Aggregation Functions for Multicriteria Decision Aid

Jean-Luc Marichal
University of Luxembourg

The aggregation problem

Combining several numerical values into a single one
Example (voting theory)
Several individuals form quantifiable judgements about the measure of an object.

$$
\frac{\operatorname{area}(\text { box } 2)}{\operatorname{area}(\text { box } 1)}=?
$$

box 1 box 2

$$
x_{1}, \ldots, x_{n} \quad \longrightarrow \quad F\left(x_{1}, \ldots, x_{n}\right)=x
$$

where $F=$ arithmetic mean geometric mean median

The aggregation problem

Decision making (voters \rightarrow criteria)

$$
x_{1}, \ldots, x_{n}=\text { satisfaction degrees (for instance) }
$$

	math.	physics	literature	global
student a	18	16	10	$?$
student b	10	12	18	$?$
student c	14	15	15	$?$

Aggregation in multicriteria decision making

- Alternatives $A=\{a, b, c, \ldots\}$
- Criteria $N=\{1,2, \ldots, n\}$
- Profile $a \in A \longrightarrow \mathbf{x}^{a}=\left(x_{1}^{a}, \ldots, x_{n}^{a}\right) \in \mathbb{R}^{n}$
commensurate partial scores
- Aggregation function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
F: E^{n} \rightarrow \mathbb{R} \quad(E \subseteq \mathbb{R})
$$

Alternative	crit. 1	\cdots	crit. n	global score
a	x_{1}^{a}	\cdots	x_{n}^{a}	$F\left(x_{1}^{a}, \ldots, x_{n}^{a}\right)$
b	x_{1}^{b}	\cdots	x_{n}^{b}	$F\left(x_{1}^{b}, \ldots, x_{n}^{b}\right)$
\vdots	\vdots		\vdots	\vdots

Aggregation in multicriteria decision making

Non-commensurate scales :

	price (to minimize)	consumption (to minimize)	comfort (to maximize)	global
car a	$\$ 10,000$	$0.15 \ell p m$	good	$?$
car b	$\$ 20,000$	$0.17 \ell p m$	excellent	$?$
car c	$\$ 30,000$	$0.13 \ell p m$	very good	$?$
car d	$\$ 20,000$	$0.16 \ell p m$	good	$?$

Scoring approach

For each $i \in N$, one can define a net score :

$$
\begin{gathered}
S_{i}(a)=\left|\left\{b \in A \mid b \preccurlyeq_{i} a\right\}\right|-\left|\left\{b \in A \mid b \succcurlyeq_{i} a\right\}\right| \\
\bar{S}_{i}(a)=\frac{S_{i}(a)+(|A|-1)}{2(|A|-1)} \in[0,1]
\end{gathered}
$$

Aggregation in multicriteria decision making

Non-commensurate scales :

	price (to minimize)	consumption (to minimize)	comfort (to maximize)	global
car a	$\$ 10,000$	$0.15 \ell p m$	good	$?$
car b	$\$ 20,000$	$0.17 \ell p m$	excellent	$?$
car c	$\$ 30,000$	$0.13 \ell p m$	very good	$?$
car d	$\$ 20,000$	$0.16 \ell p m$	good	$?$

\downarrow				
	price	cons.	comf.	global
car a	1.00	0.66	0.16	$?$
car b	0.50	0.00	1.00	$?$
car c	0.00	1.00	0.66	$?$
car d	0.50	0.33	0.16	$?$

(satisfaction degrees)

Aggregation properties

- Symmetry. $F\left(x_{1}, \ldots, x_{n}\right)$ is symmetric
- Increasing monotonicity. $F\left(x_{1}, \ldots, x_{n}\right)$ is nondecreasing in each variable
- Strict increasing monotonicity. $F\left(x_{1}, \ldots, x_{n}\right)$ is strictly increasing in each variable
- Idempotency. $F(x, \ldots, x)=x$ for all x
- Internality. $\min x_{i} \leqslant F\left(x_{1}, \ldots, x_{n}\right) \leqslant \max x_{i}$ Note : id. + inc. \Rightarrow int. \Rightarrow id.

