotonicity

Complete description of comparison meaningful functions :
see Marichal-Mesiar-Rückschlossová, 2005



Connection with Choquet integral

Proposition 2 (Murofushi-Sugeno, 1993)
If v ∈ FN is {0, 1}-valued then Cv = Lv

Conversely, we have Lc = Cc .

Proposition 3 (Radojević, 1998)
A function F : En → R is a Choquet integral if and only if it is a
weighted arithmetic mean of lattice polynomials

Cv =

q∑
i=1

wi Lci

This decomposition is not unique !

0.2x1 + 0.6x2 + 0.2(x1 ∧ x2) = 0.4x2 + 0.4(x1 ∧ x2) + 0.2(x1 ∨ x2)



Connection with Choquet integral

Proposition 4 (Marichal, 2001)
Any Choquet integral can be expressed as a lattice polynomial of
weighted arithmetic means

Cv (x) = Lc(g1(x), . . . , gn(x))

Example (continued)

0.2x1 + 0.6x2 + 0.2(x1 ∧ x2) = (0.4x1 + 0.6x2) ∧ (0.2x1 + 0.8x2)

The converse is not true :
(

x1+x2
2

)
∧ x3 is not a Choquet integral

Unsolved problem : Give conditions under which a lattice
polynomial of weighted arithmetic means is a Choquet integral