Aggregation properties

- Associativity.

$$
\begin{aligned}
F\left(x_{1}, x_{2}, x_{3}\right) & =F\left(F\left(x_{1}, x_{2}\right), x_{3}\right) \\
& =F\left(x_{1}, F\left(x_{2}, x_{3}\right)\right)
\end{aligned}
$$

- Decomposability.

$$
\begin{aligned}
F\left(x_{1}, x_{2}, x_{3}\right) & =F\left(F\left(x_{1}, x_{2}\right), F\left(x_{1}, x_{2}\right), x_{3}\right) \\
& =F\left(x_{1}, F\left(x_{2}, x_{3}\right), F\left(x_{2}, x_{3}\right)\right) \\
& =F\left(F\left(x_{1}, x_{3}\right), x_{2}, F\left(x_{1}, x_{3}\right)\right)
\end{aligned}
$$

- Bisymmetry.

$$
F\left(F\left(x_{1}, x_{2}\right), F\left(x_{3}, x_{4}\right)\right)=F\left(F\left(x_{1}, x_{3}\right), F\left(x_{2}, x_{4}\right)\right)
$$

Quasi-arithmetic means

Theorem 1 (Kolmogorov-Nagumo, 1930)
The functions $F_{n}: E^{n} \rightarrow \mathbb{R}(n \geqslant 1)$ are

- symmetric
- continuous
- strictly increasing
- idempotent
- decomposable
if and only if there exists a continuous and strictly monotonic function $f: E \rightarrow \mathbb{R}$ such that

$$
F_{n}(\mathbf{x})=f^{-1}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right] \quad(n \geqslant 1)
$$

Proposition 1 (Marichal, 2000)

Symmetry can be removed in the K-N theorem

Quasi-arithmetic means

$f(x)$	$F_{n}(\mathbf{x})$	name
x	$\frac{1}{n} \sum_{i=1}^{n} x_{i}$	arithmetic
$\log x$	$\sqrt[n]{\prod_{i=1}^{n} x_{i}}$	geometric
x^{-1}	$\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}}$	harmonic
$x^{\alpha}\left(\alpha \in \mathbb{R}_{0}\right)$	$\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\alpha}\right)^{\frac{1}{\alpha}}$	root-power

Quasi-arithmetic means

Theorem 2 (Fodor-Marichal, 1997)
The functions $F_{n}:[a, b]^{n} \rightarrow \mathbb{R}(n \geqslant 1)$ are

- symmetric
- continuous
- increasing
- idempotent
- decomposable
if and only if there exist $\alpha, \beta \in \mathbb{R}$ fulfilling $a \leqslant \alpha \leqslant \beta \leqslant b$ and a continuous and strictly monotonic function $f:[\alpha, \beta] \rightarrow \mathbb{R}$ such that, for any $n \geqslant 1$,

$$
F_{n}(\mathbf{x})= \begin{cases}G_{n}(\mathbf{x}) & \text { if } \mathbf{x} \in[a, \alpha]^{n} \\ H_{n}(\mathbf{x}) & \text { if } \mathbf{x} \in[\beta, b]^{n} \\ f^{-1}\left[\frac{1}{n} \sum_{i} f\left(\operatorname{median}\left[\alpha, x_{i}, \beta\right]\right)\right] & \text { otherwise }\end{cases}
$$

where G_{n} and H_{n} are defined by...
Open problem : remove symmetry!

Quasi-arithmetic means

Theorem 3 (Aczél, 1948)
The function $F: E^{n} \rightarrow \mathbb{R}$ is

- symmetric
- continuous
- strictly increasing
- idempotent
- bisymmetric
if and only if there exists a continuous and strictly monotonic function
$f: E \rightarrow \mathbb{R}$ such that

$$
F(\mathbf{x})=f^{-1}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right]
$$

When symmetry is removed :
There exist $w_{1}, \ldots, w_{n}>0$ fulfilling $\sum_{i} w_{i}=1$ such that

$$
F(\mathbf{x})=f^{-1}\left[\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)\right]
$$

Quasi-arithmetic means

$f(x)$	$F_{n}(\mathbf{x})$	name
x	$\sum_{i=1}^{n} w_{i} x_{i}$	arithmetic
$\log x$	$\prod_{i=1}^{n} x_{i}^{w_{i}}$	geometric
x^{-1}	$\frac{1}{\sum_{i=1}^{n} w_{i} \frac{1}{x_{i}}}$	harmonic
$x^{\alpha}\left(\alpha \in \mathbb{R}_{0}\right)$	$\left(\sum_{i=1}^{n} w_{i} x_{i}^{\alpha}\right)^{\frac{1}{\alpha}}$	root-power

Associative functions

Theorem 4 (Aczél, 1948)
The functions $F_{n}: E^{n} \rightarrow E(n \geqslant 1)$ are

- continuous
- strictly increasing
- associative
if and only if there exists a continuous and strictly monotonic function $f: E \rightarrow \mathbb{R}$ such that

$$
F_{n}(\mathbf{x})=f^{-1}\left[\sum_{i=1}^{n} f\left(x_{i}\right)\right] \quad(n \geqslant 1)
$$

+ idempotency : \varnothing
Open problem : replace strict increasing monotonicity with nondecreasing monotonicity

Associative functions

Theorem 5 (Fung-Fu, 1975)
The functions $F_{n}: E^{n} \rightarrow \mathbb{R}(n \geqslant 1)$ are

- symmetric
- continuous
- nondecreasing
- idempotent
- associative
if and only if there exists $\alpha \in E$ such that

$$
F_{n}(\mathbf{x})=\operatorname{median}\left[\bigwedge_{i=1}^{n} x_{i}, \bigvee_{i=1}^{n} x_{i}, \alpha\right]=\operatorname{median}[x_{1}, \ldots, x_{n}, \underbrace{\alpha, \ldots, \alpha}_{n-1}]
$$

where

$$
\operatorname{median}\left[x_{1}, \ldots, x_{2 n-1}\right]=x_{(n)} \quad\left(x_{(1)} \leqslant \cdots \leqslant x_{(2 n-1)}\right)
$$

Associative functions

Without symmetry :

Theorem 6 (Marichal, 2000)
The functions $F_{n}: E^{n} \rightarrow \mathbb{R}(n \geqslant 1)$ are

- continuous
- nondecreasing
- idempotent
- associative
if and only if there exists $\alpha, \beta \in E$ such that

$$
F_{n}(\mathbf{x})=\left(\alpha \wedge x_{1}\right) \vee\left(\bigvee_{i=1}^{n}\left(\alpha \wedge \beta \wedge x_{i}\right)\right) \vee\left(\beta \wedge x_{n}\right) \vee\left(\bigwedge_{i=1}^{n} x_{i}\right)
$$

Without symmetry and idempotency : Open problem

Interval scales

Example : grades obtained by students

- on a $[0,20]$ scale : $16,11,7,14$
- on a $[0,1]$ scale : $0.80,0.55,0.35,0.70$
- on a $[-1,1]$ scale : $0.60,0.10,-0.30,0.40$

Definition. $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is stable for the positive linear transformations if

$$
F\left(r x_{1}+s, \ldots, r x_{n}+s\right)=r F\left(x_{1}, \ldots, x_{n}\right)+s
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and all $r>0, s \in \mathbb{R}$.

Interval scales

Theorem 8 (Aczél-Roberts-Rosenbaum, 1986)

The function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is stable for the positive linear transformations if and only if

$$
F(\mathbf{x})=S(\mathbf{x}) G\left(\frac{x_{1}-A(\mathbf{x})}{S(\mathbf{x})}, \ldots, \frac{x_{n}-A(\mathbf{x})}{S(\mathbf{x})}\right)+A(\mathbf{x})
$$

where $A(\mathbf{x})=\frac{1}{n} \sum_{i} x_{i}, S(\mathbf{x})=\sqrt{\sum_{i}\left[x_{i}-A(\mathbf{x})\right]^{2}}$, and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is arbitrary.

Interesting unsolved problem :
Describe nondecreasing and stable functions

Interval scales

Theorem 9 (Marichal-Mathonet-Tousset, 1999)
The function $F: E^{n} \rightarrow \mathbb{R}$ is

- nondecreasing
- stable for the positive linear transformations
- bisymmetric
if and only if it is of the form

$$
F(\mathbf{x})=\bigvee_{i \in S} x_{i} \quad \text { or } \bigwedge_{i \in S} x_{i} \quad \text { or } \quad \sum_{i=1}^{n} w_{i} x_{i}
$$

where $S \subseteq N, S \neq \varnothing, w_{1}, \ldots, w_{n}>0$, and $\sum_{i} w_{i}=1$.

Interval scales

Theorem 10 (Marichal-Mathonet-Tousset, 1999)
The functions $F_{n}: E^{n} \rightarrow \mathbb{R}(n \geqslant 1)$ are

- nondecreasing
- stable for the positive linear transformations
- decomposable
if and only if they are of the form

$$
F_{n}(\mathbf{x})=\bigvee_{i=1}^{n} x_{i} \quad \text { or } \quad \bigwedge_{i=1}^{n} x_{i} \quad \text { or } \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Interval scales

Theorem 11 (Marichal-Mathonet-Tousset, 1999)
The functions $F_{n}: E^{n} \rightarrow \mathbb{R}(n \geqslant 1)$ are

- nondecreasing
- stable for the positive linear transformations
- associative
if and only if they are of the form

$$
F_{n}(\mathbf{x})=\bigvee_{i=1}^{n} x_{i} \text { or } \bigwedge_{i=1}^{n} x_{i} \text { or } x_{1} \text { or } x_{n}
$$

An illustrative example (Grabisch, 1996)

Evaluation of students w.r.t. three subjects : mathematics, physics, and literature.

student	M	P	L	global
a	0.90	0.80	0.50	$?$
b	0.50	0.60	0.90	$?$
c	0.70	0.75	0.75	$?$

(grades are expressed on a scale from 0 to 1)

Often used : the weighted arithmetic mean

$$
\mathrm{WAM}_{\mathrm{w}}(\mathbf{x})=\sum_{i=1}^{n} w_{i} x_{i}
$$

with $\sum_{i} w_{i}=1$ and $w_{i} \geqslant 0$ for all $i \in N$

An illustrative example (Grabisch, 1996)

$$
\begin{gathered}
\left.\begin{array}{c}
w_{M}=0.35 \\
w_{P}=0.35 \\
w_{L}=0.30
\end{array}\right\} \quad \Rightarrow \quad \begin{array}{|c|c|}
\hline \text { student } & \text { global } \\
\hline a & 0.74 \\
b & 0.65 \\
c & 0.73 \\
\hline a \succ c \succ b \\
\end{array} \\
\end{gathered}
$$

An illustrative example (Grabisch, 1996)

Suppose we want to favor student c

student	M	P	L	global
a	0.90	0.80	0.50	0.74
b	0.50	0.60	0.90	0.65
c	0.70	0.75	0.75	0.73

No weight vector $\left(w_{M}, w_{P}, w_{L}\right)$ satisfying

$$
w_{M}=w_{P}>w_{L}
$$

is able to provide $c \succ a$
Proof.

$$
\begin{aligned}
c \succ a & \Leftrightarrow 0.70 w_{M}+0.75 w_{P}+0.75 w_{L}>0.90 w_{M}+0.80 w_{P}+0.50 w_{L} \\
& \Leftrightarrow-0.20 w_{M}-0.05 w_{P}+0.25 w_{L}>0 \\
& \Leftrightarrow-0.25 w_{M}+0.25 w_{L}>0 \\
& \Leftrightarrow w_{L}>w_{M}
\end{aligned}
$$

An illustrative example (Grabisch, 1996)

What's wrong ?

$$
\begin{aligned}
W A M_{w}(1,0,0) & =w_{M}=0.35 \\
W A M_{w}(0,1,0) & =w_{P}=0.35 \\
W A M_{w}(1,1,0) & =0.70!!!
\end{aligned}
$$

What is the importance of $\{M, P\}$?

The Choquet integral

Definition (Choquet, 1953 ; Sugeno, 1974)
A fuzzy measure on N is a set function $v: 2^{N} \rightarrow[0,1]$ such that
i) $v(\varnothing)=0, v(N)=1$
ii) $S \subseteq T \Rightarrow v(S) \leqslant v(T)$

$$
\begin{aligned}
v(S) & =\text { weight of } S \\
& =\text { degree of importance of } S
\end{aligned}
$$

A fuzzy measure is additive if

$$
v(S \cup T)=v(S)+v(T) \quad \text { if } S \cap T=\varnothing
$$

\rightarrow independent criteria

$$
v(M, P)=v(M)+v(P) \quad(=0.70)
$$

The Choquet integral

Question : How can we extend the weighted arithmetic mean by taking into account the interaction among criteria?

Definition. Let $v \in \mathcal{F}_{N}$. The Choquet integral of $\mathbf{x} \in \mathbb{R}^{n}$ w.r.t. v is defined by

$$
\mathcal{C}_{v}(\mathbf{x}):=\sum_{i=1}^{n} x_{(i)}[v((i), \ldots,(n))-v((i+1), \ldots,(n))]
$$

with the convention that $x_{(1)} \leqslant \cdots \leqslant x_{(n)}$
Example: If $x_{3} \leqslant x_{1} \leqslant x_{2}$, we have

$$
\begin{aligned}
\mathcal{C}_{v}\left(x_{1}, x_{2}, x_{3}\right)= & x_{3}[v(3,1,2)-v(1,2)] \\
+ & x_{1}[v(1,2)-v(2)] \\
+ & x_{2} v(2)
\end{aligned}
$$

The Choquet integral

Special case :

$$
v \text { additive } \Rightarrow \mathcal{C}_{v}=W^{\prime} \mathrm{M}_{\mathrm{w}}
$$

Proof.

$$
\begin{aligned}
\mathcal{C}_{v}(\mathbf{x}) & =\sum_{i=1}^{n} x_{(i)}[v((i), \ldots,(n))-v((i+1), \ldots,(n))] \\
& =\sum_{i=1}^{n} x_{(i)} v((i)) \\
& =\sum_{i=1}^{n} x_{i} \underbrace{v(i)}_{w_{i}}
\end{aligned}
$$

Properties of the Choquet integral

- Linearity w.r.t. the fuzzy measures

There exist 2^{n} functions $f_{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}(T \subseteq N)$ such that

$$
\mathcal{C}_{V}(\mathbf{x})=\sum_{T \subseteq N} v(T) f_{T}
$$

Indeed, one can show that

$$
\mathcal{C}_{v}(\mathbf{x})=\sum_{T \subseteq N} v(T) \underbrace{\sum_{K \supseteq T}(-1)^{|K|-|T|} \bigwedge_{i \in K} x_{i}}_{f_{T}(\mathbf{x})}
$$

Properties of the Choquet integral

- Stability w.r.t. positive linear transformations For any $\mathbf{x} \in \mathbb{R}^{n}$, and any $r>0, s \in \mathbb{R}$,

$$
\mathcal{C}_{v}\left(r x_{1}+s, \ldots, r x_{n}+s\right)=r \mathcal{C}_{v}\left(x_{1}, \ldots, x_{n}\right)+s
$$

Example : grades obtained by students

- on a $[0,20]$ scale : $16,11,7,14$
- on a $[0,1]$ scale : $0.80,0.55,0.35,0.70$
- on a $[-1,1]$ scale : $0.60,0.10,-0.30,0.40$

Remark : The grades may be embedded in $[0,1]$

Properties of the Choquet integral

- Increasing monotonicity

For any $\mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{n}$, one has

$$
x_{i} \leqslant x_{i}^{\prime} \forall i \in N \quad \Rightarrow \quad \mathcal{C}_{v}(\mathbf{x}) \leqslant \mathcal{C}_{v}\left(\mathbf{x}^{\prime}\right)
$$

Properties of the Choquet integral

- \mathcal{C}_{V} is properly weighted by v

$$
\begin{gathered}
\mathcal{C}_{v}\left(e_{S}\right)=v(S) \quad(S \subseteq N) \\
e_{S}=\text { characteristic vector of } S \text { in }\{0,1\}^{n} \\
\text { Example : } e_{\{1,3\}}=(1,0,1,0, \ldots)
\end{gathered}
$$

Independent criteria

$$
\begin{aligned}
& \operatorname{WAM}_{\mathbf{w}}\left(e_{\{i\}}\right)=w_{i} \\
& \operatorname{WAM}_{\mathbf{w}}\left(e_{\{i, j\}}\right)=w_{i}+w_{j}
\end{aligned}
$$

Dependent criteria
$\mathcal{C}_{v}\left(e_{\{i\}}\right)=v(i)$
$\mathcal{C}_{v}\left(e_{\{i, j\}}\right)=v(i, j)$

Example :

Axiomatization of the class of Choquet integrals

Theorem (Marichal, 2000)
The functions $F_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}\left(v \in \mathcal{F}_{N}\right)$ are

- linear w.r.t. the underlying fuzzy measures v F_{v} is of the form

$$
F_{v}(\mathbf{x})=\sum_{T \subseteq N} v(T) f_{T} \quad\left(v \in \mathcal{F}_{N}\right)
$$

where f_{T} 's are independent of v

- stable for the positive linear transformations

$$
F_{v}\left(r x_{1}+s, \ldots, r x_{n}+s\right)=r F_{v}\left(x_{1}, \ldots, x_{n}\right)+s
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$, and all $r>0, s \in \mathbb{R}, v \in \mathcal{F}_{N}$

- Nondecreasing
- Properly weighted by v

$$
F_{v}\left(e_{S}\right)=v(S) \quad\left(S \subseteq N, v \in \mathcal{F}_{N}\right)
$$

if and only if $F_{v}=\mathcal{C}_{v}$ for all $v \in \mathcal{F}_{N}$

Back to the example

Assumptions :

- M and P are more important than L
- M and P are somewhat substitutive

Non-additive model : \mathcal{C}_{V}

$$
\begin{array}{ll}
v(M)=0.35 & \\
v(P)=0.35 & \\
v(L)=0.30 & \\
& \\
v(M, P)=0.60 & \text { (redundancy) } \\
v(M, L)=0.80 & \text { (complementarity) } \\
v(P, L)=0.80 & \text { (complementarity) } \\
v(\varnothing)=0 & \\
v(M, P, L)=1 &
\end{array}
$$

Back to the example

student	M	P	L	WAM	Choquet
a	0.90	0.80	0.50	0.74	0.71
b	0.50	0.60	0.90	0.65	0.67
c	0.70	0.75	0.75	0.73	0.74

Now : $c \succ a \succ b$

An alternative example (Marichal, 2000)

student	M	P	L	global
a	0.90	0.70	0.80	$?$
b	0.90	0.80	0.70	$?$
c	0.60	0.70	0.80	$?$
d	0.60	0.80	0.70	$?$

Behavior of the decision maker :
When a student is good at M (0.90), it is preferable that (s)he is better at L than P, so

$$
a \succ b
$$

When a student is not good at $M(0.60)$, it is preferable that (s)he is better at P than L, so

$$
d \succ c
$$

An alternative example (Marichal, 2000)

Additive model : $\mathrm{WAM}_{\mathrm{w}}$

$$
\left.\begin{array}{lll}
a \succ b & \Leftrightarrow & w_{L}>w_{P} \\
d \succ c & \Leftrightarrow & w_{L}<w_{P}
\end{array}\right\}
$$

No solution!

Non additive model : \mathcal{C}_{V}

student	M	P	L	global
a	0.90	0.70	0.80	0.81
b	0.90	0.80	0.70	0.79
c	0.60	0.70	0.80	0.71
d	0.60	0.80	0.70	0.72

Special cases of Choquet integrals

- Weighted arithmetic mean

$$
\mathrm{WAM}_{\mathbf{w}}(\mathbf{x})=\sum_{i=1}^{n} w_{i} x_{i}, \quad \sum_{i=1}^{n} w_{i}=1, \quad w_{i}>0
$$

Proposition

Let $v \in \mathcal{F}_{N}$. The following assertions are equivalent :
i) $\quad v$ is additive
ii) \exists a weight vector \mathbf{w} such that $\mathcal{C}_{v}=\mathrm{WAM}_{\mathbf{w}}$
iii) $\quad \mathcal{C}_{v}$ is additive : $\mathcal{C}_{v}\left(\mathbf{x}+\mathbf{x}^{\prime}\right)=\mathcal{C}_{v}(\mathbf{x})+\mathcal{C}_{v}\left(\mathbf{x}^{\prime}\right)$

Special cases of Choquet integrals

- Ordered weighted averaging (Yager, 1988)

$$
\mathrm{OWA}_{\mathbf{w}}(\mathbf{x})=\sum_{i=1}^{n} w_{i} x_{(i)}, \quad \sum_{i=1}^{n} w_{i}=1, \quad w_{i}>0
$$

with the convention that $x_{(1)} \leqslant \cdots \leqslant x_{(n)}$.

Proposition (Grabisch-Marichal, 1995)

Let $v \in \mathcal{F}_{N}$. The following assertions are equivalent :
i) $\quad v$ is cardinality-based
ii) \exists a weight vector \mathbf{w} such that $\mathcal{C}_{v}=O W A_{w}$
iii) $\quad \mathcal{C}_{V}$ is a symmetric function.

Ordinal scales

Example : Evaluation of a scientific journal paper on importance
1 =Poor, $2=$ Below average, 3=Average, $4=$ Very Good, 5=Excellent

Values: $1,2,3,4,5$

$$
\begin{aligned}
& \text { or : } \quad 2,7,20,100,246 \\
& \text { or : } \quad-46,-3,0,17,98
\end{aligned}
$$

Numbers assigned to an ordinal scale are defined up an increasing bijection $\phi: \mathbb{R} \rightarrow \mathbb{R}$.

Means on ordered sets

Definition. A function $F: E^{n} \rightarrow \mathbb{R}$ is comparison meaningful if, for any increasing bijection $\phi: E \rightarrow E$ and any $\mathbf{x}, \mathbf{x}^{\prime} \in E^{n}$,

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & \leqslant F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \\
& \Uparrow \\
F\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right) & \leqslant F\left(\phi\left(x_{1}^{\prime}\right), \ldots, \phi\left(x_{n}^{\prime}\right)\right)
\end{aligned}
$$

Example. The arithmetic mean is not comparison meaningful Consider

$$
4=\frac{3+5}{2}<\frac{1+8}{2}=4.5
$$

and any bijection ϕ such that $\phi(1)=1, \phi(3)=4, \phi(5)=7$, $\phi(8)=8$. We have

$$
5.5=\frac{4+7}{2} \nless \frac{1+8}{2}=4.5
$$

Means on ordered sets

Theorem 12 (Ovchinnikov, 1996)

The function $F: E^{n} \rightarrow \mathbb{R}$ is

- symmetric
- continuous
- internal
- comparison meaningful
if and only if there exists $k \in N$ such that

$$
F(\mathbf{x})=x_{(k)}
$$

Note : $x_{(k)}=\operatorname{median}[\mathbf{x}]$ if $n=2 k-1$

Lattice polynomials

Definition. A lattice polynomial function in \mathbb{R}^{n} is defined from any well-formed expression constructed from the variables x_{1}, \ldots, x_{n} and the symbols \wedge, \vee.

Example: $\left(x_{2} \vee\left(x_{1} \wedge x_{3}\right)\right) \wedge\left(x_{4} \vee x_{2}\right)$
It can be proved that a lattice polynomial can always be put in the form

$$
L_{c}(\mathbf{x})=\bigvee_{\substack{T \subseteq N \\ c(T)=1}} \bigwedge_{i \in T} x_{i}
$$

where $c: 2^{N} \rightarrow\{0,1\}$ is a nonconstant set function such that $c(\varnothing)=0$.

In particular

$$
x(k)=\bigvee_{\substack{T \subseteq N \\ T \subseteq \mid=n}} \bigwedge_{i \in T} x_{i}
$$

Axiomatization of lattice polynomials in \mathbb{R}^{n}

Theorem 13 (Marichal-Mathonet, 2001)
The function $F: E^{n} \rightarrow \mathbb{R}$ is

- continuous
- idempotent
- comparison meaningful
if and only if there exists a nonconstant set function
$c: 2^{N} \rightarrow\{0,1\}$, with $c(\varnothing)=0$, such that $F=L_{c}$
Note: If E is open, continuity can be replaced with nondecreasing monotonicity

Complete description of comparison meaningful functions: see Marichal-Mesiar-Rückschlossová, 2005

Connection with Choquet integral

Proposition 2 (Murofushi-Sugeno, 1993)

If $v \in \mathcal{F}_{N}$ is $\{0,1\}$-valued then $\mathcal{C}_{v}=L_{v}$
Conversely, we have $L_{c}=\mathcal{C}_{c}$.
Proposition 3 (Radojević, 1998)
A function $F: E^{n} \rightarrow \mathbb{R}$ is a Choquet integral if and only if it is a weighted arithmetic mean of lattice polynomials

$$
\mathcal{C}_{v}=\sum_{i=1}^{q} w_{i} L_{c_{i}}
$$

This decomposition is not unique!
$0.2 x_{1}+0.6 x_{2}+0.2\left(x_{1} \wedge x_{2}\right)=0.4 x_{2}+0.4\left(x_{1} \wedge x_{2}\right)+0.2\left(x_{1} \vee x_{2}\right)$

Connection with Choquet integral

Proposition 4 (Marichal, 2001)

Any Choquet integral can be expressed as a lattice polynomial of weighted arithmetic means

$$
\mathcal{C}_{v}(\mathbf{x})=L_{c}\left(g_{1}(\mathbf{x}), \ldots, g_{n}(\mathbf{x})\right)
$$

Example (continued)

$$
0.2 x_{1}+0.6 x_{2}+0.2\left(x_{1} \wedge x_{2}\right)=\left(0.4 x_{1}+0.6 x_{2}\right) \wedge\left(0.2 x_{1}+0.8 x_{2}\right)
$$

The converse is not true : $\left(\frac{x_{1}+x_{2}}{2}\right) \wedge x_{3}$ is not a Choquet integral
Unsolved problem : Give conditions under which a lattice polynomial of weighted arithmetic means is a Choquet integral

